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Genetics and population analysis
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Abstract

Motivation: Determining the relative contributions of functional genetic categories is fundamental to understanding the
genetic etiology of complex human traits and diseases. Here, we present Annotation Informed-MiXeR, a likelihood-
based method for estimating the number of variants influencing a phenotype and their effect sizes across different func-
tional annotation categories of the genome using summary statistics from genome-wide association studies.

Results: Extensive simulations demonstrate that the model is valid for a broad range of genetic architectures. The
model suggests that complex human phenotypes substantially differ in the number of causal variants, their localiza-
tion in the genome and their effect sizes. Specifically, the exons of protein-coding genes harbor more than 90% of
variants influencing type 2 diabetes and inflammatory bowel disease, making them good candidates for whole-
exome studies. In contrast, <10% of the causal variants for schizophrenia, bipolar disorder and attention-deficit/
hyperactivity disorder are located in protein-coding exons, indicating a more substantial role of regulatory mecha-
nisms in the pathogenesis of these disorders.

Availability and implementation: The software is available at: https://github.com/precimed/mixer.

Contact: a.a.shadrin@medisin.uio.no or andersmdale@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The rapid technological advances of the last years have provided an
enormous amount of genetic data, promoting the development of statis-
tical methods aimed at unraveling the genetic architecture of complex
traits (Evans et al., 2018). A key effort has been to estimate single nu-
cleotide polymorphism (SNP)-based heritability, either using individual-
level genotype data (Yang et al., 2010), or summary-level statistics from

genome-wide association studies (GWAS) (Bulik-Sullivan et al., 2015).
However, heritability estimates provide a limited picture of the genetic
architecture underlying complex phenotypes. For example, they are ag-
nostic about the number of genetic variants influencing a phenotype
and their effect sizes (Timpson et al., 2018): both of these quantities can
vary and still result in the same heritability, which is proportional to
their product (Frei et al., 2019; Holland et al., 2020b). Importantly, the
proportion of variants influencing a phenotype (polygenicity) and the
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variance their effect sizes (discoverability) substantially affects the power
of GWAS and may inform the design of future genetic studies to maxi-
mize discovery (Schork et al., 2016; Smeland et al., 2019).

Recently, we developed a model which allows the breakdown of
SNP-heritability into the number of variants influencing a given
phenotype (non-null variants) and the distribution of their effect
sizes using summary statistics from GWAS and detailed population-
specific linkage disequilibrium (LD) structure (Frei et al., 2019;
Holland et al., 2020b). The model assumes that the non-null var-
iants are distributed uniformly throughout the genome and that their
effect sizes are drawn from a Gaussian distribution. However, prior
genetic studies suggest that non-null variants are differentially
enriched across functional genomic categories and complex pheno-
types (Schaub et al., 2012; Schork et al., 2013). Here, we present a
model, Annotation Informed (AI)-MiXeR, which extends our previ-
ous work by allowing different (non-overlapping) predefined func-
tional annotation categories of the genome to have various densities
of non-null variants with different effect size distributions.

Several conceptually related methods that aim to characterize the
genetic architecture of phenotypes using GWAS summary statistics
have recently been developed. The partitioned LD score regression
(LDSC) analysis (Finucane et al., 2015) estimates the proportion of
SNP-based heritability explained by variants within predefined func-
tional categories but does not estimate the abundance of non-null var-
iants or assess their effect sizes. The RSS-E method (Zhu and
Stephens, 2018) only estimates the abundance of non-null variants in
different annotation categories, while the distribution of effect sizes of
non-null variants is assumed to be the same for all annotation catego-
ries. The GENESIS model (Zhang et al., 2018) allows several groups
of trait-susceptibility variants with different densities and effect size
distributions but assumes the non-null variants to be uniformly dis-
tributed among the groups and does not support prior group defin-
ition (e.g. in terms of functional annotation categories). In contrast to
these methods, AI-MiXeR allows simultaneous modeling of abun-
dance and effect size magnitudes of non-null variants in arbitrary pre-
defined functional annotation categories.

Here, we extensively tested AI-MiXeR on synthetic GWAS data
generated under various setups to establish scenarios where it recon-
structs the underlying parameters correctly. We then applied AI-
MiXeR to GWAS summary statistics for 11 complex phenotypes repre-
senting a range of diverse human traits and diseases. Our analysis sug-
gests that both densities and effect sizes of non-null variants vary
considerably across different genomic annotation categories and reveals
diverse patterns of genetic architecture in different phenotypes.

2 Materials and methods

2.1 Ai-MiXeR model overview
We consider an additive model of genetic effects ignoring gene–en-
vironment interactions, epistasis and dominance effects. Variant ef-
fect sizes are modeled with point-normal mixture priors, where both
proportion of non-null variants and distribution of their effect sizes
can vary between different predefined functional genomic catego-
ries. Each functional category in the model is characterized by the
proportion of non-null variants (polygenicity, p) and the variance of
their effect sizes (discoverability, r2). The pure (i.e. not induced by
LD) effect of the kth variant (bk) is modeled as a mixture of null and

non-null components: bk ¼
0; 1� pC

N 0;r2
C

� �
; pC

�
, where pC and r2

C,

respectively are proportion and variance of non-null variants effect

sizes in the functional category C, and N 0;r2
C

� �
denotes the normal

distribution with mean 0 and variance r2
C. The signed association

test statistics (z-score) of the jth variant is then given by:

zj ¼
PM
k¼1

ffiffiffiffiffiffiffiffiffiffiffi
NHk

p
rjkbk þ �, where N is the GWAS sample size, Hk is

the heterozygosity of variant k, M is the number of variants in LD
with variant k, rjk is the Pearson’s correlation coefficient between

the genotypes of the jth and kth variants and � is a Nð0;r2
0Þ distrib-

uted residual factor. Functional category-specific polygenicities and

discoverabilities of a GWAS trait are estimated by maximizing the
likelihood of the GWAS summary statistics (z-scores). To reduce
computational burden, we randomly select a subset of 106 variants
of all GWAS variants to use for maximization of the likelihood func-
tion. For specific details of the model and its implementation, please
refer to the following sections.

2.2 Ai-MiXeR model details
Consider a quantitative phenotype standardized to mean 0 and vari-
ance 1. Let y be a random variable representing a phenotype meas-
urement for an individual in the population (E yð Þ ¼ 0, var yð Þ ¼ 1).
Let G ¼ gjf gj¼1...M

be a fixed set of M random variables representing
genotypes of bi-allelic variants. These are assumed to be centered
(E gjð Þ ¼ 0) but not scaled (var gjð Þ ¼ 2fj 1� fj

� �
¼ Hj, where fj is the

minor allele frequency of variant j and hj is its heterozygosity). We
assume an additive genetic model for the phenotype generation:

y ¼
XM
j¼1

gjbj Gð Þ þ �; (1)

where � is a normally distributed error term with mean 0 and vari-
ance r2

e . bj Gð Þ is understood here as the (unknown) effect of variant
j as would be obtained from a multiple linear regression of the
phenotype y on all genotypes G in a hypothetical infinite sample.
This definition of the effect size bj Gð Þ implies that bj Gð Þ will reflect
only the true causal effect of the jth variant (thus bj Gð Þ ¼ 0 if the jth
variant is not causal) whenever G includes all causal variants for the
trait. On the other hand, if any causal variants are missing in the set
G, bj Gð Þ will also include the effects of those missing causal variants
that happen to be tagged by the jth variant. Any variant j with
bj Gð Þ 6¼ 0 will be called a non-null variant. Further, we will hence-
forth consider G to be fixed and omit it from the notation.

Consider now a GWAS on a quantitative phenotype. Let N be the
number of individuals in the GWAS and assume that N is sufficiently
large so that the allelic composition (i.e. genotype frequencies) of the
variants observed in the GWAS is approximately equivalent to the allel-
ic composition of the same variants in the population. Then ŷ ¼
ŷ1 . . . ŷNð Þ is a vector of phenotypes, Ĝ ¼ ĝij

� �
i¼1...N;j¼1...M

is the N �
M matrix of genotypes observed in the GWAS and �̂ ¼ �̂1 . . . �̂Nð Þ is a
vector of residuals (̂�i represents the residual term for the ith individual).
Using (1) and this notation we can write:

ŷ ¼ Ĝbþ �̂; (2)

which is a sample-equivalent of Equation (1). Denote also with ĝj ¼
ĝ1j . . . ĝNj

� �
the vector of genotypes of variant j observed in the

GWAS (jth column of Ĝ matrix). The marginal effect of variant j
estimated in GWAS (b̂

0

j) is obtained from the simple linear regression
of the phenotype on the genotype of variant j:
ŷi ¼ a

0
j þ b

0

jĝij þ ê ij; i ¼ 1; . . . ; N, where a
0
j and b

0

j are the (un-
known) intercept and slope of the simple linear regression, respect-
ively, and ê ij; i ¼ 1 . . . N; are its residuals. The value of the slope b̂

0

j

minimizing the sum of squared residuals is:

b̂
0

j :¼
cov ŷ; ĝj

� �
var ĝj

� � ¼
1
N

PN
i¼1

ŷiĝ ij

1
N

PN
i¼1

ĝ2
ij

¼ substitute ŷi using 2ð Þ
� �

¼

1
N

P
i

PM
k¼1

ĝikbk þ �̂i

 !
ĝij

" #

Ĥ j

¼
1
N

P
k bk

P
i ĝ ijĝik

� �
Ĥj

þ
P

i �̂iĝij

NĤj

¼
P

k

ffiffiffiffiffiffiffi
Ĥk

q
r̂ jkbkffiffiffiffiffiffi

Ĥj

q þ
P

i �̂ iĝ ij

NĤj

;

(3)

where r̂ jk :¼
P

i
ĝ ij ĝ ikffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i
ĝ2

ij

P
i
ĝ2

ik

p ¼
P

i
ĝ ij ĝ ik

N
ffiffiffiffiffiffiffiffiffiffi
Ĥ jĤ k

p is the sample correlation coef-

ficient between genotype vectors ĝj and ĝk, Ĥ j ¼ var ĝj

� �
:¼
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1
N

PN
i¼1

ĝ2
ij ffi Hj :¼ var gjð Þ
� �

is the sample heterozygosity of variant j

and bk is the hypothetical effect size of variant k from a multiple lin-
ear regression in an infinite population (as discussed above).

Assuming the considered phenotype is complex, i.e. it is influ-
enced by many variants each explaining only a tiny fraction of
phenotypic variance, then the variance of the simple linear regres-
sion error is approximately equal to the sample variance of the
phenotype, var ê j

� �
ffi var ŷð Þ :¼ 1, where ê j ¼ ê1j . . . êNj

� �
. Using this

approximation, we can write an expression for the standard error of
b̂j:

SE b̂
0

j

� 	
:¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N�2

PN
i¼1

ê2
ijP

i ĝ2
ij

vuuuut ffi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var ŷð Þ
NĤj

s
¼ 1ffiffiffiffiffiffiffiffiffiffi

NĤj

q : (4)

Combining Equations (3) and (4), we can write an expression for
the z-score of variant j observed in GWAS:

zjjr̂ jk; Ĥk; ĝij;N :¼
b̂
0

j

SE b̂
0

j

� 	 ¼XM
k¼1

ffiffiffiffiffiffiffiffiffiffiffi
NĤk

q
r̂ jkbk þ

1ffiffiffiffiffiffiffiffiffiffi
NĤj

q XN
i¼1

�̂ iĝ ij

¼
XM
k¼1

ffiffiffiffiffiffiffiffiffiffiffi
NĤk

q
r̂ jkbk þ �̂

0
:

(5)

In Equation (5), r̂ jk, Ĥk, ĝij and N are known constant factors

and �̂
0 ¼ 1ffiffiffiffiffiffiffiffi

NĤj

p PN
i¼1

�̂iĝij is an unknown (because the �̂i are) residual.

Remembering that, by definition, �̂ i; i ¼ 1; . . . ;N are realizations of
the � random variable [see Equations (1) and (2)] and assuming that

these realizations are independent from each other, �̂
0

can be mod-
eled as a normally distributed random variable with mean 0 and
variance (equally for all variants):

var �̂
0ð Þ ffi var

1ffiffiffiffiffiffiffiffiffiffi
NĤj

q XN
i¼1

�ĝij

0
@

1
A ¼ var �ð Þ

NĤj

XN
i¼1

ĝ2
ij ¼ var �ð Þ ¼ r2

e :

By construction [Equation (1)], when there is no genetic effect on
the phenotype, r2

e ¼ 1. However, the assumption of independence
of all �̂i is often violated in GWAS due to the presence of various
confounding factors such as population stratification and cryptic re-
latedness. Moreover, both Ĥk and r̂ jk are usually estimated from ex-
ternal genotyping panels where variant frequencies and correlations
may differ from those in the GWAS sample. In addition, due to tech-
nical limitations, r̂ jk estimates are commonly truncated (e.g. disre-
garding all correlations below a certain threshold). For the model to
be able to mitigate these discrepancies we introduce a r2

0 parameter
and model �̂

0
in (5) as a random variable distributed as N 0; r2

0

� �
. It

was shown that, in the framework of the infinitesimal model, r2
0 has

the same mathematical meaning as the intercept term in the LDSC
model (Frei et al., 2019). The last unknown factor in (5), bk, is mod-
eled as a random variable with point-normal mixture distribution,
where the variance is allowed to differ between different variant an-
notation categories:

bk ¼
0; 1� pC

N 0;r2
C

� �
; pC

;

�
(6)

where variant k 2 C, C � G is a subset of variants in G constituting
some annotation category, pC is the proportion of variants with
non-zero effect (non-null variants) in the annotation category C and
r2

C is the variance of the effect sizes among all non-null variants in
C. The set of annotation categories Cj


 �
j¼1...T

defined on G must
form a partition of G (i.e. each variant from the G must belong to
one and only one annotation category Cj).

Modeling bk as Equation (6), �̂
0

as N 0; r2
0

� �
and taking rjk, hk

and N as known constant factors, Equation (5) allows to derive the

probability density function (pdf) of zj (pdf z) as the convolution of
bk (k ¼ 1 . . . M) and �̂

0
random variables.

2.3 Estimation of pdf of z-scores
We derive the pdf of a random variable z representing a variant’s as-
sociation z-score from the convolution of bk (k ¼ 1 . . . M) and �̂

0

random variables. To simplify notation, we omit the indices reflect-
ing the annotation category, replace �̂

0
with � and denote:

nk ¼
ffiffiffiffiffiffiffiffiffi
Nhk

p
rjkbk ¼

0; 1� p
N 0; r2

e;k

� 	
; p ;

(
(7)

where r2
e;k ¼ Nir

2
ikHkr2, � � N 0;r2

0

� �
. We can then rewrite

Equation (5) as:

z ¼ �þ
XM
k¼1

nk:

The pdf of z at z0 (in our case z0 is the z-score from the GWAS)
can be written as the inverse Fourier transform of its characteristic
function /z tð Þ:

pdfz z0ð Þ ¼
1

2pi

ð1
�1

e�itz0 /z tð Þdt;

where pi is Archimedes’ constant (i.e. pi � 3:14) and i is the unit
imaginary number.

Assuming that the non-null effects (bj) are independent from
each other and from the error term �:

/z tð Þ ¼ /� tð Þ
Y

k
/nk

tð Þ:

Using the definition of characteristic function and expression (7),
we can write the characteristic function of nk as:

/nk
tð Þ ¼

ð1
�1

eitxfnk
xð Þdx ¼ 1� pð Þ þ pe�

t2r2
e;k

2 ;

and similarly for �:

/� tð Þ ¼ e�
t2r2

0
2 :

Combining the last two expressions, the characteristic function
of z can be written as:

/z tð Þ ¼ e�
t2r2

0
2

Y
k

1� pð Þ þ pe�
t2r2

e;k
2

� 
;

from which we can obtain the point estimate of pdf z at z0:

pdf z z0ð Þ ¼
1

2pi

ð1
�1

e�itz0 /z tð Þdt

¼ 1

2pi

ð1
�1

cos tz0ð Þ/z tð Þdt � i

2pi

ð1
�1

sin tz0ð Þ/z tð Þdt

¼ 1

pi

ð1
0

cos tz0ð Þ/z tð Þdt:

The result is a definite integral (i.e. a number), which can be
computed numerically.

2.4 Optimization setup
The polygenicity (p) and discoverability (r2) parameters are esti-
mated by maximizing the likelihood of the z-scores observed in the
GWAS summary-level data (z0): pdf z z0ð Þ�!

p;r2 ;r2
0

max, where the
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probability density function of the z-scores (pdfz) is modeled as
described in the section above. Specific estimation details are given
below.

The following optimization setup was used:

• Nelder–Mead method (maxiter ¼ 1200, fatol ¼ 1e-7, xatol ¼
1e-4, adaptive ¼ True) was applied starting from the best point

obtained after a single iteration of differential evolution [maxiter

¼ 1, popsize ¼ 50, init ¼ latinhypercube, bounds: p ¼ (5E-5,5E-

1), r2 ¼ (5E-6,5E-2), r2
0 ¼ (0.9,2.5)], as implemented in SciPy

(Virtanen et al. 2020).
• Variants from the extended major histocompatibility complex re-

gion (genome build 19 locations chr6:25119106–33854733)

were excluded from the optimization due to the high complexity

of the LD structure in this region.
• The z-scores of 106 randomly selected variants were used for the

optimization of the cost function. This procedure was replicated

50 times to limit selection bias.
• The cost function was defined as -log(likelihood)/106, where 106

reflects the number of variants (z-scores) used at each replica of

the optimization procedure.

2.5 Implementation
Data management and configuration procedures were implemented
in Python. For optimization SciPy implementations of both Nelder–
Mead and differential evolution methods were used. Evaluation of
the cost function was implemented in C using GNU Scientific
Library (http://www.gnu.org/software/gsl/) for numeric integration
and OpenMP (https://www.openmp.org/) for parallelization. AI-
MiXeR’s source code is freely available at https://github.com/pre
cimed/mixer.

2.5.1 Computational time

A single optimization run using the setup described in the
‘Optimization setup’ section above took between 3 and 6 h on a
computing node with dual Intel Sandy Bridge E5-2670 (16 physical
computing cores) running at 2.6 GHz, and 64 Gb RAM.

2.6 Simulations with synthetic data
We analyzed the performance of the model on GWAS summary sta-
tistics generated from synthetic genotypes and phenotypes with vari-
ous genetic architectures under model assumptions.

2.6.1 Synthetic genotypes

105 synthetic genotypes were generated with Hapgen2 (Su et al.,
2011) using 503 European samples from 1000 Genomes Phase 3
data (1000 Genomes Project Consortium et al., 2015) as described
in the study by Frei et al. (2019). A set of 11 015 833 biallelic var-
iants was considered. The LD structure was estimated from a subset
of 104 genotypes using PLINK 1.9 (Chang et al., 2015) ignoring all
correlations between variant genotypes at r2<0.01 and trans-
chromosome correlations.

2.6.2 Functional annotation categories

Two non-overlapping functional annotation categories were consid-
ered: exonic and non-exonic. The exonic annotation category
includes all variants within exons (including 50 and 30 untranslated
regions) of protein-coding genes, while the non-exonic category con-
tains all remaining variants. This choice was motivated by previous
research showing that protein-coding exons (including 50 and 30 un-
translated regions) are most strongly enriched for association with
many complex human phenotypes (Schork et al., 2013).
Additionally, the exonic category, as defined above, largely overlaps
with the genomic regions investigated in whole-exome genotyping
and whole-exome sequencing studies. Its modeling can therefore
serve as a projection for future discoveries in whole-exome studies.

All variants were functionally annotated using UCSC’s Table
Browser (hg19/GRCh37) (Karolchik et al., 2004). With this defin-
ition, the non-exonic category contains approximately 70 times
more variants than the exonic category.

2.6.3 Synthetic phenotypes

Synthetic phenotypes were generated using SIMU (Frei, 2016). A
given number of non-null variants was selected at random for each
functional annotation category. Effect sizes for the selected non-null
variants were sampled from the standard normal distribution and
then rescaled to obtain the required level of heritability, given differ-
ent predefined ratios (see below) between the average effect sizes of
the two dichotomous functional annotation categories. For each
synthetic genotype, a quantitative synthetic phenotype was then gen-
erated as the sum of allelic effects over all non-null variants comple-
mented by a certain proportion of a random Gaussian noise
(representing effects of the environment) required to keep the prede-
fined level of heritability. Finally, association tests were performed
using PLINK 1.9 to obtain GWAS summary statistics.

2.6.4 Simulation setup

All possible combinations of the following parameter values were
used for generating synthetic phenotypes: pexonic¼10�1, 10�2, 10�3;
pnon�exonic¼10�2, 10�3, 10�4; r2

exonic=r
2
non�exonic¼0.1, 1.0, 10.0;

h2
total¼0.1, 0.4, 0.7, resulting in 81 different parameter setups cover-

ing a broad range of genetic architectures. Ten different phenotypes
with independently generated locations of non-null variants and ef-
fect sizes thereof were generated for each combination of parame-
ters, resulting in 810 synthetic phenotypes (and corresponding
GWAS summary statistics).

2.7 GWAS summary statistics
We applied the model to GWAS summary statistics on 11 pheno-
types (Table 1). Like in simulations with synthetic data, we consid-
ered here two functional annotation categories for the variants:
exonic and non-exonic. For ease of comparison with partitioned
LDSC method (Finucane et al., 2015), the LD structure was esti-
mated with PLINK 1.9 using genotype data from LDSC’s template
containing 9 997 231 biallelic variants for 489 unrelated European
individuals [originally derived from 1000 Genomes Phase 3 data
(1000 Genomes Project Consortium et al., 2015)]. Trans-
chromosome correlations as well as correlations between variant
genotypes at r2 <0.05 were disregarded. For each phenotype, 50 in-
dependent optimization runs were performed to maximize the likeli-
hood of the GWAS z-scores observed in different subsets of 106

randomly selected variants.

3 Results

3.1 Simulations with synthetic data
The simulations with synthetic data demonstrate that the true
parameters are estimated accurately when the proportions of herit-
ability carried by both functional categories are comparable and
each category individually carries >2% of the total heritability; if
one of the functional categories carries a negligible fraction (<2%)
of the total heritability the model often fails to reconstruct its
parameters accurately (Supplementary Fig. S1). Selected simulation
cases representing scenarios closely resembling complex human phe-
notypes analyzed in this study are presented in Figure 1. These simu-
lations show that in the range of parameters observed (according to
the model) in the 11 phenotypes analyzed in this study, the model is
able to provide instructive unbiased estimates of p and r2 parame-
ters for both exonic and non-exonic functional annotation catego-
ries. A complete comparison of true simulation parameters and
corresponding model estimates for all 810 simulated phenotypes is
shown in Supplementary Figures S2–S4, and the corresponding nu-
merical results are given in Supplementary Table S3. Of note is that,
in general, heritability estimates are more robust than estimates of p
and r2.
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3.2 GWAS summary statistics
The model was used to estimate exonic and non-exonic polygenic-
ities, discoverabilities and heritabilities of 11 complex phenotypes
presented in Table 1 (Fig. 2, Supplementary Table S1). We also
obtained estimates of SNP-heritability per functional category for all
11 phenotypes using partitioned LDSC. These estimates are com-
pared with AI-MiXeR’s in Figure 2 (right) and Supplementary Table
S2. The polygenicity parameters (pexonic and pnon-exonic) can be con-
verted into the number of non-null variants by multiplying them by
the total number of variants within the corresponding annotation
category. The numbers ensuing for the analyzed phenotypes are pre-
sented in Supplementary Table S1.

The majority of 11 analyzed phenotypes fall into the portion of
parameter space where, according to our simulations, the model is
expected to produce robust parameter estimates (Supplementary
Fig. S1, Fig. 1). However, two phenotypes (ADHD and WHR) fall
in a portion of parameter space where the model is prone to return
inconsistent results in the exonic category (due to this category’s lim-
ited size, its very low polygenicity in ADHD and its very low discov-
erability in WHR). This is reflected in larger error bars for the
exonic category in these phenotypes (Fig. 2, Supplementary Table
S1). However, the observed consistency of parameter estimates

across all 50 independent optimization runs for all analyzed pheno-
types suggests that some robust conclusions can be drawn about ac-
tual features of the underlying genetic architecture.

The model suggests, that despite having similar heritability, phe-
notypes may differ substantially in polygenicity and discoverability
of non-null variants. For example both AI-MiXeR and partitioned
LDSC provide comparable estimates of total and partitioned herit-
ability for LDL and T2D (AI-MiXeR LDL: h2

total¼ 0.14, h2
exonic¼

0.09; AI-MiXeR T2D: h2
total¼ 0.13, h2

exonic¼ 0.06) (Fig. 2,
Supplementary Table S2). However, our model suggests that the
genetic architectures underlying these phenotypes differ drastically,
with T2D being approximately 5 times more polygenic than LDL
and having 91% (versus 15% in LDL) of non-null variants within
exons. The polygenicity deficit is compensated in LDL with a dis-
coverability 3.5 times larger than in T2D (50 times larger in the
exonic category). According to the model, EA has the largest num-
ber of non-null variants (48 000, with only 0.6% of exonic variants)
among all analyzed phenotypes, while IBD has the smallest (3000,
91% exonic) (Supplementary Table S1). However, the effects of the
non-null variants are on average five times stronger in IBD than in
EA and result in a larger total heritability for the former (0.25 in
IBD versus 0.1 in EA). SCZ and BD show similar polygenicity

Table 1. Details of GWAS on 11 phenotypes analyzed in the study

Phenotype Publication Sample size (total or

cases/controls)

Schizophrenia (SCZ), 49 European

sub-studies

Schizophrenia Working Group of

the Psychiatric Genomics

Consortium (2014)

33 640/43 456

Bipolar disorder (BD) Stahl et al. (2019) 20 352/31 358

Attention-deficit/hyperactivity dis-

order (ADHD)

Demontis et al. (2019) 19 099/34 194

General cognitive ability (COG) Savage et al. (2018) 269 867

Educational attainment (EA) Lee et al. (2018) 766 345

Type 2 diabetes (T2D) Mahajan et al. (2018) 74 124/824 006

Inflammatory bowel disease (IBD) de Lange et al. (2017) 25 042/34 915

Low-density lipoproteins (LDL) Willer et al. (2013) 188 577

Body mass index (BMI) Yengo et al. (2018) 795 640

Height Yengo et al. (2018) 709 706

Waist-hip ratio (WHR) Shungin et al. (2015) 224 459

Fig. 1. Performance of the model on a selected set of scenarios with synthetic GWAS data. True simulation parameters (pexonic, pnon�exonic, r2
exonic/r

2
non�exonic and h2

total) are

shown on the left. The blue bars represent the non-exonic category, the orange bars represent the exonic category. The bar lengths represent the median values obtained from

10 optimization runs with independently generated GWAS (locations and effect sizes of non-null variants). The parameter values from individual optimization runs are shown

with vertical black dashes. Empty bars with green borders and hatches show the true values of the corresponding parameters used for GWAS simultion
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(34 000 and 30 000 non-null variants, of which 9% and 10%, re-
spectively, are exonic) and discoverability (with exonic effects being
approximately twice stronger). In contrast, most non-null variants
for height and T2D are exonic (62% out of 15 500 and 90% out of
9000, respectively) having on average 10- and 3-times weaker
effects, respectively, than non-exonic variants.

4 Discussion

We present the AI-MiXeR model, which can be used to decouple
and partition a phenotype’s heritability into functional category-
specific polygenicity (proportion of non-null variants in a given cat-
egory) and discoverability (variance of non-null effect sizes) compo-
nents and thus better characterize the phenotype’s genetic
architecture. This may inform the design of future genetic studies, as
efforts to improve discoverability in different genomic categories are
likely to have different impact across complex phenotypes depend-
ing on their unique genetic architecture.

It is widely assumed that protein-coding exons contain a higher
proportion of causal variants (higher polygenicity) and have on
average stronger effects (higher discoverability) on complex pheno-
types compared to non-exonic regions (Minelli et al., 2013; Schork
et al., 2013; Sveinbjornsson et al., 2016). In our study, the AI-
MiXeR model suggests that less than half (5 of 11) of the analyzed
phenotypes (SCZ, BD, COG, LDL and BMI) support this assump-
tion. Four other phenotypes (T2D, IBD, height and WHR) show
higher density of non-null variants in exonic regions but stronger
average effects in the non-exonic portion of the genome. In the two
remaining traits (ADHD and EA), the pattern appears to be
reversed, with a higher density of weaker effect variants in non-
exonic regions. Since non-exonic regions cover a substantially larger
fraction of the genome compared to exonic regions (containing
roughly 70 times more variants), the former account for a greater
portion of SNP-heritability than the latter for most phenotypes.
Only IBD and T2D present substantially higher fractions of non-null
variants in exonic variants.

From our simulation studies on synthetic GWAS, we can infer
that the balance of h2 partition between the functional annotation
categories has a strong effect on the model’s performance.
Extremely small values of polygenicity (p) or discoverability (r2) in

a functional annotation category (relative to the complementary cat-
egory) result in a heavily unbalanced heritability partition between
the categories and can thus lead to substantial errors in the estimates
of p and r2 for the category with smaller absolute heritability
(Supplementary Fig. S1 top and bottom). Despite this, heritability
estimates were generally robust (Supplementary Figs S1–S4,
Supplementary Table S3).

Decoupling the heritability of different functional categories into
polygenicity and discoverability may facilitate trait-specific experi-
mental designs prioritizing certain genomic regions for detailed in-
vestigation. For instance, by looking only at the heritability
pertaining exons in T2D (h2

exonic ¼ 0.06) and LDL (h2
exonic ¼ 0.09),

one could expect the yield of an exome-wide scan for both pheno-
types to be comparable. However, AI-MiXeR predicts that the aver-
age effect size (square root of discoverability) of exonic non-null
variants is approximately seven times larger in LDL than in T2D.
An exome study of the former therefore could be expected to result
in a higher yield of statistically significant findings, given a moder-
ately sized sample. This speculation may be indirectly supported by
comparing existing exome-wide studies of T2D and LDL. One of
the largest exome sequencing studies on T2D published so far
(20 791 cases, 24 440 controls) identified 15 variants in 7 distinct
genomic loci reaching exome-wide significance level (Flannick et al.,
2019). In contrast, an exome-wide association study of serum lipids
in a comparable sample (N¼39 087) reported 66 exome-wide sig-
nificant LDL susceptibility variants within 14 loci (Dewey et al.,
2016). AI-MiXeR’s predictions also suggest, however, that a signifi-
cant increase in the sample size in T2D whole-exome studies will
yield more phenotype-associated variants than an equivalent sample
size increase in LDL whole-exome studies, since T2D has substan-
tially larger polygenicity.

AI-MiXeR relies on design and implementation quality of the
specific GWAS. In general, model predictions for a given phenotype
may differ depending on a GWAS’s sample size, as well as on the
coverage of the tested variants. The sample sizes of the GWAS tested
here vary by more than one order of magnitude, from approximately
5�104 for BD and ADHD to more than 7�105 for EA and height.
In all simulations, we kept the sample size constant (N¼105) and
varied only the heritability (h2¼ 0.1, 0.4, 0.7). Since these quantities
contribute to the GWAS z-scores distribution only through their
product [follows from formula (5)], our simulation scenario with

Fig. 2. Estimated polygenicity (proportion of non-null variants), discoverability (variance of non-null effect sizes) and heritability of exonic and non-exonic functional catego-

ries in 11 traits. Traits are shown in the left column: schizophrenia (SCZ), bipolar disorder (BD), attention-deficit/hyperactivity disorder (ADHD), general cognitive ability

(COG), educational attainment (EA), type 2 diabetes (T2D), inflammatory bowel disease (IBD), low-density lipoproteins (LDL), body mass index (BMI), height and waist-hip

ratio (WHR). For AI-MiXeR results, a bar’s length shows the mean value of the parameter obtained from 50 independent optimization runs with 106 randomly selected var-

iants used to maximize the likelihood of the observed GWAS z-scores, while the black bars show the range (min, max) of such estimates. The heritability estimates obtained

with partitioned LDSC are shown in darker colors with hatching (right) and black bars representing the standard errors of the estimates
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N¼105 and h2¼0.7 is equivalent to a scenario with, for example,
N¼7�105 and h2¼ 0.1 (given that polygenicities are equal in both
scenarios). Other aspects of potential GWAS-related issues (e.g.
coverage of tested variants) were not tested.

The model underlying AI-MiXeR is sensitive to the LD structure
estimates. Ideally, the LD structure should be estimated on the same
sample used for association testing. However, this is mostly imprac-
tical if not impossible. Here, in the analysis of GWAS summary sta-
tistics for 11 phenotypes, we estimated the LD structure using the
1000 Genomes Phase 3 genotype panel. Inconsistencies between the
LD structure of the samples used for association testing and that of
the 1000 Genomes Phase 3 panel could skew the model’s results.
Additionally, roughening the LD structure (e.g. by ignoring all cor-
relations with r2 below a certain threshold) also could result in
biased parameter estimates. In our simulations, r2 was estimated
from 10 000 synthetic genotypes (randomly sampled from the com-
plete set of 100 000 synthetic genotypes used for association testing)
ignoring all correlations with r2 < 0.01. A subset of European ances-
try samples from the 1000 Genomes Phase 3 panel (N¼489) was
used to estimate LD r2 values for the GWAS data because of the
wide availability of these data, ease of comparison with LDSC and
the fact that genotypes in a majority of analyzed GWAS were
imputed using this panel as a reference. The limited size of the 1000
Genomes panel, however, results in relatively low confidence r2 val-
ues, especially for weak correlations involving low-frequency var-
iants. To mitigate this issue, we increased the r2 cutoff, disregarding
all correlations with r2<0.05. Nevertheless, consistency between
partitioned heritability estimates produced by AI-MiXeR and LDSC
(Fig. 2, Supplementary Table S2) suggests the absence of the model-
specific systematic biases.

AI-MiXeR makes further simplifying assumptions, including
uniform distribution of non-null variants within functional anno-
tation categories and the effect size’s independence of allele fre-
quency and LD. It has recently been shown that these simplified
assumptions, which have been used implicitly or explicitly in
many earlier methods, can lead to substantial biases in heritability
estimates (Speed et al., 2017). We previously demonstrated (Frei
et al., 2019) that these factors also bias the model’s estimates of p
and r2 when no distinction is made between annotation catego-
ries. We did not investigate how disregarding them affect AI-
MiXeR’s category-specific estimates. These assumptions are likely
violated to different degrees in different phenotypes and make the
model more suitable for some phenotypes than for others. In this
report, we provide examples of successful applications of AI-
MiXeR but advise prospective users to carefully assess the model’s
suitability for a given phenotype. Recently, we proposed a model
(Holland et al., 2020a) for the distribution of non-null variants
and their effect sizes which takes allele frequency and LD into ac-
count. Combining the latter with the AI model presented here
involves considerable complexity, however, it is a logical next
step. Additionally, the model assumes additivity of genetic effects.
Allowing dominance genetic effects and epistasis may further im-
prove model fitness for some phenotypes. Introducing this flexibil-
ity requires significant technical complexity and will be considered
in our future work.

It is also important to note that the numbers of non-null variants
presented (Supplementary Table S1) are estimated for the hypothe-
sized distributions of variant effects, capturing the broad outlines of
polygenicity. The observed relative proportions of non-null variants
(and their effect sizes) between functional annotation categories
within one trait or across different traits might be more reliable indi-
cators of actual genetic architecture features or differences.

The model allows for simulating any number of annotation cate-
gories simultaneously (in the marginal scenario, each variant can be
treated as a separate annotation category). However, with the cur-
rent implementation, the computational cost of the optimization
increases rapidly as the number of annotation categories grows. For
this reason, we restricted the main analysis of this study to exonic
and non-exonic categories, which we reckoned could be informative
in the context of whole-exome studies. An exploratory analysis of
several other functional annotation categories (including intronic,

promoter and enhancer regions) for SCZ and T2D can be found in
Supplementary Material.

The AI-MiXeR method presented here considers predefined an-
notation categories allowing both different proportions of non-null
variants and different effect size distributions in various functional
annotation categories, which is not possible with other methods
available to date (Finucane et al., 2015; Zhang et al., 2018; Zhu and
Stephens, 2018). The ability to model predefined annotation catego-
ries separately allows hypothesis-driven studies of complex pheno-
types, which in turn can provide a better understanding of the
genetic architecture of those complex phenotypes. Our analysis sug-
gests that both the polygenicity and the discoverability in different
functional categories vary considerably across human traits and dis-
orders. Knowing such patterns may facilitate trait-specific experi-
mental designs prioritizing specific genomic regions for detailed
investigation.
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