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SUMMARY

As the share of variable renewable energy (VRE) grows in the electric grid, so does the
risk of curtailment. While energy storage and hydrogen production have been proposed
as solutions to the curtailment problem, they often pose technological and economic
challenges. Here, we analyze the potential of data center load migration for mitigating
curtailment and greenhouse gas (GHG) emissions. Using historical hourly electricity
generation, curtailment, and typical data center server utilization data, we simulate the
effect of migrating data center workloads from fossil fuel-heavy PJM to renewable-
heavy CAISO. The results show that load migration within the existing data center
capacity during the curtailment hours in CAISO has the potential to reduce 113-239
KtCOze yr' of GHG emissions and absorb up to 62% of the total curtailment with
negative abatement cost in 2019. Our study demonstrates the overlooked role that data
centers can play for VRE integration and GHG emissions mitigation.

Keywords: variable renewable energy, curtailment, data center, greenhouse gas emissions
mitigation, load migration

INTRODUCTION

Driven by aggressive public policy and compelling economics, global capacity of Variable
Renewable Energy (VRE), such as solar photovoltaics (PV) and wind electricity, is growing
rapidly. European Union, for example, has a target to achieve at least 32% share of renewable
energy by 2030,' and California aims at 60% renewable portfolio standard by 2030.2

As the penetration of VRE in the grid grows, so do the concerns of large-scale curtailment.’~
Curtailment is the reduction of output of a VRE resource below what it could have otherwise
produced. It has been repeatedly reported in different world regions across Europe, America
and Asia, significantly decreasing the market value of VRE.> Near-term reasons for VRE
curtailment include minimum generation requirement for non-renewable energy sources and
transmission constraints, but long term, fundamental causes drive increasing pressure for
curtailment.>’ Large-scale energy storage and electricity transmission network expansion can
mitigate VRE curtailment, but they are costly. With a system cost between $380 to $895 per
kWh,?® the battery storage capacity deployed globally (12 GWh in 2018)° is infinitesimal
compared to the amount of global electricity consumption (about 23,000 TWh per year).'°
Long-distance transmission of VRE-generated electricity is possible but the construction of
transmission infrastructure and the associated transmission losses are often cost-prohibitive.!!
Pumped hydro can be another storage solution, but it requires certain geographical features
and may raise ecological concerns.'?

Another approach to reduce curtailment is to use excess VRE electricity to produce more
easily storable materials or products, such as hydrogen through water electrolysis, which can
be shipped upon demand.'>!'* However, the logistics and handling of these materials and
associated costs can pose additional challenge.!> A potential solution to this logistics and
handling problem is to use over-generated electricity to produce something that can be
transported at minimal cost and energy: information.

Data centers can provide battery-like demand side management service by powering data
processing with excess VRE. The technical and economic potential of zero-carbon cloud data
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centers which solely run on stranded renewable power has been explored.'®!” Geographical
load balancing has been widely studied to maximize renewable energy use by distributing the
workloads among data centers in different locations.'®!° Data centers are highly automated
and monitored with little human interventions. Importantly, they have considerable flexible
workloads which can be distributed geographically.!”* Provided the requisite data is
available, those data centers with renewable energy access can process the requests routed
from other regions and return the results to users while meeting Service Level Agreements
(SLAs). Moreover, most data centers operate well below 100% capacity most of the time —
over-provisioning for peaks leaves servers and network resources underutilized.”!
Furthermore, the peak time of data center loads often does not coincide with the peak time of
VRE over-generation, providing room for data centers to use their excess capacity to process
additional workloads with excess VRE.

Compared with building large-scale transmission infrastructure, building fiber optics
networks and transmitting data are much cheaper, and takes significantly less time.''
Therefore, the transmission of data is more economically favorable than the transmission of
electricity, i.e. “moving bits, not watts”.?> Furthermore, the society’s needs for data
processing is growing rapidly. Global data centers used 205 TWh electricity in 2018 or 1% of
global electricity consumption.?® In 2014, U.S. data centers consumed 70 TWh electricity,
which was 1.8% of the total annual U.S. electricity consumption.?* It is estimated that the
global datasphere will grow from 33 zettabytes (ZB) in 2018 to 175 ZB in 2025 at an annual
growth rate of 27%, implying growing needs for data center infrastructures.?® The
decarbonization of data centers is imperative, and require combined efforts including
maximizing IT-device efficiency, adoption of low-carbon electricity and improving
infrastructure efficiency.?® Load migration between data centers can collectively improve IT
efficiency and utilization of renewable energy. Nevertheless, the potential for load migration
between data centers to utilize excess VRE generation and reduce greenhouse gas (GHG)
emissions has not been quantified.

In this study, we use two Independent System Operators (ISOs) in the U.S., California ISO
(CAISO) and Pennsylvania-New Jersey-Maryland Interconnection (PJM), as a case study to
explore the potential of workloads migration between data centers to mitigate curtailment and
GHG emissions. PJM is the largest ISO in the U.S., which predominantly relies on thermal
energy sources like coal and natural gas, with solar and wind accounted for only 3.2% in
2019.27-28 The states covered by PJM host a large amount of data centers, with the most
noteworthy area being North Virginia. In the second half of 2018, North Virginia saw over a
third of the world’s new data center capacity absorption, with an addition of 270 Megawatts
(MW) data center power.?’ As the hub of technology and media companies, California also
has many data centers, mostly located in the Bay Area and Southern California.’® Of all the
data center colocation establishments in the U.S., 13% are located in California and about
15% are in PJM region.3!:2

Based on the historical hourly curtailment data of CAISO and a typical data center energy
consumption profile, we evaluate the potential of the existing and additional data center
capacities to absorb excess VRE and reduce GHG emissions by migrating data center
workloads from PJM region. In this analysis, we use counterfactual scenarios as an
illustration of the potential rather than as a record of historical accounts.

RESULTS

Historical curtailment of CAISO

We collected and analyzed the historical curtailment data of CAISO during 2015-2019. The
total annual curtailment of CAISO grew from 188 GWh to 965 GWh from 2015 to 2019, at
an average annual growth rate of 51%. Curtailment data at CAISO shows wide daily and
seasonal variations, with an upward trend over time (Fig. 1a). Solar PV curtailment accounted
for 90% of the total cumulative curtailment during this period and wind accounted for 10%.
The majority of curtailment occurred in the first and second quarter, which combined
accounted for 69% of the total curtailment in the period. Monthly curtailment peaked in April
or May. This results from growing solar radiation strength and extended daytime length
during spring, combined with mandatory runoffs from northwest hydro generation imports
and cool weather. Both solar and wind curtailment occurred the least in the third quarter with
July or August seeing the minimum, which can be explained by higher cooling demands in
summer’s warmer weather. The surge of solar curtailment during 2015-2019 mirrors the fact
that the share of solar power in total CAISO generation had increased from 6.7% to 13.0% in
this period. In comparison, the share of wind power in the generation mix increased from
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5.3% to 7.2%, representing a milder growth than solar. When disaggregated at hourly
resolution (Fig. 1b), curtailment took place rather randomly throughout the 24 hours of a day
in 2015 and 2016, but as solar PV capacity grew and nighttime wind curtailment decreased
during 2017-2019, total curtailment became increasingly more conspicuous in the daytime.

[INSERT FIGURE 1]

Instead of curtailing, the excess VRE generation in CAISO could be used to process data
center workloads migrated from carbon-intensive grid regions. Many data centers operate at
less than 50% average server utilization rate,?***3* and the time-zone difference between PJIM
and CASIO helps avoid peaking load at the same time, allowing the data centers served by
CAISO to take on additional data processing jobs migrated from PJM-served data centers
during the off-peak hours. We use the historical curtailment data, which is referred to as
“excess VRE” hereafter, to evaluate the potential of migrating workloads between data
centers.

Hourly GHG intensity of CAISO and PJIM

We collected and treated the electricity generation by energy resource data for CAISO and
PJM during 2016-2019.28% The life-cycle GHG intensities of the two ISOs during 2016-2019
(Fig. 2) were calculated on an hourly basis based on the historical generation data and U.S.-
specific GHG emission factors, which include both combustion emissions and life-cycle
emissions embodied in the inputs to power generation (Table S1). Imported electricity is not
included in the calculation.

[INSERT FIGURE 2]

The annual average GHG intensity of PJM decreased from 499 to 452 kgCO2e/MWh during
2016-2019. The monthly average intensity of PJM peaked in summer (July or August) and
reached its lowest around April and October, with a range between 417-557 kgCO2e/MWh.
For CAISO, the annual average GHG intensity changed from 262 to 231 kgCO2e/MWh
during the same period. The monthly intensity of CAISO hit the lowest in April or May due
to prominent solar and hydro power production.

During the hours when curtailment occurred in CAISO, only the intensity values of the
curtailment (i.e. excess VRE) are shown (Fig. 2 - CAISO), which is assumed to be
proportionally contributed by curtailed solar and wind power. In other words, the GHG
emissions intensity of the excess generation is calculated as the average life-cycle GHG
emissions intensity of solar and wind weighted by their shares in the total curtailment during
that hour. While the average GHG intensity of CAISO excess generation during 2016-2019
was 41 kgCO2¢e/MWHh, the average GHG intensity of PJM during CAISO’s excess generation
time was 476 kgCO.e/MWh. The significant differences of the GHG intensities between the
two grids during CAISO excess generation time present a great opportunity for GHG
emissions mitigation by migrating the data center workloads geographically.

The capacity of data centers to absorb excess VRE

We first estimated the existing data center capacity in CAISO region. We collected the
available data center location and power consumption data from a colocation data center
industry website.*® By examining the profiles of all the listed data centers in California, we
calculated that the average annual total power consumption per colocation site is 9.92 MW,
based on 26 data points that provided the information. We also identified that currently there
are 288 data centers in CAISO region by the end of 2019.>” We use a typical data center
energy profile with an IT peak power (or critical power) of 10 MW as a standardized unit®® in
this study to estimate the excess VRE absorption capacity, GHG emissions reduction
potential and abatement cost.

We then simulate the Dynamic Range (DR) and Power Usage Effectiveness (PUE) of the
data centers served by CAISO. DR is the ratio of a server’s idling power to its maximum
power,* based on which we calculate the energy consumption of servers given the rated
power and utilization rate. PUE is defined as the ratio of the data center total energy
consumption to IT equipment energy consumption, calculated, measured or assessed across
the same period.* PUE values vary depending on data center type and geographical location.
Here, we model the average PUE of colocation data centers in California. Detailed
assumptions of the two parameters can be found in Experimental Procedures and Table S3.
We also developed linear model between the hourly server utilization rate and the energy use
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of non-server components,*® through which we can calculate the non-server energy
consumption given a certain PUE value in a year.

We compare two scenarios for evaluating the excess VRE absorption potential of data center
workloads migration: Baseline Scenario and Migration Scenario. In Baseline Scenario,
workloads are processed by typical data centers served by PJIM without any migration. In
Migration Scenario, workloads are first migrated to and processed by the existing typical data
centers served by CAISO. We assume that the migration occurs between data centers of
similar scale with typical energy use characteristics in our model. Once the existing capacity
is exhausted, we assume building additional data center capacity which run solely on the
remaining excess VRE. We assume that the data centers all have advanced algorithms and
automation mechanisms in place to enable the load migration.

[INSERT FIGURE 3]

Fig. 3 illustrates the excess VRE absorption potential of a typical data center in a week. The
remaining capacity of an existing data center in an underutilized hour is calculated by
subtracting the existent load of the data center in that hour from its maximum allowed load.
Load migration is only enabled during the hours that the servers in data centers served by
CAISO are underutilized. We test different scenarios by varying the assumption of the
maximum allowed server utilization rate (UR) between 65% and 90% during underutilized
time, representing an improved management and a maximized utilization scenario,
respectively. Average utilization rate of large-scale cloud providers is estimated as 65%.%
Once the remaining capacities of all existing data centers are exhausted, we calculate the
respective additional data center capacity needed to absorb different portions of the total
excess VRE. During excess generation hours, the servers in the additional data centers would
be activated to process the workloads migrated from PJM region and operate at the maximum
allowed UR assumed. The servers are assumed to be shut down at times when there is no
available excess VRE.

GHG emissions reduction and abatement cost

We calculate the achieved total GHG emissions reduction by summing up the products of the
hourly GHG intensity difference between the two scenarios and the amount of excess VRE
absorbed for each year between 2016-2019. We then estimate the total abatement cost of the
plan by comparing the cost difference between the two scenarios. For the excess VRE that
fall within the remaining capacity of existing data centers, workloads migration causes only a
change in electricity bills between the two scenarios. When additional data centers are built to
absorb extra excess VRE, changes in electricity cost, amortized facility cost and additional
cost are all captured.

We use the cost estimates developed specifically for zero-carbon cloud (ZCC) data centers
that run on stranded renewable power!® for the additional data center capacity in Migration
Scenario. These intermittent data centers have lower facility cost because they use containers
and can be located near renewable generation sites with less power distribution costs.!® The
electricity cost is also significantly lower for ZCC data centers than the traditional ones as the
otherwise-curtailed VRE electricity is assumed to have zero cost. Additional cost for
installing data and energy storage devices will incur due to the intermittent characteristic of
the power supply for ZCC data centers. The cost of applications including software licenses,
system and database administration are not considered as they vary greatly and do not
constitute part of the infrastructure-related capital or operational cost. The total abatement
cost sums up the difference of facility, electricity and additional costs between the two
scenarios on an annual basis. The net abatement cost (in $/metric ton CO2e) is then calculated
by dividing the total abatement cost by the total net GHG emissions reduction achieved.

Fig. 4 summarizes the results of total GHG emissions reduction and net GHG abatement cost
using 2019 data. The existing data center capacity alone (i.e. when additional data center
capacity is zero) can absorb 29%-62% of the total excess VRE in CAISO in 2019, assuming
that the maximum server UR ranges between 65% and 90%. As we increase the maximum
server UR and additional data center capacity, the excess VRE absorption level grows. At a
given absorption level, a higher maximum server UR means a reduced need for additional
data center capacity.

[INSERT FIGURE 4]
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The resulting GHG emissions reduction is the net reduction after accounting for the
embodied GHG emissions of the additional data centers, which are incurred due to the
manufacturing of IT equipment and infrastructure materials. The embodied emissions are
proportional to the total number of new data centers built and would offset a fair amount of
the operational GHG emissions reduction achieved by data center workloads migration. A
total net GHG emissions of 113-239 KtCO:ze could have been reduced in 2019 given the
maximum server UR range assumed, and additional data center capacity can bring the total
reduction further up to 247 KtCOze (Fig. 4a). The net GHG emissions reduction peaks at an
absorption level between 68%-75% when the maximum server UR exceeds 85%. Absorbing
80% of the total excess VRE or above does not bring more GHG emissions reduction benefits
because the embodied emissions from more additional data centers would outweigh the
reduction from operational phase.

Fig. 4b shows the estimated net abatement cost of the Migration Scenario. A negative
abatement cost means that data centers can generate extra profits by mitigating GHG
emissions through load migration. Without building any additional data center capacity, the
existing capacity has a net abatement cost of -$242/tCOze under any maximum server UR,
driven by a decrease in electricity cost. The economic break-even point of additional data
center capacity that should be built decreases from 780 MW to 350 MW as the maximum
server UR increases from 65% to 90% (Fig 4b, the white line of zero). The lowest abatement
costs (up to -$688/tCOze) can be reached by keeping the maximum server UR below 70%
and the additional data center capacity between 150 MW-350 MW, corresponding to an
absorption level of 45%-60%. It is possible to absorb up to 77%-79% excess VRE while still
manage to keep the net abatement cost negative, but an absorption goal of more than 80%
does not make sense economically under any maximum server UR as the net abatement cost
would always stay positive. The results of GHG emissions reduction and abatement costs for
years 2016-2018 are shown in Figures S1-S3.

DISCUSSION

The inherent intermittent nature of VRE poses a major challenge to the stability and
profitability of electric grids. Curtailment around the world is likely to grow as the share of
VRE continues to rise, unless strong measures are taken to mitigate it*. Even with
curtailment, over-generation still occurs, in which case, electricity is routinely sold at
negative prices. In CAISO, for example, the share of 5-minute intervals with negative prices
between 2014 and 2018 ranged 2%-4%.*!

Our study shows that workloads migration between data centers can potentially absorb excess
VRE, reducing both curtailment and GHG emissions at no or negative cost. The existing data
center capacity served by CAISO has the potential to absorb up to 62% of the excess VRE
and reduce GHG emissions of up to 239 KtCOze with a net abatement cost of -$242/tCOze in
2019, provided that server utilization rate is improved (Fig. 4). Additional data centers could
further absorb the cumulative excess VRE up to 79% and reduce the GHG emissions up to
247 KtCOze while still maintaining negative abatement cost.

Furthermore, the potential for workloads migration among data centers to mitigate
curtailment and GHG emissions is likely to grow, as the needs for data processing services
and data center infrastructure continue to expand. In order to capture such growing potential
for workloads migration, a number of institutional and technological changes are due. In
particular, development of the technology, policy, and protocols that enable real-time
workloads migration among data centers during the time of excess renewable generation
would be needed. In addition, it is essential to develop the mechanism to incentivize data
centers on load migration between grid regions and to facilitate the fluid communication
among multiple grid operators and data centers. Technologies should be developed to support
highly dynamic data center operation based on instantaneous generation, load and capacity
data. Reliable short-term VRE generation forecasting capability for accurate projection of
VRE over-generation is indispensable for dynamic load migration during the excess
generation hours.*?

Besides the spatial flexibility of data centers, the temporal flexibility of certain types of
workloads also holds great potential for demand response, which is not evaluated in this
analysis. Flexibly scheduling delay-tolerant workloads can increase renewable energy usage
and accommodate more renewable resources in the grid.'**} Some Internet service providers,
for example Google, have developed carbon-aware scheduling technology to shift compute
tasks across time to maximize renewable energy utilization, noting that their next step is to
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move the tasks between data centers in different locations.* Incentivized deadline deferral
can be an effective way to change customers’ behaviors and encourage workloads shifting.**
Energy storage devices in data centers can also play a role at smoothing VRE power by
charging during over-generation time and discharging at a later time. %4’

There are some challenges facing workloads migration, but potential solutions are available.
First, workloads migration incurs additional network delay and thus potential service
violations.'®!? The network latency time from U.S. east to west is currently around 60
milliseconds,*® which is short but not trivial. Fortunately, delay-tolerant workloads including
scientific computation, big data analytics, medical image processing etc. are a major
component of data center workloads, accounting for more than 50% of total workloads,** far
more than the fraction of workloads we model the migration of. Interactive workloads which
are inappropriate to shift because of the user-response latencies required, such as web search
and videoconference, are assumed not to be migrated. Network latency has been decreasing
thanks to the growing transmission speed and capacity of optic fibers; some companies
already achieved speeds of hundreds of terabytes per second. The intermittent nature of
excess renewable generation requires the workloads to be easily interruptible as needed,
which makes it challenging for some workloads.*” Nevertheless, this problem can be
alleviated through installing more solid state drives and energy storage to checkpoint-restart
the jobs.'® The confidentiality of data center information remains another major concern.
Data center owners are usually reluctant to share data about their facilities, including power
consumption, to the public.* The confidentiality-related concerns can potentially be
addressed through data reporting and aggregation protocols, advanced encryption technology
and economic incentives.?

Our findings are applicable not only in the U.S. but also in other world regions with growing
penetration of VRE. Data centers can and should play an important role in global VRE
integration and GHG emission mitigation, especially in a future when the capacities of data
processing and renewable energy are both rapidly growing.

EXPERIMENTAL PROCEDURES

Resource Availability

Lead Contact

Please contact the Lead Contact, Sangwon Suh (suh@bren.ucsb.edu) for information related
to the data and code used in the following experimental procedures.

Materials Availability

No materials were used in this study.

Data and Code Availability

The datasets and codes generated during this study are available at Mendeley Data
http://dx.doi.org/doi:10.17632/wngs282m48.1.

Historical curtailment and GHG intensity

We collected the historical solar and wind curtailment data of CAISO at a 5-min interval
during 2015-2019.%° We analyzed and visualized the curtailment data on an hourly basis. To
calculate the hourly GHG intensity of the two grids, we first collected the data of electricity
supply by energy resource type. We collected the hourly generation data by resource type
with breakdown of renewable resources of CAISO during 2015-2019 from CAISO website.>
For PJM, the generation data was obtained from the Generation by Fuel Type dataset from
Data Miner 2 database.?® The generation data for year 2015 was not available in PIM
database so only 2016-2019 data was used. Due to daylight savings time change, the
generation data of PJM at 2 a.m. in a certain day in March was missing, and we handled it by
filling it with the average value of two adjacent hours; there were duplicate data points at 1
a.m. in a November day, and we only kept the latter one of the two duplicate hours.

To calculate the GHG emissions and intensities, we used the life-cycle GHG emissions data
for each energy resource. Life-cycle GHG emissions are the total emissions from all stages of
an energy resource’s life cycle, covering upstream, operational and downstream processes.
These processes include fuel/raw material extraction, transport, infrastructure
construction/equipment manufacturing, combustion (for fossil fuels), equipment operation
and maintenance and waste treatment. For natural gas, we used the life-cycle GHG emissions
value of natural gas combined cycle in the U.S. reported by National Energy Technology
Laboratory.’! For coal, we used the generation-weighted average life-cycle GHG emissions
data based on an investigation of over 300 coal power plants in the U.S.5 For low-carbon
energy resources, the median values of the life-cycle GHG emissions presented in the Fifth
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Assessment Report by Intergovernmental Panel on Climate Change (IPCC) were applied.*
The category “thermal” in CAISO generation data was treated as natural gas as the share of
coal is negligible. The category “other renewables” in PJM generation data is considered as
an equal mix of biomass and biogas. For any unspecified resource type such as “multiple
fuels” and “other”, an average unspecified emission value was used.’* Table S1 summarizes
the life-cycle GHG emissions values of electricity generation by energy resource that were
used in this study. Imports of CAISO were not included when calculating the GHG intensity
of generation as the energy mix was not clear. PJM was a net exporter of electricity as we
summarized its interchange dataset.>

The hourly GHG intensity of electricity supply during 2016-2019 was calculated as the
weighted average of the life-cycle GHG emissions of all the energy resources in that hour
(equation 1).

GHG_intensity, = ¥;(GHG,¢; X Generation,) + X Generation, (1)

In equation (1), h is a certain hour in a year, and i is a certain resource type. GHG_intensityy,
(in kgCO2e/MWh) is the GHG intensity of the grid in hour h, GHG, ¢ ; (in kgCO2e/MWh) is
the life-cycle GHG emissions of resource i, Generation;, (in MWh) is the electricity
generated by resource i in hour h and Y}; Generation, , (in MWh) is the total electricity
generation by all resources in hour h.

Reductions in curtailment and GHG emissions

The electricity consumption profile of a real-world data center on an hourly basis is difficult
to obtain due to the secretive nature of the industry. Therefore we use the simulated energy
consumption profile of a data center which has a critical (IT) power of 10 MW and a typical
data center design.’® We obtained the hourly electricity consumption data of the typical data
center in a week and extended the weekly profile to a year. The data center has a total peak
power of 21 MW and consumes approximately 114 GWh electricity annually.*® The detailed
technical specifications and the energy consumption data of this typical data center are shown
in Table S2. Seasonal variations of the energy consumption are not considered.

Energy consumption of a data center is jointly determined by their IT and non-IT energy
efficiency. We made assumptions of two key parameters to model future data center energy
use, Dynamic Range (DR) and Power Usage Effectiveness (PUE), considering the energy
efficiency improvement of both IT and non-IT components. The yearly values of the
parameters assumed for 2016-2019 are shown in Table S3. DR determines the lowest power
(idling power) consumption of servers, which serves as the intercept in the linear model
between server power usage and server utilization rate. As server power efficiency improves,
DR value gets lower. In other words, the power usage of servers while idling would decrease
over time as a result of improved energy proportionality.** We assume that the average DR
value drops from 0.25 to 0.11 from 2012 to 2019 based on the historical DR value changes
reported in several literature sources.’**" For the energy efficiency improvement of non-IT
components in data centers, we simulate the change of PUE value during the examined
period. We assume that the average PUE of data centers served by CAISO decreases from
1.59 to 1.30 from 2012 to 2019 based on the PUE trend in the data center industry surveys
conducted by Uptime Institute’®>* and recent PUE values of California data centers from a
colocation website.>® We also developed a model based on the energy profile from the
reference to simulate the linear relationship between hourly non-server energy consumption
and server utilization rate (R?> = 0.988). With this model, we calculated the hourly non-server
energy consumption given certain annual average PUE value assumed for the year. Both PUE
and DR values are assumed to change linearly during the examined period.

Under Migration Scenario, during the hours when there is excess VRE in CAISO, workloads
from the data centers served by PJM are assumed to be migrated to the data centers served by
CAISO. The time difference between CAISO and PJM regions of three hours is considered.
We assume using the remaining capacity of existing data centers to respond to excess VRE
generation of CAISO first, and then use additional data center capacity to absorb the rest of
the excess generation. The remaining capacity of existing data centers is determined by the
allowed maximum server utilization rate during underutilized hours, for which we set
different levels between 65% and 90% as explained in the main text. While in theory, servers
should be able to run at 100% utilization rate, in practice they are run at significantly lower
utilizations to tolerate the burstiness of computations, and fluctuations of loads*. Our
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assumption of 90% as the upper bound of the maximum server UR is a conservative
assumption with respect to the benefits of workloads migration. The additional data centers,
assumed to be Zero-Carbon Cloud (ZCC) data centers, run at the maximum server utilization
rate with the remaining excess VRE that exceeds the existing data centers’ capacity. The
GHG emissions reduction is then calculated as the difference of total GHG emissions
between the Baseline Scenario and the Migration Scenario, i.e. by multiplying the amount of
excess VRE generation absorbed by CAISO data centers and the GHG intensity difference
between PJM generation and the excess VRE generation in CAISO.

To ensure a holistic perspective, the embodied GHG emissions of additional data centers are
taken into account. They include all the non-operational emissions that come from the
manufacturing of IT, electrical, mechanical equipment and building materials, etc. Life cycle
assessment (LCA) studies of data centers are scarce in the literature, but we identified one
study that has the energy consumption breakdown by data center component. The study
shows that non-operational emissions account for 6.5% of the total life-cycle climate change
impacts of a data center®. We calculated that the yearly non-operational energy consumption
of a data center is around 432 MWh electricity per MW of critical (IT) power based on the
data from the reference, assuming a S-year IT refresh rate as the additional data centers run
intermittently.®® According to the Emissions & Generation Resource Integrated Database
(eGRID) by U.S. EPA, the average GHG intensity of U.S. grid was 456 and 432
kgCO2/MWh in 2016 and 2018, respectively. We extrapolated the two points linearly and
estimated that the average GHG intensity in 2017 and 2019 was 444 and 421 kgCO2/MWh,
respectively. The embodied GHG emissions of a U.S. data center therefore amounted to 0.20-
0.18 KtCO2e/MW critical power per year during 2016-2019. We validated the number by
analyzing the data from another earlier data center LCA study and it yielded similar
estimate.f!

Estimation of abatement cost

For the costs of additional data center capacity under the Migration Scenario, we use the cost
estimates developed for the ZCC data centers that run solely on stranded renewable power.'®
They typically co-locate with existing renewable generation facilities and therefore the costs
of power transmission and distribution can be reduced. The total abatement cost sums up the
changes between the Baseline Scenario and Migration Scenario in facility cost, electricity
cost and additional cost for a certain year.

(1) Facility cost. The amortized physical facility cost of ZCC data centers ($0.50 per watt of
critical power) is markedly lower than that of traditional data centers ($5.25/W) by using
containers and co-locating at renewable generation sites'®. But ZCC data centers run
intermittently depending on the availability of excess VRE generation, and traditional ones
run continuously as a comparison. Under the Migration Scenario, the amortized facility cost
of ZCC data centers is obtained by simply multiplying $0.50/W with the total IT power, e.g. a
10 MW ZCC data center has an amortized facility cost of $5 million. To capture the facility
cost of typical data centers served by PJM under the Baseline Scenario, we divided the
amortized facility cost (e.g. $52.5 million for a typical traditional 10 MW data center) by its
annual energy consumption, and then multiplied this unit facility cost (in $/MWh) with the
amount of excess VRE generation absorbed by additional data centers through workloads
migration in that year. In other words, we allocated the facility cost of data centers under the
Baseline Scenario based on the amount of load that could be migrated to additional data
centers under the Migration Scenario. Supplemental Equation S15-S17 represent the
mathematical expressions of calculating facility costs.

(2) Electricity cost. We assume zero cost for the over-generated electricity under the
Migration Scenario since excess VRE generation is regarded as “stranded energy” and it
would have been curtailed if not utilized. We used the historical average retail electricity
prices for Virginia during 2016-2019 as representative values to calculate the electricity costs
of typical data centers powered by PJM under the Baseline Scenario.

(3) Additional cost. Due to the fact that ZCC data centers run on intermittent excess VRE
generation, additional solid state drives (SSDs) and energy storage devices to checkpoint-
restart jobs interrupted by a power outage are needed.'® Combined with hardware for free
cooling, the total additional cost incurred is $0.175/W per year.

The amortized compute cost and network cost are assumed to be the same under the two
scenarios. Workloads migration has the potential to increase software licensing costs,
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particularly if additional virtual instances are required. We do not model this cost, due to the
lack of public information both on software use and licensing. The detailed cost breakdown is
summarized in Table S4. Summing up all the cost changes across facility cost, electricity cost
and additional cost due to workloads migration, we estimate the total abatement cost for each
year. Then by dividing the total abatement cost by the total net GHG emissions reduction, we
derive the net abatement cost standardized by one unit of GHG emissions reduction in a
certain year. All the computation steps are presented in Equations S1-S21, with nomenclature
listed in Table SS5.

Limitations

There are a few uncertainties and limitations with this study. First, we used a typical data
center energy consumption profile to estimate the remaining absorption capacity for excess
VRE. In reality, it may not be representative enough as the data centers in CAISO region
probably have various energy consumption patterns. We also extrapolated the weekly energy
consumption data to the entire year, while in fact the profile may change because of
temperature range under different climate conditions. Second, there is no complete and
transparent database available on the current data center capacity in the U.S., and the
information of the power consumption of the data centers is particularly scarce, so we had to
use limited available data points to estimate the existing capacity of data centers in CAISO
region. Third, the DR and PUE values of data centers in real world vary depending on the
data center type, scale and location. We simulated the average values as a simplification
when geographic-specific and fine-grained data are lacking. We also simplified the analysis
by assuming that the migration occurs between data centers of similar scale with typical
energy use characteristics, while the electricity consumption to process a same compute task
may be different for data centers with contrasting characteristics. Lastly, there is uncertainty
with the data center costs. The cost components of data centers fall in a broader spectrum in
the real-world, and they may evolve in the future due to a variety of reasons including
disruptive technology development. The abatement cost of workloads migration may involve
more potential cost categories such as new devices and algorithms that are necessary to
enable the load migration and communication between grid operators and data centers.

SUPPLEMENTAL INFORMATION
Supplemental Information includes Table S1-S5, Figures S1-S3 and Supplemental
Experimental Procedures.
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Figure 1. Historical curtailment of CAISO, 2015-2019.
(A) Solar and wind curtailment by day.
(B) Solar, wind and total curtailment by day and hour.

Figure 2. Hourly GHG intensity of PJM and CAISO, 2016-2019.
During the time when there was curtailment in CAISO, only the intensity of curtailment (assumed proportionally
contributed by solar and wind curtailment) is shown. Intensity of imports is not included.

Figure 3. Illustration of the energy consumption profile change of a typical data center in the Baseline
Scenario (before workloads migration) and the Migration Scenario (after workloads migration) in a week.
A maximum allowed server utilization rate of 65% during underutilized hours is assumed in this graph as an
example.

Figure 4. Estimated net GHG emissions reduction and net abatement cost as a result of assumed maximum
server utilization rate and additional data center capacity (2019).

(A) GHG emissions reduction in KtCOze.

(B) Net abatement cost in $/tonCOze reduction — negative net abatement cost indicates profitable GHG
mitigation.

The annotated black lines represent the percentages of total excess VRE absorbed. See Figure S1-S3 for 2016-
2018 results.
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Supplemental Information

Supplemental Data

In this section, we present the data sources and parameter assumptions used for the analysis.

The life-cycle GHG emissions data of electricity generation by energy source that we applied to
derive the hourly GHG intensities are listed in Table S1 with references.

We used a typical data center energy consumption profile to calculate the excess VRE absorption
and resulting GHG emissions reduction. The characteristics of this data center including server
power usage, utilization rate (UR) and peak load etc. are presented in Table S2, based on which we
calculated the server and non-server energy consumption for the modeled years.

The assumptions of two key parameters that affect server and non-server energy consumption,
Dynamic Range and Power Usage Effectiveness, are shown in Table S3. Combined with the data
from Table S2, we developed the server and non-server energy consumption model.

To calculate the GHG emissions abatement cost of data center workloads migration, we used the
cost estimates with breakdown of different cost components for both Zero-Carbon Cloud (ZCC) data
centers and traditional data centers in Table S4.



Table S1. Life-cycle GHG emissions of electricity generation technology by energy resource

Life-cycle GHG emissions

Energy resource Reference
(kgCO.e/MWNh)

Solar 48
Wind 11
Geothermal 38 1
Biomass 230
Hydro 24
Nuclear 12
Biogas 253 2
Natural Gas 537 3
Coal 1,046 4
Qil 733 5
Unspecified 428 6




Table S2. Characteristics of the 10 MW* typical data center used for analysis’

Metric Value

Number of servers 40,000
Idling power per server 120 W
Maximum power per server 250 W

Range of hourly server utilization rate

5.4% - 94.0%

Annual average server utilization rate 40%

Peak total IT load 10 MW

Peak total load 20.7 MW
Estimated annual total energy consumption 114,234 MWh

*IT (or critical) power.



Table S3. Assumptions of annual average Dynamic Range (DR) and Power Usage Effectiveness (PUE)
values of data centers served by CAISO?-"

Year PUE DR
2012 1.59 0.25
2013 1.55 0.23
2014 1.51 0.21
2015 1.47 0.19
2016 1.42 0.17
2017 1.38 0.15
2018 1.34 0.13
2019 1.30 0.11

*Only values assumed for the modeled years 2016-2019 are used in the analysis.



Table S4. Estimated amortized cost for Zero-Carbon Cloud (ZCC) data centers and traditional data

centers'?
ZCC data centers powered by Traditional data centers
Category CAISO excess VRE generation powered by PJM
(Migration Scenario) (Baseline Scenario)

Compute cost ($/W*) 5.18 5.18
Physical facility cost ($/W) 0.50 5.25
Network cost ($/W) 0.20 0.20
Electricity cost (cent/kWh) 0 (Z O?ZI-Z (')1189'1 Tetieitél’\:l;)
Total additional cost ($/W) 0.175 -

- SSD cost 0.075 -

- Battery cost 0.025 -

- Hardware for free cooling 0.075 -

*The unit $/W is dollar per watt of IT power (2015 dollars).
**Historical average retail electricity rate of Virginia'.



Supplemental Figures

In the following Figures S1-S3, we show the GHG emissions reduction and net abatement cost for the
year 2016-2018, respectively.

The total curtailment in CAISO was 307 GWh, 379 GWh and 461 GWh in 2016, 2017 and 2018,
respectively. Therefore, the absorption level of the excess VRE (which would otherwise be curtailed)
achieved by the same combination of maximum server UR and additional data center capacity decreases
over time, comparing across Figures S1-S3. Particularly, the existing data centers alone could reduce
38%-73% of the total cumulative curtailment in CAISO during 2016-2019 (53%-89% in 2016, 46%-81% in
2017, 41%-78% in 2018, and 29%-62% in 2019), with the maximum server UR ranging between 65% and
90% during underutilized hours.

During 2016-2018, the net GHG emissions reduction can be up to 120-150 KtCO:e per year if
the maximum server UR falls in higher range, similar to the observation from 2019 results. The most
reduction falls in the absorption level of between 75%-90%, and a further absorption beyond 85% would
potentially have negative effects as the embodied emissions of additional data centers would offset the
mitigation efforts, which is similar with 2019 results. The total cumulative net GHG emissions reduction
during 2016-2019 ranges between 342-647 KtCO.e for the existing data center capacity, depending on
the maximum server UR assumed.

The net abatement cost of the existing data centers alone is -$202/tCOe, -$210/tCO.e
and -$226/tCO.e for 2016, 2017 and 2018, respectively. The slight drop in net abatement cost results
from higher availability of excess VRE electricity along the years. The maximum additional data center
capacity that permits negative abatement cost is 50-100 MW, 65-120 MW and 90-220 MW for year
2016, 2017 and 2018, respectively, depending on the maximum server UR. It is possible to absorb up to
85% of the excess VRE while still maintain a negative abatement cost for 2017 and 2018, if the maximum
server UR can be improved to a range above 85%. Absorption goals beyond the limit would entail net
positive abatement costs. For 2016, it is possible to absorb over 80% even 90% of the excess VRE with
negative abatement cost when the maximum server UR can reach a level above 75%.
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Figure S1. GHG emissions reduction and net abatement cost (2018). Related to Figure 4.
(A) GHG emissions reduction (in KtCOze).

(B) Net abatement cost (in $/metric ton COze reduction).

The annotated black lines represent the percentages of yearly total excess VRE absorbed.
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Figure S2. GHG emissions reduction and net abatement cost (2017). Related to Figure 4.
(A) GHG emissions reduction (in KtCOze).

(B) Net abatement cost (in $/metric ton COze reduction).

The annotated black lines represent the percentages of yearly total excess VRE absorbed.
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Figure S3. GHG emissions reduction and net abatement cost (2016). Related to Figure 4.
(A) GHG emissions reduction (in KtCOze).

(B) Net abatement cost (in $/metric ton COze reduction).

The annotated black lines represent the percentages of yearly total excess VRE absorbed.



Supplemental Experimental Procedures

As we discussed in detail in Experimental Procedures, we compute the excess VRE in CAISO that can be
absorbed by the remaining capacity of existing data centers and additional data center capacity, by
varying the maximum server utilization rate in underutilized hours and allowable additional data enter
capacity, and then calculate the resulting GHG emissions reduction and net abatement cost.

Below Supplemental Equations illustrate the computation steps of: (A) absorption of excess VRE,
(B) GHG emissions reduction, (C) energy consumption by data centers and (D) net abatement cost, with
nomenclature listed in Table S5.

Equations S1 - S21

(A) Absorption of excess VRE by existing and additional data center capacities powered by CAISO

Rmn_Cptyexsency, = (DCloadmax,y - DCloadh‘y) * N_ExstDC (S1)
Excess_VRE, ,, if Excess_VREy, < Rmn_Cptyexsipcs),

AbspexstDCh,y - Rmn_CptyexstDCshly, otherwise. (52)

0, if Excess_ VREy, < Rmn_CptYyexsipcy,
Need_NaddDCh,y = Excess_VREh,y—Abspexswch’y’ otherwise. (S3)
DCloadmax,y

0, lf Need_Nadchhy =0

AbspaddDCh,y = Need—NaddDCh‘y X DCload gy, if 0 < Need_Naachhly < Thld_NaddDCy (S4)
Thld_NaddDCy X DCloady, gy, otherwise.

AbSpexstDcy = Zhe[1,8760] AbSpexstDCsh_y (S5)

AbSPaaapc, = Xne[1,8760] AbSPadancsy,y (S6)

Total_Absp, = Abspexsenc, + AbSPaaanc, (57)

(B) GHG emissions reduction
AGHGh,y = (IntStP]Mh‘y - IntStCAISOexcessh_y) X (AbspexstDCsh,y + AbspaddDCsh,y) (58)
AGHGy = Zh€[1,8760] AGHGh’y (59)

(C) Energy consumption by data centers



Energy_Totaly

PUE, =
Energy_ITy
Power_ldle
DRy = -
Power_Max

Power _Servery,, = Power_ldley + (Power_Max — Power_ldley) X URy,y

Energy_ IT,, = Power_Server,, X N_Servers

Energy_Totaly

Energy _nonlT,, = (mg X UR, + by) xm, st ————— = PUE

Energy_ITy

GHG emissions abatement cost

AFac_Cost, = Fac_Cost, ys — Fac_Costy, gs

Fac_Cost,, s = Unit_Fac_Costys X Total_CptyaddDCy

Unit_Fac_Costggs X IT_Power;
Fac_Cost = X Abs
- ¥.BS Energy_Total;, paddDCy

A Elec_Costy =0- Elec_Ratey'BS X Total_Abspy

AOther_Cost,, = Unit_Add_Costyg X Total_CptyaddDCy— 0

Total_Abate_Costy = AFac_Cost, + A Elec_Costy + A4 Other_Costy

Total_Abate_Costy

Net_Abate_C ost, =
AGHGy

(510)

(S11)

(512)

(513)

(S14)

(515)

(516)

(517)

(518)

(519)

(520)

(521)



Table S5. Nomenclature for supplemental equations

Symbol Unit Description

Rmn_Cptyexsincy,, MWh Total remaining capacity of existing data centers powered by
CAISO to absorb excess VRE during hour h in year y

DCload gy, MW Hourly total peak load of a typical 10 MW data center in year y,
determined by the assumed maximum server utilization rate
which ranges between 65%-90%

DCloady,, MW Actual existent total load of a typical 10 MW data center at hour
hinyeary

N_ExstDC EA Number of existing 10 MW-equivalent data centers powered by
CAISO

AbSPexstnch,, MWh Absorption of excess VRE by existing data centers powered by

' CAISO during hour h in year y

Excess_VREy, MWh CAISO'’s total excess VRE (i.e. curtailment) at hour h in year y

Need_Ngaapcy,, EA Total number of additional data centers (10 MW IT power)
required to absorb all the rest of excess VRE in CAISO that
exceeds existing data center capacity during hour h in year y

AbSPpaaapch,, MWh Absorption of excess VRE by additional data center capacity
powered by CAISO during hour h in year y

Thld_Ngaapc, EA Threshold number of additional data centers (10 MW critical
power) that are allowed to be built in CAISO region in year y

AbSPexstpc,, MWh Annual total absorption of excess VRE by existing data center
capacity powered by CAISO in year y

Abspaaanc, MWh Annual total absorption of excess VRE by additional data center
capacity powered by CAISO in year y

Total_Absp, MWh Annual total absorption of excess VRE by both existing and
additional data center capacity powered by CAISO in year y

AGHGy, kgCO.e GHG emissions reduction at hour h achieved by processing
migrated workloads with excess VRE in year y

Intstpjy,, , kgCO.e/MWh | GHG intensity of PJM generation at hour h in year y

Intstcaisoexcessy,, kgCO2e/MWh | GHG intensity of CAISO curtailment at hour h in year y

AGHG, KtCOze Annual total GHG emissions reduction in year y

PUE, Unit-less Annual average Power Usage Effectiveness value assumed for a

data center in year y




Energy_Total;,

MWh

Total energy consumption (IT + non-IT) of a data center in year y

Energy_IT;,, MWh Total energy consumption of IT equipment in a data center in
year y

DR, Unit-less Dynamic range assumed for servers in year y

Power_Servery, | W Power usage of a server at hour h in year y

Power _ldle, W Power usage of a server when they are idling in year y

Power_Max,, W Rated power usage of a server in year y

URy,, % Utilization rate of the servers at hour h in year y

N _Servers EA Number of servers in the data center

Energy_nonlT,, | MWh Total energy consumption of non-IT components in a data
center at hour h in year y

mg, by, m,, Unit-less my, by — Slope and intercept of linear model of non-IT vs. server
utilization rate, respectively. m, — Co-efficient of the linear model
such that the assumed PUE value is met

AFac_Cost, million $ Annual facility cost change due to workloads migration in year y

Fac_Cost, ys million $ Amortized facility cost of additional (ZCC) data centers powered
by CAISO in year y under Migration Scenario (MS)

Fac_Costy s million $ Amortized facility cost of traditional data centers powered by
PJM in year y under Baseline Scenario (BS)

Unit_Fac_Costys | $/W Unit cost of amortized facility cost of ZCC data centers under MS

Total_Cptysaapc, | MW Total capacity of additional data centers in year y under MS

Unit_Fac_Costgs | $/W Unit cost of amortized facility cost of traditional data centers
under BS

IT_Power, MW IT peak load of a typical data center i (i.e. 10 MW)

AElec_Cost,, million $ Annual electricity cost change due to workloads migration in
year y

Elect_Rate, $/MWh The average retail electricity rate in year y under BS

AOther_Cost, million $ Annual other costs change due to workloads migration in year y

Unit_Add_Costys | $/W Unit annual additional cost of ZCC data centers under MS

Total_Abate_Cost, | million $ Total abatement cost in year y under MS

Net_Abate_Cost,, | $/tonCOze Net abatement cost in year y under MS
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