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ABSTRACT OF THE DISSERTATION

Three-dimensional Semiflexible Network with Transient Cross-links:

A Finite Element Kinetic Monte Carlo Approach

by

Lu Shen

Doctor of Philosophy in Chemistry

University of California, Los Angeles, 2018

Professor Alexander Jacob Levine, Chair

Semiflexible biopolymer networks cross-linked by noncovalent bonds allow the networks

topology to evolve over time and in response to applied stress. We developed a finite el-

ement kinetic Monte Carlo simulation approach, which allows cross-links to reorganize in a

three-dimensional network, to explore the dynamics of semiflexible networks with transient

cross-links. We will first discuss this simulation strategy, and then apply this tool to explore

the following aspects of semiflexible networks: The natural bundle formation and the dy-

namics of bundle growth, especially in density and energy. The stress relaxation of networks

with constrained filaments under affine strain field, and we find the linear shear elasticity

of these networks mainly arises from the deformation change of the high-energy cross-links

orientating in certain directions, and both the number and the elastic energy growth of these

cross-links scales linearly with strain. We also find the strain energy dissipates exponen-

tially through the strain-induced cross-link reorganization, and the cross-link configuration

is trained during this process in a manner that tends to maintain the current strain on the

filaments. Finally we conclude with proposals for new experiments to test these numerical

results.
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CHAPTER 1

Introduction

1.1 Semiflexible Filaments Networks

Cytoskeletal networks are found in eukaryotic cells and these networks play a crucial role in

cell mechanics. These networks are formed by biopolymers connected through cross-linking

molecules. For instance, F-actins biopolymers can be cross-linked by filamin A (FLNa)

molecules and form F-actin networks[1]. These cytoskeletal biopolymers are typically poly-

merized from globular monomers, and they have a diameter of order 10nm, a length between

2 and 70µm (average length is around 15µm) and a persistence length of order 20µm[1][2][3].

These biopolymers are usually treated as semiflexible filaments, whose bending rigidities are

large enough to overcome the entropic tendency of crumpling up into random coils[4][5]. The

cross-linking of these semiflexible filaments by elastic protein molecules has topologically

transformed them into a network of unique bulk and shear elastic responses[2][6][7][8][9][10].

Theoretically, there are two important transitions to distinguish a network from a filament

solution: the conductivity transition and the rigidity percolation transition.

First, the conductivity transition: For a filament solution with a very low density of cross-

links, which are treated as pinned point-constraints between filaments and are not allowed

to rotate, the filaments will be in a fluid state of either isolated filaments or non-connected

small filament bundles or clusters. ”Fluid” here indicates the filaments or small filament

clusters behave as individual non-interacting “solute” molecules, and there is no essential

connections between remote parts of the filaments, therefore, the bulk and shear moduli of

the system is zero. The conductivity transition occurs when an infinite small but system-

wide connected filament cluster first exits and the shear modulus of the system becomes

1



non-zero, as a “solid” does. This definition, again, is based on the assumption that the

cross-links are non-rotatable, which is a very strong constraint[11][12].

Second, the rigidity percolation transition: If the cross-links are treated as point pins

between filaments but allowed to freely rotate, a barely connected cluster above the conduc-

tivity transition can response to shear by purely translating and rotating filaments, and the

shear modulus becomes zero again. With freely rotatable cross-links, the rigidity percola-

tion transition occurs when the configuration of the cluster provides enough extra constraints

such that the translational and rotational motions of filaments will not be enough to bal-

ance the introduced stress, and the filaments must deform in ways of stretching/compressing

or bending. In this case, the shear modulus of the system becomes non-zero even though

the cross-links are rotatable[13][14][15][16][17]. Only above this rigidity percolation transi-

tion, will we have a well-defined filament network from a topological perspective, and the

discussions of this dissertation will focus on these networks.

1.1.1 Permanently cross-linked networks

During the exploration of the mechanical properties of these semiflexible networks, in order

to simplify the theoretical and numerical simulation approaches, theorists have made a simple

assumption that the cross-links are quenched as either point pins or non-elastic rods between

filaments, and only the translational and rotational motions of these permanent cross-links

have to be considered. In other words, the cross-links are treated as non-elastic rivet-like

constraints and the filaments can rotate freely around them. Therefore, in response to

stress, the deformations in the network only contain the bending, stretching/compressing

and twisting motions of the filaments[18].

Based on the permanent cross-link assumption, a variety of theoretical and numerical

studies have been done on the shear moduli of these networks, especially when frequency-

dependent shears are applied on the networks. The rubber plateau shear modulus, found

by MacKintosh et al. using an affine deformation theory[19], scales as a power-law of the

filament concentration c and bending rigidity κ: G′ ∼ κ(κ/kBT )2/5c11/5 for an entangled
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filament solution and G′ ∼ κ2

kBT
c5/2 for a densely cross-linked network[2]. Around the same

time, Kroy and Frey discovered the dependence of the plateau modulus on the filaments

concentration and bending modulus under a nonaffine deformation. They use a wormlike

chains (WLC) model to describe the filaments in a permanently cross-linked network and

predict G′ ∼ κc2 for filaments at the stiff limit and G′ ∼ c5/3κ1/3(kBT )2/3 for filaments at

the soft limit[20].

Whether the deformation of the network is affine or nonaffine under shear became a

question until early 2000s. In 2003, Levine et al. found two qualitatively distinct regimes

characterized by affine or nonaffine deformations above the rigidity percolation transition,

the crossover is determined by a length scale as a function of cross-link density. Their

theory considers the bending and extension/compression deformations of the filaments and

the degree of cross-linking[8], where they also use the assumption of permanent cross-links.

Soon after that, they gave a more detailed discussion revealing the nonaffine regime is the

filament-bending dominated while the affine regime is the filament-stretching/compressing

dominated[9]. In 2007, Levine et al. generated a similar conclusion by applying a 2-D

effective medium theory to a disordered semiflexible network[21], and they obtained a phase

diagram of the affine and nonaffine regimes[21][22]. In 2011, Levine et al. showed from

numerical simulations that adding small fraction of stiffer filaments to a nonaffine network

leads to an increase in the elastic moduli, and the addition of stiffer filaments results in

different effects on affinely and nonaffinely deformed networks: affine networks become more

affine, while the nonaffinely deformed networks become more nonaffine[23].

Besides the frequency-independent plateau shear modulus discussed above, there are also

power-law frequency-dependent regimes at both low and high frequencies [24][25][26]. The

low-frequency behavior is related to the transient cross-linking dynamics[5][27][28], which will

be discussed in details in Section 1.1.2. Now we only focus on the high-frequency regime,

where the cross-links can be treated as permanent.

In the high-frequency regime (i.e. the short-time regime), the cross-links can be treated

as permanent constraints, since the binding and unbinding of the cross-links cannot react fast

enough to the highly-oscillating shear. It is still appropriate to use the permanently cross-
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linked network model and discuss the behavior of shear modulus at high frequency. In 1998,

Gittes et al. found the dynamic modulus scales with frequency as a power-law of G(ω) ∼

ω3/4 at high-frequencies[29], where they use a “chains subjected to constraints (cross-links)”

model. Morse reaches an identical conclusion by employing an effective entanglement “tube

model” to the filaments[30][31]. This frequency dependence was quantitatively confirmed

experimentally by Koenderink et al. on an in vitro F-actin network in 2006[25]. In 2008,

Ward et al. also got the same 3
4

power-law frequency-dependence from the experiments

on an actin filaments network cross-linked by α-actinin-4[32]. These theoretical predictions

and experimental observations can be understood in terms that the high-frequency shear

stretches out the thermally excited transverse undulations of the filaments, which makes the

filaments less compliant and stiffer, and the shear modulus is contributed independently by

filaments in this regime since the modulus does not depend on network parameters such as

the entanglement length[10][29].

1.1.2 Networks with transient cross-links

The permanent cross-link assumption is well suited for explaining the high-frequency rheol-

ogy of semiflexible networks, however, many real networks are typically constructed with fil-

aments connected by transient cross-links through noncovalent interactions. Such highly dy-

namical cross-linking behavior, at both local and large scales, allows the topology of the net-

work to evolve over time in response to applied stress, especially at low frequencies[27][32][33][34][35].

In general, at short time scales, the molecular-level binding/unbinding mechanism determines

the transient nature of cross-links, which macroscopically evolves the network through a se-

ries of topology change at long time scales. The effects of transient cross-linking mainly

include power-law low frequency rheology, energy dissipation through cross-link rupture,

and mechano-memory effects.

First, the power-law low frequency rheology: In contrast to the high frequency regime,

where the shear modulus of the network is contributed by individual filament, the tran-

sient cross-links play a much more significant role in the low frequency regime. Instead
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of the 3
4

power-law dependence of shear modulus on frequency, the power-law becomes

G(ω) ∼ ω1/2 at low frequencies. This behavior has been widely observed both in numerical

simulations[27][35] and experiments[32][33][34][36], and such rheology can be understood in

terms of the collective orientational fluctuations and large-scale network rearrangements due

to cross-link reorganization at a nonequilibrium state[27][28][35][37].

Second, the energy dissipation through cross-link rupture: In the shear modulus against

frequency rheological spectrum of semiflexible networks, besides the high frequency G(ω) ∼

ω3/4 regime (for times much shorter than the cross-link lifetime) and the low frequency

G(ω) ∼ ω1/2 regime (for times much longer than the cross-link lifetime), there is also

a frequency-independent plateau modulus regime at intermediate frequencies (for times

from 1 to 103 times of the cross-link lifetime). At the intermediate-frequency regime,

the rheology of plateau modulus can be explained by the dissipative cross-link unbinding

dynamics[27][28][35], where the stress-induced force on the cross-links leads to local bond

rupture but without large-scale network rearrangements. An approach to study the cross-

link breakage of these networks is the bead pulling experiment done by Valentine et al. in

2013[38]. They use a micro magnetic tweezer device to apply a force on a bead (of a much

larger size of the network’s mesh size) placed in the network, and try to pull it through

the network. They observe a nonlinear response of the network at a short time scale and a

significant bead jump at a time scale much longer than the cross-link lifetime. The nonlinear

response of the network at a relatively short time scale can be explained by the force-induced

unbinding events of the cross-links, and such cross-link rupturing events eventually lead to

local network rearrangement. The significant bead jump is due to the breakage of old cross-

links under load and the bead move to a new position where the force can be balanced.

This bead pulling experiment is modeled by Levine et al. later in 2015[39] as single filament

peeling from an array of cross-links, in which the cross-links unbinding mechanism is based

on the Bell model[40] (Bell model will be discussed in Section 1.2.1). They found the cross-

link breaking proceeds sequentially down the array from the point of loading in a series of

energy-dissipative stochastic rupture events.

Third, the mechano-memory effects: The nonlinear elastic response of the transiently
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cross-linked network to external shear also gives rise to the possibility of encoding mechano-

memory in the network. Inspired by the fact that the mechanical response of semiflexible

networks can be either reversible or irreversible under stress[10][41] and the network nematic

order change under deformation[42][43], a mechano-memory due to static training shear can

be accomplished. This mechano-memory is related to the change in nematic order parameter

of the filaments, the training shear forces the network to rearrange in a way that the filaments

tend to tilt along the stress. The training leads to an increase of the nematic order parameter

and a rotation of the nematic director, and the network will have the ”memory” to preserve

the nematic order and director after training. This mechano-memory can also be erased by

training in the opposite direction with the same amount of strain. This memory effect can

be understood in term of the network’s rearrangement of its transient cross-links under a

strained deformation of filaments[44].

1.2 Cross-link Properties

As discussed in Section 1.1, the cross-links, which determine the topology of the network,

are treated as freely-rotating rivet-like constraints of filaments in analytical studies, and only

their statistical behavior is considered. However, real cross-links are also able to deform and

store elastic energy. In this section we will enrich the elastic properties of cross-links from

both physiological and modeling perspectives.

The cross-linking elastic protein molecules, such as FLNa or α-actinin-4, can form non-

covalent bonds with one filament (i.e. F-actin) and branch out to attach another filament.

In eukaryotic cells, the rest length of cross-links is of order ∼ 40nm[6][7]. From a dynamics

perspective, the cross-link can detach following Bell model unbinding mechanism[40], and

there are two types of cross-links. The first type of cross-links is called ”slip bond”: when a

tensile force is applied to the cross-link, it detaches more quickly due to a decreasing lifetime

(or an increasing detaching rate) under load. The other type of cross-links is called ”catch

bond”, and they response to applied force in an opposite way: their lifetime increases with

an increasing tensile force[45][46][47]. We will discuss these two types of bonds and their
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influence on networks under stress in details in Section 1.2.1.

1.2.1 Cross-link models: slip and catch bonds

The first type of cross-links is the slip bond, which is well understood and studied since Bell

model is proposed in 1978[40]. As Bell showed in his work, the lifetime of a bond τ can

be written in terms of τ = τ ∗ exp [(εb − Γf)/kBT ], where τ ∗ is the reciprocal of a natural

frequency of oscillation atoms in solid (∼ 10−13s), εb is the chemical binding energy of the

bond, f is the applied tensile force, and Γ is a parameter determined by the structure of bond

molecule. In Bell’s work, the potential energy of a slip bond is assumed harmonic-oscillator-

like with a barrier. A stretching force on the bond drags the barrier down, therefore, decreases

the lifetime of the bond[40]. A binding/unbinding mechanics based on Bell model is used in

this dissertation, and will be discussed in details in Chapter 2.

In contrast to a slip bond, a catch bond is the type of non-covalent bond whose lifetime

increases with tensile force applied to the bond before it reaches a maximum, and then

decreases exponentially like a slip bond. This bond type is first proposed by Dembo et

al. in 1998[45]. While studying the critical force needed to detach a adhesion molecules,

they found some molecules bond more tightly under tension. In 2003, Marshall et al. also

found the evidence of a catch bond when studying P-selectin glycoprotein ligand-1 (PSGL-

1) bonds. They found an increasing force first prolongs the lifetime of PSGL-1 until it

reaches a maximum and then starts to shorten its lifetime above the critical force[46]. A

catch bond is also used to explain the leukocyte extravasation process. Shear stress induced

by inflammation and hydrodynamic fluid causes leukocytes to bind with and roll on the

endothelial vessel wall rather than float away[48]. The mechanism of the catch bond from

a molecular level is not yet well understood, one explanation given by Sivasankar et al. in

2014 is that the force-induced and long-lived hydrogen bonds lock the non-covalent bond

into tighter contact and prolong its lifetime[7][47]. Recently, an analytical model of catch-

slip bond is also proposed based on a one-dimensional two-pathway free-energy potential

well model by Bullerjahn and Kroy[49]. They find the mean lifetime of a virtual particle in
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the two barrier potential increases first with an increasing load until it reaches a maximum,

and then starts to decrease when passing the critical load.

Due to the different behaviors of catch and slip bonds, obviously a question may be asked:

how will the catch bond affect the elasticity of our semiflexible networks? Interestingly, a

number of experiments of networks with actin and myosin[50][51] or α-actinin-4[52] cross-

links showed a counter intuitive response to stress. Since the detachment rate of catch bond

decreases with an increasing stress, the upper bound of the cross-link governed regime shifts

to lower frequencies with an increasing stress[5]. The increasing stress tightens the catch

bonds and prolongs their lifetime, and the low-frequency regime will shift to even lower

frequencies to provide long enough time for the network to rearrange through a reduced

dynamics of cross-links reorganization.

1.3 Time Scales in the Model

Semiflexible networks respond to stress dramatically different at different time scales. In this

section, multiple physical pictures will be discussed involving these large range of hierarchical

time scales. This dissertation will specifically focus on the extremely long time scale (or zero-

frequency regime).

The natural period of cross-link bond oscillation is of order ∼ 10−9 second[40], which is

due to the oscillation of atoms in materials of order ∼ 10−13 second. Quantum chemistry

dominates the microscopic mechanics and molecule-level dynamics in this time scale, which

is the ultra-fast regime.

The typical cross-link lifetime time scale is of order τ ∼ 10−3 second. The cross-link

lifetime also determines the time scale of high-frequency rheology, where the frequency should

be > 1/τ . In the time scale one or two orders of magnitude shorter than the cross-link

lifetime, the rheology is dominated by single-filament or single-bundle dynamics where the

cross-links can by treated as permanent, as cross-links fail to break and reorganize the

network in this time regime[25][35][53][54][55].
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The long time scale, which is the low-frequency rheology regime, is of order minutes.

The rheology is understood through large-scale network rearrangements due to cross-links

reorganization[27][54].

There is also an intermediate time scale of order 10−3 ∼ 1 second, where the plateau

modulus G′ becomes frequency-independent, the rheology can be explained by the dissipative

cross-link unbinding dynamics[27][28][35]

This dissertation will focus on the extremely low frequency regime, corresponding to

the time scale of network stress relaxation involving large-scale filaments and cross-links

rearrangement. In practice, a strain controlled step shear will be applied to the network,

corresponding to a zero-frequency shear.

1.4 Outline of Text

In Chapter 2, we will discuss the numerical model employed in the simulation of semi-

flexible networks in details, including the Kinetic Monte Carlo (KMC) method, the finite

element treatment, and the Limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS)

algorithm. The KMC method is used to implement the transient nature of cross-links through

a series of stochastic cross-link binding and unbinding events, where the probabilities of cross-

linking events are determined by the rate constants related to the physical parameters of the

cross-links. The finite element treatment allows us translating the original system of contin-

uous filaments to a finite, discrete, and solvable numerical problem, where the filaments are

considered as a collection of elemental segments of linear and angular springs. The L-BFGS

algorithm is an iterative method for solving unconstrained nonlinear optimization problems,

in this case, it minimizes the elastic energy and searches for the optimal configuration of

the filaments when the topology of the network changes through cross-linking. The way

we integrate these ideas and make it an available high-efficient tool for semiflexible network

simulations will be introduced at the end of this chapter, providing a flow path of the “finite

element Kinetic Monte Carlo” algorithm and two primary tests on the validity and precision

of the KMC method and L-BFGS solver respectively.
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In Chapter 3, we will apply the finite element Kinetic Monte Carlo approach to a three

dimensional filament-constrained network with transient cross-links, and explore the dynam-

ics of the cross-links during stress relaxation when a uniform strain field is applied to the

network. We find the three dimensional network behaves as a linear shear elastic material

under strain from both theoretical and numerical simulation approaches, where the strain

energy mainly arises from the deformation growth of highly-stretched cross-links orientating

in certain directions. We also observe the strain energy dissipation through strain-driven

cross-link reorganization, where the stress relaxation can also be understood as a training

process that results in an updated configuration of cross-links tending to maintain the strain

field applied on the filaments.

In Chapter 4, we will explore the dynamics of the observed natural bundle formation

of semiflexible networks in the presence of transient cross-links. We find the cross-linking

dynamics is enhanced due to the catalysis of the cross-links themselves, which cumulatively

results in a large number of slightly stretched intrabundle cross-links. We also discuss the

bundling dynamics in the time-domain where the bundles grow rapidly, and we find the

average (filament length) density and the average elastic energy density of the bundles both

increase linearly over time, resulting in a conclusion that per unit length growth of the

bundled filaments contributes a constant bundle elastic energy regardless of the time and

the current density of the bundles. The bundle formation is a non-equilibrium process,

and without setric interactions we speculate the network will eventually condense into a big

bundle containing all filaments.

In the last chapter, we will summarize the main physical results of the dissertation sur-

rounding the topic of semiflexible networks with transient cross-links. We will point out

several directions to improve the current simulation method from different aspects. At the

end, we will suggest possible experimental probes to verify the theories and simulation results

in this work.
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CHAPTER 2

Numerical Model

2.1 Introduction

In order to further explore the network formation and stress relaxation driven by stochastic

cross-linking, a finite element kinetic Monte Carlo simulation approach is developed trans-

lating the originally continuous network to a discrete and finite problem that is numerically

solvable. The microscopic cross-linking dynamics is achieved through a kinetic Monte Carlo

(KMC) method[56][57][58][59], that determines which of the stochastic events of cross-link

binding or unbinding to occur based on deformations of the cross-links. The idea of “fi-

nite element” is similar to the one used for Brownian dynamics simulations by Cyron et

al.[60][61], in which filaments can be treated as a finite number of nodes and elemental seg-

ments of springs and angular springs, such that the filaments are allowed to store bending and

stretching energies. Based on these structural set-ups, a Limited-memory Broyden-Fletcher-

Goldfarb-Shanno algorithm (L-BFGS) algorithm is employed to minimize the total elastic

energy of the network to search for the optimal network configuration when the network

topology changes through cross-linking[62][63][64][65][66][67][68][69].

In this chapter, the rationales of KMC method, finite element treatment, and L-BFGS

solver will be discussed in details. A general descriptions and further validations of the code,

which successfully combines these ideas, will be provided at the end.
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2.2 KMC Method

2.2.1 Cross-link binding and unbinding rates

The Kinetic Monte Carlo (KMC) method is used to simulate the microscopic binding and

unbinding behaviors of cross-links based on the corresponding rates, which are determined

by the deformation, the gas phase concentration, the chemical binding energy and the ther-

mal de Broglie wavelength of the cross-links. The rates can be achieved from a statistical

mechanics approach at equilibrium state: The free cross-links in our system can be treated

as indistinguishable ideal gas particles. On the other hand, we consider the bound cross-

links between filaments are at the condensed phase. When the system is at equilibrium,

the temperature and chemical potential of these two coexisting phases should equal for all

elastic energy level cross-links. This will result in a relation between the cross-linking rates

and cross-link property parameters.

First, we can write down the ideal gas partition function of N indistinguishable cross-link

particles in 3-D as

ZN =
1

N !

(∫
V

d3~r

)N (∫
d3~p e[−β~p

2/2m]
)N

=
1

N !

(
V

λ3
B

)N
, (2.1)

where λB = h
(2πmkBT )1/2 is the thermal de Broglie wavelength of cross-links with mass m and

at temperature T , h is the Planck constant and V is the volume of the system. The free

energy of gas phase cross-links can be written as

F = −kBT lnZN = kBT lnN !− kBTN ln

(
V

λ3
B

)
≈ kBTN lnN − kBTN + kBTN ln

(
λ3
B

V

)
= kBTN ln

(
cλ3

B

)
− kBTN.

(2.2)

Here we have used the Stirling’s approximation lnN ! ≈ N lnN−N for large N , and c = N/V

is the concentration of gas phase cross-links. Since the number of cross-links as free gas is

much greater than the number of bound ones, we then assume this concentration is fixed

during the entire cross-linking process. Therefore, the chemical potential of the gas phase
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cross-links is determined by the concentration and the thermal de Broglie wavelength of

cross-links

µ =
∂F

∂N

∣∣∣∣
T,V

= kBT ln
(
cλ3

B

)
. (2.3)

Second, we consider the bound phase cross-links. Suppose each cross-link is a linear

Hookean spring of stiffness k with a rest length ac. At a separation x, the elastic deformation

is ∆x = x− ac, and the total energy of a bound cross-link is

ε(x) = −εb + εCL(∆x), (2.4)

where εb is the chemical binding energy released when a cross-link is attached, εCL(∆x) =

1
2
k∆x2 is the elastic energy stored in a cross-link. Among all the NS possible binding sites

of an arbitrary separation x, if NB of which are bound by cross-links, the partition function

of “NB-condensed” phase following Boltzmann distribution is then x dependent

ZNB = e−βNBε(x)

(
NS

NB

)
, (2.5)

the free energy of “NB-condensed” phase can be written as

FNB = −kBT lnZNB = −kBT
{
−βNBε+ ln

(
NS

NB

)}
. (2.6)

We can again use Stirling’s approximation to treat ln
(
NS
NB

)
, assuming NS and NB are large.

ln

(
NS

NB

)
= ln

[
NS!

NB!(NS −NB)!

]
≈NS lnNS −NS −NB lnNB +NB

− (NS −NB) ln(NS −NB) +NS −NB

=−NS [z ln z + (1− z) ln(1− z)] ,

(2.7)

where z(x) = NB(x)
NS(x)

is the binding fraction of cross-links with separation x. The free energy

of “NB-bound” phase is then

FNB = NS {εz + kBT [z ln z + (1− z) ln(1− z)]} , (2.8)

and the chemical potential of this phase is

µB =
∂FNB
∂NB

∣∣∣∣
T,NS

=
∂FNB
∂z

∂z

∂NB

∣∣∣∣
T,NS

= ε+ kBT ln

(
z(x)

1− z(x)

)
, (2.9)

13



which just depends on the cross-link energy ε(x), temperature T , and binding fraction z(x).

Finally, we consider the contact equilibrium between the gas phase and the condensed

phase of cross-links: the temperatures T and chemical potentials µ of cross-links at any

separation x should be equal

µB(x) = µ = kBT ln
(
cλ3

B

)
. (2.10)

This results in an equality of the binding fraction z(x), gas phase cross-link concentration c,

and the cross-link energy ε(x) at separation x

ε(x) + kBT ln

[
z(x)

1− z(x)

]
= kBT ln

(
cλ3

B

)
. (2.11)

Therefore, we have the binding ratio z(x) as a function of c, T and ∆x

NB(x)

NS(x)
= z(x) =

cλ3
Be
− ε(x)
kBT

1 + cλ3
Be
− ε(x)
kBT

=
cλ3

Be
εb−

1
2 k∆x2

kBT

1 + cλ3
Be

εb−
1
2 k∆x2

kBT

. (2.12)

From this equation, we can further derive the relationship between cross-link binding rate

νon and unbinding rate νoff for cross-link sites with separation x. When the system is at

equilibrium, detailed balance requires

νon(NS −NB) = νoffNB. (2.13)

The ratio of binding and unbinding rates of cross-links at an arbitrary separation x is

νon(x)

νoff (x)
=

NB(x)
NS(x)

1− NB(x)
NS(x)

= cλ3
Be

εb
kBT e

−
1
2 k∆x2

kBT . (2.14)

Therefore, from this model, we immediately know the following: (i) The ratio of binding

and unbinding rates only depends on four parameters: the gas phase cross-link concentra-

tion c and the thermal de Broglie wavelength λB = h
(2πmkBT )1/2 of cross-links, the chemical

binding energy of two non-covalent bonds between both ends of the cross-link and correspond-

ing filaments εb, and the possible-storing or already-stored elastic energy of the cross-link

εCL(∆x) = 1
2
k∆x2. (ii) The binding and unbinding rates themselves should also depend on

a mutual base rate of ν0 ∝ 1
τ∗

, where τ ∗ is a fundamental time scale related to the natural
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period of bond oscillation as proposed in Bell model[40], so we can write binding rate νon

and unbinding rate νoff as 
νon = cλ3

Be
εb
kBT ν0e

−
1
4 k∆x2

kBT

νoff = ν0e
1
4 k∆x2

kBT

. (2.15)

Here we have controlled the ratio of νon and νoff , but the magnitude of rates also depends

on a parameter ν0, which should be inversely proportional to the average cross-linking event

time. To normalize the affects of ν0, we can take the time scale of average cross-link lifetime

τ0, instead of ’second’, to serve as the time unit for system dynamics.

2.2.2 KMC algorithm

The basic algorithm of the KMC method based on the cross-linking rates contains three

steps[56][57][58][59]: First, based on Equation 2.15, calculate the rate constants νij of each

possible cross-link binding or unbinding event that will lead the system from an initial state

Si to corresponding final state Si,j (j = 1, 2, ..., Nk), Nk is the total number of possible final

states. The total rate of binding and unbinding over Nk possibilities is

νi,tot =

Nk∑
j=1

νij. (2.16)

Second, generate a uniform random number ζ1 ∈ (0, 1], find l such that

l−1∑
j=1

νij < ζ1νi,tot <

l∑
j=1

νij, (2.17)

and then carry out the l-th cross-linking event that leads the system from Si to the cor-

responding final state Si,l. In this way, the probability of one binding or unbinding event

to occur is proportional to its rate constant due to the uniform randomness of ζ1. Third,

advance the system time from initial state Si to the stochastically selected final state Si,l by

∆t(i) drawn from the Poisson distribution described by the total rate νi,tot. It is straight-

forward to know the probability that n cross-link binding or unbinding events occur during

time interval dt is given by a Poisson distribution

P (n, dt) =
e−νi,totdt(νi,totdt)

n

n!
. (2.18)
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Table 2.1: List of main symbols. Dimensions: [L] =Length, [t] =Time, [F ] =Force.

Symbol Dimensions Description

c [L]−3 Concentration of gas phase cross-links

ac [L] Equilibrium length of cross-links

am [L] Maximum allowed length of cross-links

k [F ][L]−1 Cross-link stretching stiffness

λB [L] Thermal de Broglie wavelength of cross-links

εb [F ][L] Chemical binding energy of a cross-link

εCL(x) [F ][L] Elastic energy stored in a cross-link with length x

z(x) 1 Binding fraction of cross-links with length x

νon [t]−1 Cross-link binding rate

νoff [t]−1 Cross-link unbinding rate

τ [t] Cross-links lifetime

NCL 1 Total number of bound cross-links in the network

∆t(i) [t] Time interval of cross-linking event at i-th KMC iteration

kT [F ][L]−1 Effective (thermal) stretching stiffness of filament

a [L] Equilibrium length of filament segments

ks [F ][L]−1 Linear spring stiffness of filament segments

κ [F ][L]2 Filament bending rigidity

κb [F ][L] Angular spring stiffness of filament segments

` [L] Filament equilibrium length

`p [L] Filament persistence length

γ 1 Strain

U [F ][L] Strain energy

G [F ][L]−2 Shear modulus

ξ [L] Mesh size
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The time step ∆t(i) between two events at i-th KMC iteration can be characterized by the

probability that zero cross-linking events has occurred during ∆t(i) as

P (0,∆t(i)) = e−νi,tot∆t(i), (2.19)

and this distribution of ∆t(i) leads to an average cross-linking event time at i-th KMC

iteration as

< ∆t(i) >=

∫∞
0

(dt′)e−νi,tott
′
t′∫∞

0
(dt′)e−νi,tott′

=
1

νi,tot
, (2.20)

as expected. We can then generate another uniform random number ζ2 ∈ (0, 1] representing

the probability that zero cross-linking event occurs during ∆t(i), according to the distribution

of ∆t(i) in Equation 2.19, the system time should be advanced by

∆t(i) = − ln(ζ2)

νi,tot
. (2.21)

Due to its “time-jumping” algorithm, we expect the KMC cross-linking method to be

much more efficient than traditional Brownian dynamics simulations used to study filament

networks with transient cross-links[35]. Its high efficiency can be attributed to skipping the

very short time scales of bond oscillation motions or the smallest time steps needed in Brow-

nian dynamics, and focusing on the time scales of stress relaxation. A physically occasional

transition between network states cause by a cross-linking event is guaranteed to occur at

each iteration step, rather than modeling the dynamics at every smallest time interval of

the Brownian motion and waiting for a nontrivial event. KMC disregards the molecule-level

dynamics and takes a much longer time scale of the network topology transition causing by

cross-linking events. On the other hand, this time scale is fundamental for stress relaxation

and network-scale cross-link reorganization, so that the resolution in the time measurement

is fine enough to describe the stress relaxation.

2.3 Finite Element

The semiflexible network is modeled as a collection of N randomly oriented filaments and

cross-links in a box with periodic boundary conditions applied in three dimensions. Each
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Figure 2.1: Schematic representation of the finite element method.

filament with an ID p(p = 1, 2, ..., N) in the network is treated as a set of nodes with

position xpi (i = 1, 2, ..., nf , where nf is the total number of nodes on a filament), as shown

in Figure 2.1. The nodes on the same filament are connected in series by harmonic springs

with stiffness ks and a prescribed rest length a, which are used to model the stretching of

the filaments. The nearest three nodes on the same filament also form an angular spring

with stiffness κb, which accounts for the bending of the filaments. At an initial state without

cross-links, the filaments are randomly distributed straight rods of length `, the nodes on the

same filament are now co-linear and are assumed evenly separated such that a = `/(nf − 1).

The bending energy carried by a semiflexible filament of length ` takes the form

Ebend =
κ

2

∫ `

0

ds

∣∣∣∣∂~t∂s
∣∣∣∣2, (2.22)

where κ is the bending modulus of the filament and ~t is the tangent vector along the filament,

and the integrand represents the square of the local curvature along the filament. The

filament position ~r(s) is now described by the arc-length coordinate s along the filament

backbone. Therefore, the tangent vector is

~t =
∂~r

∂s
. (2.23)

With the finite element treatment, the local curvature at node i on the filament can be

approximated by the reciprocal of the radius 1
Ri

of a circle that determined by nodes i−1, i,
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and i+ 1 on the filament, as shown in Figure 2.1, the center of the circle is Oi and the local

bending angle for the angular spring is π− θi, where θi measures the angle between the two

segments connecting node i (θi = π if the local bending is 0). Hence, the bending energy of

the filament can be approximate as

Ebend ≈
κ

2

∑
i

(
1

Ri

)2

a. (2.24)

From the triangle of Oi, nodes i and i− 1 (or i+ 1), the radius Ri and θi should follow the

sine rule
a

sin(π − θi)
=

Ri

sin( θi
2

)
, (2.25)

which leads to
1

Ri

=
2

a
cos

(
θi
2

)
. (2.26)

Therefore, the bending energy of the filament then can be written as

Ebend ≈
∑
i

κ

a
(1 + cos θi) , (2.27)

the term κ
a

(1 + cos θi) is the bending energy of node i on the filament, which is equivalent

to the elastic energy of an effective angular spring with angular deformation of (1 + cos θi)

and stiffness of κb. The angular spring stiffness κb is equal to the ratio of filament bending

modulus κ = kBT`p and the rest length of filament segments a as

κb =
κ

a
=
kBT`p(nf − 1)

`
, (2.28)

where `p is the persistence length of the filament, ` is the equilibrium length of the filament,

and kB is the Boltzmann constant.

The effective (thermal) stretching stiffness kT arising from the bending fluctuations of

the semiflexible filaments can be written in terms as[5]

kT =
κ`p
`4

=
kBT`p

2

`4
. (2.29)

Now we view the filament stretching from a finite element perspective, the filament is a series

of nf − 1 harmonic springs with an overall spring constant kT . Hence, the effective spring

constant ks between two nearest nodes on a filament should be nf − 1 times greater than kT

ks = (nf − 1)kT =
kBT`p

2

`4
(nf − 1). (2.30)
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Under the finite element treatment, the total elastic energy of the filaments now can be

expressed as the sum of the deformation energies of local linear and angular springs

Efil =
N∑
p=1

nf−1∑
i=1

ks
2

(
|xpi − xpi+1| − a

)2
+

N∑
p=1

nf−1∑
i=2

κb (1 + cos θpi ) , (2.31)

where xpi is the position of i-th node on p-th filament, and θpi is the angle between two

segments connecting i-th node on p-th filament. With the finite element method, the elastic

energy of the filaments can be approximate by a simple summation form instead of the

original integration form, which dramatically simplifies the numerical calculation.

As discussed in Section 2.2, the cross-links that dynamically construct filaments into a

network are treated as linear springs (with stiffness k and rest length ac) that are allowed to

connect a pair of nodes from filaments if the separation of the nodes is within a maximum

allowed length of the cross-link. Each node on a filament can only be attached to one

cross-link due to the biological structure of related chemical binding groups[2][6][7], and the

cross-linking between nodes on the same filament is also forbidden in the simulation. Under

these conditions, all the cross-linking rate constants at any given state of the network can

be calculated providing the coordinates of the nodes, therefore, the finite element method

also ensures the numerical feasibility of the KMC method for cross-linking by making the

number of possible binding sites finite.

The total elastic energy stored in the cross-links now can also be expressed in terms of

node positions as

ECL =

NCL∑
l=1

k

2

(
|xp(l)t(l) − x

q(l)
s(l)| − ac

)2

, (2.32)

where NCL is the total number of bound cross-links, p(l) and q(l) are the filaments that l-th

cross-link connects through nodes t(l) and s(l) respectively, as shown in Figure 2.1.

The total elastic energy of the network Eel = Efil+ECL and the total energy of the system

Etot = Eel − εbNCL at a given network configuration can both be numerically calculated

through the finite element method. The accuracy of the method increases as the number of

nodes on a filament nf increases, as expected, the filaments resume continuous at nf → ∞

limit.
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2.4 Numerical Solver: L-BFGS Algorithm

The topology of the network changes at times involving cross-link binding or unbinding

events, where the filament nodes move due to unbalanced forces until the network reaches

a new elastic equilibrium state. We use a quasi-Newton Limited-memory Broyden-Fletcher-

Goldfarb-Shanno (L-BFGS) algorithm to find the optimal configuration of the network at

the new elastic equilibrium state, through iteratively minimizing the elastic energy of the

network[62][63][64][65][66][67][68][69].

Suppose the total elastic energy of the network Eel is the function f(x) to minimize in

this optimization problem, where x is a column vector of length 3Nnf representing the set

of all coordinate variables of the nodes in the network. There is no constraints on the values

of x, and f now is a differentiable scalar function.

The BFGS algorithm begins at an initial estimate for the optimal value x0 and proceeds

iteratively for a better estimation of xi at each step i. The second-order approximation of

f(xi) around an iterate at i-th step can be found by Taylor expanding the function in this

high dimensional variable space to the second order

f(xi + ∆x) ≈ f(xi) +∇f(xi)
T∆x +

1

2
∆xTBi∆x, (2.33)

where ∇f is the gradient, and Bi is an approximation to the Hessian matrix at i-th step,

which should be updated iteratively at each step. The gradient of the approximation with

respect to ∆x is then

∇f(xi + ∆x) ≈ ∇f(xi) +Bi∆x. (2.34)

Ideally, we want to pick a ∆x such that xi + ∆x is a stationary point of f by setting the

left hand side of the equation equal to zero. The BFGS algorithm is modified to include a

small step size δi on the search direction pi = ∆x provided by the analogue of the Newton

equation at i-th step

pi = −Bi
−1∇f(xi). (2.35)

A linear search along the pi direction is then performed to find the optimized step size δi
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determined by the minimum of f along this direction such that

δi = arg min f(xi + δipi). (2.36)

The variation vector of node coordinates at step i is then chosen as si = δipi and the node

coordinates of the step i+ 1 is updated by xi+1 = xi + si. The secant equation (the Taylor

series of the gradient itself) can then be achieved from the quasi-Newton condition imposed

on the update of Bi as

Bi+1si = yi, (2.37)

where yi = ∇f(xi+1)−∇f(xi) is the gradient variation vector and si = xi+1 − xi the node

coordinates variation vector.

Instead of calculating the full Hessian matrix at new point xi+1 in the high dimensional

variable space, an approximate Hessian can be iterated at step i by the addition of two

symmetric rank-one matrices (SR1 method) while maintaining the symmetry and positive

definiteness of Bi+1

Bi+1 = Bi + αiuiu
T
i + βiviv

T
i . (2.38)

If choosing ui = yi and vi = Bisi, the secant equation Bi+1si = yi requires

Bisi + αiyiy
T
i si + βiBisi

(
sT
i Bisi

)
= yi, (2.39)

which leads to the value of αi and βi as
αi = 1

yT
i si

βi = − 1
sT
i Bisi

. (2.40)

By substituting αi and βi into Equation 2.38, the iterative equation of the approximate

Hessian matrices can be expressed as

Bi+1 = Bi +
yiy

T
i

yT
i si
− Bisis

T
i Bi

sT
i Bisi

. (2.41)

The inverse of approximate Hessian matrix used to solve Equation 2.35 can be obtained by

applying the Sherman-Morrison formula to Bi+1 as[70]

B−1
i+1 =

(
I − siy

T
i

yT
i si

)
B−1
i

(
I − yis

T
i

yT
i si

)
+

sis
T
i

yT
i si

. (2.42)
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To improve the computational efficiency, realizing that B−1
i is symmetric and that yT

i B
−1
i yi

and yT
i si are both scalars, this iteration of B−1

i can be written in a form without temporary

matrices as

B−1
i+1 = B−1

i +
(yT

i si + yT
i B

−1
i yi)

(yT
i si)2

sis
T
i −

1

yT
i si

(B−1
i yis

T
i + siy

T
i B

−1
i ). (2.43)

In practice, the first approximate Hessian matrix B0 can be chosen as the identity matrix

I, andBi will be refined during the iteration while the coordinate vector of filament nodes xi

is optimized synchronously. The convergence at step i can be checked by evaluating the norm

of gradient ||∇f(xi)||, therefore, it is straightforward to propose an adjustable parameter of

a small number g0 representing the optimization precision, which signals the solver to stop

further iterations as long as ||∇f(xi)|| < g0. A reasonable choice of g0 based on the network

parameters can dramatically save the computational resource and time, while still provides

considerably good optimizations.

The main disadvantage of BFGS algorithm is need to store the approximation Hessian

matrices Bi or the inverse Hessian matrices B−1
i , where the computational storage required

scales quadratically with the number of variables (nodes) in the system as ∼ (Nnf )
2. To

minimize the usage of computer memory, a Limited-memory version of BFGS (L-BFGS) algo-

rithm is used instead in this dissertation[66][67][68][69]. The rationale of L-BFGS algorithm

is the same as BFGS, however, it only stores a few vectors that representBi orB−1
i implicitly

by maintaining the history of a small number nL (often nL < 10) of the most recent coordi-

nate variation vectors si and gradient variation vectors yi. The approximate inverse Hessian

matrices B−1
j is evaluated recursively using Equation 2.43 (for i = j − 1, j − 2, ..., j − nL)

form the stored variational vectors and a prescribed “initial” approximation of the inverse

Hessian at the oldest stored step (e.g. B−1
j−nL = I). Therefore, with this ”limited-memory”

modification, the computational storage required for L-BFGS algorithm scales linearly with

the number of variables (nodes) in the system as ∼ Nnf , instead of the quadratic scaling for

BFGS algorithm. Due to this linear computer memory requirement, the L-BFGS method is

particularly well suited for optimization problems with a large number of variables, such as

our semiflexible network under the finite element treatment.
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Figure 2.2: Flowchart of the finite element kinetic Monte Carlo algorithm.

2.5 Description and Validation of the Code

The dynamics of cross-links and filaments in the network can be numerically modeled by

integrating the individual code of KMC method and L-BFGS solver under the finite element

treatment, where the part of KMC method realizes the dynamical cross-linking that trig-

gers the topology change of the network and the part of L-BFGS solver seeks for the new

elastic equilibrium and updates the network configuration. This combined tool has been

implemented as a part of VOOM v.2 (Variational Object-Oriented Mechanics) package, an

open source library developed by Klug, et. al and published under the MIT license[71]. The

library is a collection of C++ classes designed for the numerical simulations of continuum

solid, structural mechanics and biophysics problems. In this section, a general description

of the code working principle and two basic validations of the code on simple systems will

be discussed.
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Figure 2.3: Schematic framework of the Boltzmann distribution test. The aligned top (black)

and bottom (blue) lattices are both constructed by N2 (N = 100) orthogonal filaments

intersecting at their nodes. The lattice constant is equal to the equilibrium length of filament

segments a, and the separation of the two layers is the variable x. The filament nodes are

strictly constrained in space, and we only allow the formation and breakage of vertical

cross-links between aligned node pairs (red), resulting in an identical deformation for all

potential cross-links (at a specific separation x) and a fixed number of possible binding sites

NS = 10000 (for any separation x).

2.5.1 Finite element KMC algorithm flow path

The working process of the finite element KMC algorithm used in this dissertation is shown

as the flowchart in Figure 2.2. At a given state Si, the code first evaluates the unbinding rate

constants of all bound cross-links and the possible binding rate constants of all candidate

node pairs based on the current coordinates of the filament nodes and Equation 2.15. When

computing the binding rates, it is not necessary to consider all nodes pairs in the entire

network, instead, the code is able to select the local node pairs within a maximum allowed

cross-link length. The potential cross-linking of nodes on the same filament is also excluded

in this step. Second, the code randomly selects one of the cross-linking event to carry

out according to the probabilities proportional to their rate constants, which represents the

stochastic nature of cross-linking and leads the network form state Si to state Si+1. Third,

the code computes the time of the selected cross-linking event by drawing the lifetime of state

Si from a Poisson distribution described by the total rate constant νi,tot at this state. Finally,
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Figure 2.4: Test of Boltzmann distribution of cross-link energy. Cross-link binding fraction

NB(∆x)/NS against cross-link deformation ∆x measured in unit length, with theoretical

prediction curves of cλ3
Be

εb
kBT = 1 (red), cλ3

Be
εb
kBT = 2 (blue), and simulation data points

(black) with error bars. The cross-link stretching stiffness is set to be 2kBT
(unit length)2 for sim-

plicity.

the L-BFGS solver is launched searching for the optimized configuration of the network for

Si+1 state, which will serve as the initial state for the next cycle. The time spent from

the moment of cross-linking till the moment that the network regains elastic equilibrium is

ignored, since the L-BFGS solving algorithm is physical time irrelevant.

2.5.2 Boltzmann distribution test

The physical validity of KMC cross-linking method can be checked through a simple Boltz-

mann distribution test on the framework of two-layer aligned lattices of constrained filaments,

as shown in Figure 2.3. In the test, each lattice layer contains N (e.g. =100) “East-West”

and N “North-South” strictly constrained filaments intersecting at their nodes with a lattice
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constant a equal to the rest length of filament segments, and the two layers are perfectly

aligned with a controlled separation x satisfying the condition of ac ≤ x � a, where ac is

the equilibrium length of cross-links. The maximum search radius of potential cross-links

Rs follows the condition of x < Rs < a, such that the cross-links can only form vertically

between aligned node pairs, resulting in an identical deformation for all potential cross-links

(at a specific separation x) and a fixed number of possible binding sites Ns = N2 (for any

separation x).

The test is performed by varying the separation x and checking how the binding fraction

of cross-links change as a function of cross-link deformation. If the cross-links energy ε(∆x) =

−εb + 1
2
k∆x2 with deformation ∆x = x−ac follows the Boltzmann distribution, the binding

fraction NB(∆x)
NS

should follow Equation 2.12. In this two-layer constrained lattices case, with

a constant NS for all ∆x, we should have

NB(∆x)

NS

=
cλ3

Be
εb
kBT e

−k∆x2

2kBT

1 + cλ3
Be

εb
kBT e

−k∆x2

2kBT

, (2.44)

where the number of bound cross-links NB(∆x) can be acquired through this test model

by simply counting the number of cross-linked node pairs after it reaches equilibrium at

separation x = ∆x+ ac.

To simplify the test, the gas phase cross-link concentration c, the thermal de Broglie

wavelength λB, and the chemical binding energy εb of cross-links are set such that cλ3
Be

εb
kBT =

1 (or 2). The deformation of cross-links ∆x is measured in unit length, and the cross-link

stretching stiffness k is set to be 2kBT
(unit length)2 .

The test results are shown in Figure 2.4, where the black points with error bars are the

binding fractions acquired from the simulation and the red (blue) curve is the theoretical

prediction with cλ3
Be

εb
kBT = 1 (= 2) and k = 2kBT

(unit length)2 . As expected, the simulation results

agree with the theoretical predictions of Equation 2.44, confirming the basic physical validity

of KMC method during the highly-efficient stochastic cross-linking process. In addition, the

binding fraction at a given deformation is a monotonic increasing function of the gas phase

cross-link concentration c, since the first order derivative of Equation 2.44 with respect to c

at a fixed ∆x is always positive. This fact can be understood in terms of the Le Chatelier’s
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Figure 2.5: Shear through Lees-Edwards boundary conditions and single filament test frame-

work (projected view on x-y plane). The unit cells are perfectly aligned in an unstrained

case (left), a strain γ in +x direction is applied (right) by adding constant offsets of γL

and −γL to the top and bottom unit cells. This operation is equivalent to re-setting the

unit cell as a parallelepiped instead of a cube, node A (E) will be mapped to A’ (E’) in

the top (bottom) unit cell with an offset of γL (−γL) in x coordinates (right figure). A

filament (blue segments) of three free nodes B C D is placed in the center of the unit cell

perpendicular to x-z plane in an unstrained state (left figure), with terminal node B (D)

cross-linked to constrained nodes A (E) through the top (bottom) face of the center unit

cell. The cross-links are shown as red segments between node B (D) and virtual node A’

(E’) of physical node A (B). In a strain state (right figure), the filament nodes move to new

positions at B’ C’ D’, such that the system reaches the elastic equilibrium, where A’ B’ C’

D’ E’ are co-linear and |A’B’|=|B’C’|=|C’D’|=|D’E’| if a = ac and ks = k.
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principle, where the shifting of equilibrium tends to cancel the increasing number of gas

phase cross-links by forming more condensed ones.

2.5.3 Strain controlled shear and single filament test

The strain controlled shear is applied to the network through Lees-Edwards boundary con-

ditions by adding a constant horizontal offset to filaments and cross-links that cross the top

and bottom boundaries[72]. In the simulation, since filaments are considered as a collection

of nodes in a box with periodic boundary conditions, the shear can be interpreted as a shift

of the periodic boundaries, where the unit cell changes shape from a cube to a parallelepiped,

as shown in Figure 2.5. Node A (E) is mapped to a virtual node A’ (E’) in the top (bottom)

unit cell and the x coordinates of A and A’ (E and E’) are identical in an unstrained case

(Figure 2.5, left), while in a strained case (Figure 2.5, right), their x coordinates differ by

γL (−γL) if γ is the strain and L is edge length of an unstrained unit cell.

A simple test on the performance of L-BFGS solver can be implemented by comparing

the configuration and elastic energy of a sheared single filament system to the theoretical

predictions. At an unstrained state, the filament of three nodes and length ` = 0.6L (with

an equilibrium length of filament segment a = 0.3L) is placed in the center of the unit

cell perpendicularly to x-z plane, shown as the blue segments in Figure 2.5 (left), and the

coordinates of the filament nodes are: B (0.5L, 0.8L, 0.5L), C (0.5L, 0.5L, 0.5L), and D

(0.5L, 0.2L, 0.5L). There are also two constrained individual nodes A (0.5L, 0.1L, 0.5L) and

E (0.5L, 0.9L, 0.5L) in the unit cell with their virtual nodes A’ (0.5L, 1.1L, 0.5L) and E’

(0.5L,−0.1L, 0.5L) mapped into the top and bottom unit cells, respectively. Node A (E) is

cross-linked with node B (D) through the top (bottom) face of the center unit cell, which is

equivalent to the cross-linking between virtual node A’ (E’) and node B (D), shown as the red

segments in Figure 2.5 (left), where the cross-links are assumed having a same equilibrium

length with filament segments (ac = a = 0.3L) and they are un-stretched at this state.

When a strain γ is applied to the system through Lees-Edwards boundary conditions,

the virtual node A’ (E’) in the top (bottom) unit cell should carry a displacement of γL
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Figure 2.6: Single filament test results. (a) x and y coordinates of filament nodes B’ C’, and

D’ at elastic equilibrium state against strain γ. Solid (dashed) curves are the theoretical

predictions of x (y) coordinates for B’ (blue), C’ (black), and D’ (red), where the black solid

and dashed curves overlap since C’ is always at the center of the unit cell regardless of the

amount of strain. The optimized x (y) coordinates of filament nodes from L-BFGS solver

are shown as ‘crosses’ (‘diamonds’) of corresponding color. (b) Elastic energy against strain,

where the solid curve is the theoretical prediction and ‘asterisks’ are the optimized elastic

energies from L-BFGS solver under corresponding strain.
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(−γL) in x direction according to the new periodic boundary conditions under shear with

a parallelepiped unit cell. Due to the constraints on nodes A and E in the center unit

cell, the virtual nodes of A’ (0.5L+ γL, 1.1L, 0.5L) and E’ (0.5L− γL,−0.1L, 0.5L) are also

constrained in space, however, the filament nodes B C and D are allowed to move freely until

they stop at new positions of B’ C’ and D’ where the system reaches elastic equilibrium. In

the test simulation, the KMC cross-linking is turned off such that the connectivity of the

nodes are maintained, only the L-BFGS solver is working to optimize the coordinates of B’

C’ and D’. From this model, the theoretical values of the filament node coordinates and the

system elastic energy can be easily calculated from linear elasticity theory at equilibrium

state, which are to compare with the corresponding values provided by L-BFGS solver. For

simplicity, the unit cell size L is set as 1 unit length, the stretching stiffness of filament

segments ks and cross-links k are both set equal to kBT
(unit length)2 , resulting in an angular

spring stiffness of filament segments κb = 3
√

2
5
kBT based on Equation 2.28 and 2.30 with

` = 0.6L. Obviously, the theoretical solution requires a perfect colinearity of A’ B’ C’ D’ E’

and an equal separation between segments as |A’B’|=|B’C’|=|C’D’|=|D’E’|. Therefore, the

coordinates of B’, C’ and D’ at elastic equilibrium state are related to the strain γ as
B′ : (1+γ

2
, 0.8, 0.5)

C′ : (0.5, 0.5, 0.5)

D′ : (1−γ
2
, 0.2, 0.5)

, (2.45)

and the elastic energy Eel of the system at the equilibrium configuration can also be expressed

as a function of γ

Eel =
1

2
k
[
(|A′B′| − 0.3)2 + (|D′E′| − 0.3)2

]
+

1

2
ks
[
(|B′C′| − 0.3)2 + (|C′D′| − 0.3)2

]
=2kBT

(√
γ2

4
+ 0.09− 0.3

)2

. (2.46)

Inspiringly, the optimal coordinates and minimized elastic energy from L-BFGS solver

match the theoretical predictions particularly well, as shown in Figure 2.6. The filament-

cross-link system now behaves as a nonlinear elastic material along x direction with a non-
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zero shear modulus, resulting from the pure stretching of the filament and cross-links, which

is essentially attributed to the constraints on nodes A and E.

The single filament system provides a simplest equivalent correspondence of a filament

network, allowing us to understand the rigidity percolation transition through a visualized

picture. Without constraining nodes A and E, the equilibrium elastic energy of the single

filament system becomes zero regardless of the amount of strain, since now the filament-

cross-link cluster behaves as a fluid particle and no deformation in ways of stretching or

bending is needed to regain the elastic equilibrium. This can be treated as a naive picture

of “networks” below the rigidity percolation transition, whose shear modulus is zero due to

a lack of constraints from the network itself. However, simply by adding one condition that

the essential connectivity between node A and E through the network exists as an effective

spring, the system turns into a network above the rigidity percolation transition. As shown in

Figure 2.5, right after the strain, node A (or A’) is experiencing a stress along
−−→
A′B′ direction,

while node E (or E’) is stretched along
−−→
E′D′ direction. On the other hand, the effective spring

between the essentially connected nodes A and E tends to pull them closer. The overall force

on node A (E) at this elastic non-equilibrium state has a component pointing to -x (+x)

direction, this relatively separating motion in x direction between the remote parts of the

“network” represented by nodes A and E is exactly the shear effect. Even though the system

eventually reaches a new elastic equilibrium state, the elastic energy growth due to strain

cannot be fully relaxed during the elastic non-equilibrium process, since both the effective

spring between nodes A and E and the filament-cross-link cluster are still stretched at the

new elastic equilibrium state. Therefore, the essential connectivity between distant parts of

the network (represented by nodes A and E in this single filament case) is the key to have a

non-zero shear modulus.
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CHAPTER 3

Stress Relaxation in 3-D Filament-constrained

Network

3.1 Introduction

Semiflexible networks above the rigidity percolation transition can deform both affinely or

non-affinely under shear, previous works by Levine et al. showed the two dimensional semi-

flexible networks at high cross-link density and for rigid filaments deform affinely under

strain[8][9][21][22][42][23], as predicted by the classical theories of rubber elasticity, in which

the strain field is uniformly distributed throughout the network. Under the affine deforma-

tion, the filaments should purely translate, rotate, stretch or compress, when assuming the

cross-links are non-stretchable freely rotating rivets or rods, the strain energy of the network

will be completely stored in the extensional or compressional modes of the filaments and

the shear modulus of the network will be independent of the filament bending modulus. In-

spired by these works on static filament networks, we are particularly interested in the stress

relaxation dynamics of the networks with transient cross-links which can also store elastic

energy and are able to dynamically form or break between filaments. In this chapter, we

propose a model of three dimensional filament network with transient cross-links using the

finite element Kinetic Monte Carlo approach we developed, and explore the dynamics of the

cross-links during stress relaxation when a strain controlled shear is applied to the network

through an affine deformation on the filaments. In order to maintain a static configuration

of the filaments under the uniform strain field and focus on probing into the cross-linking

dynamics, we constrain the filaments in space. We discuss the linear shear elasticity of

the three dimensional network from both theoretical and numerical simulation perspectives.
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We find the strain energy mainly arises from the deformation growth of highly-stretched

cross-links orientating in certain directions, where both the number and the average elastic

energy growth of these cross-links scale linearly with the strain. We also observe the strain

energy dissipation through strain-guided cross-link reorganization, which results in a trained

configuration of cross-links that tends to maintain the current deformation on filaments.

3.2 Network Model

We use a simple model to construct a statistically homogeneous and isotropic network of

constrained filaments in three dimensions, by placing straight rods of a fixed length at

random positions and orientations in a box with periodic boundary conditions applied in each

direction. At an initial state, N = 500 filaments (each of length ` = 4µm and constructed by

nf = 21 evenly separated nodes) are randomly distributed into a 10µm×10µm×10µm unit

cell. Under the assumption that the filaments are constrained is space, they now serve as

a fixed breeding ground for the transient cross-links. When the system reaches equilibrium,

where the average number density of cross-links and the average energy density of the network

stop growing over time, we then acquire a statistically homogeneous and isotropic network

of random cross-links and constrained filaments, as shown in Figure 3.1 (a). With the

parameters from above, the network has a mesh size ξ = 0.7µm.

A strain controlled step shear is applied to the network at its equilibrium state through

an affine deformation on the filaments, in which the filament nodes will be moved and

constrained at new positions following the affine shear transformation as
r′x

r′y

r′z

 =


1 γ 0

0 1 0

0 0 1



rx

ry

rz

 , (3.1)

where γ is the strain, r = (rx, ry, rz)
T and r′ = (r′x, r

′
y, r
′
z)

T are the position vectors of filament

nodes before and after shear, respectively. In a strained state, the filaments cannot bend

but are allowed to stretch or compress according to the strain field with a constant energy

cost from the themselves during the entire process, however, the shear strain energy of the
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(a) (b)

x

y

z

Figure 3.1: Model of the 3-D network projection view onto x-y plane showing the filaments

in green and the cross-links in red. (a) Unstrained. (b) 50% step shear in x− y plane along

+x direction is applied through the affine deformations of filaments.

network will not remain constant due to the dynamics of the cross-links. In this filament-

constrained case, the elastic energy of the filaments is excluded from the expression of total

elastic energy after shear, since it remains as a constant during the stress relaxation and

will not be dissipated through any kind of cross-linking process. The unit cell of periodic

boundary conditions is also sheared (from a cube to a parallelepiped) to cancel the offset

of the filaments and cross-links that crossed the top and bottom boundaries. Figure 3.1

(b) shows the configuration of a strained network from its unstrained equilibrium state in

Figure 3.1 (a).

In the simulation, the temperature is set as T = 300K, and the energy will be measured

in kBT unit. The cross-link spring constant k is set as 0.025pN/µm ≈ 6kBT/µm
2, with

a rest length ac = 0.04µm and a maximum allowed extension am = 1µm. The mass of

a cross-link protein molecule is chosen as 1.05 × 105amu ≈ 1.74 × 10−22kg, therefore, the

thermal de Broglie wavelength λB of a cross-link is 3.1 × 10−7µm. The chemical binding

energy εb between both ends of a cross-link and two filaments is set as 10kcal/mol and the

concentration of gas phase cross-links c is set to be in the order of 105µm−3.
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Figure 3.2: Natural logarithm plot of the empirical probability density function of bound

cross-link lifetime p(τ) at different concentrations c = 1 × 105µm−3 (black diamonds),

2 × 105µm−3 (blue squares), and 5 × 105µm−3 (red circles). Multiple different stochastic

processes on the same configuration of filaments are averaged such that the relative error of

δτ0 = |∆τ0/ < τ0 > | is within 1%. The average bound cross-link lifetime τ0 = 402.5s when

ν0 = 0.001s−1 and c = 1× 105µm−3.

3.3 Results

3.3.1 Equilibrium state

To explore the transient nature of the cross-links during the network formation and equili-

brating process, the probability density function of bound cross-link lifetime p(τ) is achieved

from the empirical probability function of bound cross-link lifetime P (τ − δτ/2, τ + δτ/2)

with a histogram interval δτ , following

P (τ − δτ

2
, τ +

δτ

2
) =

∫ τ+ δτ
2

τ− δτ
2

p(τ ′) dτ ′ ≈ p(τ)δτ, (3.2)
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which leads to

p(τ) ≈
P (τ − δτ

2
, τ + δτ

2
)

δτ
. (3.3)

Since each cross-linking event is associated with a system time, the lifetime of a bound cross-

link can be measured through taking the difference between the system time of its binding and

unbinding steps. There are cross-links lived multiple lives in the network history, and each of

their appearance is treated as an additional contribution to the lifetime set. Figure 3.2 shows

the natural logarithm plot of p(τ) against the bound cross-link lifetime τ at different gas

phase cross-link concentrations. Surprisingly, we find p(τ) follows an exponential distribution

as

p(τ) =
1

τ0

exp(−τ/τ0). (3.4)

Even with different gas phase cross-link concentrations at this magnitude of 105µm−3, the

exponential distribution parameter τ0 are very similar within a statistically relative error of

2%. This can be understood by the fact that the lifetime of a bound cross-link at equilibrium

state is its unbinding rate νoff governed when c is large and filaments are constrained. The

average value of an exponential distribution < τ > is exactly τ0, which provides a time scale

for system dynamics, and choosing τ0 as the new time unit will normalize the affects of ν0.

With the cross-link binding and unbinding mechanism, the system starts with zero cross-

link will evolve till an equilibrium state when the number density of cross-links and energy

density of the network both become stable, where the relative fluctuation of the bound

cross-link number δNCL = |∆NCL/ < NCL > | and the relative fluctuation of total energy

δEtot = |∆Etot/ < Etot > | are, statistically, both smaller than 0.5% during 2τ0 time. Since

the filaments are constrained, the total energy of the network Etot only contains a negative

chemical binding energy of cross-links Eb when forming non-covalent bonds with filaments

and a positive elastic energy Eel of bound cross-links. Figure 3.3 shows the evolution of

number of bound cross-links NCL over time and Figure 3.4 (a) shows the evolution of the

total energy of the network, which decreases over time with a growing number of bound

cross-links and reaches equilibrium slightly after the time when the number of bound cross-

links becomes stable, the slight delay is caused by the fluctuation of elastic energy. The
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Figure 3.3: Number of bound cross-links NCL in the network against time measured in τ0

time unit at different concentrations of c = 1 × 105µm−3 (black), 2 × 105µm−3 (blue), and

5× 105µm−3 (red).

total elastic energy stored in cross-links Eel, as shown in Figure 3.4 (b), also grows over time

until approaching an equilibrium, where the relative fluctuation δEel = |∆Eel/ < Eel > |

is smaller than 0.7% over 2τ0 time. Although the bound cross-link lifetime is concentration

independent, a higher concentration will lead to an equilibrium state with a higher number

of bound cross-links, a lower total energy and a higher elastic energy, as shown in Figure 3.3,

Figure 3.4 (a) and (b). This is consistent with the equation of binding fraction discussed

in Chapter 2, since the binding fraction z(x) = NB(x)/NS(x) at any fixed separation x is a

monotonic increasing function of c (one can check, the derivative of z(x) with respect to c is

always positive regardless of the value of x) and the number of possible binding sites NS(x)

of any separation x is fixed under the same configuration of filaments.

The number of bound cross-links and the elastic energy of the network at equilibrium state

can be estimated theoretically. Assuming the total number of the filament nodes is large,

and the nodes are uniformly distributed in the box. The number of possible binding sites

associated with a randomly picked node for cross-links with separation x can be measured

as the number of nodes located in a spherical shell centered at the chosen node with radius
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Figure 3.4: (a) Total energy Etot and (b) elastic energy Eel in the network against time

measured in τ0 time scale at different concentrations of c = 1×105µm−3 (black), 2×105µm−3

(blue), and 5× 105µm−3 (red).

x and thickness dx as

Ns(x)dx =
Nnf
V

4πx2 dx, (3.5)

where
Nnf
V

represents the number density of the evenly distributed filament nodes, N is the

number of filaments in the system and nf is the number of nodes on each filament. The total

number of binding sites with separation x of all nodes in the system can then be expressed

as

NS(x)dx =
Nnf
V

4πx2 dx
Nnf

2
, (3.6)

where the factor of 1
2

is due to the double counting of each site. The number of bound cross-

links among NS(x) possible sites following Boltzmann distribution, as discussed in Chapter
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2, should be

NB(x)dx =
(Nnf )

2

2V
4πx2 cλ3

Be
εb
kBT e

− 1
2
k(x−ac)2
kBT

1 + cλ3
Be

εb
kBT e

− 1
2
k(x−ac)2
kBT

dx, (3.7)

where c is the concentration of gas phase cross-links, λB = h
(2πmkBT )1/2 is the thermal de

Broglie wavelength of cross-links, εb is the chemical binding energy of two non-covalent bonds

between both ends of the cross-link and corresponding filaments, and ac is the equilibrium

length of the cross-links.

Therefore, we can compute the total number of bound cross-links in the network by

integrating NB(x) over x from ac to the maximum allowed extension of cross-links am as

NB =

∫ am

ac

NB(x) dx =
(Nnf )

2

2V

∫ am

ac

4πx2 cλ3
Be

εbe−
1
2
k(x−ac)2

1 + cλ3
Be

εbe−
1
2
k(x−ac)2

dx, (3.8)

where we will measure εb in kBT unit and measure k in kBT
length2 unit to simplify the expression.

The integration of averaging the orientations of the cross-links over the solid angle is 1, which

is not shown in the expression, since the cross-links are considered uniformly orientated in

all directions. Unfortunately, now we have included the forbidden self-links between nodes

on the same filaments, by subtracting the number of self-links, we end up at a theoretical

total number of bound cross-links for a system with perfectly evenly distributed nodes.

With the current parameters, this number is of the same magnitude as the observed NCL

from simulation but greater. This fact is due to the following reason: The nodes on the

same filament has to be co-linear when we produce the network, if the first two nodes on a

filament are placed, it enforces an extra constraint on the rest of the nf − 2 nodes to line up

along the line rather than randomly choosing their coordinates. This results in observable

local cavities and densely filled regions as shown in Figure 3.1 (a), indicating the absolute

homogeneousness of nodes is hard to reach for filament networks.

However, we can normalize the effects of a greater number of bound cross-links due to

the perfect homogeneity assumption by evaluating the probability distribution of bound

cross-links with separation x as

p(x)dx =
NB(x) dx

NB

=

x2 cλ3
Be

εbe−
1
2 k(x−ac)2

1+cλ3
Be

εbe−
1
2 k(x−ac)2

dx∫ am
ac

x2 cλ3
Be

εbe−
1
2 k(x−ac)2

1+cλ3
Be

εbe−
1
2 k(x−ac)2

dx

, (3.9)

40



which can be also expressed in terms of the probability distribution of the cross-link defor-

mation ∆x = x− ac as

p(∆x)d(∆x) =

(∆x+ ac)
2 cλ3

Be
εbe−

1
2 k∆x2

1+cλ3
Be

εbe−
1
2 k∆x2 d(∆x)∫ am−ac

0
(∆x′ + ac)2 cλ3

Be
εbe−

1
2 k∆x′2

1+cλ3
Be

εbe−
1
2 k∆x′2

d(∆x′)

. (3.10)

The elastic energy of the entire network is written in terms of the summation of the

elastic energies over all cross-links, which can be approximated by an integral averaging over

a continuous ∆x that follows the distribution of p(∆x) as

Eel =

NCL∑
i=1

1

2
k∆x2

i =
1

2
kNCL < ∆x2

i >i

≈1

2
kNCL

∫ am−ac

0

p(∆x)∆x2 d(∆x),

(3.11)

which can be calculated exactly given the parameters of cross-links and the observed number

of bound cross-links at equilibrium state. Inspiringly, the elastic energies acquired from the

simulation are within a 4% relative error of the theoretical predictions for all three tested

gas phase cross-link concentrations. This expression also indicates the positive correlation

between the network elastic energy Eel and the free phase cross-link concentration c, which

is verified by the simulation results. From now on, only the results of c = 1× 105µm−3 will

be shown since the underlying physics is c independent.

3.3.2 Linear elasticity

When a strain controlled step shear is applied to the equilibrated network through the affine

deformation on filaments, the network shows a non zero shear modulus due to the overall

elastic energy change of the cross-links.

Each cross-link in the network, which connects a pair of filament nodes, is also deformed

affinely at the shear step. The elastic energy change of an individual cross-link can then

be calculated through evaluating the change of cross-link length. Suppose a cross-link (with

length x and an arbitrary orientation of polar angle θ with respect to Y axis and an azimuthal

angle ϕ in Z-X plane) is strained affinely by γ applied in X-Y plane and along X direction,
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Figure 3.5: Schematic of single cross-link orientation. A cross-link with length x (red) has a

polar angle θ with respect to Y axis and an azimuthal angle ϕ in Z-X plane. This coordinate

system is chosen for the simplicity of illustrating the effects of a shear applied in X-Y plane

and along X direction, which is equivalent to the normal spherical coordinate system.

as shown in Figure 3.5. This coordinate system is chosen for the simplicity of illustrating the

effects of a shear applied in X-Y plane, which is equivalent to the normal spherical coordinate

system. The length of the cross-link after shear x′ can be expressed as

x′ =
√

(x sin θ sinϕ+ xγ cos θ)2 + (x cos θ)2 + (x sin θ cosϕ)2

=x
√

1 + 2γ sin θ cos θ sinϕ+ γ2 cos2 θ.
(3.12)

Taylor expanding the square root leads to

x′ ≈ x+ xγ sin θ cos θ sinϕ+
1

2
xγ2 cos2 θ

− 1

2
xγ2 sin2 θ cos2 θ sin2 ϕ+ xO(γ3).

(3.13)

The elastic energy of the affinely deformed cross-link ε′CL at a strained state can then be
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written as

ε′CL =
1

2
k(x′ − ac)2

≈ 1

2
k
[
(x− ac)2 + 2(x− ac)xγ sin θ cos θ sinϕ

+ acxγ
2 sin2 θ cos2 θ sin2 ϕ

+ (x− ac)xγ2 cos2 θ +O(γ3)
]
.

(3.14)

Noticing that x − ac = ∆x is the stretching length of the cross-link in an unstrained state,

hence we can express ε′CL in terms of ∆x as

ε′CL ≈
1

2
k∆x2 +

1

2
k
[
2∆x(∆x+ ac)γ sin θ cos θ sinϕ

+ ac(∆x+ ac)γ
2 sin2 θ cos2 θ sin2 ϕ

+ ∆x(∆x+ ac)γ
2 cos2 θ +O(γ3)

]
,

(3.15)

where the first term 1
2
k∆x2 = εCL is the elastic energy stored in the cross-link in an unstrained

state. Therefore, the elastic energy change of this cross-link ∆εCL = ε′CL − εCL is a function

of γ, ∆x, θ, and ϕ as (if ignoring the third or higher order corrections of γ)

∆εCL(γ,∆x, θ, ϕ) ≈ kγ∆x(∆x+ ac) sin θ cos θ sinϕ

+
1

2
kγ2
[
ac(∆x+ ac) sin2 θ cos2 θ sin2 ϕ

+ ∆x(∆x+ ac) cos2 θ
]
.

(3.16)

The strain energy of the entire network U consisting of the elastic energy change from

all cross-links (where the stretching or compressing energy of the filaments are excluded as

discussed in Section 3.2) can be written as

U =

NCL∑
i=1

∆εCL,i = NCL < ∆εCL,i >i

≈NCL < ∆εCL(γ,∆x, θ, ϕ) >∆x,θ,ϕ

=NCL

∫ am−ac

0

d(∆x)

∫ 1

−1

d(− cos θ)

∫ 2π

0

dϕ
p(∆x)

4π
∆εCL(γ,∆x, θ, ϕ),

(3.17)

where < ∆εCL,i >i is approximated by the integral averaging over a continuous ∆x following

the distribution of p(∆x) given by Equation 3.10 and over a uniformly distributed cross-link

orientations in three dimensions. Cross-links with any stretching lengths are assumed having
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Figure 3.6: Average strain energy density < u > against strain γ (applied in X − Y plain

along X direction), with data points at γ =-1, -0.8, -0.6, -0.4, -0.2, 0, 0.2, 0.4, 0.6, 0.8, 1.0

(black asterisks) and a fitting curve (blue solid) of function < u >= 1
2
G(γ− γ0)2 +u0, which

gives γ0 ≈ 0, u0 ≈ 0 and the shear modulus G = 3.14kBTµm
−3 with an average fitting error

of 4× 10−4kBTµm
−3 per data point. The theoretical prediction curve (red solid) is based on

the shear modulus given by Equation 3.20, which is 3.22kBTµm
−3. The gas phase cross-link

concentration c is set to be 1× 105µm−3.

an equal probability orienting to any directions of the 4π solid angle, which results in the

factor of 1
4π

in the expression of the three-dimensional probability distribution.

By plugging Equation 3.16 into Equation 3.17, the linear term of γ vanishes, which is

also implied by the symmetry of the problem, leading to a quadratic dependence of U and

γ as

U ≈ 1

2
γ2kNCL

[ ∫ am−ac

0

ac(∆x+ ac)p(∆x) d(∆x)

∫ π

0

sin3 θ cos2 θ

2
dθ

∫ 2π

0

sin2 ϕ

2π
dϕ

+

∫ am−ac

0

∆x(∆x+ ac)p(∆x) d(∆x)

∫ π

0

sin θ cos2 θ

2
dθ

∫ 2π

0

1

2π
dϕ

]
=

1

2
γ2kNCL

[
1

15

∫ am−ac

0

ac(∆x+ ac)p(∆x) d(∆x)

+
1

3

∫ am−ac

0

∆x(∆x+ ac)p(∆x) d(∆x)

]
.

(3.18)
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The average strain energy density < u >= U/V takes the form as

< u >=
1

2
Gγ2, (3.19)

with a constant shear modulus of

G =
kNCL

V

[
1

15

∫ am−ac

0

ac(∆x+ ac)p(∆x) d(∆x)

+
1

3

∫ am−ac

0

∆x(∆x+ ac)p(∆x) d(∆x)

]
,

(3.20)

where k is the cross-link spring stiffness, NCL is the number of bound cross-link in the

network, V is the volume of the system, p(∆x) is the probability density function of cross-

links with stretching length ∆x at an unstrained equilibrium state, ac is the rest length of

the cross-links, and am is the maximum allowed length of the cross-links.

From the simulation results, the network indeed behaves as a linear shear elastic material,

and an identical constant shear modulus in all directions for networks with the same filament

and cross-link configurations is observed within a statistical relative error of 2%. Multiple

different stochastic cross-linking processes upon the same filaments configuration are also

averaged, such that the statistical relative error of shear modulus δG = |∆G/ < G > |

of different cross-link configurations at equilibrium state is within 2%. The shear modulus

generated from simulations is also within a 2.5% relative error of the theoretical prediction

given by Equation 3.20. Therefore, from a shear elasticity perspective, the cross-linked

network model is proved statistically homogeneous and isotropic, as expected. Figure 3.6

shows the average strain energy density < u > scales quadratically with the strain γ and

the proportionality constant is equal to G/2.

Applying different amount of strain on the same network results in distinct bound cross-

link elastic energy distributions, especially, with significantly unique tails of high elastic

energy cross-links. The empirical probability function of the elastic energy of bound cross-

links can be written as

P (εCL −
δεCL

2
, εCL +

δεCL
2

) =

∫ εCL+
δεCL

2

εCL−
δεCL

2

p(ε′CL) dε′CL ≈ p(εCL)δεCL, (3.21)

where δεCL is the histogram interval and p(εCL) is the empirical probability density function

of cross-link elastic energy, from which we can approximate the p(εCL) from the simulation
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Figure 3.7: (a) Empirical probability density functions of bound cross-link elastic energy

p(εCL) at strain γ = 0 (black), 0.2 (magenta), 0.4 (green), 0.6 (blue), 0.8 (cyan), and 1.0

(red), with a histogram interval δεCL = 0.28kBT . (b) Empirical (cumulative) distribution

functions of bound cross-link elastic energy F (εCL) shown as solid curves at strain γ = 0

(black), 0.2 (magenta), 0.4 (green), 0.6 (blue), 0.8 (cyan), and 1.0 (red), the critical cross-link

elastic energies ε∗CL indicating the starting point of distribution tails are labeled by dashed

lines of the corresponding color. The five dashed lines look overlapping since the relative

error of δε∗CL = |∆ε∗CL/ < ε∗CL > | is smaller than 1.5%, and they all locate within a 3.0%

relative error around the maximum cross-link elastic energy at an unstrained equilibrium

state following ε∗CL ≈ sup(εCL,γ=0).
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data as

p(εCL) ≈
P (εCL − δεCL

2
, εCL + δεCL

2
)

δεCL
. (3.22)

A greater strain results in a wider distribution of cross-links elastic energy with less low-

energy cross-links and more high-energy cross-links, as shown in Figure 3.7 (a). In order

to determine whether the two samples of the elastic energy of cross-links before and after

strain are statistically different, we employ a ‘two-sample Kolmogorov-Smirnov test’ (K-S

test) to acquire a simple standard[73][74], which is the critical significance level of incorrectly

differing these two cross-link elastic energy distributions.

The basic idea of ‘two-sample K-S test’ is comparing the largest difference between the

two empirical distribution functions with a critical value, which is related to a prescribed

significance level and the sample sizes. The empirical distribution function of bound cross-

link elastic energy Fn(εCL) for a given network state with n cross-links is defined as

Fn(εCL) =
1

n

n∑
i=1

I[−∞,εCL](ε
′
CL,i), (3.23)

where I[−∞,εCL](ε
′
CL,i) is the indicator function, equal to 1 if ε′CL,i < εCL and equal to 0

otherwise. And the Kolmogorov-Smirnov test statistic is chosen as

Dn,m = sup
εCL

|F1,n(εCL)− F2,m(εCL)|, (3.24)

where F1,n and F2,m are the empirical distribution functions of the cross-link elastic energy at

state I (n cross-links) and state II (m cross-links), in the case of step shear, n = m since no

cross-linking event occurs during an instant step strain, and sup is the supremum function.

With a prescribed significance level α of incorrectly differing these two distributions, the two

distributions are considered different with a probability 1− α if

Dn,m > C(α)

√
n+m

nm
, (3.25)

where C(α) =
√
−1

2
lnα.

On the other hand, from Dn,m of the given cross-link elastic energy distributions before

and after shear, it is straightforward to find a critical significance level α∗ such that

Dn,m = C(α∗)

√
n+m

nm
. (3.26)
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The physical meaning of α∗ is the minimum significance level we can choose that the two

distributions are still considered statistically different, which can be used to measure the

statistical distinction between the two distributions providing identical sample sizes respec-

tively, where 1− α∗ is the trust level (a probability) that they are statistically distinct. At

the strain step, the sample sizes (number of cross-links) associated with different amount of

strain are the same, therefore, α∗ of each strain should indicate the essential distinction of

the cross-link elastic energy distributions before and after shear.

From the simulation, α∗ = 9.1×10−2, 7.1×10−5, 2.0×10−12, 8.8×10−26, and 1.8×10−44

for γ = 0.2, 0.4, 0.6, 0.8, and 1.0 respectively. α∗ approaches to zero non-linearly and

quickly when γ gets larger for the same cross-link configuration, therefore, a grater strain

results in a more distinct distribution of bound cross-link elastic energy. Additionally, for

networks with the same mesh size, the same bound cross-link number density, and the

same elastic energy density, a decreasing α∗ = exp(−nD2
n,n) is observed with an increasing

network size V , since Dn,n approaches to a non-zero constant with an increasing V while

the number of bound cross-links n scales linearly with V . From this observation, even for

small strain, the distributions are still considered different with a large enough network size,

however, as expected, a larger network size means more computational-consuming. Overall,

the bound cross-link elastic energy distributions before and right after a step shear are

essentially different and they become more distinct when strain increases.

The empirical distribution functions of elastic energy of bound cross-links before and

right after a step strain also provide a criterion to label the distribution tail of high elastic

energy cross-links. The starting point of the distribution tail at an arbitrary strain is defined

as the critical cross-link elastic energy ε∗CL which leads to the largest difference between the

two empirical distribution functions before and after shear, such that

|F1,n(ε∗CL)− F2,m(ε∗CL)| = Dn,m = sup
εCL

|F1,n(εCL)− F2,m(εCL)|. (3.27)

By this definition, interestingly, the critical cross-link elastic energies ε∗CL of different strains

end up identical with a relative error δε∗CL = |∆ε∗CL/ < ε∗CL > | smaller than 1.5%, and they

all locate around the maximum cross-link elastic energy at an unstrained equilibrium state
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Figure 3.8: (a) The tail fraction NCL,tail/NCL plot against strain γ, with data points (black

asterisks) at γ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0, and a linear fitting

function (blue solid) of NCL,tail/NCL = b1γ with b1 = 16.0% and an average fitting error of

0.5% per data point. (b) The average elastic energy growth of tail cross-links < ∆εCL.tail >

against γ at γ = 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0, with data points (black

asterisks) and a linear fitting function (blue solid) of < ∆εCL.tail >= b2γ with b2 = 1.87kBT

and an average fitting error of 0.02kBT per data point.

within a 3.0% relative error following

ε∗CL ≈ sup(εCL,γ=0). (3.28)

The empirical distribution functions of cross-link elastic energy under different strain F (εCL)

are shown as the solid curves in Figure 3.7 (b), and the critical cross-link elastic energies ε∗CL

are labeled by the dashed lines.

High-energy tail cross-links play a significant role in contributing the strain energy of the

network, and the average elastic energy growth of the tail cross-links scales with strain in

a completely different way as the the non-tail low-energy cross-links. From the simulation,

a tail cross-link fraction NCL,tail/NCL of 2.5% (5.6%, 9.0%, 12.4%, and 17.6%) contributes
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56.5% (62.0%, 66.8%, 71.3%, and 79.9%) of the total strain energy at strain γ = 0.2 (0.4,

0.6, 0.8, and 1.0), where the ratio of the average elastic energy growth per cross-link of

non-tail and tail cross-links < ∆εCL,non−tail > / < ∆εCL,tail > is only 2.0% (3.7%, 4.9%,

5.7%, and 5.4%). This phenomenon of the distribution tail dominating the shear strain

energy can be understood in terms of the following: A small fraction of cross-links (tail

cross-links) obtaining large growth in stretching length due to the affine deformation are the

main contributors to the network strain energy, while a large portion of cross-links (non-tail

cross-links) acquiring small or negative change in stretching length overall contribute little

strain energy. If assuming the rest length of cross-links is small (ac → 0), from Equation

3.16, the elastic energy change of a cross-link can be approximated as

∆εCL(γ,∆x, θ, ϕ) ≈ kγ∆x2 sin θ cos θ sinϕ+
1

2
kγ2∆x2 cos2 θ. (3.29)

The tail cross-links gaining large and positive ∆εCL are the ones with long stretching lengths

∆x and orientating at a solid angle around (θ = 1
2

arctan 2
γ
, ϕ = π

2
) at the unstrained state,

while a same number of cross-links in the non-tail region orientating around a solid angle

of (θ = 1
2

arctan 2
γ

+ π
2
, ϕ ≈ π

2
) shrink most and make negative contributions to the strain

energy. The orientation angles that leads to the extrema of ∆εCL can be determined by

evaluating the first and second order derivatives of Equation 3.29. The rest of the cross-links

in the non-tail region which acquire little deformation changes (positive or negative) mainly

translate or rotate under the affine strain field. However, the overall elastic energy change

of the non-tail cross-links is still positive due to the symmetry breaking quadratic term in

Equation 3.29, and the non-tail cross-links together contribute a small portion to the strain

energy of the network.

The size of distribution tails, measured by the tail cross-link fraction NCL,tail/NCL, grows

linearly with γ in the regime of γ ≤ 1, as shown in Figure 3.8 (a). However, the linear

relation cannot be valid at large strain regime, since NCL,tail/NCL should converge to 1 when

γ →∞. We can also obtain an average elastic energy growth of tail cross-links < ∆εCL.tail >

by averaging over the differences of their elastic energies between a strained state and the

unstrained state, and < ∆εCL.tail > can be used to measure the average contribution per
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Figure 3.9: (a) Elastic energy Eel relaxation (blue solid curve) measured in τ0 time unit

when a step strain of 0.8 is applied at t = 0, multiple stochastic cross-linking pro-

cesses of the same strained network are averaged such that the average relative errors

< δEel,δt >6τ0=< |∆Eel,δt/ < Eel >δt | >6τ0 of each time interval δt = τ0/500 is within

1%. The equilibrium elastic energy before (after) shear is shown as the black dash-dot line

(blue dash-dot line) with a relative fluctuation of 0.7% (0.7%), achieved through averag-

ing Eel at the unstrained (strained) equilibrium state from t = −2τ0 to t = 0 (t = 4τ0 to

t = 6τ0). An exponential decay fitting curve (red) on data points from t = 0 to t = 2τ0 of

function Eel = E0
el+U exp(−t/τrlx) is also plotted with an average of relative fitting error per

data point smaller than 0.3% and a strain energy relaxation time constant τrlx ≈ 0.3τ0. (b)

Number of bound cross-links (blue solid curve) against time, the same statistical averaging

method is used as for part (a). The relative difference between the number of cross-links

at the equilibrium states before (black dash-dot line) and after (blue dash-dot line) shear is

within their relative fluctuations of 0.18%, so the two dash-dot lines look overlapping.
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cross-link in the tail to the total strain energy. Surprisingly, < ∆εCL.tail > also scales linearly

with γ in the same regime of γ ≤ 1, as shown in Figure 3.8 (b). Although the average elastic

energy growth of all cross-links < ∆εCL > scales quadratically with γ from Equation 3.18

and Figure 3.6, the tail cross-links contribute to the total strain energy quadratically with γ

in a dramatically different way of scaling linearly with γ both in quantities and magnitudes

of the elastic energy growth.

3.3.3 Strain energy relaxation

The fundamental microscopic cross-link binding and unbinding mechanism provides the foun-

dation of macroscopic strain energy relaxation, where the cross-links storing large elastic

energy from the step strain carry a higher probability to detach and leave the corresponding

nodes free to serve as new possible binding sites for low elastic energy cross-links. This

local cross-link reorganization statistically results in a strain energy relaxation toward the

equilibrium at a network scale.

As shown in Figure 3.9 (a), a step strain of 0.8 is applied to the network at t = 0, the

overall elastic energy of the network decays exponentially as

Eel = E0
el + U exp(−t/τrlx), (3.30)

until it reaches the same value as an unstrained equilibrium state, where E0
el is the elastic

energy at equilibrium state, U is the strain energy, and τrlx is the exponential relaxation time

constant. The relative difference between the equilibrium elastic energies before and after

shear is within their relative fluctuations of 0.7%, therefore, the equilibrium elastic energies

of the unstrained and strained networks are considered statistically identical.

At the very beginning of the relaxation, both the binding and unbinding rates had a step

jump comparing with their values at the unstrained equilibrium state, but the unbinding

rate jumps higher than the binding rate. During the relaxation, both binding and unbinding

rates decay to the same value as the unstrained equilibrium state during the same amount

of time, however, the unbinding rate decays faster than the binding rate and their difference

changes sign at a time shorter than τrlx. This results in a first decreasing and then increasing
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Figure 3.10: (a) Empirical probability density functions of bound cross-link elastic energy

p(εCL) at t = 0− (just before shear, black dash), t = 0+ (just after shear, magenta), t = τ0/4

(green), t = τ0/2 (blue), t = τ0 (cyan), and t = 2τ0 (red), with a histogram interval

δεCL = 0.3kBT . (b) Empirical (cumulative) distribution functions of bound cross-link elastic

energy F (εCL) at t = 0− (black dash), t = 0+ (magenta), t = τ0/4 (green), t = τ0/2 (blue),

t = τ0 (cyan), and t = 2τ0 (red), where the black and red curves look overlapping since the

critical significance level α∗ between these two distributions is 0.53.
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number of bound cross-links during the strain energy relaxation, and the number of bound

cross-links eventually reaches the same value as the unstrained equilibrium state, as shown in

Figure 3.9 (b). The undulation of number of bound cross-links can be understood in terms

of the ‘unlocking mechanism’: The strain-driven unbinding events of high elastic energy

cross-links govern the cross-linking dynamics right after shear and leave corresponding spots

unlocked and available for low energy cross-links to bind afterwards. A recovery of the

number of bound cross-links starts when enough possible binding spots are released over time

and the tendency to recover equilibrium surpasses the tendency of strain-driven unbinding,

where the strained equilibrium state should carry the same cross-link number density as the

unstrained equilibrium state since the density of the nodes is preserved under strain.

This strain-driven cross-link reorganization can be revealed from the empirical probability

density functions of the cross-link elastic energy at time steps in a chronological order during

the relaxation, as shown in Figure 3.10 (a). The unbinding events of high elastic energy

cross-links in the distribution tail release their strain energy during the relaxation, which are

responsible for the strain energy decay. On the other hand, the binding events of low elastic

energy cross-links between the unlocked spots in the non-tail region recover the equilibrium

state, which slow down the strain energy decay.

The empirical cumulative distribution functions of the cross-link elastic energy of the

unstrained state (t = 0−), the time just after shear (t = 0+), at t = τ0/4, t = τ0/2, t = τ0,

and t = 2τ0 are shown in Figure 3.10 (b). The critical significance level α∗ = 8.8 × 10−26

(5.6× 10−13, 1.4× 10−5, 0.21, and 0.53) if a two-sample K-S test is performed between the

distributions at t = 0− and t = 0+ (t = τ0/4, t = τ0/2, t = τ0, and t = 2τ0). The distinctions

of the distributions comparing with the unstrained equilibrium state decrease over time

during the relaxation, if a trust level of 99.9% (α = 0.001) is chosen, the distributions at

t = 0− and t = 0+ (or t = τ0/4, t = τ0/2) are statistically different, while the distributions

at t = 0− and t = τ0 (or t = 2τ0) are statistically identical. Therefore, an affine deformation

field on the filaments results in a distinct bound cross-link elastic energy distribution, while

the strain energy relaxation eventually recovers the distribution of the unstrained equilibrium

state.
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Besides the energy relaxation of the cross-links, the cross-links also recover their isotropy

and orientational symmetry during the relaxation, which were broken at the stain step.

The broken symmetries can be illustrated from a 2-D model: Suppose cross-links with

an arbitrary length x are uniformly orientated in the plane at the unstrained equilibrium

state, we assume the midpoints of the cross-links are at (0, 0) in a cross-link space, the end

nodes of the cross-links will be evenly distributed on a circle with a radius x
2

centered at

(0, 0) point, the X and Y components of the cross-link end nodes rX and rY should follow

equation

r2
X + r2

Y =
(x

2

)2

. (3.31)

If an affine deformation γ is applied along X direction to all the cross-links, the new X and

Y components of the corresponding cross-link nodes become r′X = rX + γrY and r′Y = rY ,

the nodes will be translate onto a tilted ellipse following equation

(r′X − γr′Y )2 + r′Y
2

=
(x

2

)2

. (3.32)

The isotropy of cross-links is broken under the affine strain field, since the cross-links along

the major axis of the tilted ellipse has a longer length than the ones along the minor axis. To

demonstrate the orientational symmetry breaking due to strain, we will switch to the polar

coordinate system and set x
2

= r for simplicity, the end nodes of cross-links can be written

as (r cos θ, r sin θ), the nodes under stain field γ will be translated to
r′ cos θ′ = r cos θ + γr sin θ

r′ sin θ′ = r sin θ

, (3.33)

solving for the new polar coordinates r′ and θ′ gives
r′ = r

√
1 + γ2 sin2 θ + 2γ sin θ cos θ

θ′ = arcsin

(
sin θ√

1+γ2 sin2 θ+2γ sin θ cos θ

) . (3.34)

The polar angle θ at the unstrained state is uniformly distributed as p(θ) dθ = 1
2π
dθ, so the

distribution of the new polar angle θ′ at the strained state is p(θ′) d(θ′) = p(θ(θ′))
dθ
dθ′
dθ′ =

1
2π

dθ
dθ′
dθ′, which is no longer uniform due to the implicit dependence of θ as a function θ′
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suggested by Equation 3.34. Therefore, the orientational symmetry of the cross-links is also

broken at the step strain. In 3-D, these arguments still hold and the equivalent analogues of

the circle and the ellipse will be a sphere and an ellipsoid.

From the simulation, we find the relaxation of these strained cross-links (with length x at

the unstrained equilibrium state) tends to recover the sphere (with radius x
2
) from the tilted

ellipsoid. If holding the step strain long enough (at least 10τrlx), the cross-links in the network

will be eventually trained in a manner that the current strained state becomes the new lowest

strain energy state of the network. Since the filament nodes are kept homogeneous under

strain, Equation 3.10 is still valid at the strained equilibrium state, indicating the cross-

links eventually become isotropic again at the new equilibrium state, where the orientational

symmetry is also restored. This is also consistent with the fact that the number of cross-

links and the total elastic energy at the strained equilibrium state both equal to the values

of the unstrained equilibrium state. We also find the network after training still behaves as

a linear shear elastic material with the same shear modulus, and in the direction of training

we observe

< u′ >=
1

2
Gγ′

2
, (3.35)

where < u′ > is the average strain energy density if an extra strain γ′ is applied on top of

a network under training strain γ0, and G is the shear modulus statistically identical to the

unstrained equilibrium state. Both < u′ > and G are the training strain γ0 independent.

Overall, during the relaxation, the strain energy dissipates through the strain-driven un-

binding events of high elastic energy cross-links, the elastic equilibrium is recovered through

the binding events of low elastic energy cross-links, and the isotropy of the cross-links is also

restored.

3.4 Discussion

In this chapter, we apply the kinetic Monte Carlo method to explore the stress relaxation of

filament-constrained networks with transient cross-links. We find the unstrained network at

equilibrium state exhibits linear shear elasticity under affine strain field, and we explain the
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fact from a theoretical approach. During the stress relaxation, the strain energy dissipates

exponentially through the strain-driven unbinding of the cross-links, and the cross-links

reorganize themselves to recover the equilibrium state, which contains the same number

of cross-links and has the same distribution of cross-link elastic energy as the unstrained

equilibrium state. The isotropy and orientational symmetry of the cross-links are broken at

the step strain, while the stress relaxation macroscopically restores an isotropic configuration

of cross-links and trains the network in a manner such that it prefers staying at the current

strained state. We find he trained network still behaves as a linear shear elastic material with

a same shear modulus as the unstrained equilibrium state, and the modulus is the training

strain independent.
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CHAPTER 4

Formation of Bundles in Semiflexible Network

4.1 Introduction

Cytoskeleton networks of semiflexible biopolymers are commonly seen in eukaryotic cells, and

they play a crucial role in cell mechanics. These semiflexible networks typically form bundles

in the presence of cross-linking molecules, which is widely observed in experiments[75][76][77][78]

and studied by Brownian dynamics simulation approaches[35][60][61]. In this chapter, we

propose a three-dimensional model of semiflexible filament network with transient cross-

links, and explore the dynamics of the bundle formation employing the finite element kinetic

Monte Carlo simulation method we developed. Comparing with a control group of filament-

constrained network, we find the cross-linking dynamics is highly enhanced and the number

of bound cross-links increases dramatically during the bundling process. We also find, in

the time-domain where the bundles grow rapidly, the growth rates of the average (length)

density of the bundles and the average energy density of the bundles are both constant, lead-

ing to a linear relation between the average density and the average energy density of the

bundles. This observation indicates per unit length growth of bundled filaments contributes

a constant elastic energy to the bundle regardless of the current density of the bundles, and

the contribution factor is also time-independent.

4.2 Network Model

We use a similar method as for Chapter 3 to construct a statistically homogeneous and

isotropic initial state of semiflexible network in three dimensions, by placing straight filaments
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Figure 4.1: (a) Initial configuration of filaments at t = 0s (projected view on x-y plane).

(b) Network configuration at t = 1000s showing the filaments in green and the cross-links in

red.
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of a fixed length at random positions and orientations in a box with periodic boundary

conditions applied in each direction. At an initial state, N = 500 filaments (each of length

` = 4µm and constructed by nf = 21 evenly separated nodes) are randomly distributed

into a 10µm× 10µm× 10µm unit cell. However, differing from Chapter 3, the filaments are

free to translate, rotate, stretch/compress, and bend due to the the local unbalanced forces

resulting from cross-linking. In order to explore the affects of cross-linking on the network

structure and elastic energy, we also set up a control group for the network, where the initial

configuration of filaments are exactly the same but the filaments are constrained in space.

With the parameters from above, both networks have a mesh size ξ = 0.7µm.

In the simulation, the persistence length of the filament `p is set to be 10µm, and the

angular spring stiffness κb and linear springs stiffness ks of filament segments can be cal-

culated from Equation 2.28 and Equation 2.30. The temperature is set as T = 300K,

and the energy will be measured in kBT unit. The cross-link spring constant k is set as

0.25pN/µm ≈ 60kBT/µm
2, with a rest length ac = 0.05µm and a maximum allowed exten-

sion am = 0.25µm. The mass of a cross-link protein molecule is chosen as 1.05× 105amu ≈

1.74×10−22kg, therefore, the thermal de Broglie wavelength λB of a cross-link is 3.1×10−7µm.

The chemical binding energy εb between both ends of a cross-link and two filaments is set

as 10kcal/mol and the concentration of gas phase cross-links c is set to be 1 × 105µm−3.

The cross-linking rate parameter ν0 is set to be 10−3s−1. Since the network with uncon-

strained filaments can hardly reach equilibrium and the average cross-link lifetime varies at

non-equilibrium states, we will measure the system time in ‘second’ instead of τ0 in this

chapter. The steric interactions between filaments were not considered in the simulation, so

that the filaments can get any closer or pass each other.
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Figure 4.2: Histogram of cross-link lifetime for filament-constrained network (black squares)

and bundling network with free filaments (red diamonds). Both networks are controlled to

evolve for 1000s from the initial state, and the histogram interval is 100s.

4.3 Results

4.3.1 Formation of bundles

The formation of bundles due to cross-linking is observed in the network. The homogeneous

and isotropic configuration of filaments at initial state, as shown in Figure 4.1 (a), turns into

a configuration of filament bundles, as shown in Figure 4.1 (b). The filaments in the same

bundle are densely cross-linked, while the filaments belong to different bundles are rarely

cross-linked except at the connections between bundles.

During the formation of bundles, an enhanced cross-linking dynamics is observed com-

paring with the control group, where both networks evolve for the same amount of time. As

one can imagine, a newly formed cross-link in the filament fluid will bring the corresponding

filaments closer, which breaks the homogeneousness of the network and results in an increase

in the number of candidate binding sites for lower-elastic energy cross-links. The local bind-

ing rates of the gas phase cross-links among these sites are also enhanced and this process

continues as a chain reaction, where the cross-links serve as catalysts for themselves. If
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Figure 4.3: (a) Number of bound cross-links change over time for filament-constrained net-

work (black) and bundling network with free filaments (red). (b) Total elastic energy of the

bundling network (red), the elastic energy stored in cross-links (blue), and the elastic energy

stored in filaments (green).

two filaments are cross-linked by more than two linkers, they are more likely to be parallel,

which gradually shapes the filament islands into bundles. The enhanced binding rates in

the bundles give birth to a large number of bound cross-links, whose overall unbinding rate

also keep increasing in order to reach an equilibrium state of the current configuration, but

they never succeed since the equilibrium is always shifting further due to more bundling.

Figure 4.2 shows the histogram of cross-link lifetime for the network with free filaments (red

diamonds) and the control group with constrained filaments (black squares), and we observe

a greater number of ever existed cross-links in the former network at each lifetime interval,

especially for the short-lived cross-links, indicating an enhanced cross-linking dynamics in

the bundling network.
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As discussed in Chapter 3, the cross-link lifetime for the control group with constrained

filaments follows an exponential distribution, and the average cross-link lifetime in this case

is 380s. Surprisingly, the average cross-link lifetime for the network with bundles is shortened

rather than prolonged due to the enhanced cross-linking rates, which is 310s in this case.

This against-physical-intuition observation can be explained in term of the limitation of the

KMC method: First, only one cross-linking event is allowed to happen during a specific time

interval in the KMC method, while the cross-linking can occur simultaneously everywhere in

real networks, which assists holding the network structure and controls the growth of cross-

linking rates. Second, the KMC method selects one cross-linking event among all possibilities

at a given state, which results in affects from other cross-linking events on this one, while in

real systems the bond breaking is spontaneous and is only determined by the tensile force

on the bond itself. From the KMC algorithm, the lifetime of a cross-link q formed at i-th

step can be written as

τ q = ∆ti + (1− P q
i+1,off )∆ti+1 + (1− P q

i+1,off )(1− P
q
i+2,off )∆ti+2 + · · · , (4.1)

where P q
i,off =

νqi,off
νi,tot

is the probability that the breaking event of cross-link q at step i is

selected among all possibilities with its unbinding rate νqi,off and a total cross-linking rate

νi,tot, and ∆ti = − ln ζi
νi,tot

is the system time spent on i-th step with a uniformly distributed

random number ζi ∈ (0, 1]. At the beginning stage of bundle formation, the cross-link

shortens its stretching length the moment it is formed, resulting in a decreasing νqi+1,off at

the next step, but the change of the total rate νi+1,tot is hard to determine since now it

becomes a competition between the dramatically reduced unbinding rate of this cross-link

and an increasing total binding rate, resulting from a higher binding rate at each possible

site and an increasing number of these high-rate candidate sites. At the stage when enough

filaments are in the bundles, the newly born cross-links within the bundle cannot shorten

their stretching length dramatically due to the constraints from other cross-links in the

bundle. Therefore, their unbinding rates νqi+1,off and the total rate νi+1,tot are basically

stable, which tends to maintain their lifetimes. From the observation, the overall effect of

these mechanisms is a shortened average cross-link lifetime, mainly due to the fast growing

total cross-linking rate.
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Figure 4.4: Histogram of the (filament length) density of pixels ρp measured in the average

density ρ0 unit at t = 0(purple), t = 500s(green) and t = 1000s(yellow). (a) Data of interval

ρp/ρ0 ∈ (0, 5]. (b) Data of interval ρp/ρ0 ∈ (5, 25]. The histogram interval is 0.5 and the

vertical axis is the number of pixels Np, which are measured in different magnitudes in part

(a) and (b).

4.3.2 Bundle growth

The enhanced cross-linking dynamics in the bundles cumulatively results in a large number

of intrabundle cross-links, as shown in Figure 4.3 (a) and Figure 4.1 (b). The number of

bound cross-links in the control group of filaments constrained network stabilizes at around

650, while this number keeps growing in the bundling network due to the increasing density

of bundles, leading to over 3000 bound cross-links at t = 1000s. However, the intrabundle

cross-links are slightly stretched, and the elastic energy of the network are mainly stored

in the filaments, as shown in Figure 4.3 (b). The equilibrium elastic energy of the control

group is one magnitude higher than the bundling network, which is not shown in the plot,
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and the average cross-link energy of the control group is ∼ 250 times greater than the value

of the bundling network.

In general, the bundles provide high-density breeding grounds for low-energy cross-links

with high cross-linking rates, and the system tends to condense more gas phase cross-links

to recover an instant equilibrium state. However, this instant equilibrium keeps shifting over

time towards a direction that requires a higher number of bound cross-links, and the con-

densing process is always chasing behind. The cumulative effect is a monotonically increasing

number of bound cross-links over time.

To explore the dynamics of bundle growth, we evenly divide the 10µm× 10µm× 10µm

box into a large number of small sub-boxes, which can be treated as three-dimensional pixels

of the box. The (filament length) density in each pixel can be measured through finding the

ratio of the total filament length in the pixel and the volume of the pixel. The average

(filament length) density of the entire network ρ0 can be expressed as

ρ0 =
N`

V
, (4.2)

where N is the total number of filaments in the network, ` is the length of each filament,

and V is the volume of the box. In this case, ρ0 = 2µm−2. Suppose the box is divided into

N0 equal-volume cubic pixels, the (filament length) density of a pixel ρp can be expressed as

ρp =

∑
pixel `pixel

V
N0

=

∑
pixel `pixel

v
, (4.3)

where
∑

pixel `pixel is the total length of filaments confined in the pixel and v = V
N0

is the

volume of a pixel. At the initial state, ρp should roughly follow a Poisson distribution with

the average number λ = ρ0. Noticing that the variables in a Poisson distribution can only

take integers, this length density measurement is equivalent to counting the number of tiny

filament segments, where ρ0 can be defined as the average number of filament segments in

a pixel for the entire network and ρp is defined as the total number of filament segments

confined in a pixel. Due to the equivalency of these two measurements, in this chapter, we

will stick to the density measuring for more accuracy and ρp will be normalized by ρ0 from

now on.
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Figure 4.5: Bundle growth over time. (a) Average (filament length) density of bundles

< ρbundle > normalized by ρ0 against time, with data point (squares) and a linear function

fitting curve (dashed line) of < ρbundle > /ρ0 ≈ 0.0068t/s−1.60. (b) Average energy density

of bundles < εbundle > against time, with data points (diamonds) and a linear function fitting

curve (dashed line) of < εbundle > /(kBTµm
−3) ≈ 0.00072t/s− 0.48.

During the process of bundle formation, we observe a polarization in the distribution of

ρp/ρ0 over time, as shown in Figure 4.4, where both the number of low-density (or empty)

pixels and high-density pixels increase over time. This indicates a gradually broken homo-

geneousness over time, as expected, where the filaments tend to condense at a small volume

with an increasing local density and leave a growing number of pixels empty.

The elastic energy of the bundling network continuously increases instead of stabilizing at

an equilibrium value as we observed in the filament-constrained networks, as shown Figure 4.3

(b). We find this energy growth over time is directly related to the bundle growth in density,

especially in the time-domain of 800s ∼ 1000s, where the elastic energy grows rapidly and

linearly. We made a simple assumption to locate the pixels of bundles: If the pixel density ρp
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is greater than ρ0, we treat this pixel as a part of a bundle and will call it a ‘bundle pixel’; If

ρp is smaller than ρ0, we then treat this pixel as a part of the cavity and will call it a ‘cavity

pixel’. The average (filament length) density of bundles in the entire network < ρbundle >

can then be written as

< ρbundle >=

∑
bundle(ρpv)

Vbundle
=

1

Nbundle

∑
bundle

ρp =< ρp >bundle, (4.4)

where the volume of the bundles Vbundle is expressed by the product of the number of bundle

pixels Nbundle and the pixel volume v as Vbundle = Nbundlev. Surprisingly, we find the average

density of bundles < ρbundle > grows almost linearly over time between t = 800s and

t = 1000s, as shown in Figure 4.5 (a), resulting from a combination of facts that more

filaments join the bundles and the bundles volumetrically shrink slightly. On the other

hand, the average elastic energy density of the bundles can be approximated as

< εbundle >≈
Eel

Vbundle
, (4.5)

where we have assumed all the elastic energy contribution is from the bundles as Ebundle ≈

Eel, which is highly acceptable since the cavities store almost zero elastic energy. We find

the < εbundle > also grows linearly over time between t = 800s and t = 1000s, as shown in

Figure 4.5 (b). Inspiringly, we find both growth rates of the average density and the average

energy density of bundles are constant in this time-domain, which leads to a linear relation

between these two densities as

∂ < εbundle >

∂ < ρbundle >
=
∂Ebundle
∂Lbundle

= K, (4.6)

where Ebundle is the total energy of the bundle, Lbundle is the total length of filaments in the

bundle, and the proportionality constant K has a dimension of force (energy/length) in

this case, which physically describes the average contribution from per unit length growth

of bundled filaments to the bundle energy increase. Interestingly, this contribution constant

is not only time-irrelevant, but also independent of the density of the bundle at the current

state.

In general, the bundle growth dynamics can be understood in terms of the following: At

the beginning stage, the cross-links keep condensing the filaments into bundles, resulting in
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an enhanced cross-linking dynamics and an increasing number of intrabundle cross-links; In

the time-domain where the bundles grow rapidly, the density of bundles increases linearly

over time, and each unit length growth of the bundled filaments on average contributes to

a constant bundle elastic energy increase, which is responsible for the linear growth of the

elastic energy of the network. The network can hardly reach equilibrium state since there

is neither steric interactions between filaments nor outward pressure to keep the filaments

apart, and we speculate the network will eventually condense into a large bundle containing

all filaments.

4.4 Discussion

In this chapter, we apply the finite element kinetic Monte Carlo method to create semiflexible

networks, and the bundle formation of the filaments is observed in the presence of transient

cross-links. To explore the dynamics of the bundling process, we introduce a control group of

the network in which the filaments are constrained, and we find the cross-linking dynamics

in the bundling network is dramatically enhanced due to the catalysis of the cross-links

themselves, which cumulatively results in a much greater number of intrabundle cross-links

that store very low elastic energy comparing with the control group. We also find, In the

time-domain where the bundles grow rapidly, the average (filament length) density of the

bundles grows linearly over time, and each equal amount of length growth of the bundled

filaments on average contributes to a time-independent constant bundle elastic energy growth

regardless of the current density of the bundles, which causes the linearly increasing elastic

energy of the network.
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CHAPTER 5

Summary and Outlook

5.1 Summary of Results

In this dissertation, we propose a finite element kinetic Monte Carlo simulation method to

explore the dynamics of semiflexible networks with transient cross-links. We first discuss

the detailed rationales individually of the finite element treatment, kinetic Monte Carlo ap-

proach, and L-BFGS minimization method, and then come up with an integrated algorithm

combining these ideas to explore the formation process and the zero-frequency dynamics of

the semiflexible networks.

This simulation method is used to probe into the stress relaxation dynamics of densely

linked three-dimensional filament networks with transient cross-links, where the constrained

filaments in the network are sheared affinely and the stress relaxation is caused by the

strain-driven cross-link reorganization. We prove the strain energy of the network scales

quadratically with the strain from a theoretical approach, and we testify this theory with

simulation results. We find the strain energy mainly arises from the deformation growth of

highly-stretched cross-links orientating in certain directions, where both the number and the

average elastic energy growth of these cross-links scale linearly with the strain. We also find

the exponential dissipation of the strain energy is due to the cross-link reorganization towards

the equilibrium state, and the isotropy and orientational symmetry of the bound cross-links,

which were broken under the strain, are restored during the relaxation. The configuration

of cross-links is trained during the stress relaxation process in a manner tending to maintain

the current strain on the filaments.

When applying this simulation method to construct semiflexible networks from filament
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fluid, we observe the cross-linking-driven formation of bundles in these networks. We also

observe a high accumulation of intrabundle cross-links with low elastic energy due to an

enhanced cross-linking dynamics in the bundles. We explore the dynamics of bundling in

the time-domain where the bundles grow rapidly, and we find both the density and energy

density of the bundles grow linearly over time, which leads to a linear dependence between

the bundle energy growth and the bundled filament length growth. This indicates the bundle

energy growth is only related to the amount of newly recruited filaments and is independent

of the current bundle density.

5.2 Future Work and Outlook

There are many aspects we can improve in the simulation: First, the three-dimensional

steric interactions between filaments were not considered in the current simulation, so that

the filaments can get any closer or pass each other, which is not physical. We hope further

developments on the simulation are able to include these interactions in three dimensions.

Second, the natural formation of bundles in the network reduces the shear modulus of the

network, since most cross-links are found in the bundles and the key to create a network with

large shear modulus is the high quantity of the interbundle cross-links. If treating the bundles

as thicker and more rigid ‘filaments’, the rigidity percolation transition of the network occurs

when enough of these ‘filaments’ are connected through the ‘inter-filament’ cross-links, but

the intrabundle spots are much more attractive to the gas phase cross-links. We attempted to

create a network with a large shear modulus in various ways, such as introducing scaffolding

filaments, attaching/breaking cross-links in stages by tuning their stiffness, and artificially

cross-linking filaments at the initial state, however, none of them achieves the expectation

at this point. We encourage our intelligent peers to develop better methods for making

networks with large enough shear moduli. Third, since the L-BFGS optimization method is

dealing with a extremely large number of variables, in some occasions it fails to determine

the optimal search direction in this high-dimensional variable space, especially when highly-

stretched cross-links form/break or a large strain is applied to the network. We expect
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a new integrated method, combining the high-efficient KMC/L-BFGS algorithm and the

dependable Brownian dynamics(BD) simulation, can make a difference. Just like the hybrid

QM/MM(quantum mechanics/molecular mechanics) approach for multi-scale molecule-level

simulations[79], the KMC/L-BFGS accounts for speed, and the BD accounts for accuracy,

especially when L-BFGS optimization fails.

At the same time, we expect verifications on these theories and simulation results from re-

lated experiments. First, we will suggest a zero-frequency strain controlled shear experiment

on densely cross-linked networks with rigid filaments, in which the cross-linking molecules are

recommended to have s softer stiffness (which provides a wider distribution of their stretching

lengths). The strained controlled shear can be applied to the network by attaching or gluing

two plates to the top and bottom surfaces of the network and moving them to the opposite

directions. Through measuring the forces on the plates that needed to shear the network and

hold the strain, we can acquire the stress. The linear elasticity of the network can be tested

through varying the strain and checking the stress(right after shear)-strain curve. Similarly,

the stress relaxation data can be acquired by measuring the time-dependent forces needed

to maintain the current offset of the plates(which maintains the current strain). If we hold

the sheared plates for a long enough time until the stress decays to zero (or a minimum

value), by removing the plates and measuring the deformation change of the network, we

can verify the training effects on the network. Second, we suggest preforming experiments

on the formation stage of the networks. The naive idea is to mix the solutions of cross-links

and biopolymers and observe the evolution of the biopolymers. We can estimate the volume

of the bundles from the fluorescence spectroscopy of the network from different angles and

estimate the mass of the bundles by subtracting the amount of free biopolymers from the

total amount in the original solution. The bundle growth dynamics can then be pictured

from the time evolution of the estimated density of the bundles. Certainly, these immature

experimental designs are nothing but armchair strategies without detailed validations and

improvements from the creative experimentalists in the field.
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