
UC Berkeley
UC Berkeley Previously Published Works

Title
Wavefunction stability analysis without analytical electronic Hessians: application to orbital-
optimised second-order Møller–Plesset theory and VV10-containing density functionals

Permalink
https://escholarship.org/uc/item/0315w7g8

Journal
Molecular Physics, 113(13-14)

ISSN
0026-8976

Authors
Sharada, Shaama Mallikarjun
Stück, David
Sundstrom, Eric J
et al.

Publication Date
2015-07-18

DOI
10.1080/00268976.2015.1014442
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0315w7g8
https://escholarship.org/uc/item/0315w7g8#author
https://escholarship.org
http://www.cdlib.org/


Full Terms & Conditions of access and use can be found at
http://www.tandfonline.com/action/journalInformation?journalCode=tmph20

Molecular Physics
An International Journal at the Interface Between Chemistry and
Physics

ISSN: 0026-8976 (Print) 1362-3028 (Online) Journal homepage: http://www.tandfonline.com/loi/tmph20

Wavefunction stability analysis without analytical
electronic Hessians: application to orbital-
optimised second-order Møller–Plesset theory and
VV10-containing density functionals

Shaama Mallikarjun Sharada, David Stück, Eric J. Sundstrom, Alexis T. Bell &
Martin Head-Gordon

To cite this article: Shaama Mallikarjun Sharada, David Stück, Eric J. Sundstrom, Alexis T. Bell &
Martin Head-Gordon (2015) Wavefunction stability analysis without analytical electronic Hessians:
application to orbital-optimised second-order Møller–Plesset theory and VV10-containing density
functionals, Molecular Physics, 113:13-14, 1802-1808, DOI: 10.1080/00268976.2015.1014442

To link to this article:  https://doi.org/10.1080/00268976.2015.1014442

Published online: 02 Mar 2015.

Submit your article to this journal 

Article views: 252

View Crossmark data

Citing articles: 5 View citing articles 

http://www.tandfonline.com/action/journalInformation?journalCode=tmph20
http://www.tandfonline.com/loi/tmph20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/00268976.2015.1014442
https://doi.org/10.1080/00268976.2015.1014442
http://www.tandfonline.com/action/authorSubmission?journalCode=tmph20&show=instructions
http://www.tandfonline.com/action/authorSubmission?journalCode=tmph20&show=instructions
http://crossmark.crossref.org/dialog/?doi=10.1080/00268976.2015.1014442&domain=pdf&date_stamp=2015-03-02
http://crossmark.crossref.org/dialog/?doi=10.1080/00268976.2015.1014442&domain=pdf&date_stamp=2015-03-02
http://www.tandfonline.com/doi/citedby/10.1080/00268976.2015.1014442#tabModule
http://www.tandfonline.com/doi/citedby/10.1080/00268976.2015.1014442#tabModule


Molecular Physics, 2015
Vol. 113, Nos. 13–14, 1802–1808, http://dx.doi.org/10.1080/00268976.2015.1014442

INVITED ARTICLE

Wavefunction stability analysis without analytical electronic Hessians:
application to orbital-optimised second-order Møller–Plesset theory and VV10-containing

density functionals
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aDepartment of Chemical and Biomolecular Engineering, University of California, Berkeley, CA, USA; bDepartment of Chemistry,
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Wavefunction stability analysis is commonly applied to converged self-consistent field (SCF) solutions to verify whether the
electronic energy is a local minimum with respect to second-order variations in the orbitals. By iterative diagonalisation, the
procedure calculates the lowest eigenvalue of the stability matrix or electronic Hessian. However, analytical expressions for
the electronic Hessian are unavailable for most advanced post-Hartree–Fock (HF) wave function methods and even some
Kohn–Sham (KS) density functionals. To address such cases, we formulate the Hessian-vector product within the iterative
diagonalisation procedure as a finite difference of the electronic gradient with respect to orbital perturbations in the direction
of the vector. As a model application, following the lowest eigenvalue of the orbital-optimised second-order Møller–Plesset
perturbation theory (OOMP2) Hessian during H2 dissociation reveals the surprising stability of the spin-restricted solution
at all separations, with a second independent unrestricted solution. We show that a single stable solution can be recovered by
using the regularised OOMP2 method (δ-OOMP2), which contains a level shift. Internal and external stability analyses are
also performed for SCF solutions of a recently developed range-separated hybrid density functional, ωB97X-V, for which
the analytical Hessian is not yet available due to the complexity of its long-range non-local VV10 correlation functional.

Keywords: quantum chemistry; stability analysis; density functional theory; Brueckner orbitals; orbital optimisation

Introduction

Self-consistent field (SCF) solutions to wavefunction the-
ory and Kohn–Sham (KS) [1,2] formalism of density func-
tional theory (DFT) are typically determined by imposing
constraints on the spin orbitals. These constraints not only
lower SCF costs, but also allow the approximate wavefunc-
tion to share some properties in common with the exact
wavefunction such as spin or spatial symmetry. Variational
minimisation ensures that the energy is stationary with re-
spect to first order changes in the spin orbitals. Therefore,
second derivatives with respect to spin orbital coefficients
must be positive for the energy to be a true local minimum,
and the procedure to verify this condition is termed stability
analysis.

Thouless [3] originally derived the conditions for stabil-
ity of HF wavefunctions from second quantisation. This was
followed by a density matrix-based approach [4], and a re-
formulation of the Thouless conditions to treat both closed
and open-shell systems [5,6]. Seeger and Pople [7] devised
a systematic approach to treat HF instability beginning with
real spin-restricted HF orbitals, and progressively remov-
ing each of these constraints. For each case, they obtained
the conditions for internal stability, where spin orbitals are
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varied within the space of defined constraints, as well as
external stability where one constraint is removed at a time.
Stability analysis for HF involves the calculation of the low-
est eigenvalue of a stability matrix (or electronic Hessian).
Since diagonalisation of the large stability matrix (whose
elements form a fourth rank tensor) may be prohibitive, sta-
bility analysis employs iterative diagonalisation techniques
such as the Davidson method [8]. Fortunately, the critical
step in iterative diagonalisation, which involves contraction
of the stability matrix with a trial vector, can be performed
in a manner very similar to forming a Fock matrix. There-
fore the cost of SCF stability analysis is comparable to
SCF costs.

The HF solution is typically used as a reference for
advanced methods that incorporate correlation such as
second-order Møller–Plesset perturbation theory (MP2)
and coupled cluster (CC) theory, although HF orbitals quite
commonly suffer from spatial or spin symmetry-breaking.
To address these problems, orbital-optimised second-order
perturbation theory (OOMP2) [9] distinguishes itself from
standard MP2 by optimising the zeroth order orbitals in the
presence of correlation in an approach based on approx-
imate Brueckner orbitals [10]. By optimising the single

C© 2015 Taylor & Francis
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reference, artificial spin contamination can be removed
[9–12] and energies as well as properties of open shell
molecules can be significantly improved [9–11,13–15]. Be-
cause the energy is made stationary to changes in the or-
bitals, a Hellman–Feynman condition applies and all first
order properties will be continuous as the orbitals change
continuously [16]. Recently, δ-OOMP2 has been developed
as a simple way to regularise the method against small
HOMO–LUMO gaps as well as removing systematic errors
in the method [17]. While approximate forms have been ap-
plied in previous studies [11], full analytical expressions for
the electronic Hessian are unavailable and finite-difference
electronic Hessians are intractable. As a result, the stability
of spin-restricted and unrestricted formalisms of OOMP2
has not been properly investigated. For the same reason, sta-
bility analysis is not available for size-consistent, Brueckner
orbital-based coupled cluster techniques such as Brueckner
theory doubles (BD) [18] and optimised-orbital coupled
cluster doubles (OD) [10,13,19].

The stability conditions for density functionals are
essentially analogous to HF, and have been derived by
Bauernschmitt and Ahlrichs [20] for internal (singlet) and
external (triplet) stability of restricted KS-DFT. The for-
malism, however, requires calculation of second derivatives
of the exchange-correlation energy. Analytical expressions
for the second derivative of the exchange correlation term
in KS-DFT are not available for all functionals. ωB97X-V
[21], for instance, is a minimally parameterised range-
separated hybrid functional that can accurately capture
both non-covalent interactions as well as thermochemistry.
The functional includes non-local correlation described by
VV10 [22], for which an analytical form of the Hessian
has not yet been derived. In such cases, stability analysis
can prove intractable since calculation and diagonalisation
of the full finite-difference electronic Hessian is not
feasible.

Our aim is to establish a technique for stability analysis
that is readily applicable to any post-HF or KS-DFT method,
regardless of the availability of analytical second deriva-
tives of electronic energy. We have previously reported a
finite-difference implementation of the Davidson method
to calculate the lowest eigenvalue of a nuclear Hessian [23],
which can determine whether a stationary point calculated
using geometry optimisation is a minimum or saddle point.
The same approach can be extended to wavefunction space,
where the finite-difference Davidson method is applied to
perturbations in the molecular orbitals in order to calculate
the lowest eigenvalue of the electronic Hessian. Potential
curves for dissociation of H2 are calculated to analyse the
stability of SCF solutions for OOMP2 and δ-OOMP2 the-
ory, with some interesting and in some ways remarkable re-
sults. Additionally, finite-difference-based stability analysis
is applied to the ωB97X-V functional in order to demon-
strate the utility of this technique when second derivatives
are unavailable.

Method

The Davidson method is an iterative diagonalisation proce-
dure to determine a few extreme eigenvalues of large sym-
metric matrices when full diagonalisation is prohibitive.
The algorithm is described in detail elsewhere [8,24].
Briefly, the procedure employs a small orthonormal sub-
space of vectors, Bk = [bi] at each iteration k, consisting of
dominant components of the desired eigenvector of a ma-
trix, A. A smaller interaction matrix, BT

k ABk , is constructed
and diagonalised to obtain the lowest/highest eigenpair,
(λk, yk). The Ritz vector, xk = Bkyk , is then used to esti-
mate the residual error between the exact and approximate
eigenvector, rk = − (λkI − A) xk . The initial subspace is
augmented with a new vector that contains this informa-
tion, and the procedure is iterated until convergence.

The Davidson method was originally applied to large-
scale configurational interaction (CI) treatment of wave-
functions [8,25]. The finite-difference implementation of
the Davidson method can be used when the matrix cal-
culation itself is intractable. For instance, if the matrix A

corresponds to the Hessian of the energy with respect to nu-
clear displacements, the exact matrix–vector product, Ab1,
is replaced with a finite-difference approximation in terms
of the gradient of the energy (∇E) [23]:

Ab1 ≈ ∇E (X0 + ξb1) − ∇E (X0 − ξb1)

2ξ
, (1)

where b1 is the subspace guess, X0 corresponds to nuclear
coordinates of a system, and ξ is the finite-difference step.
This expression can be used to calculate a few key eigen-
vectors as inputs to mode-following methods for transition
state searches on nuclear potential energy surfaces [26–28].
The same principle can also be applied to selective mode
tracking in vibrational analysis [29,30], and characterisa-
tion of stationary points [23,31]where the lowest one or two
eigenvalues of the nuclear Hessian are sufficient to verify
whether a geometry corresponds to a minimum or transition
state, respectively.

Wavefunction stability analysis also requires only the
lowest eigenvalue of the electronic Hessian. Therefore, the
finite-difference Davidson approach can be extended to
stability analysis in cases where analytical Hessians are
either expensive or unavailable. Since rotations between
occupied–occupied or virtual–virtual orbitals do not af-
fect the total energy, stability analysis is carried out in
the space of occupied–virtual rotations. The most obvious
choice for the initial subspace guess, therefore, corresponds
to a HOMO–LUMO rotation. To avoid possible orthogo-
nality between the guess and the exact eigenvector, a small
amount of randomness is added in to the subspace guess.

Orbital perturbation in the occupied–virtual space along
the subspace guess closely follows the procedure outlined
by Van Voorhis and Head-Gordon [32]. A skew-symmetric
unitary transformation matrix, U1±, is determined by first
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scaling the guess,

�1± = ±ξb1, (2)

where b1 is the subspace guess corresponding to HOMO–
LUMO rotation, ξ ( = 0.01) is the finite-difference step, and
the number in the subscript corresponds to the iteration. The
transformation matrix is then given by

U1± = e�1± . (3)

The off-diagonal elements of this matrix correspond to ro-
tations in the occupied–virtual space. The rotated orbitals
are given by a unitary transformation of the converged
SCF orbital coefficients, Cσ

0 , where σ corresponds to α- or
β-spin:

Cσ
1± = Cσ

0 U1±. (4)

Rotations of α-spin and β-spin orbital coefficients are iden-
tical during internal stability analysis of restricted or unre-
stricted spin orbitals. In order to examine external stability
of restricted spin orbitals, on the other hand, spin symmetry
needs to be broken. Therefore, α-spin and β-spin orbital
coefficients are rotated in opposite directions:

C
β
1+ = −Cα

1+ and C
β
1− = −Cα

1−. (5)

The Hessian-vector product Davidson iterations is then cal-
culated similar to (1) using finite differences of gradients
with respect to the rotated coefficients:

Ab1 ≈
⎡
⎣∇E

(
Cα

1+
) − ∇E

(
Cα

1−
)

2ξ
,
∇E

(
C

β
1+

)
− ∇E

(
C

β
1−

)

2ξ

⎤
⎦

T

,

(6)

where A corresponds to the electronic Hessian. The David-
son algorithm proposed by Sleijpen and van der Vorst [33]
is then employed to iteratively calculate the lowest eigen-
value.

Convergence can be accelerated using a good precondi-
tioner for the residual. In the original Davidson algorithm,
the preconditioner at the kth iteration, 
k , is given by


k = (λkI − D)−1, (7)

where D is a matrix consisting of the diagonal elements of
A. A reasonable guess for the diagonal Hessian is the dif-
ference between orbital eigenvalues, {ε}, in the occupied–
virtual space [32],

Dia,jb = (εa − εi) δij δab, (8)

where subscripts (i, j ) correspond to occupied orbitals and
(a, b) to virtual orbitals. In order to ensure the convergence
of the method to the lowest eigenvalue, the preconditioner
must be negative definite [24]. In cases where precondi-
tioning exceeds a certain cut-off, the cut-off value replaces
the difference between the eigenvalue and diagonal ele-
ment. The chosen value, �E = −0.1Eh, is determined us-
ing simple benchmarking of the H2 molecule at equilibrium
separation with B3LYP [34,35] and correlation-consistent
basis sets. The technique is implemented in a developmen-
tal version of Q-Chem 4.2 [36], in order to examine internal
stability of real restricted or unrestricted orbitals, as well as
external stability of restricted orbitals for OOMP2 theory
and any KS-DFT.

Results

HF versus orbital-optimised MP2 for bond
dissociation

Bond dissociation problems are an important application of
stability analysis. The reason is that many orbital optimi-
sation methods will not automatically change the character
of the orbitals from restricted to unrestricted as the bond
is stretched, and therefore stability analysis is needed to
detect such a change. Figure 1 illustrates the standard re-
sult seen for Hartree-Fock theory for the toy problem of H2

dissociation. The RHF to UHF instability is detected by a
sign change of the smallest eigenvalue, which occurs at a
bond-length of about 1.2 Å. Beyond this distance, the UHF
solution exhibits an increasing positive smallest eigenvalue
and becomes a distinct, lower energy solution, while the

Figure 1. Potential curves (green for unrestricted and red for
restricted, where it differs from unrestricted) for the dissociation
of H2 and the associated lowest eigenvalues of the stability matrix
(purple for internal stability of the unrestricted solution, blue for
external stability of the restricted solution, where it differs from
unrestricted) at the Hartree–Fock (HF) level. The lowest energy
solution changes character from restricted to unrestricted when
the former becomes unstable.
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Figure 2. Potential curves for the dissociation of H2 and the
associated lowest eigenvalues of the stability matrix using orbital-
optimised MP2 (OOMP2) in the cc-pVDZ basis. The format fol-
lows Figure 1. OOMP2 behaves qualitatively differently from HF
(see Figure 1). The restricted solution is stable (positive eigen-
value) to spin-polarisation at all bond-lengths, and a distinct stable
unrestricted solution appears at partially stretched bond-lengths.

smallest eigenvalue of the RHF solution becomes steadily
more negative.

How does the inclusion of electron correlation in the
OOMP2 method affect this picture? The results are shown
in Figure 2, and at first glance the ROOMP2 and UOOMP2
energy curves look qualitatively similar to the RHF and
UHF ones. However the ROOMP2 energy reaches a maxi-
mum value around 2.8 Å and then begins to turn over, as a
result of the HOMO–LUMO gap decreasing. The ROOMP2
and UOOMP2 curves actually cross again at still larger
separations than are shown on the figure. What are the
implications for orbital stability analysis? Using the finite-
difference stability analysis code yields very interesting
results. The ROOMP2 and UOOMP2 solutions are in fact
both stable when they are distinct solutions. They appar-
ently do not coalesce upon going to shorter bond-lengths.

As a surprising consequence, despite the Hellman–
Feynman condition for OOMP2, there are still first deriva-
tive discontinuities in the dissociation curve for single bond
dissociations such as H2. It is scarcely visible in Figure 2,
but this is nonetheless a real effect. As a result of the
ROOMP2 solution always being a true minimum in orbital
space, the UOOMP2 solution must cross it in the energy
coordinate without crossing in orbital space.

To better understand the topography of the solutions
we look at the UOOMP2 energy for H2 as a function of
spin-polarisation from the ROOMP2 solution in the mini-
mal basis case where there is only a single orbital rotation
angle (θα and θβ) in each of the α and β spaces. A spin-
polarisation angle, φ, can therefore be defined such that
θα = φ and θβ = −φ. Figure 3 shows the OOMP2 energy
as a function of φ for a number of bond-lengths close to the
crossing, from ROOMP2 being lowest energy to UOOMP2

Figure 3. The dependence of the OOMP2 energy of H2 in a min-
imal basis on the spin-polarisation angle (see text for definition)
at a series of bond-lengths around the critical value at which the
character of the lowest energy solution changes. There are two
local minima, one restricted and one unrestricted, at these bond-
lengths, and at the critical bond-length the nature of the lowest
energy solution switches discontinuously.

being lowest. The key observation from Figure 3 is the ap-
pearance of a second minimum at non-zero φ as the bond
is stretched, while the first stationary point (φ = 0) remains
a minimum. As the bond-length increases, the second so-
lution eventually becomes the global minimum leading to
the discontinuous change in orbitals as we follow the lowest
energy orbitals.

While there is no reason to assume that the global min-
imum of a nonlinear problem will not jump between mul-
tiple minima as parameters change, it is still surprising to
see it here due to our experience with HF (as exempli-
fied by Figure 1). HF is a diagonalisation-based approach,
and so two states with the same energy that can couple
through the Hamiltonian should split in energy. OOMP2
on the other hand adds a perturbative correction, which in
this case preferentially stabilises the restricted solution and
lowers its energy relative to the unrestricted orbitals bring-
ing their energies to coalescence. Similar observations have
been made in the context of orbital optimisation in active
space methods [37,38]. In cases such as these, as a conse-
quence of the discontinuous change in orbitals, the potential
energy surface exhibits a first derivative discontinuity at the
point of the jump in orbital solutions (here, the ROOMP2
to UOOMP2 transition).

How might one overcome this unphysical behaviour of
OOMP2, and recover smoother potential energy surfaces?
We cannot give a complete answer here, but we can ap-
ply stability analysis to a modified form of OOMP2 that
includes a fixed level shift of 0.4 a.u., termed δ-OOMP2.
δ-OOMP2 has been shown to yield systematic improve-
ments relative to OOMP2 across a broad range of prop-
erties while being robust to divergences during orbital
optimisation [17]. The performance of δ-OOMP2 for the
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Figure 4. Potential curves for the dissociation of H2 and the
associated lowest eigenvalues of the stability matrix using regu-
larised orbital-optimised MP2 (δ-OOMP2) in the cc-pVDZ basis.
The format follows Figure 1. δ-OOMP2 behaves qualitatively dif-
ferently from OOMP2 (see Figure 2), but is similar to HF (see
Figure 1). The restricted solution becomes unstable at a critical
bond-length, beyond which the unrestricted solution is lowest in
energy.

Figure 5. The dependence of the δ-OOMP2 energy of H2 in
a minimal basis on the spin-polarisation angle (see text for def-
inition) at a series of bond-lengths around the critical value at
which the character of the lowest energy solution changes. For
any given bond-length there is only one local minimum, which
changes character from restricted to unrestricted at the critical
bond-length.

dissociation of H2 is shown in Figure 4, and presents a strik-
ing contrast with OOMP2 shown in Figure 2. δ-OOMP2
shows only one stable solution at any geometry, like HF, and
unlike OOMP2. As a consequence, as shown in Figure 5
for minimal basis H2, the optimised orbitals for the global
minimum do not change discontinuously as the bond is
stretched, and thus the potential energy surface is continu-
ous through first derivatives. Further calculations on a much
larger range of molecules are required to test the general-
ity of the present positive result, and the stability analysis
method introduced here is a crucial tool for this purpose.

Density functional theory

Using their formulation of stability analysis for KS-DFT,
Bauernschmitt and Ahlrichs [20] calculate critical distances
for the onset of external instability in dissociating systems.
Along similar lines, dissociation calculations are performed
on H2, and results are compared for restricted HF, B3LYP,
and ωB97X-V, and the finite-difference Davidson approach
is employed to calculate the lowest eigenvalue for the latter.
Since ωB97X-V is trained using very large basis sets in the
absence of counterpoise corrections [21], the aug-cc-pVTZ
[39] basis set is employed. The critical distances determined
with HF, B3LYP and ωB97X-V are 1.21, 1.49 and 1.53 Å,
respectively, consistent with the fact that onset of external
instability occurs later in density functionals owing to the
inclusion of approximate correlation.

In addition to external stability of restricted ωB97X-V,
internal stability analysis of the unrestricted formalism is
also a useful diagnostic tool since the SCF solution can de-
pend heavily on the quality of the initial guess. For instance,
SCF minimisation of singlet methylene [40] (C-H bond
distance = 1.11 Å, H–C–H angle = 101.896◦) with unre-
stricted ωB97X-V/aug-cc-PVQZ converges to an unstable
solution if the initial SCF guess consists of superposition
of atomic densities. The lowest eigenvector corresponding
to the unstable solution, calculated either with ωB97X-V
or a lower level of theory, can then be used to search for a
lower energy solution with ωB97X-V. The resulting orbital
coefficients constitute a significantly better SCF guess that
converges to the correct singlet ground state, which is 0.004
Eh lower in energy than the unstable solution.

Stability analysis is also essential for molecules
containing transition metals, where multiple spin states can
emerge from SCF calculations. To illustrate, we examine the
stability of an organometallic electrocatalyst for cathodic
hydrogen evolution reaction (HER), with potential applica-
tion in the conversion of solar energy to fuels. The catalyst,
shown in Figure 6, is a dimeric cobalt-diaryldithiolene
complex with methoxy groups substituted in the aryl para
positions [41]. The structure is optimised at the BP86

Figure 6. Structure of dimeric cobalt-diaryldithiolene complex,
a potential catalyst for electrocatalytic proton reduction in non-
aqueous media. Cobalt is in the centre surrounded by sulphur
atoms (yellow), and the aryl groups are para-substituted with
methoxy groups (oxygen atoms in red).
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[42,43] /6-31G∗ level of theory. If the SCF cycles in
the subsequent unrestricted single point energy calcu-
lation at ωB97X–V/6-31G∗ converge to a spin singlet,
finite-difference stability analysis shows that the solution
is internally unstable. The stable solution, with 〈S2〉 of
0.94, is 0.023 Eh lower in energy. While calculation and
diagonalisation of the full finite-difference Hessian within
the original stability analysis framework can be prohibitive
for systems of this size, applying the finite-difference
Davidson method to the stable solution costs only about
44 SCF steps. This procedure is therefore not only useful
to study bond dissociation characteristics in the absence of
analytical electronic Hessians, but is also a practical tool
for examining the stability of large, complex systems.

Conclusions

Stability analysis has thus far been limited to formalisms
for which analytical second derivatives are available since
the cost of full finite-difference Hessian calculation is pro-
hibitive. We describe a Hessian-free approach in which the
Hessian-vector product required for iterative diagonalisa-
tion within the Davidson method is approximated by fi-
nite differences of the gradients with respect to rotation of
molecular orbital coefficients in the occupied–virtual space.
The procedure is implemented for both orbital-optimised
post-HF methods such as OOMP2 as well as DFT, and can
successfully examine internal and external stability with
respect to spin symmetry constraints. In future, the imple-
mentation will also include internal and external stability
analysis for complex as well as general spin orbitals. The
technique will also be made available for other orbital-
optimised methods such as coupled cluster-based BD and
OD, for which stability analysis has hitherto not been
performed.
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