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Abstract

Internal Plasticization of Poly(Vinyl Chloride) using Thermal Azide-Alkyne Huisgen

Cycloaddition and Copper-Mediated Atom Transfer Radical Polymerization

Longbo Li

Poly(vinyl chloride) (PVC) is one of the most widely used thermoplastics; uses range
from building materials, medical devices, toys, and sports equipment. Pure PVC is rigid and
brittle. Typically, small molecule plasticizers are added to modify the flexibility and durability of
PVC. The most common external plasticizers are phthalate esters. These small molecules
leach out of the PVC matrix into the environment; when inhaled, absorbed, or ingested into the
human body, phthalates and their metabolites pose a significant risk to human health. The most
efficient way to prevent leaching of plasticizers is to covalently attach them to PVC. This is

referred to as “internal plasticization.”

Two strategies have been used to achieve internal plasticization of PVC in this thesis.
In the first strategy, thermal azide-alkyne Huisgen cycloaddition was utilized to attach electron-
poor acetylenediamides using a branched glutamic acid linker to azidized PVC, incorporating
four plasticizing moieties per attachment point. A systematic study incorporating either alkyl or
triethylene glycol esters provided materials with varying degrees of plasticization, with
depressed glass transition temperature (Tg) values ranging from -1 °C to 62 °C. T4 values of
these internally plasticized PVC samples were shown to decrease with increasing chain length
of the plasticizing ester. A branched internal plasticizer bearing a triethylene glycol ester had
lower Ty values compared to that with a same length linear alkyl ester. Thermogravimetric
analysis of PVC bearing internal plasticizers revealed that these branched internal plasticizers
bearing alkyl ester chains are more thermally stable than similarity branched plasticizers
bearing ethylene glycol esters. These internal tetra-plasticizers were synthesized and attached

to PVC-azide in three simple synthetic steps.
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In the second strategy, internal plasticization of PVC was achieved in one step using
copper-mediated atom transfer radical polymerization (ATRP) to graft random n-butyl acrylate
(BA) and 2-2-(2-ethoxyethoxy)ethyl acrylate (2EEA) copolymers from defect sites on the PVC
chain. Five graft copolymers were made with different ratios of PBA and P2EEA; T4 values of
these functionalized PVC polymers ranged from -28 °C to -50 °C. Single Ty values were
observed for all polymers, indicating good compatibility between PVC and the grafted chains,
with no evidence of microphase separation. Plasticization efficiency is higher for polyether
P2EEA moieties compared with PBA components. The resultant PVC graft copolymers were
thermally more stable compared to unmodified PVC. Increasing the reaction scale from 2 g to
14 g produced consistent and reproducible results, suggesting this method could be applicable
on an industrial scale. Further optimizations of the ATRP conditions were carried out shortening
the reaction time and varying the acrylate monomer to VC unit ratios. Nine different internally
plasticized PVC graft copolymers with different weight percents of plasticizer spanning from
24% to 75% were prepared. A wide range of Tq values (-54 °C to 54 °C) were achieved, with
Tg values below zero for samples with weight percent of plasticizer more than 50%. In summary,
highly effective internal plasticization of PVC was accomplished by Cu-mediated ATRP in only
one step. Whereas the azide-alkyne approach may be suffered from the potential danger in
handling azides on large scale, the ATRP graft copolymerization approach is expected to be
very attractive to industry, to afford internally plasticized PVC products with reliable and durable

physical properties.
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1 Introduction: Internal Plasticization of PVC

Poly(vinyl chloride) (PVC) (Figure 1.1) is one of the most commonly used
thermoplastics in the world. In 2018, PVC encompassed 17% of global plastic production.* The

global market demand has been continuously increasing from 38.3 million tons in 2013 to 41.3

Y,

Cl
PVC

million tons in 2016.2

Figure 1.1 Structure of PVC

1.1  Synthesis of PVC

PVC was first discovered by Eugen Baumann in 1872.% Baumann found that a white
solid (PVC) was formed after vinyl chloride was left exposed to sunlight. Currently, PVC is
synthesized by free radical polymerization of vinyl chloride monomer (VC). This polymerization
occurs through three distinct steps: initiation, propagation, and termination. The choice of
initiator affects the polymerization rate and the molecular weight. Common initiators include
azobisisobutyronitrile (AIBN) and various peroxides. In the propagation step, there are two
ways that VC can add: head-to-tail and head-to-head (Scheme 1.1). Normally, head-to-tail
addition occurs, however, head-to-head addition can happen, yielding an unstable primary
radical which rearranges to form an allylic chloride, terminating chain growth (Scheme 1.1).%
Head-to-tail addition is controlled by the polymerization temperature, which plays an important
role in the resulting molecular weight and molecular weight distribution. Also, PVC is an atactic
polymer, which means the repeating units do not have consistent stereochemistry. However,
polymerization conducted under lower temperatures do favor formation of syndiotactic polymer
because lower temperatures slow down the rotation of VC significantly.* The polymerization is

terminated by a radical-radical disproportionation or dimerization reaction (Scheme 1.2).5
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Scheme 1.2 Two types of termination

There are three main polymerization methods: suspension polymerization (dominant
type), emulsion polymerization, and bulk polymerization.*®> The molecular weight and
polydispersity of commercial PVC synthesized via different polymerization methods are

summarized in Table 1.1.5-8

Table 1.1 Molecular Weights and Polydispersity Ranges for Commercial PVC

Polﬂ?ﬂcz)gtion Mn Muw Mu/Mn (PDI)
(Da) (Da)
Suspension 20,32-69141 38,611-179,123 1.90-2.59
Emulsion 27,173-49,540 61,650-131,191 2.14-2.65
Bulk 26,351-37,772 52,683-77,829 2.00-2.06




1.2 Plasticizers

PVC was not widely used immediately after its discovery in 1872, because the polymer
is inherently rigid and brittle.® In 1926, Waldo Semon at B.F. Goodrich Company made PVC
flexible and practical by blending additives to PVC.° The additives used to make PVC flexible
are also known collectively as “plasticizers”. Plasticizers are used to provide durability, elasticity,

and flexibility in PVC, allowing it to be used in applications from toys, clothing, packing materials,

1) Ortho-phthalates (low molecular weigtht)
§ A~ 2 ]
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o Ie) \—\’ o o \—\—_-
Di-2-ethylhexyl phthalate (DEHP) Dibutyl phthalate (DBP) Diisobutyl phthalate (DIBP) Benzyl butyl phthalate (BBP)

2) Ortho-phthalates (high molecular weigtht)
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Diisononyl phthalate (DINP) Diisodecy! phthalate (DIDP) Di(2-propylheptyl) phthalate (DPHP)

3) Terephthalates

Di-(2-ethylhexyl) terephthalate (DEHT)

Figure 1.2 Examples of Common Phthalate Plasticizers



medical devices, electrical cable jacketing, auto interiors, and construction (wall covering and

flooring).2° Plasticizers that have been used in the PVC market are mostly esters: including

phthalates (Figure 1.2), cyclohexane diesters, trimellitates, citrates, adipates, azalates,

sebacates, and others (Figure 1.3).#*! Phthalates are the most common plasticizers, making

up 65% of the global plasticizer market in 2017.This percentage is decreasing slowly, but

phthalates will continue to account for the largest global consumption in the near future.°
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Figure 1.3 Examples of Commercial Phthalate Alternatives

1.3

Mechanisms of Plasticization

Several theories, include lubricity theory, gel theory, Moorshead’s empirical approach,

and the free volume theory have been used to explain plasticization.*? In lubricity theory,

plasticizers act like lubricants to reduce the intermolecular forces between the polymer chains.

The resistance to polymer chains sliding past each other in the presence of the lubricants is

reduced, resulting in more flexible materials.? Kirkpatrick,'® Cark,* and Houwink® contributed



to lubricity theory. In Kirkpatrick’s proposal, in which the polymer structure was treated as a
plastic micelle, part of the plasticizer molecule coordinates to the polymer molecule (acting as
a solvent); the other part of the plasticizer molecule acts as a lubricant between the polymer
chains.’® Clark believed plasticizers, working as lubricants, fill in between the network of
polymer molecules. The lubricants lie between parallel layers of polymer molecules, allowing
the polymer chains to glide past one another.'* In the gel theory, the polymer chains form a
honeycomb network causing rigidity in the polymer. Plasticization is caused by plasticizers
interacting with polymer chains in a solvation-desolvation equilibrium. This continuous dynamic
equilibrium causes the polymer chains to aggregate and deaggregatate, resulting in a less rigid
structure.?> Moorshead designed an empirical approach to summarize certain requirements for
being good plasticizers.*® In this method, plasticizers need to be compatible with the polymers.
The cohesive forces between plasticizer and polymer should be same as the cohesive forces
between individual polymer chains. Otherwise, plasticizers and polymer chains will prefer to
self-aggregate. For PVC, good plasticizers require both polar and nonpolar functional groups.
In the PVC structure, chlorine atoms form dipole-dipole interactions with hydrogen atoms. Polar
groups like esters show good compatibility with PVC because the polar groups break the
dipole-dipole interactions between PVC chains, replacing them with new dipole-dipole
interactions between plasticizer and the polymer chain. Polar groups also help reduce
plasticizer migration from the PVC matrix, due to their polar interactions with PVC chains.
Apolar aliphatic groups can sit in between polymer chains without introducing significant

additional cohesive forces, increasing polymer flexibility.

The free volume theory was hypothesized by Fox and Flory'” in 1950, multiple
contributions have been added by others since that time.!? This theory states that there is
nothing but free volume between polymer chains. The only factor in plasticization is increasing
the free volume, to give a more flexible material. One important concept in the free volume

theory is the glass transition temperature (Ty): the temperature at which a polymer undergoes



a phase change from a glassy to a rubbery state. Fox and Flory defined the free volume at
temperatures above the transition temperature as the specific volume above the Tg minus the
solid volume extrapolated to the same temperature.'’ This definition has a problem, because
the free volume is always zero below the Tq when defined in this way. Another definition by
Kanig*® gives the free volume as the difference between the volume observed at absolute zero
temperature and the volume of the real crystal, glass, or liquid, although the volume at absolute
zero has to be obtained by extrapolation. Some other models have also been proposed, such
as the WIlliiam-Landel-Ferry approach.'® In this system, free volume can be measured by
obtaining the specific volume of a polymer as a function of temperature through dilatometry.
The free volume theory suggests that 1) longer chain substituents typically introduce more free
volume more compared to short chains; 2) with the same weight fraction of plasticizer, small
molecules create more free volume per mass added, thus they are more efficient than large
molecule plasticizers; 3) branched structures increase free volume more than linear structures

with the same number of carbon atoms.

Several mathematical models have been established based on the free volume theory
to calculate the Tq of the plasticized polymer using the Tq of the pure polymer and the Tg of the

plasticizer.20-22 For example, one of the earliest is the Fox equation (Equation 1.1).2°

1 w1 wy

T Tg2

Equation 1.1

g Tga

Tg: The glass transition temperature of the plasticized polymer

Tga1: The glass transition temperature of the pure polymer

Tg,2: The glass transition temperature of the pure plasticizer

w1 : The weight fraction of the polymer

w2 : The weight fraction of the plasticizer.



None of the theories explains the observed effects of plasticization on their own. Instead, some

combination of these theories is required to provide a general explanation of plasticization.*?

1.4 Migration of Traditional Plasticizers from PVC

Small molecule plasticizers migrate out from the PVC matrix?3-28 due to relatively weak
non-covalent interactions (Figure 1.4). Plasticizers can escape as a gas to the surrounding
environment, be removed due to bulk mechanical abrasion, be leached into a solvent, or be
removed from the polymer by direct diffusion into dust particles on the polymer surface.?®
Migration of plasticizers causes deterioration of the properties of the PVC material. But even
worse, phthalate plasticizers contaminate the environment?6-*0-37 and pose a significant risk to
human health when ingested, absorbed or inhaled into the body, due to the toxicity of the parent

phthalate itself and the subsequent metabolites.3843
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L

Figure 1.4 Schematic of Migration of Plasticizers from the PVC Matrix into the Environment,
based on Guo*

1.5 DEHP and Its Toxicity

Di-2-ethylhexyl phthalate (DEHP) is the most utilized phthalate plasticizer. When

DEHP enters the human body, it is metabolized through different stages (Figure 1.5). First,



DEHP is hydrolyzed to form mono-2-ethylhexyl phthalate (MEHP). Then, various
methyl/methylene carbons on MEHP are oxidized into alcohols. These alcohols can be further

oxidized to the corresponding ketones or carboxylic acids.*®

\{\’ o
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DEHP MEHP Phthalic acid
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hexylphthalate hexylphthalate phthalate phthalate phthalate
50H-MEHP

| | | | |

[2-(Carboxymethyl)- 2-(1-Oxyethyl)- 2-Ethyl-5-carboxy 2-Ethyl-5-oxyHexyl 2-Ethyl-4-oxyhexyl
hexyl]phthalate hexylphthalate pentylphthalate phthalate phthalate
26x-MMHP 5cx-MEPP 50x0-MEHP

Figure 1.5 Metabolites of DEHP in Human Body*®

The toxicities of DEHP and its metabolites (mainly MEHP) have been studied by scientists over

decades. The toxicities include the following:4

1) Endocrine toxicity. The effects of DEHP metabolites on the endocrine system
are well documented. For example, studies show that after male rats were exposed to DEHP,

their aldosterone and testosterone concentrations decreased.*”*® DEHP can also enhance



estrogenic activity in zebrafish, suggesting potential effects on humans.*® DEHP and MEHP
can change the level of thyroid hormones and impact the synthesis, regulation, and action of
these hormones in zebrafish larvae.>°5! Data also suggest that DEHP and its metabolites have
a positive association with body mass index (BMI) of children.5?

2) Testicular toxicity. Testicular toxicity was observed in male rats treated with
MEHP.5® DEHP can potentially affect male genital development. Studies also show that the
anogenital distance of human newborn boys decreases when the mom was exposed to DEHP
in the first-trimester. No effect was observed on the anogenital distance of newborn girls.>*
Newborn male genital anomalies have also been correlated to DEHP.5®

3) Ovarian toxicity. Ovarian toxicity has been mainly associated with MEHP 5657
All studies were done in mice or in vitro. No human data is available.

4) Renal toxicity. Renal toxicity was observed in rats and mice.®®-%° However,

studies show DEHP had no negative effect on the kidney of male monkeys.®* No human data

is available.
5) Other possible toxicities: neurotoxicity, hepatotoxicity, cardiotoxicity.*
6) Studies also found high plasma concentrations of DEHP or MEHP were

detected in women with endometriosis, indicating endometriosis may be caused by DEHP and

its metabolites.52-%5

1.6 Approaches to Solve Migration of Plasticizers

One approach to solving the plasticizer migration problem is to use polymeric
plasticizers. These are mainly polyesters, and they show significant improvement in migration
resistance compared to small molecule plasticizers. In general, polymeric plasticizers have
molecular weights greater than 500 g/mol. Polyadipates (Figure 1.6) are the only polymeric
plasticizers used in PVC medical devices.!! In general, polyesters show good compatibility with
PVC;% a leaching study showed that the polyadipate migration rate is 100 times lower than

DEHP in gastric juices.5”
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Figure 1.6 Examples of Polyadipate Plasticizers

Other polymeric plasticizers have been developed for PVC, including poly(e-
caprolactone) (PCL) and its copolymers (Figure 1.7).1%%8 No migration was observed for

branched PCL from volatility, extractability, and exudation tests.®® Other polyesters have been
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Figure 1.7 Examples of Polyadipates
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investigated, showing desirable plasticization properties (Figure 1.8).79-72
o\n/\/\/\/E/\/\/\/\
0 0 ©
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J\/(ljl\ /()OL)\
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Figure 1.8 Other Polyester Polymeric Plasticizers’®-"?

The major drawbacks of polymeric plasticizers are their lack of homogeneous mixing with the
PVC resin, and lower plasticization efficiency compared to low molecular weight traditional

plasticizers. Toxicity has yet to be studied for the majority of polymeric plasticizers.

Surface treatment is another approach to reduce plasticizer migration. Various surface
treatment procedures for PVC are possible, including surface crosslinking,”>"° surface
grafting,”#8%8% and surface coating.828 However, surface treatment may compromise the

flexibility and mechanical properties of the polymer.

1.7 Internal Plasticization: Covalent Attachment of Plasticizers to PVC

Covalently attaching plasticizers to PVC is one of the most effective ways to prevent
plasticizer migration. Multiple different approaches have been utilized, including nucleophilic

substitution and methods involving polymerization.
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1.7.1 Covalent Attachment of Plasticizers via Nucleophilic Substitution to

PVC

1.7.1.1 Sulfide Linkages

The first example of internal plasticization of PVC was reported by Michel et al.®* in
1986 using sodium thiolates to covalently bond the 2-ethylhexyl ester of o-mercaptobenzoic
1.1 acid and of the similar ester of thioglycolic acid 1.3 to PVC (Scheme 1.3). The Ty values of
the polymer decreased with increasing amounts of sulfide substitution. As mentioned in the
Free Volume Theory, Tq is the glass transition temperature. For a polymer, this is the
temperature at which a polymer changes from a glassy state to a rubbery state. As a result,
materials with lower Tg value will be more flexible. Tq of commercially available PVC is around
81 °C.8 The 2-ethylhexyl ester of thioglycolic acid 1.3 showed better plasticization efficiency
compared to 2-ethylhexyl ester of o-mercaptobenzoic acid 1.1. The lowest Tg achieved in this

work was 56 °C with 15 mol% of covalently linked 2-ethylhexy! ester of thioglycolic acid.

SNa O M w
SHGe @xv

1.1

H.TO\/(/\/ — & Skn/ ) \/(/\/

Scheme 1.3 Covalently Bonding the 2-Ethylhexyl Ester of o-Mercaptobenzoic Acid and
Thioglycolic Acid to PVC using a Sulfide Linkage

In 2010, the Reinecke group® synthesized several regioisomers of 2-ethylhexyl thiol-
phthalates in three steps, and covalently linked them to PVC by nucleophilic substitution

(Scheme 1.4). The lowest Ty in obtained was 0 °C for 23 mol% substitution. This is the first

12



example of directly attaching the phthalate motif to PVC. Extraction studies were done at room

temperature using heptane as solvent, which showed no migration at all.
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Scheme 1.4 Covalent Attachment of 2-Ethylhexyl Thiol-Phthalate Regioisomers to PVC

In 2016, the Reinecke group developed two strategies to attach plasticizers via
aromatic (Scheme 1.5).or hetero-aromatic thiols (Scheme 1.6).%” Both strategies required 4-5
synthetic steps. For the first strategy, Tq values for PVC bearing 40 wt% plasticizer range from
28 to 37 °C (Scheme 1.5). The second strategy used trichlorotriazine (TCTA) as the starting
material (Scheme 1.6). Two chlorines on TCTA were replaced either by amines or alcohols.
Then the third chlorine was converted to the sodium thiolate using thiourea followed by NaOH,
and then attached to the PVC backbone at 85 °C for 2 hours. For PVC bearing 40 wt% thiol-

based plasticizer, Tq4 values range from 35 to 55 °C.
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Scheme 1.5 Covalent Attachment of Aromatic Thiol Plasticizers to PVC
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Scheme 1.6 Covalent Attachment of Hetero-Aromatic Thiol Plasticizers to PVC

In 2016 and 2017, the Reinecke group®®8 used high molecular weight plasticizers to
achieve plasticization with less chlorine substitution (Scheme 1.7). They also explored the

influence of the compatibility of the covalently attached plasticizers on T4 by changing the ratio
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Scheme 1.7 Covalent Attachment of PEG-PPO TCTA Plasticizers to PVC

of PVC-miscible polyethylene glycol (PEG) and PVC-immiscible polypropylene oxide (PPO)

made using commercially available Jeffamines® in the designed plasticizers. Compared to
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previous studies, these new PEG-PPO trichlorotriazine (TCTA) derivatives exhibited low Tq
values. For example, when Ri=(PO)3(EG)is, R2=H, R3=(PO)3(EG)19, Re=H (with Mw=2100
g/mal), the T4 value was -18 °C for 45 wt% plasticizer, and the Ty was -41 °C for 73 wt%
plasticizer. Comparing traditional non-covalently attached DEHP/PVC mixtures at 45 wt%, the
PEG-PPO TCTA system plasticizes at an equivalent efficiency. Amines containing more EG
repeat units have higher plasticization efficiency compare to amines with more PO repeat units.
Interestingly, several polymers showed an additional Ts peak at Tm =24 °C. The authors explain

this as the fusion of crystallized EO segments.

In 2019, Zhou et al.*® reported a method to attach epoxidized biomass-based
plasticizers, including cardanol glycidyl ether, epoxidized acetylated castor oil methyl ester, and
epoxidized soybean oil to PVC using thiosalicylic acid (Scheme 1.8 & 1.9). Three biomass-
based plasticizers were attached with the same mol amount by carboxylate nucleophilic
addition to epoxides. The lowest Ty value obtained was 38 °C with epoxided soybean oil. Tq
values for the grafted epoxidized acetylated castor oil methyl ester and cardanol glycidyl ether
were 44 °C and 42 °C, respectively. From these sulfide linked plasticizer studies, one can
conclude: 1) at a constant weight percent of incorporation, large molecular weight plasticizers
efficiently decrease the Tq value because large plasticizers introduce fewer anchor points to
the PVC backbone. The anchor points, which are considered anti-plasticizing, reduce the free
movement of the PVC backbone. 2) miscibility of the plasticizer with PVC is important. One
can use these results to further improve internal plasticizer design. There are several
drawbacks to sulfides: 1) Sulfides are susceptible to oxidation;°* 2) the resulting oxidation
products (sulfoxides, sulfones, etc.) can undergo elimination, leading to degradation of the
polymer; 3) sulfides and thiols can release foul odors upon degradation, as well as potential
odors from residual thiols in the material. Sulfides and other sulfur compounds can lead to

discoloration of the PVC products.
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Scheme 1.9 Covalent Attachment of Epoxidized Biomass-Based Plasticizers to PVC
Modified with Thiosalicylic Acid

1.7.1.2 Amine Linkages

Zhou et al. published two papers using inexpensive and environmentally-friendly
compounds: tung 0il®? and cardanol®® as sources of internal plasticizers. In particular, cardanol
is a waste byproduct of the cashew industry: it is the oil from the cashew shells, which can
cause dermatitis upon contact for sensitive individuals. These plasticizers were covalently
bonded to PVC by nucleophilic substitution, using an amine as the nucleophile. To prepare the
amine-terminated plasticizing group, tung oil was transesterified with methanol to give the
methyl ester (Scheme 1.10). Amidolysis with propylenediamine formed an amide with a
terminal amine. This aminated tung oil was attached to PVC by substitution of chlorine under
heat. Interestingly, there was no mention if competitive HCI elimination by the primary amine.

The lowest Tq4 value achieved was 44 °C for 37 wt%. Tensile modulus and tensile strength

decreased while elongation at break increased.
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Scheme 1.10 Covalent Attachment of Aminated Tung QOil Plasticizers to PVC

Using cardanol, Jia et al. synthesized the Mannich base of cardanol butyl ether in 2

steps (Scheme 1.11). In the first step, cardanol was treated with butyl chloride and base under
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Scheme 1.11 Covalent Attachment of Aminated Cardanol Butyl Ether Plasticizers to PVC
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heat to give cardanol butyl ether. In the second step, the reactive iminium ion was formed under
acidic conditions to further react with cardanol butyl ether through aromatic electrophilic
substitution to give the Mannich base of cardanol butyl ether. However, the authors proposed
formation of a regioisomer that is least likely to be formed due to steric hindrance. The Mannich
base of cardanol butyl ether was then attached to PVC as a plasticizer by amine nucleophilic
solution. Possible competing base mediated elimination on PVC was not discussed, and the

lowest Tq value obtained was 49 °C for 38.4 wt% of cardanol plasticizer.

1.7.2 Covalent Attachment of Plasticizers to PVC via 3+2 Azide-Alkyne
Cycloaddition
1.7.2.1 Copper-Free 3+2 Thermal Azide-Alkyne Cycloaddition
The Braslau group has focused on covalently attaching phthalate or phthalate mimics
to PVC via thermal azide-alkyne cycloaddition (TAAC), as the triazole diester resembles the
phthalate structure consisting of a flat, aromatic ring bearing two ortho esters (Figure 1.9).
Thermal 3+2 Azide/Alkyne was first discovered by A. Michael®* in 1893, and then popularized

and developed by Huisgen®® 70 years later (Scheme 1.12).
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Figure 1.9 Phthalates or Triazole Phthalate Mimics
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Scheme 1.12 Thermal Azide-Alkyne Dipolar Huisgen Cycloaddition

The ease of the thermal azide-alkyne cycloaddition (TAAC) is primarily a function of the HOMO-
LUMO gap of the azide/alkyne pair.®® A low energy gap between the azide HOMO and the
alkyne LUMO increases the rate of cyclization. For example, Brook®’ investigated a series of
alkynes with differing electronic structures, measuring the TAAC reaction onset temperatures
by differential scanning calorimetry (DSC) (Table 1.2). The conclusion from this study is that
increasing the number of electron withdrawing R-groups on the alkyne increases the reaction
rate for the TAAC reaction. The most reactive alkyne was diethyl acetylenedicarboxylate,

because it has two electron withdrawing groups connected to the alkyne to lower the energy of
Table 1.2 Onset Temperatures of Different Alkynes for TACC®’
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the alkyne LUMO, resulting in a cycloaddition onset temperature of 37 °C.%" Electron poor

alkynes, particularly diesters, are attractive for thermal attachment to azide.

In 2019, Patrick Skelly in the Braslau lab also studied the effect of electron withdrawing
groups on the rate of the TAAC reaction with a wider scope of alkynes (Table 1.3) both
experimentally and by DFT calculations.®® The most reactive alkyne studied contained a

sulfone group and an ester group, to make it the most electron poor alkyne of the series.

Table 1.3 Relative Reaction Rates of Different Alkynes for TACC%
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In 2014, Aruna Earla and Braslau®® demonstrated covalent attachment of phthalate
mimics to PVC via TAAC (Scheme 1.13). In 2018, Chad Higa in the Braslau lab expanded the
scope to polyethylene glycol methyl ethers.®> The lowest Tq value obtained was -29 °C for

PEGssoMe at 15 mol% plasticizer. Interestingly, the Tg value for the dimethyl ester phthalate
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mimic (R=Me) was 96 °C, which was higher than the Ty of unmodified PVC (81 °C). This

indicates that the rigidity of triazole ring is inherently anti-plasticizing.
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Scheme 1.13 Covalent Attachment of Phthalate Mimics onto PVC via TAAC

In 2017, Earla!®® made a propargylated DEHP derivative and covalently attached it
with a tether to PVC via TAAC. The ester linker was used to 1) increase the rotational degree
of freedom of DEHP to increase the efficiency of plasticization and 2) increase the activity of
the alkyne by lowering the LUMO with an electron withdrawing group to achieve TAAC
(Scheme 1.14). PVC substituted with 15 mol% of covalently linked DEHP resulted in a material
with a Ty of 60 °C. This synthetic route from commercially available starting material to the
tethered DEHP modified PVC product was four steps. Interestingly, acetylenedicarboxylic acid
was chosen to obtain a diester bearing two DEHP groups to increase the plasticization.
However, only the monoester was obtained since decarboxylation occurred under basic

conditions and heat, as shown in the box of Scheme 1.15.1%
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Scheme 1.15 Decarboxylation of Acetylenedicarboxylic Acid upon Reaction with Benzyl
Bromide under Basic Conditions

Higa continued work in the Braslau lab on thermal azide-alkyne attachment of
plasticizers to PVC (Scheme 1.16).%5 A six-carbon linker, chosen for the low-cost and easy to

synthesize, was added in between the linking triazole to reduce the rigidity caused by the
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aromatic ring. The Tg4 values for internal plasticization with this six-carbon linker are lower than
the analogues PVC samples where the triazole diester is directly attached to the PVC chain.
The lowest Tg obtained in this series was 18 °C, where R = TEGMe at 15 mol% azidation.
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Scheme 1.16 Covalent Attachment of Rotationally Labile Phthalate Mimics with a Six Carbon
Tether to PVC

Higa then developed a branched internal plasticizer bearing two tethered triazole
mimics with a larger molecular weight (Scheme 1.17).8° Because acetylene dicarboxylates are
excellent Michael acceptors, one can not use traditional coupling agents nor make the
corresponding diacid chloride. Thus one must protect the alkyne as the 1,2-dibromide, make
the diacid chloride, esterify, and then restore the alkyne. Following this protocol, the synthesis
of the plasticizer required four steps. Acetylene dicarboxylic acid was converted to
dibromofumaryl chloride in two steps. Esterification followed by deprotection of the alkyne was

carried using Zn and a catalytic amount of iodine to give double-sided hexyl tethered alkynes.
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The lowest Ty value was -17 °C for the sample bearing two TEGMe polyether esters (Figure
1.10). Even though the Tg value is higher than that of non-covalent DEHP at the same weight

percentage, this internal plasticizer illustrates the efficacy of this approach.
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Scheme 1.17 Covalent Attachment of an Internal Plasticizer with Two Tethered Triazole
Mimics to PVC

Higa then developed the most impressive internal plasticizers of this series with high
plasticization efficiencies from propionic acid single sided alkynes with PEGioooMe, and
PEG2000Me ester in only two synthetic steps (Scheme 1.18). A low Tgy value of -42 °C was

obtained with PEG2000Me at 15% azidation.
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Scheme 1.18 Covalent Attachment of Polyether Propionic Esters made in Two Steps to PVC

Overall, Higa developed four generations of triazole plasticizers (Figure 1.10). The Tq4 values
for all generations at 15 mol% plasticizer are summarized in Figure 1.11. The T4 value
decreases with the increasing length of the R ester groups within the same generation.
Generations one and four, which required the fewest number of reaction steps, gave the lowest

Tg values, due to the attachment of very long polyether chains as the ester moiety.
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Figure 1.10 Higa’s Four Generations of Triazole Plasticizers®®
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Figure 1.11 T4 Values for Four Generations at 15 mol% Plasticizer (Higa)®®

1.7.2.2 Copper-Catalyzed 3+2 Azide-Alkyne Cycloadditions
Following the publication of the attachment of phthalate mimics to PVC by thermal
azide/alkyne cycloaddition in the Braslau lab®, in 2015 the Shi group!®* used cardanol as

starting material to make propargyl ether cardanol using Sn2 reaction with propargyl bromide,

OH Br
|\ /
K,COs3, acetone CuBr
R reflux

Cardanol 95% N D'
R

Scheme 1.19 Covalent Attachment of Cardanol to PVC via CUAAC10!

followed by copper-catalyzed 3+2 azide-alkyne cycloaddition (CUAAC)°%-194 to attach 10 mol%

cardanol to PVC (Scheme 1.19). The lowest Ty value was 51 °C. In this chapter, approximately
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one equivalent of copper catalyst was utilized for CUAAC, a fair amount of which remained in

the polymer.

In 2015, Demirci and Tasdelen'® utilized photoinduced copper-catalyzed 3+2 azide-
alkyne cycloaddition to attach alkyne-terminated poly(epsilon-caprolactone) (PECL) to azide-
functionalized PVC. Alkyne-terminated PECL was synthesized from propargyl alcohol by ring
opening polymerization using Sn(Oct)z as the catalyst. Cycloaddition was conducted under UV
light with catalytic Cu(ll)Br. and PMDETA as the ligand, using 2, 2-dimethoxy-2-phenyl

acetophenone as photoinitiator in DMF (Scheme 1.20).
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Scheme 1.20 Covalent Attachment of PVC-g-PECL PECL to PVC via CuAAC%

In 2016, the Kwak group? developed a hyperbranched polyglycerol (HPG) plasticizer,
which was grafted onto PVC utilizing CuUAAC. The HPG was synthesized by a one-pot ring
opening polymerization (Scheme 1.21). Although gel permeation chromatography (GPC) data

was obtained, the exact structure of this plasticizer is not known (Ma 1606 g/mol). Excellent low
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Scheme 1.21 Covalent Attachment of Alkyne-Terminated HPG to PVC via CUAAC1%®

Tg values were achieved: Tq of 16 °C, -5 °C, and -29 °C were found for 3.6 mol%, 5.8 mol%,
and 9.0 mol% plasticizer, respectively. The storage modulus data indicate this covalent
plasticizer promotes segmental motion in the system and improves the softness of the HPG
linked PVC at room temperature. The HPG modified PVC was softer and more flexible than
PVC/DEHP for the same Ty values. Several mechanical properties of these grafted polymers

were tested. The most interesting result is that the elongation at break of HPG linked PVC
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increased with increasing amounts of incorporated plasticizer, and reached 912% at 9 mol%
of HPG whereas noncovalent HPG plasticized PVC reached its maximum value of 153% at 1.7
mol% of added HPG, then decreased with increasing mol% of HPG. The CuAAC is a simple
one-pot covalent attachment of HPG to PVC, and demonstrates several important points: 1)
covalent plasticizers can decrease Tg to levels achieved by conventional plasticizers; 2)
covalent plasticizers can increase the elongation at break of a polymer; 3) attachment of a
hyperbranched plasticizer allowed PVC to maintain its structure under tensile testing. These
results using semi-dendritic covalently linked HPG plasticizer points to possible further

developments of internal plasticizers.

In 2017, the Zhou group®” covalently attached a triethyl citrate based plasticizer to

PVC via CUAAC to give a material with a Tq value of 36 °C at 34 wt% plasticizer (Scheme 1.22).
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Scheme 1.22 Covalent Attachment of Alkyne-Terminated Triethyl Citrate Based Plasticizer to
PVC via CuUAAC%"
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Based on TGA data, this modified PVC is thermally more stable compared to unmodified PVC.
Migration tests showed no leaching in distilled water, 10% ag. ethanol, 30% aq. acetic acid,

and petroleum ether, confirming the covalent attachment.

Also in 2017, the Zhou group'® covalently attached monooctyl phthalate derivatives to
PVC to achieve a Tq value of 66 °C (Scheme 1.23). TGA data showed this modified PVC was
less stable than unmodified PVC. No migration was observed in different solvents including

distilled water, 10% ag. ethanol, 30% aq. acetic acid and petroleum ether.
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Scheme 1.23 Covalent Attachment of Alkyne-Terminated Monooctyl Phthalate Derivatives to
PVC by CuAAC?8

In 2017, Earla made a DEHP derivative by Diels-Alder cycloaddition, benzylic
bromination and propargylation, and covalently attached it to PVC via CuAAC (Scheme
1.24).19° An ether linker rather than an ester linker was used to enhanced the rotational degrees
of freedom of the attached plasticizer. PVC with 15 mol% of covalently linked DEHP resulted
in a Tg of 55 °C. This synthetic route from commercially available starting materials to this

DEHP-modified PVC product required four steps.
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Scheme 1.24 Covalent Attachment of Alkyne-Terminated DEHP with an Ether Linker to PVC
by CUAAC100

In 2018, Chu and Ma!®® applied CUAAC to attach a propargylated castor oil based
derivative to PVC-azide. (Scheme 1.25) The Tqvalue achieved for modified PVC was 41.6 °C.
TGA indicates that direct attachment of the triazole group decreases the thermal stability of

modified PVC.

The Zhou group!'® used biomass-sourced dehydroabietic acid, a common diterpene
from conifer trees, as a plasticizer to be covalently attach to PVC-azide (Scheme 1.26). Among
three materials, the lowest T4 value achieved was 37 °C with about 23 wt% of plasticizer. The

paper claims modified PVC materials were less thermally stable at 150-300 °C than unmodified
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PVC due to the triazole group. This instability of the triazole has also been noted by other

researchers.®
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Scheme 1.25 Covalent Attachment of Alkyne-Terminated Propargylated Castor Oil Methyl
Ester with an Ether Linker to PVC by CuAAc?®®
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Scheme 1.26 Covalent Attachment of Alkyne-Terminated Dehydroabietic Acid with an Ether
Linker to PVC by CuAAC*0
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1.7.3 Covalent Attachment of Plasticizers to PVC via Polymerization
1.7.3.1 Grafting Internal Plasticizers to PVC by Atom Transfer Radical
Polymerization (ATRP)
Atom transfer radical polymerization (ATRP),*'*1%2 has been utilized to grow graft
copolymers off of PVC from defect sites in the PVC chain.!!4?> ATRP is a reversible —
deactivation radical polymerization,?¢ also known as a controlled radical polymerization (CRP).

The general reaction scheme of transition-metal-catalyzed ATRP is shown below (Scheme

1.27).11
e N
Overall scheme
kact
R-X + M{"-Y/Ligand ‘2 Re N X-M{"*'-Y / Ligand
Kdeact *.\-
ko ki &
monomer termination
\ J
e N
Stepwise
kact
R-X + M"Y/ Ligand —_— Re + X-M{"*7-y / Ligand
ko
Re + monomer —_— R'

kdeact
R« + X-M{/'-Y/Ligand ————3 R—X + MY/ Ligand

Scheme 1.27 General Scheme of Transition-Metal-Catalyzed ATRP!!!

In ATRP, at any one time, there are a large amount of dormant species, usually alkyl halides,
and a tiny fraction of active alkyl radicals species. Alkyl radicals are generated from alkyl
halides by a metal complex (M"-Y), with an activation via rate constant kact though single

electron transfer concurrently with halogen atom abstraction. The alkyl radical reacts with a

34



monomer to perpetuate polymer chain growth with a propagation rate kp, before being
deactivated by halogen transfer with a rate constant keeact back to the dormant alkyl halides.
Radical-radical termination reactions occur very rarely due to the low concentration of reactive

radicals at any one time.

The key to successful ATRP is fast initiation and quick reversible deactivation.'! Also,
a small Kkp/Kdeact will result in lower polydispersity (PDI), meaning well-controlled
polymerization.*?” If the interconversion of active alkyl radicals and dormant alkyl halides is
faster than propagation, polymer chains will grow statistically at the same rate.*?® For typical
alkyl chlorides, due to the relatively strong carbon-chlorine bond (compared to bromides and
iodides), the initiation rate is slow, resulting in uncontrolled polymerization by CuX-initiated

ATRP.1?7

1.7.3.2 Internal PVC Plasticization via ATRP

In 1998, Matyjaszewski et al.''* used a PVC random copolymer containing 1 mol%
poly(vinyl chloroacetate) (PVCA) as a macroinitiator to form a series of graft copolymers,
including PVC-g-poly(n-butyl acrylate) (PBA), an internally plasticized form of PVC (Scheme

1.28).

cat. CuBr 99 1
R2 cat. ligand Cl o o]

99 1 + =< >

Cl 0. o] R1 neat
Styene 110 °C
R1

or
Cl (Meth)acrylates 90 °C R 7 CI

random copolymer 12h

(A)R1=Ph, R2=H ( h
(B)R1=CO,Me, R2=H
(C)R1=CO,Me, R2=CH,
(D)R1=CO,Bu, R2=H

\_7 N\_7

N

ligand

Scheme 1.28 Matyjaszewski’'s ATRP graft Polymerization using PVC-co-PVCA as a
Macroinitiator'*
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The best performer had a T4 value of -19 °C, achieved with 65 mol% of PBA. The chlorines on
the poly(vinyl chloroacetate) residues were considered to be the active chlorines initiating
ATRP graft growth. Matyjaszewski stated that chlorines on the PVC backbone do not initiated

ATRP because the secondary chloride-carbon bond is too strong to undergo dissociation.

Commercially, PVC is formed by uncontrolled, conventional free radical polymerization.
This results in defect sites on the PVC backbone consisting of both allylic and tertiary chlorides
(Figure 1.12).8 In 2001, Percec and Asgarzadeh?!'> applied copper catalyzed ATRP from these
active sites in commercial PVC as initiators for graft polymerization (Scheme 1.29). There is
at least one defect site in each PVC chain: allylic chlorides have been estimated to occur about
0.0-0.6/molecule;*?® and tertiary chlorides about 0.7-2.1/1000 monomer units.*?® They carried
out a systematic study of Cu-catalyzed ATRP from the defects on PVC using a variety of vinylic
monomers and Cu catalysts. The authors chose several small model compounds to study the
efficiency of secondary chlorides, tertiary chlorides, and allylic chlorides as initiators (Figure
1.13). The results reveal a scale of initiator efficiencies from most to least reactive: allylic
chlorides > tertiary chlorides >> secondary chlorides. Polymerization from the secondary
chloride model compound does occur, but the initiation rate is about three orders of magnitude
slower compared to allylic and tertiary chlorides. Based on these results, they concluded that
ATRP grows grafts from defect sites on PVC rather than from the ubiquitous secondary
chlorides. The T4 value of PVC-g-PBA was -4 °C at 53 mol%. A monomodal distribution was

seen using GPC, indicating no detectable free homopolymer.

SV
Cl
Y ‘ »
Cl Cl Cl Cl Cl
Allylic chloride Tertiary chloride

Figure 1.12 Structural defects of commercial PVC: allylic and tertiary chlorides®
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CuX, bpy R2 Monomers:
Ph,O .—_.-< MMA, BMA, t-BMA, BA, MAN,
R1 AN, St, 4-CISt, 4-methylSt,
and IBMA (isobornyl methacrylate)

Scheme 1.29 Grafting of Various Polymers to Defect Sites on PVC via Cu-Catalyzed
ATRP115

Figure 1.13 Model Compounds used in Percec’s Study*'®

In 2008, Bicak and Ozlem*3° applied ATRP to graft PBA and poly(2-ethylhexyl acrylate)

(P2EHA) from defect sites onto PVC (Scheme 1.30). The polymerizations were carried out in
1,2-dichlorobenzene. However, no Tg values were measured for these graft copolymers. The
authors claimed that no homo-polymerization was observed, based on the following procedure.
Following polymerization, the reaction mixture was precipitated in butanol because PBA is
soluble in butanol and PVC is not. The butanol solution was then poured into MeOH. The
authors stated that because there was no precipitate observed in methanol, no non-grafted
PBA had formed. This is not very convincing because PBA is a viscous oil at room temperature,

so one would not expect to see any precipitate to be formed in MeOH upon mixing with PBA
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dissolved in dilute butanol solution. In 2006, Bicak et al carried out ATRP of 2-ethylhexyl
acrylate (2EHA) from defects sites on PVC in an aqueous suspension using 0.25% a-
methylcellulose as a suspension stabilizer (Scheme 1.31).1%® Interestingly, these authors
stated that there might be up to 4% of defect sites on PVC. A Tg4 value of 58 °C was obtained

for one graft copolymer made of 2-ethylhexyl acrylate.

. cat. CuBr/L };/
S0 G g
OR

(o) 1,2-dichlorobenzene

90°C,7.5h

?6H13 ?6H13

CegH N N
5 L= 6 13\’?/\/ V\’i‘/\/ NCeHis
CeH1s CeH1s

Scheme 1.30 Grafting of PBA and P2EHA from Defect Sites on PVC via ATRP%°

¥ 3 cat. CuBriL Z
=z + = >
n OR ]
Cl Cl Cl aq. suspension
0 (a—methyl cellulose) o 6}
90 °C
up to 24 h Br
R: ?6H13 ?6H13
: L=
CeH N N
6 13\,i‘/\/ \/\'i‘/\/ NCoHis

CeH1z CeHis

Scheme 1.31 Grafting of P2EHA from Defect Sites on PVC via ATRP in Aqueous Solution!*®

PVC-g-poly(oxyethylene methacrylate) (POEM) prepared by Hong in 2009, also using
Cu catalyzed ATRP, gave material with two T4 values (-68 °C and 32 °C), which indicates
micro-phase separation (Scheme 1.32).22° All polymers discussed so far are homogeneous

materials if not specified.
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Scheme 1.32 Grafting of POEM from Defect Sites on PVC via ATRP120

1.7.3.3 Internal Plasticization via Other Polymerization Methods

PVC-b-PBA-b-PVC was prepared by Coelho et al.1311%2 in a two-step process utilizing
single electron transfer — degenerative chain transfer living radical polymerization (SET-
DTLRP). The first step makes the macroinitiator a,w-di(iodo)poly(butyl acrylate) [a,w-
di(iodo)PBAJ**® using Na2S204 as an initiator via SET-DTLRP with iodoform and butyl acrylate
(Scheme 1.33). In the second step, a,w-di(iodo)PBA acts as a macroinitiator for vinyl chloride
polymerization to form PVC-b-PBA-b-PVC via SET-DTLRP (Scheme 1.34). T4 values for these

internally plasticized ABA triblock copolymers as low as -16 °C were obtained.3!

In 2020, Coelho and Braslau et al.*** prepared copolymers of VC and an acrylate
bearing the pendant phthalate mimic DEHT. Specifically, poly(vinyl chloride)-co-poly(4,5-bis(2-
ethylhexyl)-1-[6-prop-2-enoyloxy) hexyl]-1H-1,2,3-triazole-4,5-dicarboxylate) (PVC-co-
P(DEHT-HA)) was prepared using conventional free radical polymerization. Optimization of
polymerization conditions was investigated by applying different solvents, reaction
temperatures, monomer ratios, and initiators. The optimized condition is shown in Scheme
1.35. Tg values as low as -27 °C were achieved with 74 wt% of P(DEHT-HA). The single Tq
value indicates that PVC and P(DEHT-HA) are miscible. The monomer DEHT-HA, which is a

mimic of DEHP, was synthesized in four steps.
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Scheme 1.33 Formation of Macroinitiator a,w-di(iodo)PBA in SET-DTLRP 133
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Scheme 1.34 Synthesis of internally plasticized PVC-b-PBA-b-PVC via SET-DTLRP*3!
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Scheme 1.35 Synthesis of internally plasticized PVC-co-P(DEHT-HA)34

Mood and Thang et al.**® prepared an A-b-B block copolymer: PVC-b-PCL in a
sequential polymerization process using reversible addition—-fragmentation chain transfer
polymerization (RAFT) followed by ring-opening polymerization (ROP) (Scheme 1.36). Tq

values as low as -35 °C were achieved using 90 wt % of PCL.

S
_j NC
. [¢]] N
RAFT polymerization SN
1,4-dioxane v CN
(0]
(0] O
0" ™No
1,4-dioxane

S Cl Cl 0
/\OJ\SMO\/\O(J\/\/\%?\H
(0]

Scheme 1.36 Preparation Internally Plasticized PVC-b-PCL via RAFT Followed by ROP*%
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Although not technically an internal plasticizer, the Z.-M. Li'3® group synthesized
flexible latex particles made of crosslinked, swollen PBA/PVC composites, and then grafted
PBA through a multistage emulsion polymerization method. In stage one: PBA was synthesized
by a seeded emulsion polymerization using a large amount of BA and small amount of 1,4-
butylene glycol diacrylate (BDDA) as an insoluble crosslinker and K2S20g as the initiator in
water, to form a PBA crosslinked latex. In stage two: 3-(trimethoxysilyl) propyl methacrylate
(MPS) was hydrolyzed to a diacrylate, triacrylate or tetraacrylate, a star-like crosslinker. MPS
and allyl methacrylate (AMA) and vinyl chloride were used to grow a crosslinked PVC shell
around the PBA particles to form a “PBA/PVC latex”. In stage three: the PBA/PVC latex was
first soaked in BA to allow it to penetrate into the PBA/PVC colloidal particles. Unreacted AMA
ends were the grafting sites. Emulsion polymerization at 75 °C was initiated by K2S20s, forming
the final composite particles of PBA/PVC-sg-PBA. Small amounts of these compatibilized latex
composites were then blended with commercial PVC and traditional phthalate DEHP. However,

two Tg values were observed by DMA for all samples including the PVC/DEHP mix.

Moad and Thang®®” and co-workers have prepared a 3-armed star-[(PVC-b-
PBA);(PBA)2] by sequential RAFT polymerization. One of the uses is as a macroplasticizer
when mixed with PVC. No migration of the star macroplasticizer was observed when blended

with PVC, and extracted with n-hexane.

1.8 Conclusion

PVC is one of the most popular thermoplastics, with applications ranging from packing
materials, medical devices, toys to construction pipes. Plasticizers are used to provide
durability, elasticity, and flexibility in PVC. However, small molecule plasticizers leach out from
the PVC matrix over time, resulting in significant health problems for humans, as well as in
damage to the environment. Covalent attachment of plasticizers to PVC chains, “internal
plasticization,” is one of the most effective ways to avoid migration of plasticizers from PVC.

Several different internal plasticization strategies are explored in this thesis.
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2 Internal Plasticization of Poly(vinyl) Chloride using Glutamic Acid as a Branched

Linker to Incorporate Four Plasticizers per Anchor Point

2.1 Background

Covalent attachment of plasticizers to PVC chains, internal plasticization, is an
effective way to avoid migration of plasticizers from PVC. Previous work in the Braslau
laboratory on preparing plasticizers covalently linked to PVC has utilized efficient metal-free
Huisgen thermal azide-alkyne dipolar cycloadditions (TAAC).® Post-polymerization
functionalization involving azide displacement of chlorine atoms on PVC via a facile Sn2
reaction occurs with no detectable competitive elimination. Reaction of the pendant azides with
electron-poor alkynes under mild heat gives substituted triazoles. With the goal of increasing
the number of internal plasticizing moieties per azide group, the use of electron-poor alkynes
bearing branched linkers displaying multiple plasticizing species was explored (Figure 2.1).
This work has been published: Li, L.; Tek, A. T.; Wojtecki, R. J.; Braslau, R. J. Polym. Sci. Part

A; Polym. Chem. 2019, 57, 1821-1835.
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Figure 2.1 Overview: Cycloaddition of a Disubstituted Alkyne Bearing Branched Linkers
Introduces Four Plasticizers Per Azide on PVC
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Glutamic acid was selected as the branched linker, as it is inexpensive, and can be
incorporated in only two synthetic steps (esterification and amidification) to form the requisite
electron-poor alkyne (Scheme 2.1). The use of L-glutamic acid, as opposed to racemic material,

was selected solely due to its natural abundance, and thus the low cost of the (-enantiomer.

OH

HoN! e H,N

H Esterification
(0]

L-glutamic acid

plasticizel

Plact: ..
Stic

Electron poor alkyne

Scheme 2.1 Use of Glutamic Acid as a Branched Linker for Making an Electron-Poor Alkyne
Bearing Four Plasticizing Species

2.2 Synthesis of an Electron-Poor Alkyne Bearing Branched Linkers Displaying Four

Plasticizing Species

The first example of an electron-poor alkyne, 2.2a, bearing four n-butyl esters, was
prepared in two steps (Scheme 2.2). Glutamate ester 2.1a was synthesized by reaction of (-
glutamic acid with n-butanol via Fischer esterification.* Esterification and amidification of
acetylenedicarboxylic acid can be particularly difficult, due to competing Michael addition,
especially when employing traditional coupling agents. For example, use of the conventional
coupling reagent dicyclohexylcarbodiimide (DCC) results only in an undesired intramolecular

Michael addition to form the 1,3,5-trisubstituted hydantoin (Scheme 2.3).56 Heyl and Fessner
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developed the coupling reagent DMTMM  (4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-
methylmorpholinium chloride), which allows direct amidification of acetylenedicarboxylic acid
with amines.” DMTMM in N-methyl-2-pyrrolidone (NMP) as solvent provides the
acetylenediamide 2.2a with amine 2.1a in 82% yield. The disadvantage of this route is that a

full equivalent of DMTMM is needed for each amide bond formation.

0] (0]
0 HO " Q /—/_ =
OH 1.34 eq. pTSA 0 HO OH
HoNus > H,Nun e
toluene, 130 °C 2.9 eq. DMTMM
OH  Dean-Stark o) NMP, 0 °C

84%

L-glutamic acid

Scheme 2.2 Synthesis of Acetylenediamide Tetraester 2.2a Based on Glutamic Acid as a
Branched Linker.
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Scheme 2.3 Undesired Intramolecular Michael Addition when Trying to activate the
carboxylic acid with DCC
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2.3 Model Reaction

A model reaction was carried out prior to applying the cycloaddition to azidized PVC.
There were two reasons for conducting this small molecule model reaction: 1) test the thermal
reactivity of the alkyne diamide 2.2a with an organoazide for which the reaction could be
monitored by NMR; 2) the structural information of the model triazole product could be
determined by HRMS, IR, and NMR, which would help identify the structural information of
functionalized PVC triazole samples with the same structure motif. Therefore, a small
organoazide molecule, benzylic azide 2.3 was synthesized from 1-bromomethyl-4-tert-
butylbenzene using Amberlite IRA-400 ion-exchange resin pre-charged with aqueous NaNs.8
Reaction of alkyne 2.2a with the model azide 2.3 gave triazole 2.4 as a well-defined molecule

following chromatographic purification in 74% yield (Scheme 2.4).
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MeCN, RT
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Br N3

o \>74 0 CD4CN
60 °C
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N H o)
N
AT

o} 0 o o ‘
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O,
0 \/\/
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Scheme 2.4 Model Reaction: Cycloaddition of Small Molecule Azide with Acetylenediamide
Tetraester 2.2a
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2.4 Characterization of Small Model 2.4

The stuctural information for compound 2.4 was confirmed by HRMS, IR, *H NMR, *3C
NMR, DEPT, and NOESY. IR was used to confirm the functional groups of triazole tetraester
2.4. In the IR spectrum (Figure 2.2), the broad amide N-H stretch is found near 3350 cm™. The
ester C=0 stretch is seen at 1739 cm™ for model triazole 2.4. The amide C=0 stretch and N-
H bend are observed at 1678 cm™ (C=0 stretching, amide | band) and at 1552 cm™ (NH

bending, amide Il band), respectively.

N
—~|| ™. Amide NH bénding
Ester C=0{/ Amide C=0

T T
4000.0 3000 2000 1500 1000 450.0
cm-1

Figure 2.2 IR Spectrum of Small Model Molecule 2.4

In the *H NMR spectrum, the proton peaks of compound 2.4 at & 1.6, 1.4, and 0.9 ppm
(labeled g, h, and i in Figure 2.3) come from the n-butyl chains of the diglutamate tetraester.
Interestingly, the benzylic hydrogens for peak a is an AB quartet instead of a singlet, as the two
methylene hydrogens are diastereotopic. The 'H NMR spectrum also shows there are two
types of amide proton peaks, appearing at & 11.3 and 8.3 ppm. Conjugation of the carbonyl
amides to the triazole aromatic group® results in downfield shifts of the amide protons. The
differences between the *H chemical shifts of the two amides likely arises from intramolecular
H-bonding?? of the more downfield amide proton at & 11.3 ppm. However, the positions of j and
k can not be distinguished by 1D NOESY (Nuclear Overhauser Effect Spectroscopy) NMR

(Figure 2.4). Irradiation of the methylene a at 8 6.1 ppm results in NOE enhancement of only

59



phenyl hydrogen m at & 7.3 ppm. Note that the ortho and meta aryl hydrogens happen to both

appear at 6 7.3 ppm.
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Figure 2.3 *H NMR of Small Model Molecule 2.4. Note: Peak a is an AB Quartet.
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Figure 2.4 1D Selective NOESY Spectra of Small Model Molecule 2.4
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2.5 Determination of Percentage of Azidation on PVC

PVC-azides with 4.4% azidation 2.5 and 12.0% azidation 2.5’ were prepared using
NaNs in an Sn2 displacement of chlorine atoms on PVC in DMF at 62 °C for 0.5 h and 2.0 h,
respectively (Scheme 2.5).22 The percentage of azidation was calculated based on elemental

analysis (Table 2.1) using the equation developed by Higa (Equation 2.1 — 2.5).1

—
: DMF m X

N 62°C rancc:ilom cogglymer
PVe Reaction Time
0.5h 2.5 m=96, x=4
20h 2.5' m=88, x=12

Scheme 2.5 Preparation of PVC-Azide 2.5 and 2.5’

Table 2.1 Elemental Analysis of PVC-Azide 2.5 and 2.5’

Polymer wt% of carbon wt% of hydrogen wt% of nitrogen
25 39.23 5.12 3.02
2.5’ 38.69 5.22 8.17

Given the elemental analysis results, if there are 100 grams of PVC-azide 2.5, the mass of
nitrogen is 3.02 grams (3.02 wt% of nitrogen). The moles of nitrogen atoms are therefore 0.216

mol (Equation 2.1).

The mass of nitrogen _ 3.02g

The moles of nitrogen atoms = = 0.216 mols Equation 2.1

Atomic weight of nitrogen T 1401 g/mol

The moles of azide group are one third of that: 0.072 mol (Equation 2.2).

The moles of nitrogen atoms _ 0.216 mols
3

The moles of azide group = =0.072mols  Equation 2.2

The mass of carbon is 39.23 grams (39.23 wt% of carbon) for 100 grams of PVC-azide 2.5.

The moles of carbon is 3.27 mols (Equation 2.3).
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The mass of carbon _ 39.23 g

The moles of carbon atom = = 3.27 mols Equation 2.3

Atomic weight of carbon T 1201 g/mol

The total moles of vinyl chloride and vinyl azide are 1.64 mols (Equation 2.4).

The moles of carbon atoms
2

The total moles of vinyl chloride and vinyl azide =

_ 3.27mols
- 2

= 1.64 mols Equation 2.4

Therefore, the azidation percentage of PVC-azide 2.5 is 4.39% (Equation 2.5).

Th dati ; _ The moles of azide group x 100%
¢ aziaation percentage = The total moles of vinyl chloride and vinyl azide 0

__ 0.072mols
1.64 mols

X 100% = 4.39 % Equation 2.5

The same calculation method was applied to polymer 2.5’ giving percentage of the of 12.04%.

2.6 Preparation of Tetraester Alkynes and Introduction to PVC via Thermal

Azide/Alkyne Cycloaddition

A series of glutamate ester diamide alkynes 2.2b-f bearing a variety of terminal ester
groups were synthesized (Scheme 2.6) using analogous reactions to that of 2.2a (Scheme
2.6). Thermal azide-alkyne dipolar cycloaddition was then carried out to form the triazole
attachments bearing tetraesters at 90 °C for 48 h or 72 h, to give PVC functionalized at 4% of
the original chlorine sites (polymer 2.6a-f), and at 12% (polymers 2.6’a-f). The reaction time
for cycloaddition of PVC-azide and diamide alkynes to go to completion is longer compared to
diester alkynes due to the less electron-poor nature of the diamide alkynes compared to diester

alkynes 312
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Scheme 2.6 Preparation of Tetraester Alkynes and Introduction onto PVC via Azide-Alkyne
Cycloaddition.

2.7 Characterization of Functionalized PVC

IR spectroscopy was effective at evaluating triazole formation on the polymer by

monitoring the disappearance of the distinct azide peak at 2114 cm? (Figure 2.5a).
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Comparison of the IR spectra of diglutamate ester functionalized PVC 2.6’a and small molecule
triazole 2.4 (Figures 2.5b and 2.5c) revealed very similar peaks. For both the model compound
2.4 and the diglutamate ester triazole functionalized PVC 2.6’a, the broad amide N-H stretch
was found near 3350 cm™. Similarly, the ester C=0 stretch was seen at 1737 cm™ for
functionalized PVC 2.6’a and at 1739 cm for model 2.4. The amide C=0 stretch and N-H bend
were observed for both the internally plasticized PVC 2.6’a and model 2.4 at 1677 and 1678
cm® (amide C=0 stretching, amide | band) and at 1551 and 1552 cm™ (amide NH bending,

amide Il band), respectively.
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Figure 2.5 IR Spectra Comparing a) PVC-12%-azide 2.5’, b) PVC-12%-nBu 2.6’a, and c)
Model Triazole 2.4

Internally plasticized 12% nBu tetraester PVC 2.6’a was further characterized by

comparing the *H NMR spectrum of the polymer 2.6’a to spectra of PVC-12%-azide 2.5’ and
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model triazole 2.4 (Figure 2.6). Comparing the *H NMR spectra of PVC-12%-azide 2.5’ (Figure

2.6a) with that of polymer 2.6’a (Figure 2.6b), it is clear that both feature protons from the PVC

backbone: CH-CI methine protons of the PVC backbone have a chemical shift of 8 4.7-4.2 ppm;

-CH2- methylene protons from the PVC have a chemical shift of & 2.5-1.6 ppm. Peaks from the

tetraester triazole polymer 2.6’a were corelated to model triazole 2.4. For both, there are again

two types of amide proton peaks, appearing at & 11.3 and 8.3 ppm. Comparison of the *C

NMR spectra PVC-12%-Ns 2.5°, PVC-12%-nBu 2.6’a, and model compound 2.4 (Figure 2.7)

also supports the structure of 2.6’a, which contains both PVC backbone carbons (2.5’) and

nBu tetraester (2.4).
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Figure 2.6 *H NMR Spectra (in CDClIs) of a) PVC-12%-N3s 2.5’, b) PVC-12%-nBu 2.6’a, and

¢) Model Compound 2.4
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Figure 2.7 13C NMR Spectra (in CDClz) of a) PVC-12%-Ns 2.5°, b) PVC-12%-nBu 2.6’a, and
¢) model compound 2.4

2.8 Glass transition temperature of functionalized PVC

The glass transition temperature (Ty) is the temperature at which a polymer undergoes
a phase change from a glassy state to a rubbery state (Figure 2.8). The Tq value reflects the
flexibility of a polymer; the lower the Tg, the more flexible the material. Tq values in this chapter
were measured at IBM by Andy Tek with the collaboration of Dr. Rudy Wojtecki, using a
differential scanning calorimetry (DSC) Q2000 with a heat-cool-heat protocol, and a scanning
range of =90 to 200 °C at a heating rate of 10 °C min~1. The Tqwas collected during the second
heating cycle because the first heating cycle was used to erase the thermal history of the

polymer and remove residual solvents.
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Figure 2.8 DSC (Second Heat Cycle) of Internally Plasticized PVC 2.6’a

The DSC data of diglutamate tetraester functionalized PVC samples show specific
heat capacities during the second heating cycle for both 4 and 12 mol % samples. The Tq value
of unmodified PVC is 81 °C, showing PVC is in its glassy state at room temperature. For PVC
bearing 4 mol % internal plasticizer, T4 values range from 62 °C to 39 °C (Figure 2.9). The
highest T4 value (62 °C) was obtained for PVC-4%-nBu 2.6a. Ty values decrease with
increasing ester O-alkyl chain length. The Tgvalue of PVC-4%-nHex 2.6b is 53 °C, and Tgvalue
of PVC-4%-2-EtHex 2.6¢ is 47 °C. Collected T4 values of the second heating cycle are given

in Table 2.2.

For PVC bearing 12 mol % of internal plasticizer, the lowest Tg value obtained is -1 °C
for the tetra(TEGBuU) ester diglutamate triazole PVC-12%-TEGBu 2.6’f , indicating excellent

internal plasticization. The Tq values of the O-alkyl esters are all higher than those of the O-
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Figure 2.10 DSC (2" Heat Cycle) for Samples of 12 mol% Internally Plasticized PVC
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PEG esters, even though the alkyl nDec (Tq = 18 °C) and polyether TEGMe (Tg = 3 °C) esters
are the same length (Figure 2.10). Within the alkyl esters, longer alkyl ester chains result in
lower T4 values than shorter chains. Adding an n-butyl group to the end of the PEG ester in
place of the methyl group makes very little difference, giving only a slight depression of the Tq
value at 12% substitution, and was indistinguishable at 4 mol%. Collected T4 values of the

second heating cycle are given in Table 2.2.

Table 2.2 DSC Tg4 Values for PVC Bearing 4 mol % and 12 mol % Glutamic Ester-Derived
Branched Internal Plasticizers

Polymer Tg(°C)? Polymer Tg (°C)?
PVC 81

2.6a 4% nBu 62 2.6’a12% nBu 41
2.6b 4% nHex 53 2.6’b 12% nHex 28
2.6c 4% 2EtHex 47 2.6’c 12% 2EtHex 21
2.6d 4% nDec 39 2.6’d 12% nDec 18
2.6e 4% TEGMe 40 2.6’e 12% TEGMe 3
2.6f 4% TEGBuU 41 2.6'f 12% TEGBuU -1

2 T4 is from the 2™ heating cycle

2.9 Plasticization Efficiency of Branched Internal Plasticizers Compared to Previous

Internal Plasticizers Developed in Braslau Lab

To examine the effect of doubling the density of ester plasticizing moieties using this
branched linker, a comparison with TEGMe diester internal plasticizers 2.7 and 2.7’ from the
previous work of Higa in the Braslau lab® is useful (Figure 2.11). For 4 mol % PVC samples,
the T4 value of diester 2.7 = 61 °C, whereas for the tetraester 2.6e the T4 = 40 °C. Even more
pronounced, for the more densely substituted PVC sample 2.7°, the diester plasticizer showed
a Tg =42 °C compared to the tetraester 2.6’e at Tg = 3 °C. Thus doubling the number of esters
from two to four for each triazole linkage gives significantly enhanced plasticization. Thus the

concept of multivalent attachment per azide linker does seem to enhance plasticization.
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However, the diesters functionalized PVC samples 2.7 and 2.7’ were synthesized in three steps:
one step less compared to the synthesis of the diglutamate tetraester functionalized PVC

samples 2.6e and 2.6’e in this work.

O
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Figure 2.11 Comparison of Glass Transition Temperatures between Previous TEGMe
Diesters and Branched TEGMe Tetraesters

2.10 Plasticization Efficiencies of Branched Internal Plasticizers

The weight percent of internal plasticizer was calculated using Equation 2.6.1!

MaSSTriazole plasticizer

Weight percent plasticizer (%) = x 100

MaSSTriazole plasticizer + MaSSPolymeric main chain

Equation 2.6
Calculations of MasStriazole plasticizer and MasSpolymeric main chain are based on Figure 2.12, using

PVC-4%-nBu 2.6a as an example (note: the radical on each fragment is a formalism):
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Figure 2.12 Molecular Weight of Polymeric Main Chain and Triazole Plasticizer

Therefore, the weight percent of internal plasticizer for PVC-4%-nBu 2.6a is 31.56%, as in

Equation 2.7.

638.74 x 4.4

. o 1009
Weight percent plasticizer = g 4 6750 x 95.6 + 27.05 x 44~ 100%

= 31.6% Equation 2.7

The weight percent plasticizer for each of the modified PVC polymers are summarized in Table

2.3, calculated using Equation 2.7 and Figure 2.12.
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Table 2.3 Weight Percent (wt%) of Internal Plasticizers

Triazole plasticizer 4.4 mol% 12.0 mol%
R Group Mw (g/mol) Functionalized PVC (wt%)  functionalized PVC (wt%)
nBu 638.74 31.6 56.9
nHex 750.96 35.2 60.8
2-EtHex 863.17 38.4 64.1
nDec 975.39 41.3 66.9
TEGMe 999.05 41.9 67.4
TEGBU 1167.38 45.7 70.7

In order to evaluate the efficacy of plasticization, the Ty values of these branched
internally plasticized PVC samples were compared to that of externally plasticized DEHP-PVC3

as a function of plasticizer content by weight percent (Figure 2.13). The trend shows that use

Tg as a Function of wt% Plasticizer
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Figure 2.13 Plot of Ty versus Plasticizer Content of DEHP-PVC Standard (black square), 4%
Substituted PVC 2.6a-2.6f (Red Circles), and 12% Substituted PVC 2.6’a-2.6’f (Blue
Triangles)
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of traditional DEHP plasticizer is more effective than these tetraester triazole internally
plasticized samples. This makes sense if one considers the mechanism of plasticization. Large
internal plasticizers reduce the rotation of the polymer backbone compared to unattached small
molecule plasticizers. In terms of free volume theory, for the same weight percent of plasticizers,
smaller molecule plasticizers introduce more free volume, leading to more flexible materials.*®
Among these internally plasticized samples, the T4 values are correlated with the degree of

PVC substitution; T4 values below 0 °C can be achieved by 12% TEGBu substituted PVC.

Plasticization efficiency (E,r,) for each internal plasticizer was calculated based on the

following equations (Equation 2.8 — 2.12 and Equation 2.6).31* Equation 2.11 was developed

by Higa based on his experiment data.®

Enr, = % X 100% Equation 2.8

ATy piasticizer = Tgunmodified pve — Tgmodified pvc Equation 2.9
ATy penp = Tgunmodified pvc — Tg,pEHP Equation 2.10

T, penp = 0.0186x% — 3.4124x + 80.898 Equation 2.11

x (%) = weight percent plasticizer Equation 2.12

Mass rriazote piastici
Weight percent plasticizer = [riazole plasticizer X 100%

MaSSTriazole plasticizer + MaSSPalymeric main chain

Equation 2.6

Plasticization efficiency increases with increasing plasticizer weight percent (Figure 2.14).
There is also a subtle dependence of plasticization efficiency on the ester functional group:
polyether esters lead to higher plasticization efficiencies than alkyl esters at a similar plasticizer
weight percent (2.6’d = nDec, 66.9 wt% of plasticizer, Tg = 18 °C; 2.6’e = TEGMe, 67.4 wt% of

plasticizer, Tg = 3 °C). Also, 4% TEGBuU substituted PVC 2.6f gives a higher plasticization
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efficiency (34%) than 12% nBu substituted PVC 2.6’a (29%), thus the use of polyethers
overrides the lower degree of substitution on PVC. Although DEHP-PVC is more effective as a
plasticizer, the migratory issue makes the traditional phthalate approach less satisfactory
considering the durability of the compromised PVC products following loss of plasticizer due to
migration, and the health issues ensuing from phthalate contamination. However, the price of

the coupling reagent DMTMM ($80/100g) is a drawback of this method.

Plasticization Efficiency as a Function of wt% Plasticizer
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Figure 2.14 Plot of Plasticization Efficiency of 4% Substituted PVC 2.6a-2.6f (Red Circles)
and 12% Substituted PVC 2.6’a-2.6°f (Blue Triangles)

2.11 Thermogravimetric analysis of functionalized PVC

Thermogravimetric analysis (TGA) was performed in order to evaluate the thermal
stability of these functionalized polymers (Figure 2.15 and 2.16). TGA in this chapter were
measured at IBM by Andy Tek with the collaboration of Dr. Rudy Wojtecki. For the alkyl chain
tetraester diglutamates, the sample weight stays relatively unchanged until an onset

temperature is reached. For most of the polymers tested, the temperature at 5% weight loss is
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greater than 200 °C, and is directly correlated with the alkyl ester chain length (Table 2.4).
Focusing on the 12 mol % polymers, a successive increase in temperature for 5% weight loss
is observed from nBu to nHex to nDec diglutamate functionalized PVC. The temperatures at
5% weight loss are higher for the 12 mol % substituted series compared to the 4 mol %
polymers. Compared to pure PVC, the temperatures at 5% weight loss for the alkyl tetraester
diglutamate functionalized PVC samples are similar, suggesting that this type of internal
plasticizer is relatively stable, even under significant thermal stress. Examining the triethylene
glycol ester diglutamate esters (TEGMe and TEGBu), the sample weights decrease at
moderate temperatures, starting at approximately 150 °C. The observed temperatures of
thermal decomposition for the triethylene glycol esters are consistent with previous reports of
thermal degradation for typical poly(ethylene glycol).*>%” The slope of the initial decrease is
small, followed by a sharper decline. This suggests that the polyethers initially undergo a slow
decomposition process under thermal stress before undergoing rapid decomposition at higher
temperatures. TGA data measured under nitrogen show higher onset temperatures in
comparison with data measured under air; otherwise, no significant differences were observed.

Table 2.4 TGA temperatures at 5% weight loss

Polymer Ts(°C)? Polymer Ts (°C)?
PVvC 267
2.6a 4% nBu 256 2.6’a 12% nBu 262
2.6b 4% nHex 240 2.6’b 12% nHex 263
2.6¢c 4% 2EtHex 243 2.6°’c 12% 2EtHex 270
2.6d 4% nDec 254 2.6’d 12% nDec 274
2.6e 4% TEGMe 224 2.6’e 12% TEGMe 239
2.6f 4% TEGBuU 197 2.6’f 12% TEGBuU 214

a Ts = temperature at 5% weight loss, TGA measured open to air
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2.12 Conclusion

Internal plasticization of PVC bearing triazoles with branched glutamic acid linkers
displaying four ester groups per triazole has been investigated. A facile 3-step synthesis
involving Fischer esterification, DMTMM amide coupling, and thermal 3+2 azide-alkyne
cycloaddition was employed. By varying the ester substituents and examining the effects on
the glass transition temperatures, longer length substituents correlate with lower Tg values for
both alkyl and polyether esters. Polyether esters are more effective at depressing the Tq values
compared to alkyl esters. By TGA, the triethylene glycol esters degrade at lower temperatures
than the alkyl esters. In summary, non-migratory plasticization was successfully achieved, with
impressive Tg values and plasticizing efficiencies greater than 50% for tetra(polyether) esters

at 12% substitution of the chlorine atoms on the PVC chain.
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3 Internal Plasticization of Poly(Vinyl Chloride) by Grafting Copolymers of Butyl
Acrylate and 2-(2-Ethoxyethoxy)Ethyl Acrylate via Copper-Mediated Atom Transfer

Radical Polymerization

3.1 Background

Many methods of chemically attaching plasticizers to PVC require three or more
synthetic steps. The key attachments traditionally include sulfide linkages,*® amine linkages,”®
and triazole linkages.®*® The lowest Tq (-42 °C) by internal plasticization previously achieved
required three steps using 84 wt % of an attached plasticizer with a triazole linkage by Chad
Higa in the Braslau group.'” Another strategy involves the formation of copolymers of vinyl
chloride with other monomers. For example, Coelho and Braslau'®* made random copolymers
of vinyl chloride with an acrylate bearing a triazole phthalate mimic DEHT-HA using free radical
polymerization. However, preparation of the monomer DEHT-HA required four synthetic steps.
Feng, Moad and Thang? prepared highly plasticized PVC-b-PCL in two steps using reversible

addition—fragmentation chain transfer polymerization followed by ring-opening polymerization.

Atom transfer radical polymerization (ATRP),?22* a reversible—deactivation radical
polymerization,?® has been used to grow graft copolymers from defect sites off of PVC chains
to achieve internally plasticized PVC in a single reaction.?*3" This type of graft
copolymerization can be nucleated from defect sites on PVC, including both allylic and tertiary
chlorides (Figure 3.1).%8 As mentioned in Chapter 1, estimates of allylic chlorides range from
0.05-0.72/1000 vinyl chloride units,3%4° and tertiary chlorides from 0.7-2.1/1000 vinyl chloride
units.** Although these estimates vary, there is usually at least one defect site in each PVC
chain.?’” One pathway to the formation of allylic chlorides is head-to-head addition, followed by
rearrangement during propagation (Scheme 3.2).%2 Tertiary chlorides in PVC are generated by

backbiting through a six member ring hydrogen abstraction transition state (Scheme 3.3).4344
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Scheme 3.2 Generation of Tertiary Chloride by Backbiting

Percec and Asgarzadeh?” carried out a systematic study of Cu-catalyzed ATRP directly
from defects sites on PVC, achieving functionalized PVC materials in a single step. The lowest
Tg value obtained was -4 °C for PVC-g-PBA. Multiple researchers have demonstrated good

compatibility between PVC and PBA segments in graft copolymers.26:27:30

Polyethers have been utilized as highly effective internal plasticizers for PVC by a

number of researchers®®17:18 including the work of Chad Higa®” in the Braslau group and my
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own work discussed in Chapter 2 and summarized in Figure 3.2.18 Polyether chains tend to
be more effective compared to analogous materials with straight-chain or branched alkyl
groups. In chapter 2, the T4 value of functionalized PVC 2.6’d with nDec is 18 °C which is
significantly higher than the Tq value of 3 °C for 2.6’e with TEGMe (Figure 3.2). However, PVC-
g-poly(oxyethylene methacrylate) (POEM) prepared by Hong et al.3? using Cu-catalyzed ATRP

resulted in a material with two Ty values (-68 °C and 32 °C), indicating micro-phase separation.
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26d R= &~~~ nDec 18°C

26'e R= rva\/\O/\/O\/\o/ TEGMe 3°C

Figure 3.2 Structure and Ty Values of 2.6’d and 2.6’e

In this chapter, the compatibility of PBA combined with the plasticization efficiency of
polyethers was investigated. Although Cu-ATRP is generally more effective with methacrylates
than acrylates, the rigidity imposed on the graft chains by the quaternary carbons bearing the
methacrylate methyl group makes polyacrylates better plasticizers than polymethacrylates.
Thus, graft polymerization of different ratios of PBA-co-P(2-(2-ethoxyethoxy)ethyl acrylate)
(PBA-co-P2EEA) were investigated to achieve effective plasticizing efficiency while avoiding
microphase separation (Scheme 3.3). For this work, we collaborated with Dr. Yanika Schneider
and Dr. Adrienne Hoeglund at EAG Laboratories. FTIR was measured by Yanika Schneider.

DSC, TGA, and GPC were measured by Adrienne Hoeglund.
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Scheme 3.3 General Scheme: Preparation of Graft PBA-co-P2EEA via ATRP

3.2 Synthesis of PVC-g-(PBA-co-P2EEA)

Commercially available PVC was purified before use through three cycles of
dissolution in THF and precipitation in MeOH. PVC graft copolymers were prepared by ATRP
initiated from defect sites using 3 mol% CuBr, 3 mol% PMDETA as the ligand, and DMF as the
solvent. The initial reaction mixture was deoxygenated using the freeze-pump-thaw method,
followed by heating at 100 °C for 24 h. Five different ratios of n-butyl acrylate (BA) and 2-(2-
ethoxyethoxy)ethyl acrylate (2EEA) were investigated, ranging from homopolymer grafts of
each monomer,to3:1to 1:1to1: 3ratios, resulting in a series of PVC-g-(PBA-co-P2EEA)

variants (Table 3.1).

Table 3.1 Polymerization Conditions and Percent Conversions?

Entry [PVCJ/[BAJ/[2EEA]/[CuBr])/[PMDETA]® Initial molar %Convnmr®  %Convnmr®

ratio of (2 g scale) (14 g scale)
[BAJ/[2EEA]

1 1:25:0:0.03:0.03 BA only 81% 88%
2 1:1.9:0.6:0.03:0.03 3:1 73% 88%
3 1:1.3:1.3:0.03:0.03 1:1 84% 86%
4 1:06:1.9:0.03:0.03 1:3 80% 72%
5 1:0:25:0.03:0.03 2EEA only 80% 80%
6 0:1.3:1.3:0.03:0.03¢ 1:1 23%° -

2All polymerizations were conducted at 100 °C in DMF for 24 h; PRatios were calculated
in mol; °Conversion of total monomers; polymers were not completely soluble in the CDCIs
NMR solvent; “Control without PVC; ¢Sample was completely soluble in the CDCls NMR solvent.
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These ATRP graft polymerizations were initially conducted using 0.5 g of PVC, yielding around
2 g of the PVC graft copolymers. To test the consistency and reproducibility of this ATRP
method, all ratios were scaled up starting with 3.0 g of PVC, yielding approximately 14 g of

PVC graft copolymer.

The conversion of total monomers was calculated based on crude 'H NMR spectra.
The NMR of PVC-g-(50%PBA-co-50%P2EEA) is used as an example to demonstrate how
percent conversion of total monomer was calculated (Figure 3.3). Proton a of BA and a’ of
2EEA both appear at 5.8 ppm, the integration of which was set to 1. Protons b of BA and b’ of
PBA appear at 0.9 ppm and integrate to 9.21. Protons ¢ of 2EEA and ¢’ of P2EEA were seen
at 1.2 ppm integrate to 9.36. The percent conversion was calculated using Equation 3.1. Based
on NMR, the percent conversion ranges from 72%-87%. As the samples were not completely
soluble in the CDCls solvent, it is likely that the percent conversion obtained by NMR is not

accurate.
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Figure 3.3 Crude NMR of PVC-g-(50%PBA-co-50%P2EEA) (2 g Scale)

84



Intergrationy cy, — Intergrationcy, of monomers % 100%

Conv.% = -
total monomers Intergratlona” CHa

_ (Intergration,, . + Intergration, ) — Intergration, o X 3

c+c

X 100%

Intergration.,.r + Intergrationyp
9.36 +9.21 —1.00 x 3
= X 100% = 84%

9.36 +9.21

Equation 3.1 Calculation of Percent Conversion of Total Monomer of PVC-g-(50%PBA-co-
50%P2EEA)

3.3 Spontaneous Thermal Homopolymerization of Acrylates

Defect sites (allylic chloride and tertiary chloride) on PVC were assumed at first to be
the only initiating species for ATRP. However, a control experiment without PVC resulted in
23% of polymer (Table 3.1, Entry 6). This is likely from self-initiation of BA or 2EEA at
100 °C.*>46 One mechanism for spontaneous thermal homopolymerization of acrylates was
postulated by Soroush (Scheme 3.4),%47 in which two monomers form a diradical species
upon heating. These radical species then react with monomer in two ways to form monoradical
species, which then initiate polymerization. The percent conversion and molecular weight of
the polymer varies with the solvent used. The control reaction in the absence of PVC indicates
that there is likely some unattached polymer contaminating the PVC-g-PBA, PVC-g-(PBA-co-
P2EEA), and PVC-g-P2EEA samples. However, this does not diminish the overall usefulness
of this approach towards nonmigratory plasticization of PVC.

\
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Scheme 3.4 Mechanism for Radical Auto-Initiation of Acrylates as Postulated by Soroush*®
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3.4  Characterization of PVC Copolymers

Characterization by Fourier Transform Infrared (FTIR), and 'H Nuclear Magnetic
Resonance (NMR) spectroscopies, and Gel Permeation Chromatography (GPC) of the
functionalized PVC graft copolymers provided important structural information. All five modified
polymers show a distinctive ester carbonyl peak around 1740 cmin the FTIR (Figure 3.4),

confirming the incorporation of acrylates into these modified PVC samples.

—PVC

—— PVC-g-PBA

T !

EEEEH

—— PVC-g-75%PBA-c0-25%P2EEA

—— PVC-g-50%PBA-c0o-50%P2EEA

—— PVC-g-25%PBA-co-75%P2EEA

—— PVC-g-P2EEA

-

T T T T T T T T T
3500 3000 2500 2000 1500 1000
Wavenumber (cm™)

Figure 3.4 FTIR of PVC-g-PBA, PVC-g-(PBA-co-P2EEA), and PVC-g-P2EEA Graft Polymers

In the *H NMR spectrum (Figure 3.5), the CH-CI methine protons a of PVC appear at
4.6-4.2 ppm, the -CH2-O-C=0 methylene protons ¢’ of PBA are seen at 4.0 ppm. The -CHs
methyl protons f* are seen at 0.93 ppm. The NMR data clearly demonstrate the presence of

PVC and PBA in the graft copolymers.
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Figure 3.5 'H NMR Spectrum of PVC-g-PBA

The *H NMR spectrum of PVC-g-P2EEA is shown in Figure 3.6. The -CH2-O-C=0

methylene protons of P2EEA have a chemical shift of 4.2 ppm. The -CHz methyl protons are

cl *®o0e K
;P
PVC-g-P2EEA
S
o

T T T T T T T T T T T r T r T T T T T r T 1
15 9.0 8.5 8.0 7.5 70 6.5 6.0 5.5 50 4.5 4.0 3.5 3.0 25 20 15 1.0 0.5 0.0 0.5 -1.0 -1
fi (ppm)

Figure 3.6 *H NMR Spectrum of PVC-g-P2EEA
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seen at 1.20 ppm. The presence of both PVC and P2EEA in the graft copolymers is clearly

supported by this H NMR spectrum. The *H NMR spectra of all five polymers (madeona 2 g

scale) are shown in Figure 3.7.

PVC

PVC-g-PBA

PVC-g-75%PBA-co-25%P2EEA

PVC-g-50%PBA-co-50%P2EEA
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Figure 3.7 *H NMR Spectra of PVC-g-PBA, PVC-g-(PBA-co-P2EEA), PVC-g-P2EEA

3.5

Composition and Relative Size of the New Grafts

Information on the composition and relative size of the new grafts as determined by *H

NMR is summarized in Table 3.2. The integration of the CH-CI methine protons (Figure 3.8,

proton a) of PVC, of the -CH2-O-C=0 methylene protons (Figure 3.8, proton b) of PBA, and of

the -CH2-O-C=0 methylene protons (Figure 3.8, proton b’) of P2EEA were used to determine

the ratio of PVC to total polyacrylate in the functionalized polymers (Equation 3.2).
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Figure 3.8 *H NMR Spectrum of PVC-g-(50%PBA-co-50%P2EEA) as an Example

PVC : Polyacrylate

Intergration cy,-o0-c=0 methylene, PBA+P2EEA

= Intergrationcy_ci methine,pvc * 2

Intergration,,
2

= Intergration, :

Equation 3.2

The ratio of PBA to P2EEA was calculated (Equation 3.3) based on the integration of
the methyl protons of PBA at 0.9 ppm (Figure 3.8, proton c) and the methyl protons of P2ZEEA
at 1.2 ppm (Figure 3.8, proton ¢’). The ratios of incorporated acrylate monomers were very

close to the initial monomer ratios, indicating the two monomers have similar addition rates in

ATRP.
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PBA : P2EEA = Intergration_cy, pga : Intergration.cuy, p2eea

= Intergration, : Intergration, Equation 3.3

Interestingly, the relative length of the polyacrylate graft (a combination of PBA and
polyether) decreases with increasing amounts of 2EEA monomer, from PBA: PVC =1.6:1.0
(for 100% BA) to P2EEA : PVC = 1.0 : 1.0 (for 100% 2EEA). This may be an artifact of the
work-up procedure, in which MeOH was used to precipitate the polymer, preferentially
dissolving the P2EEA-rich copolymers. The PVC graft copolymer samples were not completely
soluble in the CDCls solvent, thus it is likely that the ratios obtained by integration are not

accurate.

Table 3.2 Composition of Graft Copolymers based on *H NMR Analysis

Monomer Ratio Polymer Graft Graft
used BA - 9EEA  P(BA)IP(2EEA)  (PBA+P2EEA): PVC*  (PBA+P2EEA): PVC?
(2 g and 14 g scale) (2 g scale) (14 g scale)
BA only PBA only 16:1.0 14:1.0
75% : 25% 3.0:1.0 1.4:1.0 1.3:1.0
50% : 50% 1.0:1.0 1.3:1.0 1.0:1.0
25% : 75% 1.0:29 1.1:1.0 1.2:1.0
2EEA only P2EEA only 1.0:1.0 0.8:1.0

2 By 'H NMR integration; samples were not completely soluble in the CDCls NMR solvent. The
dissolved sample was assumed to represent the same composition as the bulk sample.

The weight percent of total plasticizer was calculated by gravimetry (Equation 3.4).
There was 73 — 80% plasticizer for all samples (Table 3.3). The very similar results on both 2
g and 14 g scales demonstrates the reproducibility and easy scale-up of this simple ATRP
modification of PVC. When scaled up to 14 g, the results were even better than the initial 2 g

batch, indicating that this one step self-plasticization method can be industrially relevant.

Weightresultin PVC copolymer — Weightinitial PVC
g e X 100%

Weight percent plasticizer = -
Welghtresulting PVC copolymer

Equation 3.4
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Table 3.3 Weight Percent Plasticizer

5 — 5 —
Samples W1t% plasticizer (grav.) W1t% plasticizer (grav.)

(2 g scale) (14 g scale)
PVC-g-PBA 80% 80%
PVC-g-75%PBA-co-25%P2EEA 75% 79%
PVC-g-50%PBA-co-50%P2EEA 75% T7%
PVC-g-25%PBA-co-75%P2EEA 73% 78%
PVC-g-P2EEA 73% 78%

3.6 Glass Transition Temperatures of PVC Graft Copolymers

The glass transition temperatures (Tg) of the internally plasticized PVC samples were
probed by differential scanning calorimetry (DSC). The DSC data show only a single T4 value
for each sample, indicating no phase separation (Table 3.4 and Figure 3.9). For both 2 g and
14 g scale samples, the T4 decreased with increasing amounts of P2EEA. All functionalized
polymers physically displayed great flexibility at room temperature, and exhibited Ty values
lower than 0 °C. The lowest Tg value achieved was for PVC-g-P2EEA (2 g scale) and PVC-g-
25%PBA-co-75%P2EEA (14 g scale). The PVC-g-PBA samples displayed slightly higher Tq
values of -30.0 °C (2 g scale) and -25.3 °C (14 g scale). Comparing the samples prepared on
the 2 g and 14 g scale, the T4 values are very close, consistently showing a decrease in the Ty
value with increasing P2EEA content, attesting to the efficiency of the polyether functionality

as a PVC plasticizer.>617.18

Table 3.4 T4 data for Grafted PVC Copolymers

Samples Tq (°C) Tq (°C)

(2 g scale) (14 g scale)

PVvC 83.6 -

PVC-g-PBA -30.0 -25.3
PVC-g-75%PBA-c0-25%P2EEA -41.4 -38.4
PVC-g-50%PBA-c0-50%P2EEA -47.9 -44.7
PVC-g-25%PBA-co-75%P2EEA -48.5 -49.6
PVC-g-P2EEA -50.3 -48.9
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Figure 3.9 DSC (2" heat cycle) of Grafted PVC Polymers: 1) 2 g Scale and 2) 14 g Scale

There are several conclusions from the Tg data: 1) there is no microphase separation
appears in these PVC graft copolymers, as only a single T4 value is observed; 2) Tq values for
all PVC graft polymers are lower than -25 °C, indicating great flexibility; 3) T4 values are very
similar for both reaction scales, showing that the ATRP process is easy to scale up, which
bodes well for industrial applications; 4) the flexibility (T4 value) of the polymer can be tuned by

altering the ratio of BA and 2EEA; 5) P2EEA (the polyether chain) is more efficient as a
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plasticizer compared to PBA (polyalkyl chain). In particular, comparison of PVC-g-25%PBA-
co-75%P2EEA with PVC-g-PBA shows that addition of 25% P2EEA leads to a significant
decrease of Tq from -25 °C to -38 °C. Further increasing the amount of P2EEA successively
lowers the Tq values decrease. PVC-g-25%PBA-co-75%P2EEA and PVC-g-P2EEA have very
similar Ty values. Considering that monomer 2EEA is more expensive (2EEA: $0.20/g; BA:
$0.04/g), BA : 2EEA = 3 : 1 yielding PVC-g-75%PBA-co-25%P2EEA is an attractive ratio when

taking both price and plasticizing efficiency into account.

In comparing Hong's®? work, which showed two Tq4 values for PVC-g-POEM (Scheme
1.32), there are several differences to this new ATRP work. Both the monomer and the reaction
conditions are different. The observed phase separation observed by Hong may be due to the
use of a methacrylate monomer (poly(oxyethylene methacrylate)): the methacrylate installs a
guarternary center every two carbons of the graft, making a big difference in the flexibility of

the pendant graft chains.

CuCl
.
/M OR >
Cl 4

N }?(\/\o% NMP

90 °C, 18 h

Scheme 1.32 Hong's Covalent Attachment of POEM to PVC via ATRP3?

3.7 Plasticization Efficiencies of Polyacrylates Grafts

Plasticization efficiencies were calculated based on Equation 2.8 - 2.12 (Chapter 2).
The weight percent plasticizer of the graft copolymers was based on gravimetry (Table 3.3).
Equation 2.11 using the conventional phthalate plasticizer DEHP was developed in the thesis
of Chad Higa in the Braslau group based on his experimental results.“® The plasticization

efficiencies for all grafts are higher than 70% (Table 3.5). The highest plasticization efficiency

93



is shown by the P2EEA graft homopolymer (2 g scale). The lowest plasticization efficiency is

for the PBA graft homopolymer. The efficiency increases with increasing percentage of P2EEA,

which is consistent with the conclusion that the polyether functionality is more efficient than

alkyl chains as a PVC plasticizer.>®17.18 |In conclusion, the plasticization efficiencies are very

high (71 — 87%). Even though the graft plasticizers are not as good as DEHP in terms of

plasticization efficiencies, there is no migration of plasticizers from the PVC matrix using this

graft copolymer strategy.

E =
ATy

ATg,plaSticizer

ATg,DEHP = Tg,unmodified pvc — lg,DEHP

Ty

x (%) = weight percent plasticizer

= Tg,unmodified pVvCc —

ATg,plasticizer X 100%
AT g DEHP

,modified PVC

pErp = 0.0186x2 — 3.4124x + 80.898

Equation 2.8

Equation 2.9

Equation 2.10

Equation 2.11

Equation 2.12

Table 3.5 Plasticization Efficiency of Polyacrylates Grafts

ATg,plasticizer ATg,DEHP EATg ATg,plasticizer ATg,DEHP EATg

(29 (29 (29) (14 9) (14 9) (14 9)

PVC-g-PBA 114 156.7 73% 109.6 157.4 70%
PVC-g-75%PBA- 0 o

C0-25%P2EEA 1224 154.0 81% 122.7 1569  78%
PVC-g-50%PBA- 0 o

cocomPoEEA 1319 154.0 86% 129.0 155.9 83%
PVC-g-25%PBA- . .

co-75%P2EEA 132.5 152.7 87% 133.9 156.4 86%

PVC-g-P2EEA 134.3 152.7 88% 133.2 156.4 85%

3.8 Thermal Stability of PVC and Its Copolymers

Thermogravimetric analysis (TGA) and Derivative Thermogravimetry (DTG) were

measured to examine the thermal stabilities of PVC and these new PVC graft copolymers.



3.8.1 Thermal Stability of PVC
PVC has a two-stage degradation below 500 °C (Figure 3.10).*° The first stage occurs
at ~200 °C due to dehydrochlorination, with the formation of HCI and benzene as major

byproducts. The second stage starts at ~360 °C, resulting in the formation of other

aromatics.50-51
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Figure 3.10 TGA (Green) and DTG (Blue) Curves of PVC

The reactive tertiary and allylic chlorine atoms at defect sites are expected to be the
most reactive to dehydrochlorination. As mentioned before, allylic chlorides range from 0.05-
0.72/1000 vinyl chloride units,3°4° and tertiary chlorides from 0.7-2.1/1000 vinyl chloride units.*!
Rate constants for dehydrochlorination of tertiary chlorine, allylic chlorine, and secondary
chlorine have been calculated to be 1.75 x 103, 1.17 x 103, and 5.00 x 107 s, respectively.>?
The relative rate constants for dehydrochlorination for different types of chlorines are as follows:
tertiary chlorine > allylic chlorine >> secondary chlorine. There is a higher amount of tertiary
chlorides, which contributes to their function as the most important initiation sites.405153 A

mathematical model was established by Hjertberg and Sorvik (Equation 3.5).52:54

Vier = 0.0105 X Cligrtigry + 0.0067 X Clyyyc + 0.0030 Equation 3.5
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Vyer: initial rate constant of PVC degradation in % moles per minute

Cliertiary: the concentration of tertiary chlorine in mol per 1000 VC unit
Clauyiic: the concentration of allylic chlorine in mol per 1000 VC unit

A four-center mechanism for HCI elimination was postulated by Bacaloglu et al. based

on a series of small molecule models (Figure 3.11).5255% Formation of the new alkene further
accelerates the speed of subsequent dehydrochlorination. The rate constants of

dehydrochlorination for different types of chlorines in PVC are shown in Table 3.6.57
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Figure 3.11 Fisch’s Four-Center Mechanism of HCI Elimination®

H-ClI

Table 3.6. Rate Constants of Dehydrochlorination for Different Types Chlorines in PVC®’

Rate constant, s*

Types of chlorines
~CHCI-CH2~ 7.4 %1082
2.1x107p
~CH=CH-CHCI-CH2~ 4.0 x 10*
~CH=CH-CH=CH-CHCI-CH>~ 1.1x 107

aTurcsanyi®8. PTroitskaya®®
HCI catalyzes the dehydrochlorination of unsaturated PVC; one possible mechanism
has been postulated by Wypych® (Figure 3.12). Overall, labile chlorines initiate a chain

reaction of dehydrochlorination of PVC, leading to thermal degradation.

HC' - \V +  2HCI

Figure 3.12 Possible Mechanism for HCI Catalyzed Dehydrochlorination®®
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3.8.2 Thermal Stabilities of PVC Graft Copolymers

The TGA and DTG curves of PVC graft copolymers are shown in Figure 3.13 and
Figure 3.14, respectively. The data are summarized in Table 3.7 for 2 g and 14 g scales. The
PVC graft copolymers have higher onset temperatures and higher temperatures at 5% weight
loss compared to unmodified PVC. The onset temperatures for PVC graft copolymers are
~270 °C, which are about 10 °C higher than unmodified PVC is (~260 °C). The temperatures
at 5% weight loss for PVC graft copolymers are ~280 °C, which are 20 °C higher than
unmodified PVC. The reason can be explained by the thermal degradation mechanism of PVC.
Since the reactive tertiary and allylic chlorine atoms at defect sites are expected to initiate
dehydrochlorination, replacement of these chlorines with carbon grafts by ATRP results in
enhanced thermal stability. Polyvinyl acrylates such as PBA degrade in a one-stage process
starting at ~300 °C,®° forming carbon dioxide, alkenes, and butyl alcohol. The grafted PVC
copolymers predominantly display two main stages during the decomposition process (Figure
3.13). The first stage occurs from ~270 °C to ~320 °C, with a weight loss ranging from 16% to
24%. This is likely caused by dehydrochlorination of PVC. At ~320 °C, the degradation is
dominated by the polyacrylate portion. The differences in the TGA curves between the PVC
graft copolymers are very small. PVC-g-PBA has a slightly steeper slope for the second stage
compared to other copolymers. There is no significant dependence of the TGA and DTG data
on the scale of polymerization (Table 3.7), which is consistent with the conclusion that the
ATRP reaction conditions are easily scalable. In summary, all of the graft polymers were more
thermally stable materials compared to unmodified PVC, and the thermal stabilities of these

novel internally plasticized materials remain consistent when the polymerizations are scaled

up.
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Figure 3.13 TGA Curves of Samples Made on: 1) 2 g Scale and 2) 14 g Scale
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Figure 3.14 DTG curves of Samples Made on: 1) 2 g Scale and 2) 14 g Scale
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3.9 GPC Results of PVC Graft Copolymers

Gel Permeation Chromatography (GPC) is a type of size exclusion chromatography
(SEC) which separates polymers by their effective volume. GPC was used to analyze polymer
molecular weight distributions. In GPC, polymer molecules elute from the column based on
approximate size. Larger molecules come out first. To determine the unknown polymer
molecular weight, a calibration curve is applied using molecular weight standards; linear
polystyrene standards were used. M, (peak molecular weight), Ma (number-average molecular
weight, Equation 3.6), Mw (weight-average molecular weight, Equation 3.7), M: (Z-average
molecular weight, Equation 3.8) and PD (polydispersity, Equation 3.9) were determined by

GPC for all PVC graft copolymers. For synthetic polymers: Ma<Mw<M;.

_ XN;M;

M, N Equation 3.6
_ INM? :

M, = TN M Equation 3.7
_ I .

M, = ST Equation 3.8

M;: the molecular weight of a chain

N;: the number of chains of that molecular weight

My, .
PD = e Equation 3.9

The GPC traces of the PVC graft copolymers are shown in Figure 3.15. Compared to
unmodified PVC, the retention times of all of the PVC graft copolymers are slightly decreased,
reflecting their higher weights and volumes. The peak sizes of the PVC graft copolymers are
significantly less than those of unmodified PVC. This may be due to the poor solubilities of the
PVC graft copolymers in THF, indicative of possible crosslinking during the 24 h polymerization.

These graft copolymers were also poorly soluble in common solvents including DMFand NMP.

101



2 g scale

—PVC

—— PVC-g-PBA

—— PVC-g-75%PBA-c0-25%P2EEA
—— PVC-g-50%PBA-c0-50%P2EEA
—— PVC-g-25%PBA-co-75%P2EEA
—— PVC-g-P2EEA

0 10 20
Retention Volume (mL)

1)

14 g Scale

—PVC

—— PVC-g-PBA

—— PVC-g-75%PBA-c0-25%P2EEA
—— PVC-g-50%PBA-c0-50%P2EEA
—— PVC-g-25%PBA-c0-75%P2EEA
—— PVC-g-P2EEA

0 5 10 15 20

Retention Volume (mL)
2)

Figure 3.15 GPC Traces of PVC Graft Copolymers: 1) 2 g Scale and 2) 14 g Scale
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Interestingly, PVC-g-PBA shows a bimodal distribution. Some of these polymers show a
shoulder corresponding to unmodified PVC, indicating that some unreacted PVC homopolymer
remains.

The values of Mp, Mw, and M of the functionalized PVC samples are significantly larger
compared to unmodified PVC (Table 3.8). The values of Mn for some of the 14 g scale graft
copolymers with larger than 50% P2EEA are smaller than the apparent Mn values for
unmodified PVC. This is likely due to: 1) the poor solubility of the larger molecular weight,
possibly crosslinked polymers, leaving only the smaller members in solution; 2) the inaccuracy
of using linear polystyrene as molecular weight standards for these polymer brushes. The graft
copolymers are dense, structurally complex species that take up volume in a manner far

different from a linear polymer chain.

Table 3.8 GPC of PVC and the Resulting Graft Copolymers on the 2 g Scale (Yellow) and 14
g Scale (Blue)

Samples Mp M Muw M, PD
PVvC 74,292 38,818 79,916 130,585 2.1
PVvC 68,869 36,411 73,053 114,440 2.0

PVC-g-PBA 127,483 39,700 113,565 284,191 29
PVC-g-PBA 112,543 34,034 108,192 244,293 3.2

PVC-g-75%PBA-co-25%P2EEA 128,227 46,457 126,394 247,734 2.7
PVC-g-75%PBA-c0-25%P2EEA 137,340 44,642 140,454 286,532 3.2
PVC-g-50%PBA-co-50%P2EEA 145,078 46,010 145,214 296,674 3.2
PVC-g-50%PBA-co-50%P2EEA 140,688 30,775 132,957 277,584 4.3
PVC-g-25%PBA-co-75%P2EEA 173,590 47,486 187,444 419,274 3.9
PVC-g-25%PBA-co-75%P2EEA 135,636 29,958 136,902 289,786 4.6

PVC-g-P2EEA 140,902 49,093 148,200 300,457 3.0

PVC-g-P2EEA 163,642 34,337 165,613 342,201 4.8

3.10 Concerns with Using Copper

A big concern with using Cu-mediated ATRP is the residual copper in the resulting
polymer. For example, on the 14 g scale, approximately 200 mg of CuBr was used. Although

the graft co-polymer samples were washed with methanol several times to remove both catalyst

103



and ligand, some polymers still had a faint green color, indicating residual copper. This
contamination limits the applications of these polymers in medical devices and food packaging.
Efforts aimed at reducing the amount of copper, for example following Matyjaszewski's work?*

with activated ligands, are ongoing in our lab.

3.11 Conclusion

A series of PVC-g-(PBA-co-P2EEA) polymers were prepared by ATRP in a single step,
resulting in materials with Tq values as low as -50 °C. Several conclusions can be drawn from
this systematic study. Most importantly, all of these internally plasticized PVC graft copolymers
were homogeneous (non-phase separated) materials, as reflected by single T4 temperatures.
Grafts made of pendent polyethers are more efficient plasticizers compared to pendant poly(n-
butyl) esters, although mixtures of the two monomers can be used to tune the Tg value. This is
the first time that polyether grafts have been attached to PVC via ATRP to achieve very low Tg
values without phase separation. In addition to highly effective internal plasticization, these
graft copolymers display enhanced thermal stability, as the ATRP process removes the
particularly labile tertiary and allylic chlorine atoms at the defect sites. The graft polymerization
was carried out initially on 0.5 g of PVC, forming about 2 g of derivatized PVC. This was easily
scaled up to form 14 g of plasticized PVC: the properties of the resulting materials on both
scales are very similar. This bodes well for the scalability of this process, which can be
envisioned to be applicable on an industrial level. Overall, the internal plasticization of PVC has
been successfully demonstrated using operationally simple ATRP to give flexible,

homogeneous graft copolymers.
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4  Optimization of Copper-Mediated ATRP for Internal Plasticization

4.1 Background

In Chapter 3, internally plasticized PVC graft copolymers were prepared in a single
step via Cu-mediated ATRP initiated from defect sites on the PVC. However, a control
experiment without PVC revealed 23% conversion, indicating the existence of some non-
grafted polymer in the sample. Some of the graft copolymers obtained were not soluble or had
poor solubility in common solvents including THF, DMF, and NMP. This low solubility might be
caused by crosslinking during polymerization, due to the long reaction duration. Three aims in
this chapter are: 1) decrease the competitive self-initiated non-grafted polymerization; 2)
develop graft copolymers with high solubility in common solvents; 3) lower the monomer : VC
unit ratio needed to achieve flexible polymers, with tunable flexibility that can be tailored to
specific applications. Therefore, the ATRP reaction time was shortened from 24 h to 2 h
(Scheme 4.1) in order to lower competing unattached polymer growth and possible
crosslinking. Subsequently, variations in monomer to PVC stoichiometries were explored to

optimize the ratios needed for achieving flexible PVC graft copolymers.
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® Tertiary chloride % % -
I’y } 3 mol% CuBr‘[JSMTuI/ PMDETA w
o PVC T
PVC (defect sites depicted Randomly dispersed copolymer
as colored dots) grafts as internal PVC plasticizers

Scheme 4.1 General Reaction Scheme for 2 h ATRP

4.2 Preparation of PVC-g-(PBA-co-P2EEA) with a Two Hour Reaction Time

To determine an upper limit on background competitive non-grafted polymerization,

control reactions were conducted without PVC for each monomer: n-butyl acrylate (BA) and 2-
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(2-ethoxyethoxy)ethyl acrylate (2EEA) (Table 4.1, Entries 1 and 2). The reaction conditions
were the same as in Chapter 3: 3 mol% of CuBr was used as catalyst, 3 mol% of PMDETA
was used as ligand, and DMF was used as the solvent. The only difference was that the
reaction time was shortened to 2 h from 24 h. Percent conversion of monomer was calculated
based on *H NMR spectra of the reaction crude mixtures (Figure 4.1 and Figure 4.2), using
the equation in Chapter 3 (Equation 3.1). The percent conversions for nongrafted
homopolymer were 10% for BA and 6% for 2EEA (Table 4.1), significantly lower than the 23%

obtained when the reaction ran for 24 h.

Table 4.1 Control Experiments without PVC: Polymerization Conditions and Percent
Conversion?

Initial molar ratio of

b 0,
Entry [PVC]/[BA]/[2EEA]/[CuBI/[PMDETA] [BAJ/[2EEA] %CONV.NMR
1 0:25:0:0.03:0.03 BA only 10%
2 0:0:2.5:0.03:0.03 2EEA only 6%

aAll polymerizations were conducted at 100 °C in DMF for 2 h; °Ratios were calculated in mol.

T

] lUH LI } MlLﬁ%

35 3.0 25 20 15 1.0 05 0.0

45 40
ft (ppm)

Figure 4.1 Crude *H NMR (CDCls) of Control Experiment with BA Only for 2 h
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Figure 4.2 Crude *H NMR (CDCls) of Control Experiment with 2EEA Only for 2 h

Because the percent conversion of self-initiated polymerization® was low for both BA
and 2EEA using a reaction time of 2 h, a series of graft copolymers were prepared under these
same reaction conditions (Table 4.2). Five different monomer ratios (BA to 2EEA) were used
in analogy to the graft polymerizations described in Chapter 3. The percent conversions ranged

from 56% to 78% (Table 4.2, Entry 1 - 5).

Table 4.2 Graft Polymerizations after 2 Hours: Percent Conversion?

Initial molar ratio of

Enty  [PVC]/[BAJ/[2EEAJ/[CuBI)/[PMDETAJ’ %CONV.\MR®

[BAJ/[2EEA]
1 1:25:0:0.03:0.03 BA only 78%
2 1:1.9:0.6:0.03:0.03 3:1 61%
3 1:1.3:1.3:0.03:0.03 1:1 60%
4 1:0.6:1.9:0.03:0.03 1:3 56%
5 1:0:25:0.03:0.03 2EEA only 60%

2All polymerizations were conducted at 100 °C in DMF for 2 h; PRatios were calculated in mol;
¢Conversion of total monomers; all product polymers were completely soluble in the CDCl3
NMR solvent
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For comparison, the percent conversions for these ATRP grafting reactions conducted
for 2 h and 24 h are shown in Table 4.3. The percent conversion using only BA after 2 h was
78% (Table 4.2, Entry 1): the highest among these 2 hours polymerizations. Surprisingly, the
percent conversion for the corresponding 24 h reaction was 81%, which is not significantly
different. The percent conversions for all other grafts polymerizations with added 2EEA were
around 60%, which are 12 - 24% lower than the same reactions carried out for 24 h. As the
samples obtained by 24 h reactions were not completely soluble in the CDCls solvent, it is likely
that the percent conversions calculated for the 24 h reactions by *H NMR are inaccurate.
Overall, the 2 h ATRP graft polymerizations, which is more energy-efficient, were able to
achieve high percent conversions, and the graft copolymers have better solubilities than those

carried out for 24 h, indicating less crosslinking.

Table 4.3 Comparison of Percent Conversions for 2 h and 24 h Graft Polymerizations

Sample %CONV.NMR, 2 h? %CONV.NMR, 24 h°
PVC-g-PBA 78% 81%
PVC-g-75%PBA-c0-25%P2EEA 61% 73%
PVC-g-50%PBA-c0o-50%P2EEA 60% 84%
PVC-g-25%PBA-co-75%P2EEA 56% 80%
PVC-g-P2EEA 60% 80%

aConversion of total monomers; polymers were completely soluble in the CDClz NMR solvent;
bConversion of total monomers made with 0.5 g PVC; not all of the sample was soluble in the
CDCI3 NMR solvent

4.3 Composition and Relative Size of the PVC-g-(PBA-co-P2EEA) Grafts Copolymers

Made Using a Two Hour Reaction Time

H NMR was used to characterize the PVC grafts prepared under the 2 h duration
(Table 4.4). The calculation method is the same as shown in Chapter 3. Two main trends were
found to be consistent with the results in Chapter 3: 1) the PBA : P2EEA ratio in the grafts

were very close to the initial BA : 2EEA monomer ratio; and 2) PVC-g-PBA gave the highest

114



polyacrylate graft length (PBA : PVC = 1.4 : 1.0). Other graft copolymers showed about the

same polyacrylate lengths. This is consistent with the percent conversions shown in Table 4.2.

Table 4.4 Composition of Graft Copolymers Formed after 2 Hours Based on 'H NMR

Integration
Samples Im:;atli(;ngflar Polymer Polymer (PBA
[BAJ[2EEA] PBA/P2EEA + P2EEA)/PVC
PVC-g-PBA BA only PBA only 14:1.0
PVC-g-75%PBA-c0-25%P2EEA 3:1 3.0:1.0 1.0:1.0
PVC-g-50%PBA-c0o-50%P2EEA 1:1 1.0:1.0 09:1.0
PVC-g-25%PBA-co-75%P2EEA 1:3 1.0:2.8 09:1.0
PVC-g-P2EEA 2EEA only P2EEA only 09:1.0

PVC graft copolymers made by ATRP over 2 h had lower weight percent (wt%) grafts
compared to polymers made by ATRP running for 24 h (Table 4.5), which is consistent with
the higher percent conversions seen for these one day reactions (Table 4.3). Interestingly, for
PVC copolymers with more than 50% P2EEA, the difference in plasticizer weight fraction for 2
and 24 h ATRP reactions (5 — 8%) was not as significant as the difference between percent
conversion (20 — 24%). This might be caused by a difference in the selective loss of polyether-
rich material during the workup procedure. For the 24 h samples, multiple methanol washes
were performed, and the PVC graft copolymers were stirred overnight in methanol. Conversely,
2 h reaction samples were washed in methanol one time and then soaked in a different batch
of methanol overnight without stirring. Homopolymer P2EEA is soluble in methanol, so
performing multiple washes and stirring contributes to inadvertent enhanced removal of
homopolymer P2EEA and P2EEA-rich PVC graft copolymers. A simplified work-up procedure
was adopted, as stirring physically breaks the polymer sample into small pieces, making

isolation by decantation challenging. Contamination by a small portion of non-grafted
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plasticizing polymer in the 2 h samples may contribute in a positive or negative manner to the
Ty and other mechanical properties. The polymer samples made over 24 h remained in larger

pieces after stirring, possibly because they exhibit a degree of crosslinking.

Table 4.5 Wt% Plasticizer for 2 h and 24 h Polymerizations

Samples Wit% P|323E0izergrav. Wit% pngtLCizergrav
| PVC-g-PBA ' 75% ' 80% !
PVC-g-75%PBA-Co-25%P2EEA 68% 250
PVC-g-50%PBA-C0-50%P2EEA 68% 7506
PVC-g-25%PBA-Co-75%P2EEA 68% 73%
PVC-g-P2EEA 70% 3%

4.4 Preparation of PVC Graft Copolymers with Varying Monomer : VC Unit Ratios

All PVC graft copolymers discussed to this point were synthesized with a total acrylate
monomer to PVC (VC unit) molar ratio of 2.5 : 1.0, resulting in PVC with a wt% of grafted
plasticizer above 68%. These polymers were clearly flexible upon being handled in the lab. To
test the effect of lowering the wt% of plasticizer on flexibility, the ratio of monomer to PVC was
reduced. The purpose of lowering the ratio of monomer to PVC was three-fold: 1) to explore
how little the grafts can be while still attaining plasticity, 2) to examine the flexibility of graft
copolymers with different wt% plasticizer, and 3) to compare the plasticization efficiencies of

PBA versus P2EEA.

Three BA : VC unit ratios (0.5: 1.0, 1.0 : 1.0, and 2.5 : 1.0) were used to make a series
of PVC-g-PBA copolymers (Table 4.6). The percent conversion ranged from 59% to 78%,
increasing with larger BA to VC unit ratios, reflecting the higher available monomer during the

polymerization.
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Table 4.6 Polymerization Conversions for Making PVC-g-PBA Copolymers as a Function of
BA to VC Unit Ratio?

Initial molar ratio

0
Entry BA : VC unit oconv.we
1 I I 1
1 0.5:1.0 59%
2 1.0:1.0 67%
3 2.5:1.0 78%

aAll polymerizations were conducted at 100 °C in DMF for 2 h with [PVC)/[CuBr]/[PMDETA] =
1/0.03/0.03

Likewise the same three 2EEA : VC unit ratios were investigated for making PVC-g-
P2EEA copolymers (Table 4.7). The percent conversions were lower: 40 — 60%, with the
highest for 2EEA : VC unit = 2.5 : 1.0. In all cases, comparing PVC-g-PBA and PVC-g-P2EEA
at the same monomer ratio, the butyl acrylate grafts were 7% - 19% longer. In conclusion,

conversions were lower with the polyether monomer for the same monomer : VC unit ratio.

Table 4.7 Polymerization Conversions for Making PVC-g-P2EEA Copolymers as a Function
of 2EEA to VC Unit Ratio?

Initial molar ratio

Entry %Conv.nmr

2EEA : VC unit
I 1 I 05:1.0 I 40% I
2 1.0:1.0 59%
3 25:1.0 60%

aAll polymerizations were conducted at 100 °C in DMF for 2 h with [PVC)/[CuBr]/[[PMDETA] =
1/0.03/0.03

4.5 Relative Size of the New Grafts for PVC-g-PBA Copolymers and PVC-g-P2EEA

Copolymers

The relative size of the new grafts for PVC-g-PBA copolymers (Table 4.8) was
calculated based on 'H NMR (Equation 4.1). Using PVC-g-PBA-0.5 as an example, the
integration of PBA -CH2-O-C=0- (Figure 4.3, proton c) is 0.52. the integration of PVC -CH-CI-

methylene (proton a) is 1. The molar ratio of PBA / PVC was 0.26 (Equation 4.2).
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) Intergration.cy,_o—c=o0 methylene,pBa
Molar ratioppa =

PVCVMR 2 X Intergrationcy_ci methine,pvc

Equation 4.1

Cl

H,C
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Figure 4.3 *H NMR of PVC-g-PBA-0.5

. Intergratlon-CHz—O—C=0 methylene,PBA
Molar ratiopsa = :
PVCVMR 2 X Intergrationcy_ci methine,pvc

_Integration of protonc ~ 0.52
"~ 2 x Integration of protona 2

=0.26

Equation 4.2

For PVC-g-PBA copolymers, the grafted PBA to PVC ratio increased with the increase

of BA ratio (Table 4.8). As expected, the PBA : PVC ratio increases almost linearly with the

initial [BA] : [VC unit] monomer ratios.
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Table 4.8 Composition of PVC-g-PBA copolymers

Sample? InitiaLIDX(:)l\a/\é ratio POIyITBe;‘ mgl\a}lé ratio
| PVC-g-PBA-0.5 | 05:1.0 | 0.3:1.0 |
PVC-g-PBA-1.0 1.0:1.0 0.6:1.0
PVC-g-PBA-2.5 25:10 14:1.0

20.5, 1.0 and 2.5 in the sample name indicates the monomer ratio to VC unit

Similarly, for PVC-g-P2EEA copolymers, the molar ratio of P2EEA to PVC was
calculated using Equation 4.3. The grafted P2EEA to PVC ratio also increased with higher
amount of 2EEA monomer (Table 4.9). As expected, the P2EEA : PVC ratio increases linearly
with the initial monomer [2EEA] : [VC unit] ratios, this trend is reflected in the PVC-g-PBA
copolymers. Comparison of PVC-g-PBA and PVC-g-P2EEA copolymers at the same
monomer : VC unit ratio, the length of PBA graft is longer than the length of P2EEA graft. This
is consistent with the higher percent conversion of PBA discussed in Section 4.4.

. Intergration.cy,_o—c=0 methylene,P2EEA
Molar ratwszEANMR = -
PVC 2 X Intergrationcy_ci methine,pvc

Equation 4.3

Table 4.9 Composition of PVC-g-P2EEA copolymers

Sample® Initial mplar rat_io Polymer mF)Iar ratio
2EEA : VC unit P2EEA : PVC
I PVC-g-P2EEA-0.5 I 05:1.0 I 0.2:1.0 I
PVC-g-P2EEA-1.0 1.0:1.0 04:1.0
PVC-g-P2EEA-2.5 25:10 09:1.0

40.5, 1.0 and 2.5 in the sample name indicates the monomer ratio to VC unit

4.6 Wt% Plasticizer for PVC-g-PBA Copolymers and PVC-g-P2EEA Copolymers

W1t% plasticizer was calculated in two ways: gravimetry (Chapter 3, Equation 3.4) and

H NMR (Equation 4.4).
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WeightPolyacrylate
WeightPVC + WeightPolyacrylate

Wt% plasticizeryygr = X 100%

Molecular weightg, X molar ratiopoiyacryiate
— PVC

"~ Molecular weighty. + Molecular weightgz, X molar ratiopolyacriate
—PUC

,NMR
X 100%

,NMR

Equation 4.4

For the *H NMR method, using PVC-g-PBA-0.5 as an example, the molar ratio of PBA
/ PVC was 0.26 (Figure 4.3, Equation 4.2). The molecular weight of BA is 128.17 g/mol. The

wt% plasticizer for PVC-g-PBA-0.5 is shown in Equation 4.5.

W% lastici B 128.17 x 0.26 % 100% = 34.8%
o plasticizeryyr = 62.50 +128.17 x 0.26 oD

Equation 4.5

Wt% of plasticzer for PVC-g-PBA copolymers are shown in Table 4.10. Interestingly,
for PVC-g-PBA-1.0 and PVC-g-PBA-2.5, the wt% plasticizer calculated by *H NMR and
gravimetry were very close. However, for PVC-g-PBA-0.5, the wt% plasticizer calculated by 'H

NMR and gravimetry are not as closely matched.

Table 4.10 Wt% of Plasticizer for PVC-g-PBA Copolymers

Sample? wit% Plasticizergrav. wit% Plasticizernwr
PVC-g-PBA-0.5 27% 35%
PVC-g-PBA-1.0 50% 53%
PVC-g-PBA-2.5 74% 75%

20.5, 1.0 and 2.5 in the sample name indicates the monomer ratio to VC unit

For PVC-g-P2EEA copolymers, the difference between the wt% of plasticizer
calculated by *H NMR and gravimetry decreases with increasing 2EEA ratio (Table 4.11). For
the PVC-g-P2EEA-2.5 sample, the wt% plasticizer calculated by *H NMR and gravimetry are
almost identical. Surprisingly, the wt% of plasticizer of PVC-g-PBA and PVC-g-P2EEA are very

similar at the same initial monomer ratios in all cases. Overall, with three monomer : VC unit
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ratios, one can obtain polymers with plasticizer wt% around 30%, 50%, and 70%. The FTIR
spectra for all nine samples discussed in this chapter are as expected are reported in the

Experimental Section and included in the Supporting Information.

Table 4.11 Wt% Plasticzer of PVC-g-P2EEA Copolymers

Sample? wt% Plasticizergrav. wt% Plasticizernvr
PVC-g-P2EEA-0.5 24% 38%
PVC-g-P2EEA-1.0 48% 55%
PVC-g-P2EEA-2.5 70% 2%

80.5, 1.0, and 2.5 in the sample name indicates the monomer ratio to VC unit

4.7 Glass Transition Temperatures of PVC Copolymers made with Monomer to VC

Unit Molar Ratio of 2.5to 1.0 Using a Two Hour Reaction Time

The glass transition temperatures (Tg) of PVC graft copolymers were measured using
differential scanning calorimetry (DSC). The second heating cycle of PVC copolymers made
with monomer to VC unit molar ratio of 2.5 : 1.0 are shown in Figure 4.4. Only a single T4 was
observed for all graft copolymers, indicating that there is no microphase separation. Compared
to the Tg value of PVC (Tq = 84.3 °C), the graft copolymers have significantly lower T4 values.
The highest Ty value achieved was for PVC-g-PBA (Tg = -25.5 °C). The lowest Ty value
obtained was for PVC-g-25%PBA-co-75%P2EEA (Ty = -53.5 °C). This is consistent with the
observation that P2EEA has a higher plasticization efficiency compared to PBA. The slightly
lower Tg value of PVC-g-25%PBA-co-75%P2EEA (Wt% plasticizergrav. = 68%) compared to
PVC-g-P2EEA (wt% plasticizergrav. = 70%) might be an artifact of the workup procedure, which

preferentially dissolves and washes away P2EEA-rich copolymers.

Comparing PVC copolymers made with 2 h and 24 h reaction times, the T4 values of
PVC copolymers made over 2 h are for the most part slightly higher than those made over 24
h at the same PBA to P2EEA ratio (Table 4.12). This is consistent with the wt% plasticizer of

24 h reactions being slightly higher than for the corresponding 2h reactions. The only exception

121



was for PVC-g-25%PBA-co-75%P2EEA, for which the 2 h reaction resulted in a lower T4 value

than for the 24 h reaction.

—PVC
T,=84.3°C
L
T,=-255°C
\ ——PVCg-PBA

—— PVC-g-75%PBA-c0o-25%P2EEA

T,=-43.8°C

—— PVC-g-50%PBA-c0-50%P2EEA

Heat Flow (mW)

T,=-53.5°C

—— PVC-g-25%PBA-co-75%P2EEA

—— PVC-g-P2EEA

| ! I ! | ! I ! I ! |
-50 0 50 100 150 200
Temperature (°C)

Figure 4.4 DSC (2" heat cycle) of Grafted PVC Polymers made using 2 h Reaction Time
(Monomer : VC Unit Ratio 2.5 to 1.0)

Table 4.12 T4 values of PVC Graft Copolymer made with 2 h and 24 h Reaction Times

Tg (°C) W1t% Plasticizergav. Tg (°C)  W1%? Plasticizergrav

Samples 2h 2 h 24 h 24 h
PVC-g-PBA 255 75% 345 80%
PVC-g-75%PBA-CO- ] . ] .
it 38.1 68% 432 73%
PVC-g-50%PBA-co- ) 0 ) 0
IR 43.8 68% 47.4 73%
PVC-g-25%PBA-CO- ] . ] .
S 535 68% 482 75%
PVC-g-P2EEA 47.4 70% -50.0 75%

aBoth 2 h and 24 h reaction used 500 mg of PVC
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4.8 Glass Transition Temperatures of PVC-g-PBA Copolymers

The Ty values of PVC-g-PBA copolymers synthesized with different BA to PVC
monomer molar ratios are shown in Figure 4.5. The Tg transition was very wide for PVC-g-
PBA-0.5, no distinct Tg value was detected in the second heating cycle. Comparison of PVC-
g-PBA-1.0 (Tg = -14.2 °C) and PVC-g-PBA-2.5 (Tq = -25.5 °C) show that Ty values decrease
with increasing length of the graft polymer chain. Single T4 values were observed for PVC-g-

PBA-1.0 and PVC-g-PBA-2.5, indicating no microphase separation.

L— T,=843°C

—

No T, observed

T,=-142°C

Heat Flow (mW)

—PVC
——PVC-g-PBA-0.5
— PVC-g-PBA-1.0
— PVC—g—PIIBA—2.5

-50 0 50 100 150 200
Temperature (°C)

Figure 4.5 DSC (2" heating cycle) of PVC-g-PBA Graft Copolymers

The purpose of this section is to explore how short the grafts can be while still attaining
plasticity and to examine the flexibility, of graft copolymers with different wt% plasticizer (Table
4.13). Even though no Tg4 value was identified for PVC-g-PBA-0.5 with 27% plasticizer by DSC,

this polymer sample was not flexible at room temperature upon handling the sample. PVC-g-
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PBA-1.0 with 50% plasticizer had a T4 value below 0 °C, indicating good flexibility of the
copolymer and it did feel flexible. In conclusion, flexible PVC-g-PBA material could be achieved

with a monomer to VC unit molar ratio of 1.0 : 1.0, which is a much more efficient than the

original ratio of 2.5 : 1.0.

Table 4.13 T4 Values of PVC-g-PBA Copolymers

Sample Tg (°C) wit% Plasticizergrav.
PVC 84.3 0
PVC-g-PBA-0.5 -a 27%
PVC-g-PBA-1.0 -14.2 50%
PVC-g-PBA-2.5 -25.5 74%

aNo Tq value observed in the second heating cycle

4.9 Glass Transition Temperatures of PVC-g-P2EEA Copolymers

The Tg values of PVC-g-P2EEA copolymers made with different 2EEA to VC unit molar
ratios are shown in Figure 4.6. Again, the Tq values decrease with increasingly long grafts. No

phase separation was indicated by the single T4 value for each polymer.

T,=84.3°C

T,=542°C

Heat Flow (mW)

—PVC
— PVC-g-P2EEA-0.5
—— PVC-g-P2EEA-1.0
—— PVC-g-P2EEA-2.5
I T I T I N I T T ' I
-50 0 50 100 150 200
Temperature (°C)

Figure 4.6 DSC (2" heating cycle) of PVC-g-PBA Copolymers
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For PVC-g-P2EEA graft copolymers, the lowest T4 achieved (-47 °C) was for PVC-g-
P2EEA-2.5 with 70% plasticizer (Table 4.14). For PVC-g-P2EEA-0.5 with 24% plasticizer, a Tq
value of 54.2 °C was determined, indicating that the material is rigid at room temperature.
Surprisingly, for PVC-g-P2EEA-1.0, a Tg4 value of -40.7 °C was achieved with only 48%
plasticizer. This illustrates that the most efficient monomer to VC unit molar ratio among these
three examples is 1.0 : 1.0, similar to the results for the PVC-g-PBA copolymers. Comparison
of PBA and P2EEA (Table 4.13 and Table 4.14) at similar wt% plasticizer shows that PVC-g-
P2EEA graft copolymers have significant lower Ty values than the PVC-g-PBA graft

copolymers.

Table 4.14 T4 Values of PVC-g-PBA Graft Copolymers

Sample Tq (°C) wit% Plasticizergray.
PvC 84.3 0
PVC-g-P2EEA-0.5 54.2 24%
PVC-g-P2EEA-1.0 -40.7 48%
PVC-g-P2EEA-2.5 -47.4 70%

4.10 Thermal Stability of PVC Graft Copolymers made with a Monomer : VC Unit Ratio

25t01.0

Thermogravimetric analysis (TGA, Figure 4.7) and Derivative Thermogravimetry (DTG,
Figure 4.8) of PVC graft copolymers were measured to examine their thermal stabilities. As
shown in Figure 4.7, PVC and PVC grafted copolymers all have a three-stage degradation.
The third stage (4 — 6% weight loss) for PVC grafted copolymers are not obvious compared to
the first two stages. TGA data are summarized in Table 4.15. The onset temperatures of PVC
grafted copolymers are higher than unmodified PVC because unstable defect sites are
replaced with carbon grafts.? This is consistent with previous results in Chapter 3. Overall, PVC
grafted copolymers were more thermally stable compared to unmodified PVC. The thermal

stabilities of PBA and P2EEA grafts were similar. In the second degradation stage, the PBA
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rich copolymers, PVC-g-PBA and PVC-g-75%PBA-co-25%P2EEA, had a slightly steeper slope

compared to other P2EEA rich graft copolymers.

: : : : : : : : :
100 | —PVC .
—— PVC-g-PBA-2.5
—— PVC-g-75%PBA-c0-25%P2EEA-2.5 |
—— PVC-g-50%PBA-co-50%P2EEA-2.5
80 —— PVC-g-25%PBA-c0-75%P2EEA-2.5
B —— PVC-g-P2EEA-2.5 N
~
9\_/
—~ 60f .
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=)
=
40 | 4
20 | .
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Figure 4.7 TGA Curves of Samples made with 2 h Reaction Time

Table 4.15 TGA Data for PVC Graft Copolymers made with a 2 h Reaction Time?

Onset Residue Mass loss Mass loss Mass loss
Sample temp. (%) at first second third
(°C) 900 °C stage(%) stage(%) stage(%)
PVC 253.4 2.4 63.1 21.1 13.4
PVC-g-PBA 260.2 3.7 18.7 72.4 5.2
PVC-g-75%PBA-
c0-250P2EEA 260.0 4.4 22.9 73.6 4.8
PVC-g-50%PBA-
c0-50%P2EEA 258.1 3.3 27.3 63.3 6.1
PVC-g-25%PBA-
co-75%P2EEA 259.5 5.0 26.2 63.6 4.2
PVC-g-P2EEA 257.6 3.8 26.3 63.7 5.2

aMonomer : VC unit=2.5:1.0
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Figure 4.8 DTG Curves of Samples made with 2 h Reaction Time

4.11 Thermal Stabilities of PVC-g-PBA Copolymers and PVC-g-P2EEA Copolymers

PVC-g-PBA copolymers made with different monomer : VC unit ratios have a three-
stage degradation (Figure 4.9 and Table 4.16). For PVC-g-PBA copolymers, as shown in
Figure 4.9, the thermal stabilities increase with increasing amount of BA monomer. Onset
temperatures of PVC-g-PBA copolymers also have the same trend (Table 4.16). The slightly
higher onset temperature for higher wt% PBA might be caused by increased replacement of

defect sites with stable carbon grafts.
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Figure 4.9 TGA Curves of PVC-g-PBA Copolymers
Table 4.16 TGA Data for PVC-g-PBA Copolymers
. Mass loss Mass loss Mass loss
0
Compounds Onsg}té)emp. R:tsgisjoe o(é) ) first second third
stage(%) stage(%) stage(%)
PVC 253.4 2.4 63.1 21.1 13.4
PVC-g-PBA-0.5 257.2 4.3 44.1 38.8 12.8
PVC-g-PBA-1.0 258.7 3.9 33.3 54.0 8.8
PVC-g-PBA-2.5 260.2 3.7 18.7 72.4 5.2

For the PVC-g-P2EEA copolymers, both PVC-g-P2EEA-0.5 and PVC-g-P2EEA-2.5
exhibited a three-stage degradation; PVC-g-P2EEA-1.0 exhibited a two-stage degradation
(Figure 4.10 and Table 4.17). For PVC-g-P2EEA copolymers, as shown in Figure 4.10, the
thermal stabilities increase with increasing amount of P2EEA. Onset temperatures of PVC-g-
2EEA copolymers are higher than unmodified PVC (Table 4.17). PVC-g-P2EEA-1.0 showed a

very small amount of weight loss at around 40 °C. The cause of residual solvent is excluded
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as no distinguishable solvent peaks was observed in 'H NMR. In conclusion, the thermal

stabilities of PVC-g-2EEA copolymers are higher than unmodified PVC.
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Figure 4.10 TGA Curves of PVC-g-P2EEA Copolymers
Table 4.17 TGA Data for PVC-g-P2EEA Copolymers
Onset Residue Mass loss Mass loss Mass loss
Compounds temp. (%) at first second third
(°C) 900 °C stage(%) stage(%) stage(%)
PvC 253.4 2.4 63.1 21.1 13.4
PVC-g-P2EEA-0.5 259.7 8.7 59.7 25.1 6.5
PVC-g-P2EEA-0.5 264.3 7.1 43.7 45.5 -
PVC-g-P2EEA-2.5 257.6 3.8 26.3 63.7 5.2

4.12 GPC Results of PVC Graft Copolymers

The GPC traces of the PVC graft copolymers (monomer : VC = 2.5 : 1.0) are shown in
Figure 4.11. Compared to unmodified PVC, the retention times of all of the PVC graft
copolymers are shorter, reflecting their higher weights and effective volumes. This data

indicates that the grafting polymerization was successful. The GPC peak sizes of the PVC graft
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copolymers are similar to those of unmodified PVC, unlike the copolymers made in Chapter 3.
This supports the absence of significant crosslinking for the 2 h polymerizations. Most of these
new polymers have a unimodal distribution. Interestingly, PVC-g-PBA shows a trimodal
distribution. indicating that some unreacted PVC homopolymer remains. As expected, the
values of Mp, Mn, Mw, and M: of the functionalized PVC samples are significantly larger

compared to unmodified PVC (Table 4.18).

—— PVC

—— PVC-g-PBA-2.5

—— PVC-g-75%PBA-c0-25%P2EEA-2.5
—— PVC-g-50%PBA-c0-50%P2EEA-2.5
[—— PVC-g-25%PBA-co-75%P2EEA-2.5
—— PVC-g-P2EEA-2.5

Refractive Index (mV)

Retention Time (min)

Figure 4.11 GPC Traces of PVC Graft Copolymers (2 h reaction time)

Table 4.18 GPC of Graft Copolymers made with 2 h Reaction?

Samples Mp M Muw M, PD
PVvC 72,209 39,494 77,531 123,662 2.0
PVC-g-PBA 178,143 68,853 291,758 723,500 4.2

PVC-g-75%PBA-c0-25%P2EEA 172,361 88,757 213,125 381,652 2.4
PVC-g-50%PBA-c0-50%P2EEA 165,018 55,367 196,889 383,581 3.6
PVC-g-25%PBA-c0-75%P2EEA 163,883 65,257 173,870 302,799 2.7
PVC-g-P2EEA 163,191 48,719 174,183 331,414 3.6
aMonomer to VC unit ratio =2.5: 1.0
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The GPC traces of the PVC-g-PBA and PVC-g-P2EEA graft copolymers with different
monomer to polymer ratios are shown in Figure 4.12 and Figure 4.13, respectively. Compared
to unmodified PVC, the retention times of all of the PVC graft copolymers are again shorter,

reflecting their higher molecular weights and volumes. For the PBA grafts, bimodal and trimodal

——PVC

| —— PVC-g-PBA-0.5
—— PVC-g-PBA-1.0
| —— PVC-g-PBA-2.5
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10 20
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Figure 4.12 GPC Traces of PVC-g-PBA Copolymers
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Figure 4.13 GPC Traces of PVC-g-PBA Copolymers
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distribution are observed, indicating that some unreacted PVC homopolymer remains. For the
P2EEA grafts PVC-g-P2EEA-0.5 and PVC-g-P2EEA-1.0, bimodal distributions are observed,
implying that these polymer samples contain some unmodified PVC. For PVC-g-P2EEA-2.5, a
unimodal distribution is observed, indicating little if any unreacted PVC remains. The values of
Mp, Mw, and M: of the functionalized PVC samples are significantly larger compared to
unmodified PVC (Table 4.19). Furthermore, the polydispersity (PD) of the grafted polymers is
observed to be significantly larger than that of unmodified PVC. This is consistent with the
expectation that each PVC molecule may have a different number of defect sites for initiation
of ATRP. Because there could be a large distribution of defect site density on the PVC chains,
some PVC may have significantly more grafts than others, leading to a large variation in

molecular weights and therefore polydispersity.

Table 4.19 GPC of PVC-g-PBA Copolymers and PVC-g-P2EEA Copolymers

Samples Mp M Muw M, PD
PVvC 72,209 39,494 77,531 123,662 2.0
PVC-g-PBA-0.5 118,435 28,197 109,128 231,422 3.9
PVC-g-PBA-1.0 129,037 20,909 121,602 274,063 5.8
PVC-g-PBA-2.5 178,143 68,853 291,758 723,500 4.2
PVC-g-P2EEA-0.5 113,112 20,709 100,167 206,475 4.8
PVC-g-P2EEA-1.0 127,333 34,117 122,968 240,034 3.6
PVC-g-P2EEA-2.5 163,191 48,719 174,183 331,414 3.6

413 Conclusion

In this chapter, nine different internally plasticized PVC graft copolymers were
prepared by ATRP with 2 h reaction times. Different wt% plasticizer (24% - 75%) with a very
wide range of Tq values (-54 °C to +54 °C) were achieved. The most flexible graft copolymer is
PVC-g-25%PBA-co-75%P2EEA made with a molar ratio of acrylate monomer : VC unit=2.5:
1.0. The least flexible copolymers are PVC-g-PBA-0.5 and PVC-g-P2EEA-0.5. Graft
copolymers with 50 wt% plasticizer or more have Tg values below 0 °C, indicating that effective

ratios of acrylate monomer : VC unit are 1.0 : 1.0 or higher. The lower Tg values of polyether
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compared to PBA graft copolymers further confirm the higher plasticization efficiency of the
polyether compared to alkyl ester grafts. Observation of a single Ty value for all graft
copolymers except the PVC-g-PBA-0.5 (which showed no distinct Tg) indicates complete
miscibility of both PBA and P2EEA grafts with PVC. GPC reveals larger effective volumes for
these graft polymers compared to the unmodified PVC. These PVC graft copolymers are more
thermally stable compared to unmodified PVC, with thermal stability increasing with increasing

amounts of wt% plasticizer.

4.14 Future Work

The work in this chapter shows very exciting results, in that a wide variation in flexible
PVC samples can be prepared using ATRP graft polymerization, varying from materials that
are rigid at room temperature to those with Ty values significantly below 0°C. Because the
grafts initiate from defect sites on PVC, the resulting polymers exhibit improved thermal
stabilities compared to PVC. Thus, PVC flexibility and thermal stability can be simultaneously
achieved with internal plasticization, while avoiding plasticizer loss over time. There are a
couple of drawbacks: 1) the freeze-pump-thaw method used to remove oxygen prior to the
ATRP polymerization would be challenging on scale-up; 2) residual copper remains in the
flexible PVC. Table 4.20 lists some challenges to be addressed in the future. Most of these
focus on making the internal plasticization process even more industrially relevant, and making
the chemistry more environmentally friendly. The use of internally plasticized PVC might even

allow PVC products to be recycled in the future.
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Table 4.20 Possible Future Directions

Future Work Note/Reason

1 Apply activators regenerated by electron transfer Lower residual catalyst to below
(ARGET) ATRP the ppm level

2 Screen environmentally friendly catalysts

(ex. Fe based catalysts) DIEVERT GIEEn HEFRES

3 Screen environmentally friendly solvents Develop greener process
4 Screen more efficient ligands DiEETEIEE [ SmENTL Ef Reh grel
homopolymer
5 Lower reaction temperatures Decrease the amount of non-graft
P Homopolymer, greener process
6 Utilize PVC without pre-treatment Simplify potential industrial

applications

4.15 Closing Remarks

Internal plasticization was accomplished by several approaches, starting with using
thermal azide-alkyne cycloaddition to append branched plasticizers to the PVC chain. Tq values
below room temperature were achieved in four synthetic steps from commercial PVC. Glutamic
acid was used as a branched linker for plasticization moieties, which resulted in tetrester
functionalized PVC. Although a highly branched internal plasticizer was developed, the lowest
Tg value achieved using this method was only -1°C with short PEG functionalized tetraesters.
Furthermore, thermal instability was observed in the materials, presumably associated with the

key triazole attached to the PVC chain.

ATRP polymerization was then successfully used to make PVC graft copolymers in
one step from PVC. No vigorous conditions or hazardous azide precursors are needed for this
method, making it amenable to industrial scale-up. A systematic study of polyether ester vs n-
butyl ester functionalities was performed, confirming that polyethers exhibit higher plasticization
efficiency. By creating a series of polymers with different plasticizer to PVC ratios, graft

copolymers with a wide range of Tq values can be obtained. It appears that a 1.0 : 1.0 ratio of
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acrylate graft monomers to vinyl chloride monomers is a good compromise between
plasticizing efficiency and the cost and amount of added acrylate monomer contributing to graft
length. These polymers are more thermally stable than PVC because the grafted segments
were initiated from PVC defects, which play a role in the early stages of thermal degradation
of PVC. Internally plasticized PVC materials are much better than materials using external
plasticizers, as small molecules plasticizers can migrate out of the PVC matrix, resulting in
deterioration of the properties of the PVC material over time, with concomitant environmental
contamination, and health issues upon human exposure. Thus, these internally plasticized PVC
materials are better than currently used externally plasticized PVC composites in terms of

impacts on human health, product longevity, and caring for our environment.
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5 Experimental Section

5.1 Experimental Section for Chapter 2
5.1.1 Materials

PVC (M w = 43,000, M » = 22,000) was purchased from Sigma-Aldrich. 3-Pentanone
(299%), tri(ethylene glycol) monomethyl ether (95%), and silica gel (Grade 60, 230-400 mesh
particle size, 40—-63 um particle size) were purchased from Sigma-Aldrich. L-glutamic acid
(299%) was purchased from Alfa Aesar. n-Butanol Heysham, England (HPLC grade), toluene
(HPLC grade), tetrahydrofuran (HPLC grade), acetonitrile (Optima™, LC/MS grade),
dimethylformamide (DMF) (sequencing grade), N-methyl-2-pyrrolidone (NMP) (>99.8%),
dichloromethane (DCM) (stabilized HPLC grade, submicron filtered), methanol, hexanes, ethyl
acetate, and tetrahydrofuran (HPLC grade, submicron filtered, uninhibited) were purchased
from Fisher Scientific. n-Hexanol (>98%), n-decanol (97%), 2-ethyl-1-hexanol (>99.5%), and
tri(ethylene glycol) monobutyl ether (>97%) were supplied by Tokyo Chemical Industries (TCI).
p-Tolenesulfonic acid monohydrate (pTSA)(99%, extra pure), sodium azide (99%, extra pure),
and acetylenedicarboxylic acid (98%) were purchased from Acros Organics. 4-(4,6-Dimethoxy-
1,3,5-triazin-2-yl)-4-methylmorpholinium chloride (DMTMM) (tech) was purchased from

Oakwood Chemical. CDCls (D 99.8%) was supplied by Cambridge Isotope Laboratories.

5.1.2 Measurements

Fourier transform infrared spectroscopy (FTIR) was recorded with a Perkin-Elmer
Spectrum One Spectrometer. Liquid samples were measured neat. Soild samples (expect for
polymers) were measured using the KBr pellet method. Polymers were measured by forming
a thin film on a sodium chloride plate. Nuclear magnetic resonance (NMR) spectra were
recorded with a Bruker Avance Il HD 4 channel 500 MHz Oxford Magnet NMR Spectrometer
with Automation or a Varian Unity Plus 500 MHz Oxford Magnet NMR Spectrometer at ambient

temperature in CDCls as solvent. The signal of residual CHCIs was used as an internal standard
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(*H NMR, & 7.26 ppm; 3C NMR, & 77.16 ppm). High-resolution mass spectrometry (HRMS)
was recorded with a Thermo Scientific LTQ Orbitrap Velos Pro HRMS using acetonitrile
(CH3CN) with 0.1% formic acid as solvent. Elemental analysis was performed by either MHW
Laboratories or NuMega Resonance Labs. Glass-transition temperatures (Tgs)of polymers
were measured using a TA Instruments differential scanning calorimetry (DSC) Q2000 with a
heat-cool-heat protocol, and a scanning range of —90 to 200 °C at a heating rate of 10 °C min™™.
Derivative thermogravimetry (DTG) and thermal gravimetric analyses (TGA) were performed
using a TA Instruments TGA Q500. TGA was performed within a scanning range of 30-500 °C

at a heating rate of 10 °C min~t in air or nitrogen, as specified.

5.1.3 Experimental Method
Preparation of 2-Aminopentanedioate (2.1a-f)

These esterifications were carried out following a modified procedure by ljiro et al.t

Preparation of 1,5-Bisbutyl (2S)-2-Aminopentanedioate (2.1a)

OH 1.34 eq. pTSA O
HoNr HoN!
toluene, 130 °C

OH  Dean-Stark o
'e) 4 h o \_\;
. . 84%

L-glutamic acid
21a

To a 100 mL round-bottom flask was added L-glutamic acid (1.372 g, 9.325 mmol), 1-
butanol (2.80 mL, 30.6 mmol), pTSA (2.377 g, 12.50 mmol), and toluene (40 mL). The solution
was refluxed with a Dean-Stark apparatus for 4h. The reaction mixture was then
concentrated in vacuo and the residue neutralized using sat. NaHCOs (50 mL). The aqueous

solution was extracted with EtOAc (50 mL). The organic layer was washed with sat.
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NaHCOs3 (50 mL), brine (50 mL x 2), and then dried over MgSO4 and concentrated in vacuo .
The residue was purified by silica gel column chromatography using MeOH/CH:ClI. (5/95) to

give 2.1a as a pale yellow liquid (2.041 g, 84.41%).
R ¢: 0.48 (SiO2, MeOH/CH:zClz, 5/95).

IH NMR (500 MHz, CDCls, &, ppm): 4.13 (td, J = 6.7, 1.6 Hz, 2H), 4.08 (t, J = 6.7 Hz,
2H), 3.54-3.46 (m, 1H), 2.46 (t, J = 7.5 Hz, 2H), 2.15-2.03 (m, 1H), 1.85 (dg, J = 15.1, 7.7 Hz,

1H), 1.78-1.56 (m, 6H), 1.44—1.32 (m, 4H), 0.94 (t, J = 7.4 Hz, 3H), 0.93 (t, J = 7.4 Hz, 3H).

13C NMR (126 MHz, CDCls, 8, ppm): 175.78 (C=0), 173.35 (C=0), 65.06 (O—CH>),
64.54 (O—CHz), 53.97 (NH—CH), 30.82 (CH>), 30.79 (CHz), 30.78 (CH>), 29.95 (CH>), 19.27

(CHz2), 19.25 (CH>), 13.84 (CHs), 13.82 (CH3).

IR (NaCl, neat, cm™): 3387 (w, amine N—H), 3322 (w, amine N—H), 2961 (s, alkane
C—H), 2936 (s, alkane C—H), 2875 (m, alkane C—H), 1735 (s, ester C=0), 1607 (w, amine

N—H bending), 1183 (s, ester C—0).
HRMS (m/z ): calcd for C13H26NO4, 260.1856; found, 260.1836 [M + H]".

Preparation of 1,5-Bishexyl (2S)-2-Aminopentanedioate (2.1b)

OH 1.25 eq. pTSA O
HoNi HaN'e
toluene, 130 °C
OH Dean-Stark @)
o) 4 h o)
. . 66%
L-glutamic acid
2.1b
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To a 100 mL round-bottom flask was added L-glutamic acid (1.472 g, 10.00 mmol), 1-
hexanol (2.248 g, 22.00 mmol), pTSA (2.378 g, 12.50 mmol), and toluene (40 mL). The solution
was refluxed with a Dean—Stark apparatus for 4 h. The reaction mixture was concentrated in
vacuo and then the residue was neutralized using sat. NaHCO3 (50 mL). The aqueous solution
was extracted with EtOAc (50 mL). The organic layer was washed with sat. NaHCOs (50 mL),
brine (50 mL x 2), and then dried over MgSO4 and concentrated in vacuo . The residue was
purified by silica gel column chromatography using MeOH/CH2Cl2 (3/97) to give 2.1b as a pale

yellow liquid (2.077 g, 65.84%).

R 1:0.33 (SiO2, MeOH/CHClz, 3/97).

IH NMR (500 MHz, CDCls, 8, ppm): 4.12 (td, J = 6.8, 1.7 Hz, 2H), 4.07 (t, J = 6.8 Hz,
2H), 3.49 (dd, J = 8.3, 5.2 Hz, 1H), 2.47 (t, J = 7.5 Hz, 2H), 2.09 (dtd, J = 13.1, 7.7, 5.2 Hz, 1H),

1.86 (dg, J = 15.0, 7.6 Hz, 3H), 1.71-1.55 (m, 4H), 1.41-1.23 (m, 12H), 0.89 (t, J = 6.5 Hz, 6H).

13C NMR (126 MHz, CDCls, 8, ppm): 175.78 (C=0), 173.35 (C=0), 65.36 (O—CH>),
64.84 (O—CH>), 53.97 (NH2—CH), 31.57 (CHz), 31.54 (CHz), 30.83 (CH2), 29.94 (CHz), 28.72
(CH2), 28.70 (CHz), 25.72 (CH2), 25.68 (CH2), 22.67 (CHz), 22.65 (CH>), 14.13 (CHs), 14.12

(CHsa).

IR (NaCl, neat, cm™): 3388 (w, amine N—H), 3324 (w, amine N—H), 2957 (s, alkane
C—H), 2932 (s, alkane C—H), 2860 (m, alkane C—H), 1736 (s, ester C=0), 1607 (w, amine

N—H bending), 1180 (s, ester C—0).

HRMS (m/z ): calcd for Ci7HaaNOa, 316.2482; found, 316.2466 [M + HJ*.

Preparation of 1,5-Bis(2-Ethylhexyl) (2S)-2-Aminopentanedioate (2.1c)
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o) 0]

OH 1.25 eq. pTSA 0
HoN! - HoN'
toluene, 130 °C
OH Dean-Stark 0]
o) 4 h o)
, , 78%
L-glutamic acid
21c

To a 100 mL round-bottom flask was added v -glutamic acid (1.471 g, 10.00 mmol), 2-
ethyl-1-hexanol (2.866 g, 22.01 mmol), pTSA (2.377 g, 12.50 mmol), and toluene (40 mL). The
solution was refluxed with a Dean-Stark apparatus for 4h. The reaction mixture was
concentrated in vacuo and then the residue was neutralized using sat. NaHCOs (50 mL). The
aqueous solution was extracted with EtOAc (50 mL). The organic layer was washed with sat.
NaHCO3 (50 mL), brine (50 mL x 2), and then dried over MgSO4 and concentrated in vacuo .
The residue was purified by silica gel column chromatography using MeOH/CH2Clz (3:97) to

give 2.1c as a pale yellow liquid (2.899 g, 78.02%).

R ¢: 0.35 (SiO2, MeOH/CH:Clz, 3/97).

IH NMR (500 MHz, CDCls, 3, ppm): 4.11-4.02 (m, 2H), 4.02-3.95 (m, 2H), 3.52 (s,
1H), 2.48 (t, J = 7.5 Hz, 2H), 2.16-2.04 (m, 1H), 2.04-1.68 (m, 3H), 1.66—1.51 (m, 2H), 1.41—

1.33 (m, 4H), 1.33-1.20 (m, 12H), 1.04-0.74 (m, 12H).

13C NMR (126 MHz, CDCls, 5, ppm): 175.87 (C=0), 173.43 (C=0), 67.57 (O—CHb2),
67.09 (O—CHy), 54.02 (NH,—CH), 38.93 (CH), 38.89 (CH), 30.87 (CH), 30.54 (CH>), 30.48
(CH2), 29.94 (CHz), 29.07 (CH3), 29.05 (CH2), 23.93 (CHz), 23.90 (CH>), 23.11 (CH2), 23.09

(CH2), 14.18 (CHs x 2), 11.12 (CHs), 11.09 (CHs).
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IR (NaCl, neat, cm™): 3389 (w, amine N—H), 3324 (w, amine N—H), 2959 (s, alkane
C—H), 2931 (s, alkane C—H), 2874 (s, alkane C—H), 2861 (s, alkane C—H), 1736 (s, ester

C=0), 1607 (w, amine N—H bending), 1180 (s, ester C—0).

HRMS (m/z ): calcd for Ca1Ha2NOa: 372.3108; found, 372.3094 [M + HJ*.

Preparation of 1,5-Bis(Decyl) (2S)-2-Aminopentanedioate (2.1d)

Ve U N N N
(0] HO (@)
OH 1.25 eq. pTSA 0
H2N"' H2N|--
toluene, 130 °C
OH Dean-Stark o)
o) 4h o)

76%
L-glutamic acid °

To a 100 mL round-bottom flask was added L-glutamic acid (1.472 g, 10.01 mmol), 1-
n-decanol (4.28 ml, 22.4 mmol), pTSA (2.378 g, 12.50 mmol), and toluene (40 mL). The solution
was refluxed with a Dean—Stark apparatus for 4 h. The reaction mixture was concentrated in
vacuo and then the residue was neutralized using sat. NaHCO3 (50 mL). The aqueous solution
was extracted with EtOAc (50 mL). The organic layer was washed with sat. NaHCOs (50 mL),
brine (50 mL % 2), and then dried over MgSO4 and concentrated in vacuo and then the residue
was purified by silica gel column chromatography using MeOH/CH2Cl2 (3/97) to give 2.1d as a

pale yellow liquid (3.268 g, 76.33%).

R 1: 0.43 (SiO2, MeOH/CH:Cly, 3/97).

IH NMR (500 MHz, CDCls, 8, ppm): 4.1 (t, J = 6.8 Hz, 2H), 4.07 (t, J = 6.8 Hz, 2H),
3.47 (dd, J = 8.3, 5.2 Hz, 1H), 2.46 (t, J = 7.5 Hz, 2H), 2.14-2.03 (m, 1H), 1.90-1.79 (m, 1H),

1.70-1.55 (m, 6H), 1.41-1.16 (m, 28H), 0.88 (t, J = 6.8 Hz, 6H).
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13C NMR (126 MHz, CDCls, &, ppm): 175.81 (C=0), 173.35 (C=0), 65.36 (CH), 64.84
(CHz), 53.98 (NHo—CH), 32.03 (CHz x 2), 30.83 (CH2), 29.96 (CH2), 29.67 (CH2), 29.65 (CH2),
29.44 (CH2 x 2), 29.40 (CH>), 29.37 (CH>), 28.77 (CH2), 28.75 (CH>), 26.06 (CH2), 26.02 (CH2),

22.82 (CH2 x 2), 14.24 (CH3 x 2).

IR (NaCl, neat, cm™): 3389 (w, amine N—H), 3324.5 (w, amine N—H), 2954.9 (s, alkane
C—H), 2925.7 (s, alkane C—H), 2855.4 (s, alkane C—H), 1736.1 (s, ester C=0), 1607.4 (w,

amine N-H bending), 1179.5 (s, ester C—0).

HRMS (m/z ): calcd for CasHsoNOa, 428.3734; found, 428.3714 [M + HJ*.

Preparation of 1,5-Bis({2-[2-(2-Methoxyethoxy)Ethoxy]Ethyl}) (2S)-2-

Aminopentanedioate (2.1e)

/_/o_
(0]
0 0 o/
0 HO 0T TS o
OH 1.25 eq. pTSA 0
HoN' HoNi -
toluene, 130 °C
OH Dean-Stark o)
0 4 h 1) \_\
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L-9 o
2.1e N

To a 100 mL round-bottom flask was added .-glutamic acid (1.472g, 10.01 mmol),
triethyleneglycol methyl ether (4.538 g, 27.64 mmol), pTSA (2.378 g, 12.50 mmol), and toluene
(40 mL). The solution was refluxed with a Dean—Stark apparatus for 4 h. The reaction mixture
was concentrated in vacuo and then the residue was neutralized using sat. NaHCOz (50 mL).
The aqueous solution was extracted with DCM (50 mL). The organic layer was washed with

sat. NaHCOs (50 mL), brine (50 mL x 2), and then dried over MgSOs and concentrated in
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vacuo. The residue was purified by silica gel column chromatography using

MeOH/CH:Clz (5/95) to give 2.1e as a yellow liquid (1.535 g, 34.90%).
R ¢: 0.30 (SiO2, MeOH/CH:zClz, 5/95).

IH NMR (500 MHz, CDCls, 8, ppm): 4.28 (t, J = 4.9 Hz, 2H), 4.23 (t, J = 4.9 Hz, 2H),
3.76-3.68 (M, 4H), 3.68-3.59 (m, 12H), 3.58-3.53 (m, 4H), 3.51 (dd, J = 8.4, 5.0 Hz, 1H), 3.38
(s, 6H), 2.51 (t, J = 7.5 Hz, 2H), 2.10 (dtd, J = 13.1, 7.4, 5.1 Hz, 1H), 1.93-1.81 (m, 1H), 1.68

(s, 2H).

13C NMR (126 MHz, CDCls, 8, ppm): 175.66 (C=0), 173.21 (C=0), 72.08 (CHa x 2),
70.76 (CH2x 2), 70.74 (CH2), 70.72 (CH2 x 2), 69.24 (CH>), 69.14 (CH2), 64.15 (CH), 64.13

(CHz), 63.75 (CH2), 59.18 (CHs x 2), 53.90 (NH—CH), 30.68 (CH>), 29.70 (CH>).

IR (NaCl, neat, cm™): 3382 (w, amine N—H), 3315 (w, amine N—H), 2877 (s, alkane
C—H), 1733 (s, ester C=0), 1607 (w, amine N—H bending), 1183 (s, ester C—0), 1112 (s, ether

C—0).
HRMS (m/z ): calcd for CisHasNO1o, 440.2490; found, 440.2479 [M + HJ'.

Preparation of 1,5-Bis({2-[2-(2-Butoxyethoxy)Ethoxy]Ethyl}) (25)-2-

Aminopentanedioate (2.1f)

el
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To a 100 mL round-bottom flask was added r-glutamic acid (1.471 g, 9.998 mmol),
triethyleneglycol butyl ether (4.553 g, 22.07 mmol), pTSA (2.378 g, 12.50 mmol), and toluene
(40 mL). The solution was refluxed with a Dean—Stark apparatus for 4 h. The reaction mixture
was concentrated in vacuo and then the residue was neutralized using sat. NaHCOs (50 mL).
The aqueous solution was extracted with DCM (50 mL). The organic layer was washed with
sat. NaHCOs (50 mL), brine (60 mL x 2), and then dried over MgSO4 and concentrated in
vacuo. The residue was purified by silica gel column chromatography using

MeOH/CH:Clz (4/96) to give 2.1f as a pale yellow liquid (2.721 g, 51.97%).

R 1:0.47 (SiO2, MeOH/CHClz, 4/96).

IH NMR (500 MHz, CDCls, 8, ppm): 4.27 (t, J = 4.9 Hz, 2H), 4.23 (t, J = 4.9 Hz, 2H),
3.74-3.67 (M, 4H), 3.67—3.61 (m, 12H), 3.60-3.54 (m, 4H), 3.50 (dd, J = 8.3, 5.1 Hz, 1H), 3.45
(t, J = 6.7 Hz, 4H), 2.50 (t, J = 7.6 Hz, 2H), 2.15-2.03 (m, 1H), 1.91—1.80 (m, 1H), 1.64 (s, 2H),

1.60-1.51 (m, 4H), 1.41-1.29 (m, 4H), 0.91 (t, J = 7.4 Hz, 6H).

13C NMR (126 MHz, CDCls, 3, ppm): 175.64 (C=0), 173.20 (C=0), 71.33 (CH2 x 2),
70.81 (CH2), 70.74 (CH3), 70.72 (CH2), 70.19 (CH2), 69.22 (CH2), 69.12 (CH2), 64.13 (CHo),
63.75 (CH2), 53.88 (NHo—CH), 31.83 (CH2x 2), 30.66 (CHz), 29.68 (CHz), 19.40 (CH2x 2),

14.04 (CH3 x 2).

IR (NaCl, neat, cm™): 3384 (w, amine N—H), 3318 (w, amine N—H), 2957 (s, alkane
C—H), 2933 (s, alkane C—H), 2870 (s, alkane C—H), 1736 (s, ester C=0), 1607 (w, amine N—H

bending), 1180 (s, ester C—0), 1115 (s, ether C—0).

HRMS (m/z ): calcd for C2sHsoNOao, 524.3429; found, 524.3406 [M + H]".

Preparation of 2.2a-f
These amidations were carried out following the general procedure by Heyl and

Fessner.?
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Preparation of 1,5-dibutyl (2S)-2-(3-{[(2S)-1,5-dibutoxy-1,5-dioxopentan-2-

yl]Jcarbamoyl }prop-2-ynamido)pentanedioate (2.2a)

HoNie NH HN!
DMTMM
0 NMP, 0 °C O 0
0 \_L 5h J_/ 0] O \_L
82%
21a 2.2a

To a solution of acetylenedicarboxylic acid (286.2 mg, 2.509 mmol) in NMP (5 mL) at
0 °C was added a solution dropwise of amine 2.1a (1.553 g, 5.988 mmol) in NMP (2.5mL).
After 10 min, DMTMM (2.006 g, 7.249 mmol) was added. The reaction mixture was stirred at
0 °C for 5 h. The mixture was partitioned between ethyl acetate (50 mL) and water (50 mL). The
organic layer was washed with brine (50 mL), sat. NaHCOs (50 mL), 1 M HCI (50 mL), and brine
(50 mL x 2). The organic layer was dried over MgSO4 and concentrated in vacuo . The residue
was dissolved in a minimum amount of refluxing THF, cooled to room temperature, and then
stored at -20 °C overnight. The byproduct (6-dimethoxy-1,3,5-triazin-2(1H)-one) was
crystallized from the THF solution and removed by filtration. The solution was concentrated in
vacuo and further purified by column chromatography (SiO2, hexanes/ethyl acetate, 7/3). The

product was obtained as an amorphous white solid (1.220 g, 2.045 mmol, 81.51%).

R : 0.25 (SiO2, hexanes/ethyl acetate, 7/3).

Melting point: 62—63 °C.

IH NMR (500 MHz, CDCls, &, ppm): 7.10 (d, J = 8.0 Hz, 2H), 4.68 (td, J = 7.9, 5.0 Hz,
2H), 4.17 (td, J = 6.7, 2.8 Hz, 4H), 4.09 (t, J = 6.7 Hz, 4H), 2.48-2.33 (m, 4H), 2.29-2.20 (m,
2H), 2.04 (dtd, J = 14.3, 8.1, 6.4 Hz, 2H), 1.69-1.57 (m, 8H), 1.44—1.33 (m, 8H), 0.94 (t, J =

7.5Hz, 6H), 0.93 (t, J = 7.3 Hz, 6H).
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13C NMR (126 MHz, CDCls, 3, ppm): 172.71 (C=0), 171.01 (C=0), 151.13 (C=0),
76.84 (C-alkyne), 66.12 (CHz), 64.94 (CHz), 52.28 (CH), 30.74 (CHz), 30.62 (CH>), 30.25 (CH>),

27.35 (CHz), 19.25 (CHz), 19.16 (CHz), 13.83 (CHs), 13.78 (CHs).

IR (KBr pellet, cm™): 3279 (s, amine N—H), 2960 (s, alkane C—H), 2934 (s, alkane
C—H), 2874 (s, alkane C—H), 1744 (s, ester C=0), 1728 (s, ester C=0), 1650 (s, amide C=0),

1538 (s, amide N—H bending), 1176 (s, ester C—0).
HRMS (m/z ): Calcd for CaoHasN2010, 597.3382; found, 597.3384 [M + H]*.

Preparation of 1,5-Bishexyl (2S)-2-(3-{[(2S)-1,5-Bis(Hexyloxy)-1,5-Dioxopentan-

2-yl] Carbamoyl} Prop-2-Ynamido)Pentanedioate (2.2b)
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To a solution of acetylenedicarboxylic acid (1.134 g, 9.942 mmol) in NMP (20 mL) at
0 °C was added a solution dropwise of amine 2.1b (9.677 g, 30.68 mmol) in NMP (10 mL). After
10 min, DMTMM (7.783 g, 28.13 mmol) was added. The reaction mixture was stirred at 0 °C for
5h. The mixture was partitioned between ethyl acetate (150 mL) and water (150 mL). The
organic layer was washed with brine (200 mL), sat. NaHCO3(200 mL), 1 M HCI (200 mL), and
brine (200 mL x 2). Then the organic layer was dried over MgSO4 and concentrated in vacuo .
The residue was dissolved in a minimum amount of refluxing THF, cooled to room temperature,
and then stored at —20 °C overnight. The byproduct (6-dimethoxy-1,3,5-triazin-2(1H)-one) was

crystallized from the THF solution and removed by filtration. The solution was concentrated in
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vacuo and further purified by column chromatography (SiOz, hexanes/ethyl acetate, 75/25).

The product was obtained as an amorphous white solid (3.160 g, 4.457 mmol, 44.83%).
R : 0.43 (SiO2, hexanes/ethyl acetate, 75/25).
Melting point: 60—62 °C.

IH NMR (500 MHz, CDCls, &, ppm): 6.80 (d, J = 7.8 Hz, 2H), 4.66 (td, J = 7.6, 5.0 Hz,
2H), 4.17 (td, J = 6.8, 3.7 Hz, 4H), 4.08 (t, J = 6.8 Hz, 4H), 2.50-2.30 (m, 4H), 2.29-2.19 (m,
2H), 2.05 (dp, J = 14.4, 7.3, 6.7 Hz, 2H), 1.71-1.57 (m, 8H), 1.41-1.22 (m, 24H), 0.97—0.81 (m,

12H).

13C NMR (126 MHz, CDCls, 8, ppm): 172.67 (C=0), 171.03 (C=0), 151.14 (C=0),
76.85 (C-alkyne), 66.41 (O—CHz), 65.23 (O—CHy), 52.26 (NH—CH), 31.56 (CH), 31.47 (CH>),
30.24 (CH2), 28.66 (CHz), 28.55 (CH3), 27.35 (CH2), 25.69 (CHz), 25.57 (CH3), 22.66 (CH2),

22.63 (CH2), 14.13 (CH3), 14.10 (CHa).

IR (KBr pellet, cm™): 3269 (s, amine N—H), 2958 (s, alkane C—H), 2932 (s, alkane
C—H), 2860 (s, alkane C—H), 1739 (s, ester C=0), 1646 (s, amide C=0), 1540 (s, amide N—H

bending), 1190 (s, ester C—0).
HRMS (m/z ): Calcd for CasHesN2010, 709.4634; found, 709.4628 [M + H]*.

Preparation of 1,5-Bis(2-Ethylhexyl) (2S)-2-(3-{[(2S)-1,5-Bis[(2-Ethylhexyl)Oxy]-

1,5-Dioxopentan-2-yl|Carbamoyl}Prop-2-Ynamido)Pentanedioate (2.2c)

o) o
g HO OH o) Y= o
HoNie NH HNi
0

2.1c 2.2¢c
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To a solution of acetylenedicarboxylic acid (286.6 mg, 2.513 mmol) in NMP (5 mL) at
0 °C was added a solution dropwise of amine 2.1c (2.538 g, 6.831 mmol) in NMP (2.5 mL).
After 10 min, DMTMM (2.005 g, 7.246 mmol) was added. The reaction mixture was stirred at
0 °C for 5 h. The mixture was partitioned between ethyl acetate (50 mL) and water (50 mL). The
organic layer was washed with brine (50 mL), sat. NaHCOs (50 mL), 1 M HCI (50 mL), and brine
(50 mL x 2). Then the organic layer was dried over MgSO4 and concentrated in vacuo . The
residue was dissolved in a minimum amount of refluxing THF, cooled to room temperature, and
then stored at -20 C overnight. The byproduct (6-dimethoxy-1,3,5-triazin-2(1H)-one) was
crystallized from the THF solution and removed by filtration. The solution was concentrated in
vacuo and further purified by column chromatography (SiO2, hexanes/ethyl acetate, 80/20).

The product was obtained as an amorphous white solid (1.528 g, 1.861 mmol, 74.05%).

R ¢: 0.37 (SiOz, hexanes/ethyl acetate, 80/20).

Melting point: 49-53 °C.

IH NMR (500 MHz, CDCls, 8, ppm): 6.84 (d, J = 7.8 Hz, 2H), 4.68 (td, J = 7.6, 4.9 Hz,
2H), 4.15-4.05 (m, 4H), 4.05-3.96 (M, 4H), 2.49-2.31 (m, 4H), 2.29-2.21 (m, 2H), 2.09-2.01

(m, 2H), 1.66-1.55 (m, 4H), 1.43-1.18 (m, 32H), 1.04-0.74 (m, 24H).

13C NMR (126 MHz, CDCls3 8, ppm): 172.72 (C=0), 171.10 (C=0), 151.09 (C=0), 76.81
(C-alkyne), 68.61 (O—CH2), 68.58 (O—CHy), 67.48 (O-CH2), 52.28 (NH2—CH), 38.83 (CH),
38.79 (CH), 30.47 (CH2), 30.41 (CH2), 30.37 (CH2), 30.24 (CH2), 29.05 (CH3), 29.00 (CH),
28.98 (CH2), 27.41 (CHy), 23.86 (CH3), 23.81 (CH2), 23.79 (CHz), 23.09 (CH>), 23.06 (CH2),

23.05 (CH2), 14.18 (CHs), 14.15 (CHs), 11.09 (CHs), 11.05 (CHs), 11.02 (CH3).

IR (KBr pellet, cm™): 3291 (s, amine N—H), 2959 (s, alkane C—H), 2931 (s, alkane

C—H), 2874 (s, alkane C—H), 2860 (s, alkane C—H), 1742 (s, ester C=0), 1731 (s, ester C=0),
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1651 (s, amide C=0), 1641 (s, amide C=0), 1533 (s, amide N—H bending), 1179 (s, ester

Cc—0).
HRMS (m/z ): Calcd for CasHgiN2010, 821.5886; found, 821.5890 [M + H].

Preparation of 1,5-Bis(Decyl) (2S)-2-(3-{[(2S)-1,5-Bis(Decyloxy)-1,5-Dioxopentan-

2-yl] Carbamoyll}Prop-2-Ynamido)Pentanedioate (2.2d)
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To a solution of acetylenedicarboxylic acid (1.378 g, 12.08 mmol) in NMP (24 mL) at
0 °C was added a solution dropwise of amine 2.1d (12.74 g, 29.79 mmol) in NMP (12 mL). After
10 min, DMTMM (9.300 g, 33.61 mmol) was added. The reaction mixture was stirred at 0 °C for
5h. The mixture was partitioned between ethyl acetate (200 mL) and water (200 mL). The
organic layer was washed with brine (200 mL), sat. NaHCO3 (200 mL), 1 M HCI (200 mL), and
brine (200 mL x 2). The organic layer was then dried over MgSOa4 and concentrated in vacuo .
The residue was dissolved in a minimum amount of refluxing THF, cooled to room temperature,
and then stored at —20 °C overnight. The byproduct (6-dimethoxy-1,3,5-triazin-2(1H)-one) was
crystallized from the THF solution and removed by filtration. The solution was concentrated in
vacuo and further purified by column chromatography (SiO2, hexanes/ethyl acetate, 80/20).

The product was obtained as an amorphous white solid (7.818 g, 8.376 mmol, 69.34%).

R t: 0.40 (SiO2, hexanes/ethyl acetate, 80/20).

Melting point: 50-51 °C.
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H NMR (500 MHz, CDCls, 8, ppm): 6.79 (d, J = 7.7 Hz, 2H), 4.66 (td, J = 7.6, 5.1 Hz,
2H), 4.21-4.11 (m, 4H), 4.08 (t, J = 6.8 Hz, 4H), 2.49-2.30 (m, 4H), 2.24 (dg, J = 13.5, 7.2 Hz,
2H), 2.04 (dq, J = 14.5, 7.5 Hz, 2H), 1.71-1.57 (m, 8H), 1.39-1.18 (m, 58H), 0.88 (t, J = 6.8 Hz,

12H).

13C NMR (126 MHz, CDCls, 8, ppm): 172.67 (C=0), 171.02 (C=0), 151.13 (C=0),
76.80 (C-alkyne), 66.42 (O—CH>), 65.24 (O—CHy), 52.26 (NH—CH), 32.02 (CH2 x 2), 30.23
(CH2), 29.68 (CH2), 29.67 (CH2 x 2), 29.63 (CHz), 29.44 (CHz x 2), 29.40 (CH>), 29.34 (CH?),
28.71 (CH2), 28.60 (CHz), 27.36 (CH2), 26.03 (CH2), 25.91 (CHz), 22.81 (CH2x 2), 14.24

(CHs x 2).

IR (KBr pellet, cm™): 3307 (s, amine N—H), 2955 (s, alkane C—H), 2922 (s, alkane
C—H), 2854 (s, alkane C—H), 1746 (s, ester C=0), 1733 (s, ester C=0), 1648 (s, amide C=0),

1643 (s, amide C=0), 1528 (s, amide N—H bending), 1199 (s, ester C—0).

HRMS (m/z ): Calcd for CsaHe7N2010, 933.7138; found, 933.7143 [M + H]*.

Preparation of 1,5-Bis({2-[2-(2-MethoxyEthoxy)Ethoxy]Ethyl}) (2S)-2-(3-{[(2S)-
1,5-Bis({2-[2-(2-MethoxyEthoxy)Ethoxy]Ethoxy})-1,5-Dioxopentan-2-

yl]Carbamoyl}Prop-2-Ynamido)Pentanedioate (2.2e)
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To a solution of acetylenedicarboxylic acid (0.8424 g, 7.386 mmol) in DMF (15mL) at

0 °C was added a solution dropwise of amine 2.1e (9.055 g, 20.60 mmol) in DMF (7.5 mL).
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After 10 min, DMTMM (5.180 g, 18.72 mmol) was added. The reaction mixture was stirred at
0 °C for 5 h. The mixture was filtered. The filtrate was partitioned between DCM (150 mL) and
water (150 mL). The organic layer was washed with brine (150 mL), sat. NaHCOs (150 mL),
1M HCI (150 mL), and brine (150 mL x 2). The organic layer was dried over MgSO4 and
concentrated in vacuo. The residue was purified by column chromatography (SiO2,

CH2CH2/MeOH, 95/5). The product was obtained as a clear oil (5.104 g, 5.333 mmol, 72.20%).

R t: 0.38 (SiO2, CH2CH2/MeOH, 95/5).

H NMR (500 MHz, CDCls, 8, ppm): 7.54 (d, J = 8.1 Hz, 2H), 4.67 (td, J = 8.1, 5.1 Hz,
2H), 4.31 (dt, J = 10.9, 6.1 Hz, 4H), 4.28-4.18 (m, 4H), 3.70 (t, J = 4.9 Hz, 8H), 3.67 (s, 7H),
3.66-3.61 (m, 17H), 3.58-3.52 (m, 8H), 3.37 (d, J = 2.5Hz, 12H), 2.53-2.36 (m, 4H), 2.24

(dtd, J = 14.6, 7.4, 5.1 Hz, 2H), 2.06 (dq, J = 14.8, 7.6 Hz, 2H).

13C NMR (126 MHz, CDCls, 3, ppm): 172.54 (C=0), 170.64 (C=0), 151.25 (C=0),
76.78 (C-alkyne), 72.07 (CH2), 72.03 (CH2), 70.80 (CHz), 70.71 (CHz x 2), 70.65 (CH>), 70.63
(CH2), 69.06 (CHz), 68.86 (CH2), 64.85 (CH2), 64.00 (CH2), 59.11 (CHs x 2), 52.22 (NH2—CH),

30.38 (CH2), 27.10 (CH2).

IR (NaCl, neat, cm™): 3260 (s, amine N—H), 2878 (s, alkane C—H), 1736 (s, ester
C=0), 1665 (s, amide C=0), 1535 (s, amide N—H bending), 1199 (s, ester C—0), 1104(s, ether

Cc—0).

HRMS (m/z): Calcd for Ca2H73N2022, 957.4649; found, 957.4652 [M + H]*.

Preparation of 1,5-Bis({2-[2-(2-Butoxyethoxy) Ethoxy]Ethyl}) (2S)-2-(3-{[(2S)-1,5-
Bis({2-[2-(2-Butoxyethoxy)Ethoxy]Ethoxy})-1,5-Dioxopentan-2-yl]Carbamoyl}Prop-2-

Ynamido)Pentanedioate (2.2f)
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To a solution of acetylenedicarboxylic acid (0.7922 g, 6.945 mmol) in DMF (15 mL) at
0 °C was added a solution dropwise of amine 2.1f (12.47 g, 23.81 mmol) in DMF (7.5 mL). After
10 min, DMTMM (5.430 g, 19.62 mmol) was added. The reaction mixture was stirred at 0 °C for
5h. The mixture was filtered. The filtrate was partitioned between DCM (150 mL) and water
(150 mL). The organic layer was washed with brine (150 mL), sat. NaHCO3 (150 mL), 1 M HCI
(150 mL), and brine (150 mL x 2). The organic layer was dried over MgSOa4 and concentrated in
vacuo . The residue was purified by column chromatography (SiO2, CH.CH2/MeOH, 96/4). The

product was obtained as a clear oil (3.520 g, 3.128 mmol, 45.04%).

R t:0.28 (SiO2, CH2CH2/MeOH, 96/4).

IH NMR (500 MHz, CDCls, 8, ppm): 7.38 (d, J = 8.0 Hz, 2H), 4.68 (td, J = 7.9, 5.1 Hz,
2H), 4.37-4.29 (m, 4H), 4.29-4.18 (m, 4H), 3.75-3.69 (m, 8H), 3.67 (s, 7H), 3.66-3.61 (m,
17H), 3.61-3.55 (m, 8H), 3.46 (td, J = 6.7, 2.9 Hz, 8H), 2.55-2.36 (m, 4H), 2.25 (dtd, J = 14.7,
7.3, 5.2 Hz, 2H), 2.07 (dq, J = 14.7, 7.5Hz, 2H), 1.61-1.51 (m, 8H), 1.41-1.30 (m, 8H), 0.91

(t, J = 7.4 Hz, 12H).

13C NMR (126 MHz, CDCls, 3, ppm): 172.55 (C=0), 170.65 (C=0), 151.16 (C=0),
76.77 (C-alkyne), 71.35 (CHz), 71.34 (CH2), 70.81 (CH2 x 2), 70.78 (CHz x 2), 70.74 (CH2 x 2),
70.20 (CH2), 70.17 (CH2), 69.08 (CH2), 68.87 (CH2), 64.91 (CH2), 64.04 (CH2), 52.27 (NHo—CH),

31.83 (CH2 x 2), 30.34 (CH2), 27.13 (CH2), 19.41 (CH2 x 2), 14.07 (CHs x 2).
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IR (NaCl, neat, cm™): 3270 (m, amine N—H), 2975 (s, alkane C—H), 2933 (s, alkane
C—H), 2871 (s, alkane C—H), 1740 (s, ester C=0), 1668 (s, amide C=0), 1534 (m, amide N—H

bending), 1198 (s, ester C—0), 1119 (s, ether C—0).

HRMS (m/z ): Calcd for CsaHorN2022, 1125.6527; found, 1125.6523 [M + H]*.

Preparation of 1-Azidomethyl-4-Tert-Butylbenzene (2.3)

tBu tBu
Amberlite 400 / -N3
MeCN, RT
24 h, 99%
Br N3

23

Caution

Sodium azide and organic azide can be toxic and explosive. Guidelines for safe organic
azides should follow (Nc+ No)/Nn2=3 and Nc>Nn (N = number of atoms).? t-Butylbenzylic
azide and PVC-azide (4.4% and 12.0%) were found safe to manipulate in the laboratory.

Special care is still needed when handling organic azides.

Preparation of Amberlite-Ns

To a 250 mL beaker was added 40.00 g Amberlite IPA-400 and a solution of 15.00 g
NaNs in 80 ml water.* The mixture was left to stir for 1 h. The mixture was filtered and washed
with water (100 mL x 2). The charged Amberlite-N3 was then charged a second time with a new
solution of 15 g NaNs in 80 mL water for 1 h. After the second charge, Amberlite-Ns was filtered
and washed with water (100 mL x 3), followed by methanol (100 mL), ether (50 mL x 2), and

then dried under vacuum for 20 mins.

To a 100 ml round bottom flask was added 1-bromomethyl-4-tert -butylbenzene

(1.650g, 7.264 mmol), acetonitrile (30 mL), and Amberlite-N3 (12.83 g). The reaction was
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stirred at room temperature for 18 h. The reaction went to completion as monitored by TLC.
The reaction mixture was filtered, then dried over MgSQOzu, filtered again and concentrated. The

product was obtained as a clear oil (1.356 g, 7.165 mmol, 98.64%).
R t: 0.57 (SiO2, hexanes/ethyl acetate, 95/5).

H NMR (500 MHz, CDCls, 8, ppm): & 7.41 (d, J = 8.1 Hz, 2H), 7.25 (d, J = 7.8 Hz, 2H),

4.31 (s, 2H), 1.33 (s, 9H).

Preparation of 1,5-Dibutyl (2S)-2-({1-[(4-Tert-Butylphenyl)Methyl]-4-{[(2S)-1,5-
Dibutoxy-1,5-Dioxopentan-2-yl|Carbamoyl}-1H-1,2,3-Triazol-5-

YI}Formamido)Pentanedioate (2.4)

0 >\ - e 0 tBu
NH HN' -
O o <\ 2
tBu
N'N:N o
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N3 CD3CN
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(0]
24

To a solution of benzylic azide 2.3 (94.3 mg, 0.498 mmol) in 2 mL acetonitrile-d ¢ was

added alkyne 2.2a (282.4 mg, 0.4733 mmol). The reaction was heated to 60 °C for 22 h. The
reaction mixture was concentrated in vacuo and further purified by column chromatography
(SiO2, hexanes/ethyl acetate, 8/2). The product was obtained as a clear oil (290.2 mg,

0.3692 mmol, 74.14%).
R 1: 0.41 (SiO2, hexanes/ethyl acetate, 8/2).
IH NMR (500 MHz, CDCls, d, ppm): 11.36 (d, J = 7.3 Hz, 1H), 8.19 (d, J = 8.5 Hz, 1H),

7.32 (s, 4H), 6.12(AB, J = 13.9 Hz, 1H), 6.07 (AB, J = 13.9Hz, 1H), 4.85 (td, J = 8.0, 5.0 Hz,
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1H), 4.71 (td, J = 7.6, 5.4 Hz, 1H), 4.24-4.10 (m, 4H), 4.10-3.99 (m, 4H), 2.53-2.23 (m, 6H),

2.20-2.07 (m, 2H), 1.69-1.55 (m, 9H), 1.44-1.31 (m, 8H), 1.27 (s, 9H), 0.99-0.84 (m, 12H).

13C NMR (126 MHz, CDCls, 8, ppm): 172.53 (C=0), 172.51 (C=0), 171.19 (C=0),
170.90 (C=0), 161.41 (C=0), 156.69 (C=0), 151.49 (triazole ring C=C), 138.57 (triazole ring
C=C), 132.33 (benzene ring C), 130.48 (benzene ring C), 128.42 (benzene ring CH), 125.73
(benzene ring CH), 65.89 (CHz), 65.53 (CH2), 64.81 (CHz), 64.64 (CH2), 54.12 (CHz), 52.37
(CH), 51.89 (CH), 34.68 (C), 31.37 (CHsx 3), 30.77 (CHz), 30.71 (CHz), 30.65 (CH2), 30.64
(CH2), 30.48 (CHz), 30.37 (CH2), 27.74 (CH2), 27.33 (CHz), 19.24 (CH2), 19.22 (CH2), 19.16

(CHz x 2), 13.83 (CH3), 13.80 (CHs), 13.78 (CHs), 13.76 (CHa).

IR (neat): 3346 (w, amide N—H), 2961 (s, alkane C—H), 2936 (s, alkane C—H), 2874
(m, alkane C—H), 1739 (s, ester C=0), 1678 (s, amide C=0), 1654 (m, amide C=0), 1582 (m,

amide N—H bending), 1552 (s, amide N—H bending), 1180 (s, ester C—0).
HRMS (m/z): Calcd for Ca1HesNsO10, 786.4648; found, 786.4618 [M + H]*.

Preparation of PVC-azide

Purification of PVC

PVC (25.00g, 400 mmol) was dissolved in THF (250 mL).>” The solution was
precipitated in MeOH (1 L). The precipitates were filtered, dissolved in THF, precipitated in

MeOH another two times. The precipitate was then dried over house vacuum for 3 days.

Preparation of 4.4 mol % PVC-Nz (2.5)

(\(7\ et W
n
cl DMF & Ny
62 °C
PVC 05h 2.5 m=96, x=4
random copolymer

Y
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To a solution of purified PVC (12.03 g, 19.24 mmol) in DMF (120 mL) was slowly added
sodium azide (11.95 g, 18.38 mmol). The reaction mixture was stirred at 62 °C for 30 min. After
cooling to room temperature, the reaction mixture was filtered to remove insoluble salt. The
filtrate was precipitated in 1.2 L of MeOH. The mixture was stirred with a stir bar for 10 min.
The precipitates were filtered and dried under vacuum to remove the majority of MeOH. The
precipitated was then dissolved in 120 mL of THF and precipitated in 600 mL of MeOH/water
(3/1). Precipitates were filtered, washed with MeOH, and then dissolved in 120 mL of THF. The
solution was then precipitated in MeOH (900 mL). Precipitates were filtered and dried under

vacuum for 3 days. The 4.4 mol % PVC-Ns was obtained as a white solid (8.153 g).

IH NMR (500 MHz, CDCls, 3, ppm): d 4.77-4.54 (br, s), 4.54-4.37 (br, s), 4.37-4.23
(br, s), 4.22-4.13 (br, s), 4.13-4.01 (br, s), 2.53-2.23 (br, m), 2.23-1.92 (br, m), 1.92-1.72 (br,

m).
Elemental analysis: C, 39.23; H, 5.12; N, 3.02.

Preparation of 12.0 mol % PVC-Nz (2.5°)

(\(j\ NaNs W
n m X
DMF
N
Cl 62 °C Cl 3
PVC 2.0h 2.5' m=88, x=12

random copolymer

Y

To a solution of PVC (20.00 g, 32.00 mmol) in DMF (200 mL) was slowly added sodium
azide (20.00 g, 30.76 mmol). The reaction mixture was stirred to 62 °C for 2 h. The workup
procedure was the same as for the 4.4 mol % PVC sample above. The 12.0 mol % PVC-Nsz was

obtained as a white solid (12.61 g).
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IH NMR (500 MHz, CDCls, 8, ppm): & 4.68—4.53 (br, s), 4.53-4.38 (br, s), 4.38-4.22
(br, s), 4.22-4.12 (br,s), 4.12-4.01 (br,s), 2.52-2.23 (br, m), 2.23-1.95 (br, m), 1.95-1.65 (br,

m).
Elemental analysis: C, 38.69; H, 5.22; N, 8.17.

Preparation of Internally Plasticized PVC

Preparation of PVC-4.4%-nBu (2.6a)
N
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To a 50 mL round bottom flask was added PVC-4.4%-N3 2.5 (805.2 mg, 12.88 mmol),
alkyne 2.2a (384.3 mg, 0.6440 mmol), and 3-pentanone (8 mL).® The reaction mixture was
heated to 90 °C for 48 h. The resulting polymer was purified via precipitation in 100 mL of MeOH

three times. The polymer was filtered and dried to give a white solid (750.0 mg).

H NMR (500 MHz, CDCls, d, ppm): & 11.66-11.23 (br, m), 8.42-8.16 (br, m), 6.77—
6.34 (br, m), 4.95-4.82 (br, s), 4.82-4.67 (br, s), 4.67-4.54 (br, m), 4.54-4.39 (br, m), 4.36—
4.24 (br, m), 4.24-4.13 (br, m), 4.13-4.01 (br, m), 3.90-3.62 (br, m), 2.99-2.57 (br, m), 2.57—

2.23 (br, m), 2.23-1.73 (br, m), 1.73-1.45 (br, m), 1.45-1.15 (br, m), 1.00-0.74 (br, m).
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13C NMR (126 MHz, CDCls, 8, ppm): 172.52 (C=0), 171.03 (C=0), 170.91 (C=0),
161.20 (C=0), 156.55 (C=0), 132.17 (triazole —C=C—), 65.93 (—CH,—O—), 65.59 (—CH—0—),
64.84 (—CH—O—), 64.64 (—CH—O—), 57.11-55.02 (PVC —CH—Cl— and PVC —CH—triazole),
52.43 ('NH—CH—), 52.01 (-NH—CH—), 47.40-44.94 (family of CHz PVC peaks), 30.75 (CH2),
30.71(CH2), 30.65 (CH2), 30.62 (CH>), 30.49 (CH3), 30.40 (CH2), 27.69 (CH2), 27.31 (CH2),

19.24 (CH2), 19.17 (CH2), 13.87 (CHs), 13.84 (CHs), 13.78 (CHa).

IR (NaCl, thin film, cm™): 3384 (w, amide N—H), 2962 (s, alkane C—H), 2934 (s, alkane
C—H), 2873 (m, alkane C—H), 1736 (s, ester C=0), 1677 (s, amide C=0), 1655 (m, amide
C=0), 1579 (m, amide N—H bending), 1552 (m, amide N—H bending), 1255 (s, ester C—0),

1199 (s, ester C—0), 615 (m, C—CI).

Preparation of PVC-12.0%-nBu (2.6"a)
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To a 15 mL round bottom flask was added PVC-12.0%-N3 2.5" (217.5 mg, 3.480 mmol),
alkyne 2.2a (780.1 mg, 1.307 mmol), and 3-pentanone (3.5mL). The reaction mixture was
heated to 90 °C for 48 h. The resulting polymer was purified via precipitation in 40 mL of MeOH

three times. The polymer was filtered and dried to give a pale yellow solid (297.4 mg).
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H NMR (500 MHz, CDCls, 8, ppm): 11.69—11.07 (br, m), 8.59-8.10 (br, m), 6.73-6.11
(br, m), 4.94-4.80 (br, s), 4.80—-4.66 (br, s), 4.66-4.52 (br, m), 4.52—4.33 (br, m), 4.33-4.24 (br,
s), 4.24-4.09 (br, m), 4.09-3.98 (br, m), 3.89-3.50 (br, m), 3.08-2.58 (br, m), 2.57-2.22 (br,

m), 2.22—1.81 (br, m), 1.73-1.50 (br, m), 1.49-1.09 (br, m), 1.04—0.70 (br, m).

13C NMR (126 MHz, CDCls, 8, ppm): 172.52 (C=0), 170.98 (C=0), 161.19 (C=0),
156.52 (C=0), 138.62 (triazole —C=C—), 132.03 (triazole —C=C—), 65.91 (—CH,—O—), 65.57
(—CH2—0—), 64.82 (—CH,—O—), 64.62 (—CH,—O—"), 57.04-54.95 (PVC —CH—Cl— and PVC
—CH—triazole), 52.43 (—NH—CH—), 52.01 (—NH—CH—), 47.40-45.37 (family of CH. PVC
peaks), 30.75 (CHz), 30.71 (CHz), 30.64 (CHz), 30.62 (CH2), 30.47 (CHz), 30.39 (CH2), 27.69

(CH2), 27.29 (CH2), 19.23 (CH>), 19.16 (CHz), 13.86 (CHs), 13.82 (CHs), 13.77 (CHa).

IR (NaCl, thin film, cm™): 3378 (w, amide N—H), 2961 (s, alkane C—H), 2935 (s, alkane
C—H), 2874 (m, alkane C—H), 1737 (s, ester C=0), 1677 (s, amide C=0), 1655 (m, amide
C=0), 1579 (m, amide N—H bending), 1551 (s, amide N—H bending), 1259 (s, ester C—0),

1199 (s, ester C—0), 616 (w, C—CI).

Preparation of PVC-4.4%-nHex (2.6b)

04 =4 Yo oo A
NH  HN- 4 o
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To a 25mL round bottom flask was added PVC-4.4%-Ns 2.5 (1.001 g, 16.02 mmol),
alkyne 2.2b (1.155 g, 1.629 mmol), and 3-pentanone (8 mL). The reaction mixture was heated
to 90 °C for 48 h. The resulting polymer was purified via precipitation in 100 mL of MeOH three

times. The polymer was filtered and dried to give a pale yellow solid (902.3 mg).

IH NMR (500 MHz, CDCls, 8, ppm): 11.65-11.19 (br, m), 8.53-8.15 (br, m), 6.77—-6.25
(br, m), 4.93-4.81 (br, m), 4.81-4.66 (br, s), 4.66—4.52 (br, m), 4.52—-4.37 (br, m), 4.37-4.22
(br, m), 4.22—4.10 (br, m), 4.10-4.00 (br, m), 3.90-3.60 (br, m), 3.05-2.59 (br, m), 2.59-2.22

(br, m), 2.22-1.78 (br, m), 1.74-1.52 (br, m), 1.46-1.15 (br, m), 1.03-0.71 (br, m).

13C NMR (126 MHz, CDCls, 8, ppm): 172.51 (C=0), 171.03 (C=0), 161.18 (C=0),
156.54 (C=0), 138.69 (triazole —C=C—), 132.18 (triazole —C=C—), 66.24 (—CH,—O—), 65.89
(—CH—0—), 65.14 (—CH—0O—), 64.95 (—CH—0—), 57.12-55.02 (PVC —CH—Cl— and PVC
—CH—triazole), 52.44 (—NH—CH—), 51.99 (—NH—CH—), 47.41-44.94 (family of CH2 PVC
peaks), 31.54 (CHz), 31.49 (CH2), 31.46 (CH2), 30.49 (CH2), 30.38 (CH2), 28.68 (CH2), 28.65
(CH2), 28.57 (CHz), 27.74 (CH3), 27.34 (CH2), 25.68 (CHz), 25.58 (CH>), 22.66 (CH2), 22.62

(CH2), 14.15 (CHsa).

IR (NaCl, thin film, cm™): 3383 (w, amide N—H), 2957 (s, alkane C—H), 2931 (s, alkane
C—H), 2859 (m, alkane C—H), 1736 (s, ester C=0), 1677 (m, amide C=0), 1654 (m, amide
C=0), 1578 (m, amide N—H bending), 1551 (m, amide N—H bending), 1255 (s, ester C—0),

1196 (s, ester C—0), 615 (w, C—ClI).

Preparation of PVC-12.0%-nHex (2.6'b)
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To a 25 mL round bottom flask was added PVC-12.0%-Ns 2.5" (399.1 mg, 6.386 mmol),
alkyne 2.2b (1.701g, 2.399 mmol), and 3-pentanone (6.4 mL). The reaction mixture was
heated to 90 °C for 48 h. The resulting polymer was purified via precipitation in 40 mL of MeOH

three times. The polymer was filtered and dried to give a pale yellow solid (824.2 mg).

TH NMR (500 MHz, CDCls, 8, ppm): 11.64-11.03 (br, m), 8.56-8.09 (br, m), 6.71-6.10
(br, m), 4.98-4.80 (br, m), 4.80—4.65 (br, m), 4.65-4.51 (br, m), 4.51-4.33 (br, m), 4.33-4.22
(br, m), 4.22—4.09 (br, m), 4.09-3.98 (br, m), 3.87-3.41 (br, m), 3.07-2.58 (br, m), 2.56-2.22

(br, m), 2.22-1.81 (br, m), 1.74-1.50 (br, m), 1.45-1.10 (br, m), 1.03-0.71 (br, m).

13C NMR (126 MHz, CDCls, 8, ppm): 172.50 (C=0), 170.99 (C=0), 161.21 (C=0),
156.54 (C=0), 138.51 (triazole —C=C—), 132.14 (triazole —C=C—), 66.21 (—CH,—O—), 65.86
(—CH—0—), 65.25 (—CH—0—), 65.12 (—CH—O—), 64.92 (—CH»—0O—), 57.07-55.00 (PVC
—CH—Cl— and PVC —CH—triazole), 52.42 (—NH—CH—), 51.97 (—NH—CH—), 47.41-45.38
(family of CHz PVC peaks), 31.54 (CH2), 31.52 (CHy), 31.47 (CH2), 31.44 (CHy), 30.47 (CH),
30.36 (CHz2), 28.66 (CH2), 28.63 (CH2), 28.55 (CH2), 27.72 (CH>), 27.30 (CHz), 25.66 (CH2),

25.56 (CH2), 22.63 (CH2), 22.60 (CH2), 14.12 (CHa3), 14.10 (CHa).
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IR (NaCl, thin film, cm™): 3378 (w, amide N—H), 2957 (s, alkane C—H), 2931 (s, alkane
C—H), 2859 (m, alkane C—H), 1737 (s, ester C=0), 1676 (s, amide C=0), 1655 (s, amide C=0),
1579 (s, amide N—H bending), 1551 (s, amide N—H bending), 1255 (s, ester C—0), 1195 (s,

ester C—0), 615 (w, C—ClI).

Preparation of PVC-4.4%-2EtHex (2.6¢)
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To a 15 mL round bottom flask was added PVC-4.4%-Ns 2.5 (615.0 mg, 9.840 mmol),
alkyne 2.2c (1.037 g, 1.263 mmol), and 3-pentanone (10 mL). The reaction mixture was heated
to 90 °C for 48h. The resulting polymer was purified via precipitation in 100 mL of
MeOH/hexanes (70/30) three times. The polymer was filtered and dried to give a pale yellow

solid (786.9 mg).

IH NMR (500 MHz, CDCls, 3, ppm): 11.65-11.15 (br, m), 8.38-8.14 (br, m), 6.72—6.16
(br, m), 4.93-4.83 (br, m), 4.83-4.67 (br, s), 4.67—-4.53 (br, m), 4.53-4.37 (br, m), 4.37-4.16
(br, m), 4.16-4.04 (br, m), 4.04-3.89 (br, m), 3.89-3.49 (br, m), 3.00-2.59 (br, m), 2.59-2.23

(br, m), 2.23-1.73 (br, m), 1.73-1.45 (br, m), 1.45-1.07 (br, m), 1.07-0.69 (br, m).

13C NMR (126 MHz, CDCls, 8, ppm): 172.53 (C=0), 171.10 (C=0), 170.96 (C=0),

161.13 (C=0), 156.58 (C=0), 138.60 (triazole —C=C—), 132.16 (triazole —C=C—), 68.39
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(—CH—0—), 68.02 (—CH»—0O—), 67.40 (—CH2—0—), 67.19 (—CH-—0—), 57.11-55.02 (PVC
—CH—Cl— and PVC —CH—triazole), 52.46 (—NH—CH—), 52.01 (—NH—CH—), 47.41-44.94
(family of CH2 PVC peaks), 38.80 (CH), 38.75 (CH), 30.54 (CH2), 30.45 (CH2), 30.41 (CH2),
30.36 (CH2), 29.03 (CH2), 28.99 (CH2), 27.75 (CH2), 27.42 (CH2), 23.86 (CH>), 23.84 (CH>),
23.81 (CH2), 23.09 (CHz), 23.08 (CH>), 23.05 (CH2), 23.04 (CHz), 14.21 (CH3), 14.19 (CHsa),

11.11 (CHs), 11.09 (CHs), 11.07 (CHa).

IR (neat): 3382 (w, amide N—H), 2960 (s, alkane C—H), 2930 (s, alkane C—H), 2873
(m, alkane C—H), 2861 (s, alkane C—H), 1736 (s, ester C=0), 1677 (s, amide C=0), 1655 (m,
amide C=0), 1578 (m, amide N—H bending), 1551 (m, amide N—H bending), 1256 (s, ester

C—-0), 1199 (s, ester C—0), 615 (w, C—ClI).

Preparation of PVC-12.0%-2EtHex (2.6'c)
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To a 15mL round bottom flask was added PVC-12.0%-Ns (2.5") (198.3mg,
3.173 mmol), alkyne 2.2c (987.2mg, 1.202 mmol), and 3-pentanone (3.2mL). The reaction
mixture was heated to 90 °C for 48 h. The resulting polymer was purified via precipitation in
100 mL of MeOH/hexanes (70/30) three times. The polymer was filtered and dried to give a

pale yellow solid (115.8 mg).
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H NMR (500 MHz, CDCls, 8, ppm): 11.69—11.16 (br, m), 8.54-8.11 (br, m), 6.75-6.08
(br, m), 4.98-4.83 (br, m), 4.83-4.68 (br, s), 4.68-4.52 (br, m), 4.52—4.33 (br, m), 4.33-4.19
(br, m), 4.19-4.04 (br, m), 4.04-3.86 (br, m), 3.86-3.44 (br, m), 3.00-2.60 (br, m), 2.60-2.23

(br, m), 2.23-1.77 (br, m), 1.71-1.46 (br, m), 1.46-1.07 (br, m), 1.06-0.66 (br, m).

13C NMR (126 MHz, CDCls, &, ppm): 172.53 (C=0), 170.98 (C=0), 161.18 (C=0),
156.57 (C=0), 138.68 (triazole —C=C—), 132.19 (triazole —C=C—), 68.37 (—CH,—O—), 68.01
(—CH,—0O—), 67.38 (—CH—0—), 67.17 (—CH>—0O—), 57.05-55.00 (PVC —CH—CIl— and PVC
—CH-triazole), 52.45 (—NH—CH—), 52.00 (—NH—CH—), 47.42-45.42 (family of CH.PVC
peaks), 38.80 (CH), 30.45 (CHs), 30.41 (CHz), 29.02 (CHz), 28.99 (CHz), 27.75 (CH2), 27.40
(CHz), 23.86 (CHz), 23.84 (CHz), 23.07 (CHz), 23.05 (CH2), 14.18 (CH3), 11.08 (CHs), 11.05

(CHsa).

IR (neat): 3379 (w, amide N—H), 2960 (s, alkane C—H), 2931 (s, alkane C—H), 2873
(m, alkane C—H), 2861 (s, alkane C—H), 1737 (s, ester C=0), 1677 (s, amide C=0), 1655 (s,
amide C=0), 1579 (s, amide N—H bending), 1551 (s, amide N—H bending), 1259 (s, ester

C—-0), 1198 (s, ester C—0), 616 (w, C—ClI).

Preparation of PVC-4.4%-nDec (2.6d)
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To a 50 mL round bottom flask was added PVC-4.4%-Ns 2.5 (1.024 g, 16.38 mmol),
alkyne 2.2d (1.912 g, 2.048 mmol), and 3-pentanone (8 mL). The reaction mixture was heated
to 90 °C for 48h. The resulting polymer was purified via precipitation in 100 mL of
MeOH/hexanes (70/30) three times. The polymer was filtered and dried to give a pale yellow

solid (1.207 g).

H NMR (500 MHz, CDCls, 8, ppm): 11.54-11.21 (br, m), 8.42-8.14 (br, m), 6.70—6.25
(br, m), 4.95-4.81 (br, m), 4.81-4.67 (br, m), 4.67—4.53 (br, m), 4.53-4.37 (br, m), 4.37-4.22
(br, m), 4.22—4.10 (br, m), 4.10-3.89 (br, m), 3.89-3.43 (br, m), 3.17-2.60 (br, m), 2.60-2.23

(br, m), 2.23-1.80 (br, m), 1.80-1.48 (br, m), 1.48-1.06 (br, m), 1.04—0.71 (br, m).

13C NMR (126 MHz, CDCls, 8, ppm): 172.48 (C=0), 171.03 (C=0), 170.91 (C=0),
161.13 (C=0), 156.54 (C=0), 138.51 (triazole —C=C—), 132.13 (triazole —C=C—), 66.23
(—CH—0O—), 65.88 (—CH—0—), 65.12 (—CH—0—), 64.93 (—CH-—0O—), 57.11-55.01 (PVC
—CH—Cl— and PVC —CH—triazole), 52.41 (—NH—CH—), 51.96 (—NH—CH—), 47.38-44.93
(family of CH2 PVC peaks), 31.99 (CH2), 30.46 (CHz), 30.35 (CH2), 29.67 (CH>), 29.65 (CH>),
29.63 (CH2), 29.59 (CHy), 29.41 (CH3), 29.37 (CH2), 29.34 (CHz), 29.30 (CH>), 28.72 (CH2),
28.68 (CH2), 28.60 (CHz), 27.73 (CH2), 27.31 (CH2), 26.00 (CHz), 25.90 (CH3), 22.79 (CH2),

14.25 (CHs).

IR (neat): 3381 (w, amide N—H), 2954 (s, alkane C—H), 2926 (s, alkane C—H), 2855
(m, alkane C—H), 1737 (s, ester C=0), 1677 (m, amide C=0), 1657 (m, amide C=0), 1580 (m,
amide N—H bending), 1551 (m, amide N—H bending), 1255 (s, ester C—0), 1199 (s, ester

C—0), 616 (w, C—Cl).

Preparation of PVC-12.0%-nDec (2.6°d)
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To a 50mL round bottom flask was added PVC-12.0%-Ns(2.5") (919.1 mg,
14.71 mmol), alkyne 2.2d (5.100g, 5.464 mmol), and 3-pentanone (14.7 mL). The reaction
mixture was heated to 90 °C for 48 h. The resulting polymer was purified via precipitation in
100 mL of MeOH/hexanes (70/30) three times. The polymer was filtered and dried to give a

pale yellow solid (1.489 g).

IH NMR (500 MHz, CDCls, 3, ppm): 11.63-11.05 (br, m), 8.57-8.06 (br, m), 6.83-6.07
(br, m), 4.97-4.80 (br, s), 4.80—-4.66 (br, s), 4.66—4.52 (br, s), 4.52—4.33 (br, m), 4.33-4.23 (br,
s), 4.23-4.08 (br, m), 4.08-3.86 (br, s), 3.86—3.34 (br, m), 3.16—-2.59 (br, m), 2.59-2.21 (br, m),

2.21-1.83 (br, m), 1.81-1.50 (br, m), 1.50—1.03 (br, m), 1.03-0.60 (br, m).

13C NMR (126 MHz, CDCls, 8, ppm): 172.48 (C=0), 170.97 (C=0), 161.15 (C=0),
156.55 (C=0), 138.57 (triazole —C=C—), 132.03 (triazole —C=C—), 66.21 (—CH,—O—), 65.87
(—CH2—0—), 65.12 (—CH>—0—), 64.93 (—CH,—O—), 57.02-54.99 (PVC —CH—CIl— and PVC
—CH—triazole), 52.42 (—NH—CH—), 51.96 (—NH—CH—), 47.42-45.41 (Family of CH2 PVC
peaks), 32.01 (CH2), 30.46 (CH2), 30.35 (CHz), 29.67 (CH2), 29.65 (CH2), 29.61 (CH), 29.42
(CHz), 29.38 (CHz), 29.35 (CHz), 29.31 (CH2), 28.73 (CH2), 28.70 (CH2), 28.62 (CH2), 27.75

(CH2), 27.32 (CH2), 26.01 (CH2), 25.92 (CHz), 22.80 (CH2), 14.24 (CHa).
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IR (neat): 3379 (w, amide N—H), 2955 (s, alkane C—H), 2926 (s, alkane C—H), 2855
(m, alkane C—H), 1739 (s, ester C=0), 1676 (s, amide C=0), 1655 (m, amide C=0), 1579 (m,
amide N—H bending), 1551 (s, amide N—H bending), 1259 (s, ester C—0), 1198 (s, ester C—0),

616 (w, C—Cl).

Preparation of PVC-4.4%-TEGMe (2.6e)
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To a 50 mL round bottom flask was added PVC-4.4%-Nz (2.5 ) (1.064 g, 17.02 mmol),
alkyne 2.2e (2.036 g, 2.127 mmol), and 3-pentanone (17 mL). The reaction mixture was heated
to 90 °C for 48 h. The resulting polymer was purified via precipitation in 100 mL of MeOH four

times. The polymer was filtered and dried to give a pale yellow solid (1.159 g).

IH NMR (500 MHz, CDCls, 5, ppm): 11.71-11.14 (br, m), 8.44-8.19 (br, m), 6.70-6.29
(br, m), 4.98-4.82 (br, s), 4.82-4.67 (br, s), 4.67-4.52 (br, m), 4.52—-4.37 (br, m), 4.37-4.09 (br,
m), 3.85-3.58 (br, m), 3.58-3.45 (br, m), 3.36 (s), 2.95-2.61 (br, m), 2.61-2.46 (br, m), 2.46—

2.22 (br, m), 2.22-1.68 (br, m).

13C NMR (126 MHz, CDCls, 8, ppm): 172.47 (C=0), 172.37 (C=0), 170.95 (C=0),

170.77 (C=0), 162.32 (C=0), 161.19 (C=0), 156.53 (C=0), 138.63 (triazole —C=C—), 132.02
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(triazole —C=C-), 72.54 (—CH»—O-—), 72.00 (—CH»—O-), 71.95 (—CH—O—), 70.70
(—CH2—0—), 70.67 (—CH—0O—), 70.63 (—CH»—O—), 69.13 (—CH>—O—), 69.09 (—CH—0—),
68.87 (—CH—O—), 64.88 (—CH—O—), 64.60 (—CH—O-—), 63.97 (—CH,—O—), 63.80
(—CH—0O—), 61.81 (—CH—0—), 59.11 (CHs), 57.10-55.00 (PVC —CH—Cl— and PVC
—CH—triazole), 52.31 (-NH—CH—), 51.92 (—NH—CH—), 47.36-44.90 (family of CH2 PVC

peaks), 30.17 (CHz), 27.35 (CHz), 27.06 (CHo).

IR (neat): 3380 (w, amide N—H), 2911 (s, alkane C—H), 2877 (s, alkane C—H), 1739
(s, ester C=0), 1676 (s, amide C=0), 1653 (m, amide C=0), 1579 (m, amide N—H bending),
1552 (s, amide N—H bending), 1254 (s, ester C—0), 1199 (s, ester C—0), 1105 (s, ether C—0),

615 (w, C—Cl).

Preparation of PVC-12.0%-TEGMe (2.6'e)
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To a 25 mL round bottom flask was added PVC-12.0%-N3 2.5" (285.1 mg, 4.562 mmol),
alkyne 2.2e (1.642g, 1.716 mmol), and 3-pentanone (4.6 mL). The reaction mixture was
heated to 90 °C for 48 h. The resulting polymer was purified via precipitation in 40 ml of MeOH

four times. The polymer was filtered and dried to give a pale yellow solid (550.8 mg).
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H NMR (500 MHz, CDCls, &, ppm): 11.71-11.13 (br, s), 8.59-8.20 (br, s), 6.70-6.13
(br, m), 5.02-4.81 (br, s), 4.81-4.67 (br, s), 4.67—-4.51 (br, m), 4.51-4.09 (br, m), 3.92-3.55 (br,

m), 3.57—3.43 (br, m), 3.42-3.27 (br, s), 2.95-2.42 (br, m), 2.44—1.70 (br, m).

13C NMR (126 MHz, CDCls, 8, ppm): 172.49 (C=0), 170.96 (C=0), 161.37 (C=0),
156.54 (C=0), 132.10 (triazole —C=C—), 72.58 (—CH—O—), 72.04 (—CH—O—), 70.70
(—CH2—0—), 70.66 (—CH»—O—), 69.12 (—CH»—O—), 68.88 (—CH,—O—), 64.89 (—CH,—O—),
64.62 (—CH2—0—), 63.99 (—CH,—0—), 63.82 (—CH2—0—), 61.86 (—CH2—O—), 59.14 (CHs),
57.10-56.00 (PVC —CH—Cl— and PVC —CH—triazole), 51.93 (—NH—CH—), 47.39-45.81

(family of CH2 PVC peaks), 30.18 (CH2), 27.10 (CHy).

IR (neat): 3334 (m, amide N—H), 2881 (s, alkane C—H), 1736 (s, ester C=0), 1676 (s,
amide C=0), 1542 (m, amide N—H bending), 1254 (s, ester C—0), 1199 (s, ester C—0), 1108

(s, ether C—0), 612 (w, C—CI).

Preparation of PVC-4.4%-TEGBu (2.6f)
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To a 50 mL round bottom flask was added PVC-4.4%-Nz (2.5 ) (1.008 g, 16.13 mmol),

alkyne 2.2f (2.270 g, 2.017 mmol), and 3-pentanone (15 mL). The reaction mixture was heated
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to 90 °C for 72 h. The resulting polymer was purified via precipitation in 100 mL of MeOH four

times. The polymer was filtered and dried to give a pale yellow solid (974.5 mg).

H NMR (500 MHz, CDCls, &, ppm): 11.53-11.04 (br, s), 8.44-8.19 (br, s), 6.68-6.62
(br, m), 4.99-4.82 (br, s), 4.82—-4.68 (br, s), 4.66—4.52 (br, m), 4.52—-4.36 (br, m), 4.38—-4.06 (br,
m), 3.87-3.65 (br, m), 3.66-3.59 (br, m), 3.60-3.52 (br, m), 3.44 (t, J = 6.7 Hz), 2.97-2.62 (br,
m), 2.62-2.47 (br, m), 2.48-2.22 (br, m), 2.22-1.81 (br, m), 1.61-1.48 (br, m), 1.44-1.29 (br,

m), 0.90 (t, J = 7.4 Hz).

13C NMR (126 MHz, CDCls, 8, ppm): 172.49 (C=0), 170.94 (C=0), 161.57 (C=0),
156.55 (C=0), 138.67 (triazole —C=C—), 71.30 (—CH2—O—), 70.78 (—CH:—O—), 70.71
(—CH2—0—), 70.66 (—CH»—O—), 70.16 (—CH»—O—), 69.13 (—CH,—O—), 68.90 (—CH,—O—),
64.92 (—CH,—0—), 64.62 (—CH—0—), 64.01 (—CH>—0—), 63.84 (—CH—O—), 57.11-55.01
(PVC —CH—Cl— and PVC —CH—triazole), 52.35 (-NH—CH—), 51.94 (—NH—CH—), 47.38—
44.93 (family of CHz PVC peaks), 31.82 (CHz), 30.18 (CHy), 27.02 (CH2), 19.39 (CH2), 14.07

(CH3).

IR (neat): 3326 (m, amide N—H), 2958 (s, alkane C—H), 2934 (s, alkane C—H), 2872
(s, alkane C—H), 1739 (s, ester C=0), 1672 (s, amide C=0), 1536 (s, amide N—H bending),

1254 (s, ester C—0), 1195 (s, ester C—0), 1119 (s, ether C—0), 615 (w, C—CI).

Preparation of PVC-12.0%-TEGBuU (2.6f)
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To a 25mL round bottom flask was added PVC-12.0%-Ns (2.5") (294.0 mg,
4.704 mmol), alkyne 2.2f (2.008g, 1.784 mmol), and 3-pentanone (4.7 mL). The reaction
mixture was heated to 90 °C for 48 h. The resulting polymer was purified via precipitation in
40 mL of MeOH four times. The polymer was filtered and dried to give a pale yellow solid

(513.2 mg).

IH NMR (500 MHz, CDCls, &, ppm): 11.52-11.09 (br, s), 8.58-8.16 (br, s), 6.51 (br, m),
5.03-4.82 (br, s), 4.82—-4.68 (br, s), 4.68—-4.53 (br, m), 4.53—-4.05 (br, m), 3.86-3.51 (br, s), 3.45
(s), 2.95-2.61 (br, m), 2.61-2.42 (br, m), 2.42-2.24 (br, m), 2.24-1.77 (br, m), 1.72-1.46 (br,

m), 1.46-1.23 (br, m), 1.09-0.72 (br, m).

13C NMR (126 MHz, CDCls, 8, ppm): 172.46 (C=0), 170.93 (C=0), 170.76 (C=0),
161.33 (C=0), 161.13 (C=0), 156.60 (C=0), 139.68 (Triazole —C=C—), 138.62 (triazole
—C=C—), 77.41 (—CH—0—), 77.16 (~CH,—O—), 76.91 (—CH>—0—), 71.28 (—CH,—0O—), 70.77
(—CH—0—), 70.72 (—CH>—0—), 70.70 (—CH2—O—), 70.66 (—CH>—O—), 70.15 (—CH,—O—),
69.11 (—CH—O—), 68.88 (—CH—O—), 64.89 (—CH—O—), 64.60 (—CH—O—), 63.81

(—CHz—0-), 61.72 (—CH2—0—), 57.08-54.98 (PVC —CH—CI— and PVC —CH—triazole), 52.31
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(—NH—CH—), 51.91 (-NH—CH—), 47.37-44.92 (family of CH2 PVC peaks), 31.81 (CH2), 30.17

(CHz), 27.41 (CH2), 27.06 (CH2), 19.38 (CH>), 14.05 (CHs).

IR (neat): 3380 (m, amide N—H), 2957 (s, alkane C—H), 2933 (s, alkane C—H), 2871
(s, alkane C—H), 1739 (s, ester C=0), 1677 (s, amide C=0), 1653 (m, amide C=0), 1579 (m,
amide N—H bending), 1552 (s, amide N—H bending), 1254 (s, ester C—0), 1195 (s, ester C—0),

1116 (s, ether C—0), 614 (w, C—Cl).

5.2 Experimental Section for Chapter 3 and Chapter 4
521 Materials

Polyvinyl chloride (PVC) (Mw = 43,000, Mn = 22,000) was purchased from Sigma-
Aldrich and was purified before use by the following method:>7 PVC (40.05 g, 640.8 mmol) was
dissolved in 200 mL of THF. The polymer was precipitated by addition to 1 L of MeOH. The
precipitate was filtered, dissolved in 230 mL of THF, and precipitated again in 1 L of MeOH.
The precipitate was filtered, dissolved in 230 mL of THF, and finally precipitated in 2 L of MeOH.
The precipitate was filtered and dried under vacuum. Copper bromide (CuBr) was purchased
from Oakwood Chemical and was purified by the following method:® 7.08 g of CuBr was
suspended in 20 mL of glacial acetic acid, and stirred under nitrogen at room temperature
overnight. The solid was filtered using a Buchner funnel, washed with 200 mL of absolute
ethanol, followed by 100 mL of anhydrous diethyl ether. The solid CuBr was then dried under
vacuum, and stored under Nz at -20 °C. n-Butyl acrylate (BA) (>99%) was purchased from
Acros Organics. BA used in Chapter 3 was purified to remove the inhibitor by distillation under
reduced vacuum. BA used in Chapter 4 was purified to remove inhibitor by passing it neat
through basic Al2Os. 2-2-(2-ethoxyethoxy)ethyl acrylate (2EEA) was purchased from TCI
America and was purified to remove inhibitor by passing it neat through basic aluminum oxide.
N, N, N, N", N"-pentamethyldiethylenetriamine (PMDETA) (99%) was purchased from Sigma-

Aldrich and was purified before use by distillation under reduced vacuum. DMF (extra dry,
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99.8%) was purchased from Acros Organics, acetic acid (99.7%) and methanol (99.8%),
tetrahydrofuran (99.9%) were purchased from Fisher Chemical. Activated basic aluminum

oxide was purchased from Oakwood Chemical.

5.2.2 Measurements:

Nuclear magnetic resonance (NMR) spectra were recorded with a Bruker AVANCE llI
HD 4 channel 500 MHz Oxford Magnet NMR Spectrometer with Automation at ambient
temperature in CDClz as solvent. The signal of residual CHCIs was used as an internal standard
(*H NMR, & 7.26 ppm). Fourier transform infrared spectroscopy (FTIR) was recorded with a
Thermo-Nicolet 6700 Fourier Transform Infrared (FTIR) spectrometer equipped with a
Continuum microscope in transmission mode. A small portion of each sample was transferred
to an infrared transmitting substrate. The analytical spot size was approximately 100 microns
x 100 microns. OMNIC 8.0 software was used to perform data analysis. Glass transition
temperatures of polymers were measured using TA Instruments DSC Q2000 with a heat-cool-
heat protocol. DSC was equilibrated at 180 °C. First heat cycle: a scanning range of -180 to
240 °C at a heating rate of 10 °C min™. First cool cycle: 240 °C to -175 °C at 5 ° C min™.
Second heat cycle: -175 °C to 240 °C at 10 ° C min™*. Derivative thermogravimetry (DTG) and
thermal gravimetric analyses (TGA) were performed with TA Instrument TGA Q500. TGA was
performed within a scanning range of ambient to 900 °C at a heating rate of 10 °C min~* with
nitrogen purge. GPC was recorded with a Malvern Viscotek TDA 305 Triple Detector. Sample
was dissolved in THF with concentration 1 mg/mL. The column set used was PLgel 50A. The

flow rate was 1 mL/min. Injection volume was 100 pL.

5.2.3 Preparation of PVC Graft Copolymers for Chapter 3

Preparation of PVC-g-PBA (2 g scale)
To a 10 mL Schlenk flask was added PVC (500.0 mg, 8.000 mmol) and 3 mL of DMF.

The mixture was stirred and warmed slightly to fully dissolve the PVC. BA (2.87 mL, 20.0 mmol)
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was added to the solution. To a 2 mL vial was added CuBr (34.40 mg, 0.2398 mmol) and 0.75
mL of DMF to form a suspension. The CuBr suspension was transferred to the PVC solution
by pipet. Residual CuBr was washed into the PVC solution using an additional 0.25 mL of DMF.
PMDETA (50 uL, 0.24 mmol) was added, and the reaction mixture was degassed via four
cycles of freeze-pump-thaw, and then heated to 100 °C while stirring under nitrogen. After 24
h, an aliquot was taken to analyze the crude reaction by *H NMR using CDCls as solvent
(%conv.nvr = 81%). The resulting polymer was precipitated by addition to 200 mL of MeOH,
followed by stirring for 20 min. Then MeOH was decanted. The polymer was stirred overnight
in an additional 200 mL of MeOH. The solution phase was decanted, the polymer was washed
with stirring with two additional portions of MeOH (200 mL x 2). The polymer was filtered and
dried under vacuum to yield 2.4810 g (wt% plasticizergrav. = 80%) of a pale green, pliable

polymer.

IH NMR (500 MHz, CDCl3) 5 4.644.54 (br s), 4.53-4.37 (br m), 4.37-4.23 (br s), 4.17—
3.85 (br s), 2.50-2.21 (br m), 2.20-1.98 (br m), 1.97-1.80 (br m), 1.75-1.56 (br m), 1.51-1.44
(br m), 1.43-1.29 (br m), 0.93 (t, J = 7.3 Hz). Based by 'H NMR integration: PBA : PVC = 1.6 :

1.0.

FT-IR: 2960 (s, alkane C—H), 2935 (s, alkane C—H), 2873 (s, alkane C—H), 1733 (s,

ester C=0), 1163 (s, ester C—-0).

Preparation of PVC-g-75%PBA-c0-25%P2EEA (2 g scale)

To a 10 mL Schlenk flask was added PVC (500.0 mg, 8.000 mmol) and 3 mL of DMF.
The mixture was stirred and warmed slightly to fully dissolve the PVC. BA (2.15 mL, 15.0 mmol)
and 2EEA (0.93 mL, 5.0 mmol) were added to the solution. To a 2 mL vial was added CuBr
(34.32 mg, 0.2392 mmol) and 0.75 mL of DMF to form a suspension. The CuBr suspension
was transferred to the PVC solution by pipet. Residual CuBr was washed into the PVC solution

using an additional 0.25 mL of DMF. PMDETA (50 pL, 0.24 mmol) was added, and the reaction
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mixture was degassed via four cycles of freeze-pump-thaw, and then heated to 100 °C while
stirring under nitrogen. After 24 h, an aliquot was taken to analyze the crude reaction by H
NMR using CDClIz as solvent (%conv.nvr = 73%). The resulting polymer was precipitated by
addition to 200 mL of MeOH, followed by stirring for 20 min. Then MeOH was decanted. The
polymer was stirred in an additional 200 mL of MeOH overnight. The solution phase was
decanted. The polymer was washed with stirring with two additional portions of MeOH (200 mL
x 2). The polymer was filtered and dried under vacuum to yield 2.0065 g (wt% plasticizergrav. =

75%) of a pale yellow, pliable polymer.

H NMR (500 MHz, CDCls) & 4.71-4.53 (br m), 4.53—4.37 (br m), 4.37-4.25 (br m),
4.25-4.12 (br s), 4.12-3.85 (br s), 3.75-3.65 (br m), 3.65-3.60 (br m), 3.57 (br m), 3.52 (¢, J =
7.0 Hz), 2.53-2.22 (br m), 2.22-1.97 (br m), 1.97-1.80 (br s), 1.80-1.57 (br m), 1.43-1.29 (br
m), 1.21 (t, J = 7.0 Hz), 0.93 (t, J = 7.4 Hz). Based by *H NMR integration: (PBA + P2EEA) :

PVC=1.4:1.0; PBA: P2EEA=3.0:1.0.

FT-IR: 2960 (s, alkane C—H), 2873 (s, alkane C—H), 1736 (s, ester C=0), 1169 (s,

ester C—0). 1116 (s, ether C—0)

Preparation of PVC-g-50%PBA-c0-50%P2EEA (2 g scale)

To a 10 mL Schlenk flask was added PVC (500.0 mg, 8.000 mmol) and DMF (3 mL).
The mixture was stirred and warmed slightly to fully dissolve the PVC. BA (1.43 mL, 9.97 mmol)
and 2EEA (1.85 mL, 9.99 mmol) were added to the solution. To a 2 mL vial was added CuBr
(34.22 mg, 0.2386 mmol) and 0.75 mL of DMF to form a suspension. The CuBr suspension
was transferred to the PVC solution by pipet. Residual CuBr was washed into the PVC solution
using an additional 0.25 mL of DMF. PMDETA (50 pL, 0.24 mmol) was added, and the reaction
mixture was degassed via four cycles of freeze-pump-thaw, and then heated to 100 °C while
stirring under nitrogen. After 24 h, an aliquot was taken to analyze the crude reaction by H

NMR using CDCls as solvent (%conv.nmr = 84%). The resulting polymer was precipitated by
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addition to 200 mL of MeOH, followed by stirring for 20 min. Then MeOH was decanted. The
polymer was stirred in an additional 200 mL of MeOH overnight. The solution phase was
decanted. The polymer was washed with stirring with two additional portions of MeOH (200 mL
x 2). The polymer was filtered and dried under vacuum to yield 1.9994 g (wt% plasticizergray. =

75%) of a pale yellow, pliable polymer.

H NMR (500 MHz, CDCls) & 4.66—4.53 (br m), 4.53—4.38 (br m), 4.38-4.25 (br m),
4.25-4.11 (br s), 4.11-3.89 (br m), 3.73-3.65 (br m), 3.65-3.60 (br m), 3.60-3.55 (br m), 3.52
(9, J = 7.0 Hz), 2.51-2.22 (br m), 2.22-1.97 (br m), 1.97-1.80 (br m), 1.76-1.52 (br m), 1.51—
1.43 (br m), 1.43-1.28 (br m), 1.20 (t, J = 7.0 Hz), 0.94 (t, J = 7.3 Hz). Based by 'H NMR

integration: (PBA + P2EEA) : PVC = 1.3 : 1.0; PBA : P2ZEEA=1.0: 1.0.

FT-IR: 2962 (s, alkane C—H), 2873 (s, alkane C—H), 1735 (s, ester C=0), 1170 (s,

ester C—0). 1116 (s, ether C—0)

Preparation of PVC-g-25%PBA-co-75%P2EEA (2 g scale)

To a 10 mL Schlenk flask was added PVC (500.0 mg, 8.000 mmol) and DMF (3 mL).
The mixture was stirred and warmed slightly to fully dissolve the PVC. BA (0.72 mL, 5.02 mmol)
and 2EEA (2.78 mL, 15.0 mmol) were added to the solution. To a 2 mL vial was added CuBr
(34.38 mg, 0.2397 mmol) and 0.75 mL of DMF to form a suspension. The CuBr suspension
was transferred to the PVC solution by pipet. Residual CuBr was washed into the PVC solution
using an additional 0.25 mL of DMF. PMDETA (50 pL, 0.24 mmol) was added, and the reaction
mixture was degassed via four cycles of freeze-pump-thaw, and then heated to 100 °C while
stirring under nitrogen. After 24 h, an aliquot was taken to analyze the crude reaction by H
NMR using CDCls as solvent (%conv.nmr = 80%). The resulting polymer was precipitated by
addition to 200 mL of MeOH, followed by stirring for 20 min. The majority of MeOH was
decanted. The polymer was stirred in an additional 200 mL of MeOH overnight. The solution

phase was decanted. The polymer was washed with stirring with two additional portions of
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MeOH (200 mL x 2). The polymer was filtered and dried under vacuum to yield 1.8376 g (wt%

plasticizergav. = 73%) of a pale yellow, pliable polymer.

H NMR (500 MHz, CDCls) & 4.65-4.53 (br m), 4.53—4.38 (br m), 4.38—4.26 (br m),
4.26-4.10 (br s), 4.10-3.91 (br m), 3.74-3.65 (br m), 3.65-3.60 (br m), 3.60—3.55 (br m), 3.52
(q, J = 7.0 Hz), 2.52-2.23 (br m), 2.23-1.97 (br m), 1.97-1.82 (br s), 1.73-1.45 (br m), 1.42—
1.30 (br m), 1.20 (t, J = 7.0 Hz), 0.94 (t, J = 7.3 Hz). Based by 'H NMR integration: (PBA +

P2EEA) : PVC =1.1:1.0; PBA: P2EEA=1.0:2.9.

FT-IR: 2962 (s, alkane C—H), 2873 (s, alkane C—H), 1736 (s, ester C=0), 1169 (s,

ester C—0). 1116 (s, ether C—0)

Preparation of PVC-g-P2EEA (2 g scale)

To a 10 mL Schlenk flask was added PVC (500.7 mg, 8.011 mmol) and DMF (3 mL).
The mixture was stirred and warmed slightly to fully dissolve the PVC. 2EEA (3.70 mL, 20.0
mmol) were added to the solution. To a 2 mL vial was added CuBr (34.37 mg, 0.2396 mmol)
and 0.75 mL of DMF to form a suspension. The CuBr suspension was transferred to the PVC
solution by pipet. Residual CuBr was washed into the PVC solution using an additional 0.25
mL of DMF. PMDETA (50 pL, 0.24 mmol) was added, and the reaction mixture was degassed
via four cycles of freeze-pump-thaw, and then heated to 100 °C while stirring under nitrogen.
After 24 h, an aliquot was taken to analyze the crude reaction by *H NMR using CDClz as
solvent (%conv.nvr = 80%). The resulting polymer was precipitated by addition to 200 mL of
MeOH, followed by stirring for 20 min. The majority of MeOH was decanted. The polymer was
stirred in an additional 200 mL of MeOH overnight. The solution phase was decanted. The
polymer was washed with stirring with two additional portions of MeOH (200 mL x 2). The
polymer was filtered and dried under vacuum to yield 1.8646 g (wt% plasticizergrav. = 73%) of a

pale green, pliable polymer.
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!H NMR (500 MHz, CDCls) & 4.64-4.53 (br m), 4.53-4.38 (br m), 4.38-4.26 (br m),
4.26-4.02 (br s), 3.74-3.64 (br m), 3.64-3.60 (br m), 3.60-3.55 (br m), 3.52 (q, J = 7.1 Hz),
2.51-2.23 (br m), 2.23-1.97 (br m), 1.97-1.83 (br m), 1.73-1.56 (br m), 1.55-1.39 (br m), 1.20

(t, J = 7.0 Hz). Based by 'H NMR integration: P2EEA : PVC =1.0: 1.0.

FT-IR: 2973 (s, alkane C—H), 2872 (s, alkane C—H), 1736 (s, ester C=0), 1171 (s,

ester C—0). 1120 (s, ether C—0)

Control experiment without PVC

To a 10 mL Schlenk flask was added a suspension of CuBr (34.56 mg, 0.2409 mmol)
and 4 mL of DMF. PMDETA (50 pL, 0.24 mmol), BA (1.43 mL, 9.97 mmol), and 2EEA (1.85
mL, 9.99 mmol) were added to the suspension. The reaction mixture was degassed via four
cycles of freeze-pump-thaw, and then heated to 100 °C while stirring under nitrogen for 24 h.
An aliquot was taken to analyze the crude reaction by *H NMR using CDCls as solvent

(%conv.nmr = 23%).

Preparation of PVC-g-PBA (14 g scale)

To a 50 mL Schlenk flask was added PVC (3.00 g, 48.0 mmol) and DMF (18 mL). The
mixture was stirred and warmed slightly to fully dissolve the PVC. BA (17.2 mL, 120 mmol) was
added to the solution. To a 20 mL vial was added CuBr (206.50 mg, 1.4395 mmol) and 6 mL
of DMF was used to transfer CuBr to the PVC solution by pipet. PMDETA (0.30 mL, 1.43 mmol)
was added, and the reaction mixture was degassed via four cycles of freeze-pump-thaw, and
then heated to 100 °C while stirring under nitrogen. After 24 h, an aliquot was taken to analyze
the crude reaction by *H NMR using CDCIs as solvent (%conv.nur = 87%). The resulting
polymer was diluted in 20 mL of THF and precipitated by addition to 400 mL of MeOH. The
polymer was washed with stirring with two additional portions of MeOH (400 mL x 2) and gently
stirred in MeOH overnight. Then MeOH was decanted. The polymer was dissolved in 30 mL of

THF and then stirred in 400 mL of MeOH overnight. The polymer was washed with stirring with

179



two additional portions of MeOH (400 mL x 2). The polymer was filtered and dried under

vacuum to yield 14.98 g (wt% plasticizergrav. = 80%) of a pale green, pliable polymer.

'H NMR (500 MHz, CDClIs) & 4.65—4.54 (br m), 4.54-4.38 (br m), 4.38-4.23 (br m),
4.15-3.85 (br m), 2.50-2.22 (br m), 2.22-1.97 (br m), 1.97-1.79 (br m), 1.77-1.56 (br m), 1.51—
1.43 (br m), 1.43-1.29 (br m), 0.94 (t, J = 7.3 Hz). Based by 'H NMR integration: PBA : PVC =

1.4:1.0.

Preparation of PVC-g-75%PBA-c0-25%P2EEA (14 g scale)

To a 50 mL Schlenk flask was added PVC (3.00 g, 48.0 mmol) and DMF (18 mL). The
mixture was stirred and warmed slightly to fully dissolve the PVC. BA (12.9 mL, 90.0 mmol)
and 2EEA (5.56 mL, 30.0 mmol) were added to the solution. To a 20 mL vial was added CuBr
(206.36 mg, 1.4386 mmol) and 6 mL of DMF was used to transfer CuBr to the PVC solution by
pipet. PMDETA (0.30 mL, 1.43 mmol) was added, and the reaction mixture was degassed via
four cycles of freeze-pump-thaw, and then heated to 100 °C while stirring under nitrogen. After
24 h, an aliquot was taken to analyze the crude reaction by *H NMR using CDCls as solvent
(%conv.nvr = 88%). The resulting polymer was diluted in 20 mL of THF and precipitated by
addition to 400 mL of MeOH. The polymer was washed with stirring with two additional portions
of MeOH (400 mL x 2) and gently stirred in MeOH overnight. The polymer was then washed
with stirring with additional portion of 400 mL of MeOH). The polymer was filtered and dried

under vacuum to yield 13.99 g (wt% plasticizergav. = 79%) of a pale yellow, pliable polymer.

!H NMR (500 MHz, CDCls) & 4.69-4.54 (br s), 4.54-4.38 (br m), 4.38—4.25 (br m),
4.25-4.12 (br s), 4.12-3.87 (br m), 3.74-3.65 (br m), 3.65-3.60 (br m), 3.60-3.55 (br m), 3.52
(q, J = 7.0 Hz), 2.54-2.22 (br m), 2.22-1.97 (br m), 1.97-1.79 (br m), 1.72-1.56 (br m), 1.52—
1.43 (br m), 1.43-1.29 (br m), 1.21 (t, J = 7.0 Hz), 0.94 (t, J = 7.4 Hz). Based by *H NMR

integration: (PBA + P2EEA) : PVC =1.3:1.0; PBA: P2ZEEA=3.0:1.0.

Preparation of PVC-g-50%PBA-c0-50%P2EEA (14 g scale)
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To a 50 mL Schlenk flask was added PVC (3.00 g, 48.0 mmol) and DMF (18 mL). The
mixture was stirred and warmed slightly to fully dissolve the PVC. BA (8.60 mL, 60.0 mmol)
and 2EEA (11.12 mL, 60.03 mmol) were added to the solution. To a 20 mL vial was added
CuBr (206.18 mg, 1.4373 mmol) and 6 mL of DMF was used to transfer CuBr to the PVC
solution by pipet. PMDETA (0.30 mL, 1.43 mmol) was added, and the reaction mixture was
degassed via four cycles of freeze-pump-thaw, and then heated to 100 °C while stirring under
nitrogen. After 24 h, an aliquot was taken to analyze the crude reaction by *H NMR using CDCl3z
as solvent (%conv.nvr = 86%). The resulting polymer was diluted in 20 mL of THF and
precipitated by addition to 400 mL of MeOH. The polymer was washed with stirring with two
additional portions of MeOH (400 mL x 2) and gently stirred in MeOH overnight. The polymer
was then washed with stirring with additional portion of 400 mL). The polymer was filtered and
dried under vacuum of MeOH to yield 13.14 g (wt% plasticizergav. = 77%) of a pale yellow,

pliable polymer.

1H NMR (500 MHz, CDCls) & 4.68—4.54 (br s), 4.54—4.38 (br s), 4.38-4.25 (br m), 4.25—
4.12 (brs), 4.12-3.90 (br s), 3.72-3.65 (br m), 3.65-3.60 (br m), 3.60—3.55 (br m), 3.52 (q, J =
7.0 Hz), 2.50-2.23 (br m), 2.23-1.98 (br m), 1.98-1.82 (br m), 1.72-1.57 (br m), 1.51-1.44 (br
m), 1.44-1.29 (br m), 1.21 (t, J = 7.0 Hz), 0.94 (t, J = 7.3 Hz). Based by 'H NMR integration:

(PBA + P2EEA) : PVC =1.0:1.0; PBA: P2EEA=1.0:1.0.

Preparation of PVC-g-25%PBA-c0o-75%P2EEA (14 g scale)

To a 50 mL Schlenk flask was added PVC (3.00 g, 48.0 mmol) and DMF (18 mL). The
mixture was stirred and warmed slightly to fully dissolve the PVC. BA acrylate (4.30 mL, 30.0
mmol) and 2EEA (16.67 mL, 89.98 mmol) were added to the solution. To a 20 mL vial was
added CuBr (206.22 mg, 1.4376 mmol) and 6 mL of DMF was used to transfer CuBr to the
PVC solution by pipet. PMDETA (0.30 mL, 1.43 mmol) was added, and the reaction mixture
was degassed via four cycles of freeze-pump-thaw, and then heated to 100 °C while stirring

under nitrogen. After 24 h, an aliquot was taken to analyze the crude reaction by *H NMR using
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CDCls as solvent (%conv.nwr = 72%). The resulting polymer was diluted in 20 mL of THF and
precipitated by addition to 400 mL of MeOH. The polymer was washed with stirring with two
additional portions of MeOH (400 mL x 2) and gently stirred in MeOH overnight. The polymer
was then washed with stirring with additional portion of 400 mL of MeOH). The polymer was
filtered and dried under vacuum to yield 13.66 g (wt% plasticizergav. = 78%) of a pale yellow,

pliable polymer.

IH NMR (500 MHz, CDCls) 5 4.59 (br s), 4.54—4.38 (br s), 4.38—4.26 (br m), 4.26—4.11
(brs), 4.04 (br s), 3.73-3.65 (br m), 3.63 (br s), 3.57 (br m), 3.52 (q, J = 7.0 Hz), 2.53-2.23 (br
m), 2.23-1.98 (br m), 1.98-1.81 (br s), 1.75-1.59 (br m), 1.55-1.43 (br m), 1.37 (br m), 1.20 (t,
J=7.0Hz), 0.94 (t, J = 7.2 Hz). Based by 'H NMR integration: (PBA + P2EEA) : PVC = 1.0 :

2.9;PBA:P2EEA=12:1.0.

Preparation of PVC-g-P2EEA (14 g scale)

To a 50 mL Schlenk flask was added PVC (3.00 g, 48.0 mmol) and DMF (18 mL). The
mixture was stirred and warmed slightly to fully dissolve the PVC. 2EEA (22.23 mL, 120.0 mmol)
was added to the solution. To a 20 mL vial was added CuBr (206.89 mg, 1.4422 mmol) and 6
mL of DMF was used to transfer CuBr to the PVC solution by pipet. PMDETA (0.30 mL, 1.43
mmol) was added, and the reaction mixture was degassed via four cycles of freeze-pump-thaw,
and then heated to 100 °C while stirring under nitrogen. After 24 h, an aliquot was taken to
analyze the crude reaction by *H NMR using CDClz as solvent (%conv.nwr = 78%). The
resulting polymer was diluted in 20 mL of THF and precipitated by addition to 400 mL of MeOH.
The polymer was washed with stirring with two additional portions of MeOH (400 mL x 2) and
gently stirred in MeOH overnight. The polymer was then washed with stirring with additional
portion of 400 mL of MeOH). The polymer was filtered and dried under vacuum to yield 13.34

g (Wt% plasticizergrav. = 78%) of a pale yellow, pliable polymer.
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H NMR (500 MHz, CDCls) & 4.64—4.54 (br s), 4.54-4.38 (br s), 4.38-4.26 (br m), 4.26—
4.02 (br s), 3.73-3.65 (br m), 3.65-3.60 (br m), 3.60-3.55 (br m), 3.52 (q, J = 7.0 Hz), 2.51—
2.23 (br s), 2.23-1.98 (br m), 1.98-1.84 (br s), 1.77-1.60 (br s), 1.50-1.38 (br m), 1.20 (t, J =

7.0 Hz). Based by 'H NMR integration: P2EEA : PVC = 0.8 : 1.0.

524 Preparation of PVC Graft Copolymers for Chapter 4

Control Experiment: Polymerization without PVC as macroinitiator (PBA, 2 h)

To a 10 mL Schlenk flask was added DMF (3 mL) and BA (2.87 mL, 20.0 mmol). To a
2 mL vial was added CuBr (34.43 mg, 0.2400 mmol) and 0.75 mL of DMF to form a suspension.
The CuBr suspension was transferred to the PVC solution by pipet. Residual CuBr was washed
into the PVC solution using 0.25 mL of DMF. PMDETA (50 pL, 0.24 mmol) was added, and the
reaction mixture was degassed via four cycles of freeze-pump-thaw, and then heated to 100
°C and stirred under nitrogen. After 2 h, an aliquot was taken to analyze the crude reaction by

IH NMR using CDClIs as solvent (%conv.nur = 10%).

Control Experiment: Polymerization without PVC as macroinitiator (P2EEA, 2 h)

To a 10 mL Schlenk flask was added DMF (3 mL) and 2EEA (3.70 mL, 20.0 mmol). To
a 2 mL vial was added CuBr (34.34 mg, 0.2394 mmol) and 0.75 mL of DMF to form a
suspension. The CuBr suspension was transferred to the PVC solution by pipet. Residual CuBr
was washed into the PVC solution using 0.25 mL of DMF. PMDETA (50 pL, 0.24 mmol) was
added, and the reaction mixture was degassed via four cycles of freeze-pump-thaw, and then
heated to 100 °C and stirred under nitrogen. After 2 h, an aliqguot was taken to analyze the

crude reaction by *H NMR using CDCIlz as solvent (%conv.nvr = 6%).

Preparation of PVC-g-PBA-2.5 (2 h)
To a 10 mL Schlenk flask was added PVC (500.6 mg, 8.010 mmol) and DMF (3 mL).
The mixture was stirred and slightly warmed to fully dissolve the PVC in the DMF. BA (2.87 mL,

20.0 mmol) was added to the solution. To a 2 mL vial was added CuBr (34.43 mg, 0.2400 mmol)
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and 0.75 mL of DMF to form a suspension. The CuBr suspension was transferred to the PVC
solution by pipet. Residual CuBr was washed into the PVC solution using 0.25 mL of DMF.
PMDETA (50 pL, 0.24 mmol) was added, and the reaction mixture was degassed via four
cycles of freeze-pump-thaw, and then heated to 100 °C and stirred under nitrogen. After 2 h,
an aliquot was taken to analyze the crude reaction by *H NMR using CDCls as solvent
(%conv.nvr = 78%). The resulting polymer was diluted in 1 mL of THF and precipitated by
addition to 200 mL of MeOH, followed by stirring for 20 min. Then MeOH was decanted. The
polymer was gently stirred in an additional 100 mL of MeOH overnight. The solution phase was
decanted. The product was rinsed with 100 mL of MeOH. The solution phase was decanted.
The product was dried under vacuum to yield 1.9721 g (wt% plasticizergav. = 75%) of a pale

green, pliable polymer.

IH NMR (500 MHz, CDClz) & 4.65-4.54 (br m), 4.54—4.38 (br m), 4.38-4.22 (br m),
4.16-3.86 (br m), 2.49-2.22 (br m), 2.22-1.97 (br m), 1.97-1.80 (br m), 1.70-1.57 (br m), 1.51—
1.43 (br m), 1.43-1.29 (br m), 0.93 (t, J = 7.4 Hz). Based by *H NMR integration: PBA : PVC =

1.4 :1.0; wt% plasticizernmr = 78%.

FTIR: 2962 (m, alkane C—H), 2935 (m, alkane C—H), 2873 (m, alkane C—H), 1736 (s,

ester C=0), 1165 (s, ester C—-0).

Preparation of PVC-g-75%PBA-c0-25%P2EEA-2.5 (2 h)

To a 10 mL Schlenk flask was added PVC (498.2 mg, 7.971 mmol) and 3 mL of DMF.
The mixture was stirred and slightly warmed to fully dissolve the PVC in the DMF. BA (2.15 mL,
15.0 mmol) and 2EEA (0.93 mL, 5.0 mmol) were added to the solution. To a 2 mL vial was
added CuBr (34.37 mg, 0.2396 mmol) and 0.75 mL of DMF to form a suspension. The CuBr
suspension was transferred to the PVC solution by pipet. Residual CuBr was washed into the
PVC solution using 0.25 mL of DMF. PMDETA (50 uL, 0.24 mmol) was added, and the reaction

mixture was degassed via four cycles of freeze-pump-thaw, and then heated to 100 °C and
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stirred under nitrogen. After 2 h, an aliquot was taken to analyze the crude reaction by *H NMR
using CDCls as solvent (%conv.nvr = 61%). The resulting polymer was precipitated by addition
to 200 mL of MeOH, followed by stirring for 30 min. Then MeOH was decanted. The polymer
was soaked in an additional 100 mL of MeOH overnight without stirring. The solution phase
was decanted. The product was rinsed with 100 mL of MeOH. The solution phase was
decanted. The polymer was dried under vacuum to yield 1.5463 g (wt% plasticizergrav. = 68%)

of a pale green, pliable polymer.

1H NMR (500 MHz, CDCls) & 4.66—4.54 (br s), 4.54-4.38 (br m), 4.38-4.24 (br m),
4.24-4.12 (br s), 4.12-3.89 (br m), 3.72-3.65 (br m), 3.65-3.60 (br m), 3.60-3.55 (br m), 3.52
(9, J = 7.0 Hz), 2.55-2.22 (br m), 2.22—1.97 (br m), 1.97-1.81 (br m), 1.70-1.57 (br m), 1.52—
1.44 (br m), 1.43-1.29 (br m), 1.21 (t, J = 7.0 Hz), 0.94 (t, J = 7.3 Hz). Based by H NMR
integration: (PBA + P2EEA) : PVC =1.0: 1.0; PBA : P2EEA = 3.0 : 1.0; wt% plasticizernwr =

61%.

FTIR: 2958 (m, alkane C—H), 2935 (m, alkane C—H), 2873 (m, alkane C—H), 1732 (s,

ester C=0), 1165 (s, ester C—0), 1115 (m, ether C—-0).

Preparation of PVC-g-50%PBA-c0-50%P2EEA-2.5 (2 h)

To a 10 mL Schlenk flask was added PVC (500.7 mg, 8.011 mmol) and DMF (3 mL).
The mixture was stirred and slightly warmed to fully dissolve the PVC in DMF. BA (1.43 mL,
9.97 mmol) and 2EEA (1.85 mL, 9.99 mmol) were added to the solution. To a 2 mL vial was
added CuBr (34.22 mg, 0.2386 mmol) and 0.75 mL of DMF to form a suspension. The CuBr
suspension was transferred to the PVC solution by pipet. Residual CuBr was washed into the
PVC solution using 0.25 mL of DMF. PMDETA (50 uL, 0.24 mmol) was added, and the reaction
mixture was degassed via four cycles of freeze-pump-thaw, and then heated to 100 °C and
stirred under nitrogen. After 2 h, an aliquot was taken to analyze the crude reaction by *H NMR

using CDCIs as solvent (%conv.nvr = 60%). The resulting polymer was precipitated by addition
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to 200 mL of MeOH, followed by stirring for 30 min. Then MeOH was decanted. The polymer
was left in an additional 100 mL of MeOH overnight without stirring. The solution phase was
decanted. The polymer was dried under mild house vacuum. The polymer (still containing
residual solvent) was washed with an additional 5 mL of MeOH, and the solvent decanted. The
product was thoroughly dried under vacuum to yield 1.5567 g (wt% plasticizergav. = 68%) of a

pale green, pliable polymer.

H NMR (500 MHz, CDCI3) d 4.65-4.54 (br m), 4.54—4.38 (br m), 4.38-4.25 (br m),
4.25-4.12 (br m), 4.12—-3.93 (br m), 3.72-3.65 (br m), 3.65-3.60 (br m), 3.60-3.55 (br m), 3.52
(q, J =7.0 Hz), 2.49-2.23 (br m), 2.23-1.97 (br m), 1.97-1.81 (br m), 1.74-1.57 (br m), 1.51—
1.43 (br m), 1.43-1.29 (br m), 1.21 (t, J = 7.0 Hz), 0.94 (t, J = 7.3 Hz). Based by *H NMR
integration: (PBA + P2EEA) : PVC = 0.9 : 1.0; PBA : P2EEA = 1.0 : 1.0; wt% plasticizernwr =

60%.

FTIR: 2974 (m, alkane C—H), 2931 (m, alkane C—H), 2873 (m, alkane C—H), 1736 (s,

ester C=0), 1169 (s, ester C—0), 1119 (m, ether C—-0).

Preparation of PVC-g-25%PBA-c0-75%P2EEA-2.5 (2 h)

To a 10 mL Schlenk flask was added PVC (500.6 mg, 8.010 mmol) and DMF (3 mL).
The mixture was stirred and slightly warmed to fully dissolve the PVC in DMF. BA (0.72 mL,
5.02 mmol) and 2EEA (2.78 mL, 15.0 mmol) were added to the solution. To a 2 mL vial was
added CuBr (34.43 mg, 0.2400 mmol) and 0.75 mL of DMF to form a suspension. The CuBr
suspension was transferred to the PVC solution by pipet. Residual CuBr was washed into the
PVC solution using 0.25 mL of DMF. PMDETA (50 uL, 0.24 mmol) was added, and the reaction
mixture was degassed via four cycles of freeze-pump-thaw, and then heated to 100 °C and
stirred under nitrogen. After 2 h, an aliquot was taken to analyze the crude reaction by *H NMR
using CDCIs as solvent (%conv.nvr = 56%). The resulting polymer was precipitated by addition

to 200 mL of MeOH, followed by stirring for 30 min. Then majority of MeOH was decanted. An
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additional 50 mL of MeOH was added, and the polymer was allowed to sit overnight without
stirring. The solution phase was decanted. The polymer was washed with an additional 50 mL
of MeOH. The solution phase was decanted. The Polymer was dried under house vacuum.
The polymer still containing residual solvent was washed with 10 mL of MeOH. The product
was thoroughly dried under vacuum to yield 1.5532 g (wt% plasticizergav. = 68%) of a pale

green, pliable polymer.

H NMR (500 MHz, CDCI3) d 4.65-4.54 (br m), 4.54-4.39 (br m), 4.39-4.25 (br m),
4.25-4.12 (br s), 4.12-3.91 (br m), 3.72-3.65 (br m), 3.65-3.60 (br m), 3.60-3.55 (br m), 3.52
(q, J = 7.0 Hz), 2.52-2.23 (br m), 2.23-1.97 (br m), 1.97-1.83 (br m), 1.75-1.55 (br m), 1.52—
1.42 (br m), 1.42-1.28 (br m), 1.20 (t, J = 7.0 Hz), 0.94 (t, J = 7.3 Hz). Based by *H NMR
integration: (PBA + P2EEA) : PVC = 0.9 : 1.0; PBA : P2EEA = 1.0 : 2.8; wt% plasticizernwr =

56%.

FTIR: 2962 (m, alkane C—H), 2931 (m, alkane C—H), 2873 (m, alkane C—H), 1736 (s,

ester C=0), 1169 (s, ester C—0), 1119 (m, ether C—-0).

Preparation of PVC-g-P2EEA-2.5 (2 h)

To a 10 mL Schlenk flask was added PVC (500.7 mg, 8.011 mmol) and DMF (3 mL).
The mixture was stirred and slightly warmed to fully dissolve the PVC in DMF. 2EEA (3.70 mL,
20.0 mmol) was added to the solution. To a 2 mL vial was added CuBr (34.37 mg, 0.2396 mmol)
and 0.75 mL of DMF to form a suspension. The CuBr suspension was transferred to the PVC
solution by pipet. Residual CuBr was washed into the PVC solution using 0.25 mL of DMF.
PMDETA (50 uL, 0.24 mmol) was added, and the reaction mixture was degassed via four
cycles of freeze-pump-thaw, and then heated to 100 °C and stirred under nitrogen. After 2 h,
an aliquot was taken to analyze the crude reaction by *H NMR using CDCl; as solvent
(%conv.nvr = 60%). The resulting polymer was precipitated by addition to 200 mL of MeOH,

followed by stirring for 30 min. The majority of MeOH was decanted. An additional 100 mL of
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MeOH was added, and the polymer was allowed to sit overnight without stirring. The majority
of the solution phase was decanted. The polymer was dried under house vacuum. The polymer
(still containing residual solvent) was washed with 20 mL of MeOH, and then the solvent was
decanted. The product was dried under vacuum to yield 1.6420 g (wt% Plasticizergrav. = 70%)

of a pale green, pliable polymer.

H NMR (500 MHz, CDClz) 8 4.64—4.54 (br m), 4.54—4.38 (br m), 4.38—4.25 (br m),
4.25-4.05 (br m), 3.73-3.65 (br m), 3.65—-3.60 (br m), 3.60-3.55 (br m), 3.52 (q, J = 7.0 Hz),
2.49-2.23 (br m), 2.23-1.97 (br m), 1.97-1.81 (br m), 1.73-1.62 (br m), 1.54-1.39 (br m), 1.20
(t, J = 7.0 Hz). Based by *H NMR integration: P2EEA : PVC = 0.9 : 1.0; wt% plasticizernur =

60%.

FTIR: 2958 (m, alkane C—H), 2931 (m, alkane C—H), 2873 (m, alkane C—H), 1736 (s,

ester C=0), 1169 (s, ester C—0), 1115 (m, ether C—=0).

Preparation of PVC-g-PBA-0.5 (2 h)

To a 10 mL Schlenk flask was added PVC (500.2 mg, 8.003 mmol) and DMF (3 mL).
The mixture was stirred and slightly warmed to fully dissolve the PVC in DMF. BA (0.57 mL,
3.98 mmol) was added to the solution. To a 2 mL vial was added CuBr (34.32 mg, 0.2392 mmol)
and 0.75 mL of DMF to form a suspension. The CuBr suspension was transferred to the PVC
solution by pipet. Residual CuBr was washed into the PVC solution using 0.25 mL of DMF.
PMDETA (50 pL, 0.24 mmol) was added, and the reaction mixture was degassed via four
cycles of freeze-pump-thaw, and then heated to 100 °C and stirred under nitrogen. After 2 h,
an aliquot was taken to analyze the crude reaction by *H NMR using CDClz as solvent
(%conv.nvr = 59%). The resulting polymer was precipitated by addition to 200 mL of MeOH
and left in MeOH overnight. The MeOH was decanted. The polymer was washed with 100 mL
of MeOH. The solution phase was decanted. The product was dried under vacuum to yield

681.4 mg (Wt% plasticizergav. = 27%) of a pale green polymer.
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IH NMR (500 MHz, CDClz) & 4.67-4.54 (br m), 4.54-4.38 (br m), 4.38-4.22 (br m),
4.14-3.89 (br m), 2.51-2.40 (br m), 2.40-2.23 (br m), 2.23-1.97 (br m), 1.97-1.77 (br m), 1.70—
1.49 (br m), 1.44-1.30 (br m), 0.94 (t, J = 7.3 Hz). Based by *H NMR integration: PBA : PVC =

0.3 : 1.0; wt% plasticizernmr = 35%

FTIR: 2958 (m, alkane C—H), 2931 (m, alkane C—H), 2873 (m, alkane C—H), 1732 (s,

ester C=0), 1169 (s, ester C—0)

Preparation of PVC-g-PBA-1.0 (2 h)

To a 10 mL Schlenk flask was added PVC (501.0 mg, 8.016 mmol) and DMF (3 mL).
The mixture was stirred and slightly warmed to fully dissolve the PVC in DMF. BA (1.15 mL,
8.02 mmol) was added to the solution. To a 2 mL vial was added CuBr (34.45 mg, 0.2402 mmol)
and 0.75 mL of DMF to form a suspension. The CuBr suspension was transferred to the PVC
solution by pipet. Residual CuBr was washed into the PVC solution using 0.25 mL of DMF.
PMDETA (50 pL, 0.24 mmol) was added, and the reaction mixture was degassed via four
cycles of freeze-pump-thaw, and then heated to 100 °C and stirred under nitrogen. After 2 h,
an aliguot was taken to analyze the crude reaction by *H NMR using CDClz as solvent
(%conv.nvr = 67%). The resulting polymer was precipitated by addition to 200 mL of MeOH,
followed by stirring for 30 min. The MeOH was decanted. The polymer was allowed to sit in
another 100 mL of MeOH without stirring overnight. The solution phase was decanted. The
product was rinsed with 100 mL of MeOH. The solution phase was decanted. The polymer was
thoroughly dried under vacuum to yield 1.0109 g (wt% plasticizergrav. = 50%) of a pale green,

pliable polymer.

H NMR (500 MHz, CDCIls3) d 4.66—4.54 (br m), 4.54-4.38 (br m), 4.38—4.23 (br m),
4.13-3.89 (br m), 2.51-2.23 (br m), 2.23-1.97 (br m), 1.97-1.79 (br m), 1.72-1.56 (br m), 1.51—
1.44 (br m), 1.44-1.30 (br m), 0.93 (t, J = 7.3 Hz). Based by 'H NMR integration: PBA : PVC =

0.6 : 1.0; wt% plasticizernmr = 53%.
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FTIR: 2958 (m, alkane C—H), 2935 (m, alkane C—H), 2873 (m, alkane C—H), 1728 (s,

ester C=0), 1157 (s, ester C—-0).

Preparation of PVC-g-P2EEA-0.5 (2 h)

To a 10 mL Schlenk flask was added PVC (500.8 mg, 8.013 mmol) and DMF (3 mL).
The mixture was stirred and slightly warmed to fully dissolve the PVC in DMF. 2EEA (0.74 mL,
20.0 mmol) was added to the solution. To a 2 mL vial was added CuBr (34.48 mg, 0.2396 mmol)
and 0.75 mL of DMF to form a suspension. The CuBr suspension was transferred to the PVC
solution by pipet. Residual CuBr was washed into the PVC solution using 0.25 mL of DMF.
PMDETA (50 pL, 0.24 mmol) was added, and the reaction mixture was degassed via four
cycles of freeze-pump-thaw, and then heated to 100 °C and stirred under nitrogen. After 2 h,
an aliquot was taken to analyze the crude reaction by '*H NMR using CDClz as solvent
(%conv.nwr = 40%). The resulting polymer was precipitated by addition to 200 mL of MeOH,
followed by stirring for 20 min. Then MeOH was decanted. The polymer was allowed to sit in
another 100 mL of MeOH without stirring overnight. The solution phase was decanted. The
product was rinsed with 100 mL of MeOH. The solution phase was decanted. The polymer was

dried under vacuum to yield 657.7 mg (wt% plasticizergav. = 24%) of a pale green polymer.

IH NMR (500 MHz, CDCIls) & 4.67—4.54 (br m), 4.54-4.38 (br m), 4.38—4.25 (br m),
4.25-4.06 (br s), 3.73-3.65 (br m), 3.65-3.60 (br m), 3.60-3.55 (br m), 3.52 (q, J = 7.0 Hz),
2.51-2.23 (br m), 2.23-1.96 (br m), 1.96-1.87 (br s), 1.74-1.61 (br m), 1.20 (t, J = 7.0 Hz).

Based by 'H NMR integration: P2EEA : PVC = 0.2 : 1.0; wt% plasticizernvr = 38%.

FTIR: 2974 (m, alkane C—H), 2908 (m, alkane C—H), 2866 (m, alkane C—H), 1732 (s,

ester C=0), 1169 (m, ester C—0) 1111 (s, ether C—-0).

Preparation of PVC-g-P2EEA-1.0 (2 h)
To a 10 mL Schlenk flask was added PVC (500.8 mg, 8.013 mmol) and DMF (3 mL).

The mixture was stirred and slightly warmed to fully dissolve the PVC in DMF. 2EEA (0.74 mL,
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20.0 mmol) was added to the solution. To a 2 mL vial was added CuBr (34.45 mg, 0.2402 mmol)
and 0.75 mL of DMF to form a suspension. The CuBr suspension was transferred to the PVC
solution by pipet. Residual CuBr was washed into the PVC solution using 0.25 mL of DMF.
PMDETA (50 uL, 0.24 mmol) was added, and the reaction mixture was degassed via four
cycles of freeze-pump-thaw, and then heated to 100 °C and stirred under nitrogen. After 2 h,
an aliguot was taken to analyze the crude reaction by *H NMR using CDCls as solvent
(%conv.nvr = 59%). The resulting polymer was precipitated by addition to 200 mL of MeOH,
followed by stirring for 30 min. The MeOH was decanted. The polymer was allowed to sit in
another 100 mL of MeOH without stirring. The solution phase was decanted. The product was
rinsed with 100 mL of MeOH. The solution phase was decanted. The polymer was dried under

vacuum to yield 954.2 mg (wt% plasticizergrav. = 48%) of a pale yellow, pliable polymer.

H NMR (500 MHz, CDClz) & 4.66—4.54 (br m), 4.54—4.38 (br m), 4.38—4.25 (br m),
4.25-4.03 (br m), 3.74-3.65 (br m), 3.65-3.60 (br m), 3.60—3.55 (br m), 3.52 (q, J = 7.1 Hz),
2.52-2.23 (br m), 2.23-1.97 (br m), 1.97-1.82 (br m), 1.75-1.61 (br m), 1.51-1.40 (br m), 1.20
(t, 3 = 7.0 Hz). Based by 'H NMR integration: P2EEA : PVC = 0.4 : 1.0; wt% plasticizernmr =

55%

FTIR: 2974 (m, alkane C—H), 2870 (m, alkane C—H), 1736 (s, alkane C—H), 1169 (m,

ester C—0) 1115 (s, ether C—0)
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Addendum: Contribution to Other Published Works

Contributions to other projects from the Braslau lab in which | am a co-author, but are

not included in the thesis are described as follows.

1. Earla, A.; Li, L.; Costanzo, P.; Braslau, R. Polymer 2017, 109, 1-12. Phthalate Plasticizers
Covalently Linked to PVC via Copper-Free or Copper Catalyzed Azide-Alkyne Cycloadditions.
| synthesized two alkynes bearing phthalates or phthalate mimics, and attached them to

azidized PVC:

m
THF 30 °C N’
./ O
C N
(0]

5
1

jm e )
IS
01 c.n
33
[

\/OH o /{/\
(6]
NaH, dry THF
\/C\/ o \\\/O O\/C\/
o}

0
S = COOH
> N
Br- o KoCOg, DMF, 100 °C, 15 min \\n/o o)
Y/ \/C\/ o 0

Cl N
Ny
N 0O
n m Q
o O
Cl Nj
> 0
DMF, 100 °C, 24 h (0]
n=95, m=5
n=85, m=15

193



2. Skelly, P. W.; Sae-Jew, J.; Kitos Vasconcelos, A. P.; Tasnim, J.; Li, L.; Raskatov, J. A
Braslau, R. J. Org. Chem. 2019, 84 (21), 13615-13623. Relative Rates of Metal-Free Azide—
Alkyne Cycloadditions: Tunability over 3 Orders of Magnitude. | synthesized two alkynes for
Huisgen thermal cycloaddition, which were then utilized by others to determine the relative

rates of various alkynes in reacting with a model azide.

0) 0]

0 0 HZN/\/\ >—<:
>%/< - NH HN
HO OH DMTMM, NMP /_/_ _\_\

0°C,5h,48%

EtN

OH DCM, 0 °C
4 h, 94%

OH MsCI

Et;N, Et,0
W O/\)\/\/
87%
3. Rezende, T. C.; Abreu, C. M. R.; Fonseca, A. C.; Higa, C. M.; Li, L.; Serra, A. C.; Braslau,
R.; Coelho, J. F. J. Polymer 2020, 196, 122473. Efficient Internal Plasticization of Poly(Vinyl
Chloride) via Free Radical Copolymerization of Vinyl Chloride with an Acrylate Bearing a
Triazole Phthalate Mimic. | synthesized an azide which | then converted to a triazole phthalate

mimic, bearing a primary alcohol. This alcohol was sent to our collaborators in Portugal, where

it was appended to an acrylate monomer, and then co-polymerized with vinyl chloride.

NaN;
DMSO, 50 °C

HO NN

> HO/A\w/\\//\w/N3
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