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AbstrACt
background Infants born very preterm (VPT) and 
moderate-to-late preterm (MLPT) are at increased risk 
of long-term neurodevelopmental deficits, but how these 
deficits relate to early neurobehaviour in MLPT children 
is unclear. The aims of this study were to compare the 
neurobehavioural performance of infants born across three 
different gestational age groups: preterm <30 weeks’ 
gestational age (PT<30); MLPT (32–36 weeks’ gestational 
age) and term age (≥37 weeks’ gestational age), and 
explore the relationships between MRI brain abnormalities 
and neurobehaviour at term-equivalent age.
Methods Neurobehaviour was assessed at term-
equivalent age in 149 PT<30, 200 MLPT and 200 term-
born infants using the Neonatal Intensive Care UnitNetwork 
Neurobehavioral Scale (NNNS), the Hammersmith Neonatal 
Neurological Examination (HNNE) and Prechtl’s Qualitative 
Assessment of General Movements (GMA). A subset of 110 
PT<30 and 198 MLPT infants had concurrent brain MRI.
results Proportions with abnormal neurobehaviour 
on the NNNS and the HNNE, and abnormal GMA all 
increased with decreasing gestational age. Higher brain 
MRI abnormality scores in some regions were associated 
with suboptimal neurobehaviour on the NNNS and HNNE. 
The relationships between brain MRI abnormality scores 
and suboptimal neurobehaviour were similar in both 
PT<30 and MLPT infants. The relationship between brain 
MRI abnormality scores and abnormal GMA was stronger 
in PT<30 infants.
Conclusions There was a continuum of neurobehaviour 
across gestational ages. The relationships between brain 
abnormality scores and suboptimal neurobehaviour provide 
evidence that neurobehavioural assessments offer insight 
into the integrity of the developing brain, and may be 
useful in earlier identification of the highest-risk infants.

bACkground And rAtionAle
Infants born preterm are at increased risk 
of long-term neurodevelopmental defi-
cits in cognitive, neurosensory, physical 
and social-emotional development, as well 
as impairments in academic functioning 
compared with their term-born peers.1–4 
Early interventions to mitigate some of these 
adverse neurodevelopmental deficits are 

promising,5 6 and thus, clinicians working 
with preterm infants and their families aim 
to identify those infants at greatest need 
for early intervention services. While major 
preterm brain injuries, such as high-grade 
intraventricular haemorrhage and cystic 
periventricular leukomalacia, are highly 
prognostic for adverse neurodevelopmental 
outcomes,6 7 other clinical predictors of long-
term development have only modest prog-
nostic utility. Magnetic resonance imaging 
(MRI) can detect more subtle preterm brain 
injury associated with adverse neurodevelop-
ment, however, its use in routine clinical care 
is limited by availability and cost.8 Clinicians 
are increasingly using neonatal neurobehav-
ioural assessments to identify high-risk infants 
and to help guide referrals for early interven-
tion. Neurobehavioural assessments are valid 

What is already known on this topic?

 ► Infants born very preterm (VPT) are at increased 
risk of long-term neurodevelopmental deficits.

 ► Early interventions can improve developmental 
outcomes and thus early identification of infants at 
greatest need for these services is paramount.

 ► Brain MRI abnormalities have been associated with 
neurobehaviour functioning in VPT infants, however, 
this relationship is yet to be explored in moderate-
to-late preterm infants.

What this study hopes to add?

 ► This study highlights a clear continuum of 
neurobehaviour with increased suboptimal 
functioning on three neurobehavioural assessments 
with decreasing gestational age.

 ► The relationships between brain abnormality scores 
and suboptimal neurobehaviour provide evidence 
that neurobehavioural assessments may be useful 
in earlier identification of the highest-risk infants.

http://bmjopen.bmj.com/
http://crossmark.crossref.org
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and reliable tools which offer insights into the neurolog-
ical integrity and behavioural functioning of an infant.9 10

Compared with their term-born peers, infants born 
very preterm (VPT: <32 weeks’ gestation) and moder-
ate-to-late preterm (MLPT: 32–36 weeks’ gestation) 
present with increased rates of atypical neurobehaviour 
at term-equivalent age.11 12 Importantly, these neuro-
behavioural difficulties have been associated with later 
developmental deficits,13 14 providing support for the 
neurobehavioural assessment as a predictive tool for 
later neurodevelopmental outcome. While there is some 
evidence that MRI brain abnormalities are associated 
with neurobehaviour in VPT infants at term-equivalent 
age,15–17 this brain–neurobehaviour relationship has yet 
to be explored in MLPT infants.

The primary aim of this study was to compare the neuro-
behavioural performance of infants born across three 
different gestational age groups: preterm <30 weeks’ 
gestational age (PT<30); MLPT (32–36 weeks’ gestational 
age) and term age (≥37 weeks’ gestational age) using the 
Neonatal Intensive Care Unit Network Neurobehavioral 
Scale (NNNS), the Hammersmith Neonatal Neurological 
Examination (HNNE) and Prechtl’s Qualitative Assess-
ment of General Movements (GMA).18 Secondary aims 
were to explore the relationships between MRI brain 
abnormalities (development and injury) and neurobe-
haviour at term-equivalent age in infants born preterm 
(PT<30 and MLPT).

Methods
Participants
Participants were derived from two longitudinal cohorts 
of infants recruited from the Royal Women’s Hospital 
in Melbourne, Australia, between November 2009 
and December 2013. The first cohort comprised 149 
PT<30 infants19 and the second cohort included 201 MLPT 
infants.20 In addition, a cohort of 201 term controls were 
recruited across the two cohorts. Infants with congenital 
abnormalities and/or infants with non-English speaking 
parents were excluded due to limited funding for inter-
preters. In the term control group, infants requiring 
admission to the special care or intensive care nurseries 
were excluded. Informed parental consent was obtained 
for all participants, and both studies were approved by 
the Royal Women’s Hospital’s and Royal Children’s 
Hospital’s Human Research Ethics Committees.

Perinatal data were recorded by research nurses, 
including gestation at birth, sex, birth weight Z-score 
(calculated according to gestational age and sex using 
the British Growth Reference norms),21 multiple birth, 
use of antenatal corticosteroids and respiratory support.

neurobehavioural measures
At term-equivalent age (38–44 weeks’ postmenstrual 
age), neurobehaviour was assessed by one of five trained 
and certified assessors using NNNS,22 HNNE23 and GMA. 
All assessors had advanced GMA certification and were 

masked to the participants’ clinical history. All assess-
ments were administered according to their standard-
ised procedures, as previously published in the study 
protocol.19

Neonatal Intensive Care Unit Network Neurobehavioral Scale
The NNNS is a neurobehavioural assessment that exam-
ines the neurological integrity, behavioural functioning 
and responses to stress in high-risk infants using 45 items 
which correspond to 13 summary scales including habit-
uation, attention, arousal, regulation, handling, quality 
of movement, excitability, lethargy, non-optimal reflexes, 
asymmetrical reflexes, hypertonicity, hypotonicity and 
stress.24 25 The habituation scale was not included in this 
study as infants were not consistently in an appropriate 
state (sleep) to administer the scale at the start of the 
assessment. The scoring and classification of infants’ 
performance on the NNNS summary scales has been 
described previously by our group.26

Hammersmith Neonatal Neurological Examination
The HNNE is primarily a neurological examination 
developed for term and preterm infants. It consists of 34 
individual items with six subtotals including tone, tone 
patterns, reflexes, spontaneous movements, abnormal 
neurological signs and behaviour, which are added for a 
total score. Suboptimal performance on the HNNE was 
categorised as previously published.27

Prechtl’s Qualitative Assessment of General Movements
The GMA is an observational assessment of the infant’s 
spontaneous movements (or general movements (GMs)) 
with good predictive validity for neurodevelopmental 
outcomes, including cerebral palsy, motor impairment 
and cognitive outcomes.28 GMs were scored from video 
recordings according to Prechtl’s method of qualita-
tive assessment.18 GMs were categorised as normal or 
abnormal, with abnormal GMs further categorised as 
poor repertoire, cramped synchronised or chaotic. GMs 
were classified unscorable if the infant was crying or 
hypokinetic.

Magnetic resonance imaging
Brain MRI was performed using the Siemens 3T Magnetom 
Trio MRI system (Siemens, Erlangen, Germany) during 
natural sleep, on the same day as neurobehavioural 
assessments. The details of the imaging protocol have 
previously been published, and the T1-weighted and 
T2-weighted structural brain images were used for the 
current study.20

A validated neonatal brain MRI scoring system was used 
to assess brain maturation, injury and size, using two-di-
mensional brain metrics29 and conventional methods of 
assessing brain injury.30 Four regional abnormality scores 
were calculated based on assessment of injury, growth 
and maturation: cerebral white matter, cortical grey 
matter, deep grey matter (basal ganglia and thalamus) 
and cerebellar abnormality.31 A global abnormality 
score was computed using the sum of the four regional 
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abnormality scores; higher scores indicate greater abnor-
mality. Brain MRI were scored independently by one of 
four experienced neuroradiologists and neonatologists 
who had received training in this scoring system with 
excellent inter-rater and intrarater reliability.20

statistical analysis
Data were analysed using Stata V.14 (StataCorp). To 
explore the relationships between gestational age group 
and neurobehaviour at term-equivalent age, proportions 
with suboptimal neurobehaviour within gestational age 
groups were compared by χ2 test for trend. Relation-
ships between brain MRI abnormalities and suboptimal 
neurobehaviour in the preterm infants (<37 weeks’ 
gestational age) were explored using logistic regression, 
fitted using generalised estimating equations to allow for 
multiple births, and adjusted for sex and age at brain 
MRI. For any significant relationships between neonatal 
brain abnormality and suboptimal neurobehaviour, an 

interaction term was included in the model to explore 
whether the relationship differed according to the 
preterm infants’ gestational age group (PT<30 or MLPT). 
We have previously demonstrated a strong relationship 
between brain abnormality scores and abnormal GMA in 
infants born <30 weeks’ gestational age,32 thus, an inter-
action term was included in this model, irrespective of 
the initial findings.

results
Neurobehavioural assessments were performed at 
term-equivalent age in 140 of 149 PT<30 infants, 200/201 
MLPT infants and 200/201 term controls recruited for 
this study. Participant characteristics are summarised in 
table 1. A subset of PT<30 (n=110) and MLPT (n=198) 
infants had concurrent brain MRI. Infants ≥45 weeks’ 
postmenstrual age at the time of neurobehavioural 

Table 1 Participant characteristics of infants assessed at term-equivalent age (based on HNNE sample size)

PT<30 (n=133) MLPT (n=196)
Term control 
(n=186)

Postnatal corticosteroids, n (%) 12 (9) 0 0

Multiple birth, n (%) 59 (44) 73 (37) 2 (1)

Caesarean delivery, n (%) 75 (72) 134 (68) 72 (39)

Gestational age at birth (weeks), mean (SD) 27.9 (1.4) 34.4 (1.3) 39.7 (1.2)

Birth weight Z-score, mean (SD) −0.33 (1) −0.33 (1.2) 0.23 (0.82)

Male, n (%) 54 (52) 93 (47) 99 (53)

Respiratory distress at birth, n (%) 102 (98) 44 (22) 0

Postmenstrual age at neurobehavioural assessment (weeks), mean (SD) 41.5 (1.9) 41.4 (1.1) 41.9 (1.5)

Postmenstrual age at MRI (weeks), mean (SD) 42.4 (1.5) 41.4 (1.1) N/A

Global brain abnormality score, n participants, mean score (SD) 101, 4.30 (2.02) 187, 1.82 (1.87) N/A

Cerebral WM brain abnormality score, n participants, mean score (SD) 101, 2.29 (1.35) 187, 0.98 (1.17) N/A

Cortical grey matter abnormality score, n participants, mean score (SD) 102, 1.39 (1.28) 193, 0.62 (0.78) N/A

Deep nuclear grey matter abnormality score, n participants, mean score 
(SD)

102, 0.11 (0.34) 194, 0.04 (0.19) N/A

Cerebellar abnormality score, n participants, mean score (SD) 102, 0.51 (0.73) 192, 0.19 (0.58) N/A

HNNE, Hammersmith Neonatal Neurological Examination; MLPT, moderate-to-late preterm; N/A. not applicable (term infants did not have an 
MRI for this study); PT<30, preterm born <30 weeks’ gestational age; WM, white matter.

Figure 1 Participant recruitment and neurobehavioural assessment and MRI follow-up. GMA, General Movements 
Assessment; HNNE, Hammersmith Neonatal Neurological Examination; MLPT, moderate-to-late preterm; NNNS, Neonatal 
Intensive Care Unit Network Neurobehavioral Scale; PT<30, preterm born <30 weeks’ gestational age.
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assessment and brain MRI were excluded, as were infants 
who were not in an appropriate state to allow their 
GMA to be reliably scored (see figure 1). Differences 
between infants with and without neurobehavioural data 
are shown in  online supplementary tables 1a–c. In the 
PT<30 group, six infants died prior to term-equivalent 
age and were not included in this baseline analysis.

suboptimal neurobehaviour
Scores on several neurobehaviour subscales were not 
independent of gestational age (p<0.05) (figure 2). On 
the NNNS, the proportions with suboptimal neurobehav-
iour decreased with increasing gestational age group for 
the following subscales: regulation, quality of movement, 
non-optimal reflexes, hypertonicity and stress. Excluding 
abnormal signs and behaviour, suboptimal neurobehav-
iour on the remaining HNNE subscales decreased with 
increasing age. Rates of abnormal GMA were higher with 
decreasing gestational age.

brain Mri abnormality and suboptimal neurobehaviour
Higher brain MRI abnormality scores were associated 
with suboptimal neurobehaviour on the NNNS and 
HNNE, with the exception of the deep grey matter 
abnormality score (table 2). A higher global brain abnor-
mality score was associated with greater odds of being 
suboptimal on the lethargy domain and non-optimal 
reflexes on the NNNS, and greater odds of suboptimal 
reflexes, abnormal signs and total score on the HNNE. 
Similarly, a higher cerebral white matter abnormality 
score was associated with greater odds of being subop-
timal on the lethargy domain and non-optimal reflexes 
on the NNNS, and greater odds of suboptimal reflexes, 
suboptimal spontaneous movements and total score on 

the HNNE. A higher cortical grey matter abnormality 
score was associated with non-optimal reflexes on the 
NNNS. A higher cerebellar abnormality score was associ-
ated with greater odds of being suboptimal on the leth-
argy domain on the NNNS and total score on the HNNE. 
The cerebellar abnormality score was the only brain MRI 
abnormality score associated with suboptimal tone on 
the HNNE. Brain abnormality scores were not associated 
with increased odds of abnormal GMA.

When an interaction term was included in the model 
to explore whether the relationship differed according 
to the preterm infants’ gestational age group, statistically 
significant relationships between brain MRI abnormality 
scores and suboptimal neurobehaviour on the NNNS and 
HNNE were similar in both the PT<30 and MLPT groups 
(all p values for interaction >0.05). The relationships 
between brain MRI abnormality scores and abnormal 
GMA were stronger in the PT<30 group for global brain 
(OR 1.39; 95% CI 1.04 to 1.86; p=0.03) and cortical grey 
matter (OR 1.75; 95% CI 1.05 to 2.93; p=0.03) abnor-
mality scores.

disCussion
This study demonstrates the continuum of neurobehav-
iour across gestational age groups, demonstrating more 
infants with suboptimal neurobehaviour for many items 
on the HNNE, NNNS and GMA with decreasing gesta-
tional age. This study extends previous research that has 
shown differences in neurobehaviour between VPT and 
term-born infants at term-equivalent age by exploring 
brain–behaviour relationships on concurrent neurobe-
havioural assessment and brain MRI.

Figure 2 Suboptimal neurobehaviour and abnormal GMs across gestational age groups. Single asterisk (*) denotes 
neurobehavioural subscale score not independent of gestational age (p<0.05). GMs, general movements; GMA, General 
Movements Assessment; HNNE, Hammersmith Neonatal Neurological Examination; MLPT, moderate-to-late preterm; NNNS, 
Neonatal Intensive Care Unit Network Neurobehavioral Scale; PT<30, preterm born <30 weeks’ gestational age; TC, term 
control.

https://dx.doi.org/10.1136/bmjpo-2017-000136
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regulation and behavioural domains of the nnns and hnne
The current study demonstrated that suboptimal regula-
tion on the NNNS (which assesses the infant’s capacity to 
organise motor activity, physiology and state during the 
examination)24 was more common with decreasing gesta-
tional age, and is consistent with other reports describing 
VPT infants as more irritable with poorer self-regulation 
at term-equivalent age than their term-born peers.33 
Compromises to the development of preterm infants’ 
self-regulation may influenced by the ‘chaotic context’ 
of the neonatal intensive care unit environment,34 which 
includes perinatal care experiences associated with pain 
and stress to a system undergoing rapid growth and 
organisation.35 Previous studies have demonstrated a 
relationship between lower gestational age and greater 
exposure to stress in the neonatal period,36 which may 
explain the current study’s finding of increasing rates of 
suboptimal regulation at term-equivalent age in infants 
born at lower gestations.

Poor regulation is often exhibited through infant 
behaviours known as stress cues.37 Accordingly, it is not 
surprising that the current study also demonstrated 
greater suboptimal levels of stress-related behaviours on 
the NNNS with decreasing gestational age. The NNNS 
stress scale provides information about the infant’s 
capacity to regulate and organise multiple systems 
(eg, visual, state, physiological, motor) in response to 
handling and interaction demands of their environ-
ment. Interestingly, a significant proportion of the MLPT 
infants showed suboptimal stress responses on the NNNS 
(36%), suggesting that despite their greater gestational 
age, MLPT infants, like their PT<30 infant peers, are 
vulnerable to environmental stressors and may require 
external support to regulate their developing regulatory 
systems.38

Influenced in part by an infant’s regulatory capacity, 
it is not surprising that compared with their term-born 
peers, both PT <30 and MLPT infants had higher rates 
of suboptimal arousal and excitability on the NNNS, 
however, the relationship between these subscale scores 
and their dependence on gestational age did not reach 
statistical significance (p<0.05). This may be explained 
by the bidirectional nature of these scales, with higher 
scores representing overarousal or overexcitability and 
lower scores reflecting underarousal or underexcitability. 
The suboptimal score does not differentiate the direction 
of the pattern.

The lack of dependence on gestational age for some 
variables in the current study may be explained by the age 
of term infants at assessment. Compared with the MLPT 
infants, term infants had higher proportions of subop-
timal lethargy and hypotonicity on the NNNS. These 
infants were often assessed before hospital discharge, 
when the physiological changes that occur in the first days 
after birth may have influenced the presentation of leth-
argy and apparent hypotonicity.39 The NNNS handling 
scale includes the strategies used to obtain focused atten-
tion and the non-significant relationship across groups 

is somewhat surprising. Term infants did not require 
as much supportive handling, as expected, but MLPT 
infants required more handling than the PT<30 infants, 
which may reflect their different responses to stress. 
On the HNNE, the proportions of suboptimality in the 
abnormal signs domain were similar between PT<30 and 
MLPT infants and the behavioural domain had low levels 
of suboptimality in all three groups.

Despite the effects of gestational age at birth on regu-
lation at term-equivalent age, all three groups demon-
strated similar orientation and attentional responses to 
visual and auditory stimuli, although perhaps at the cost 
of the PT<30 and MLPT infants’ stress and regulation 
performance.

neurological domains of the nnns and hnne, and the gMA
Having spent longer in physiological flexion in utero, 
term-born infants often present with greater flexion and 
smoother movement patterns compared with preterm 
peers.16 40 41 Higher rates of tone abnormalities, both 
hypertonicity and hypotonicity, are reported in preterm 
infants at term-equivalent age.16 Consistent with this 
pattern, the current study demonstrated higher rates of 
suboptimal hypertonicity on the NNNS, suboptimal tone 
optimality and suboptimal tone patterns on the HNNE 
with decreasing gestational age. Similarly, there was 
poorer quality of movement with decreasing gestational 
age on all three neurobehavioural assessments. On the 
HNNE, PT<30 infants demonstrated substantially higher 
rates of suboptimal spontaneous movement (41%) 
compared with MLPT and term infants (14% and 4%, 
respectively), and there were higher rates of abnormal 
GMA with decreasing gestational age. Reduced quality 
of movement at lower gestational ages may reflect differ-
ences in central nervous system integrity and the extrau-
terine environment, including limited opportunities for 
movement.

Similarly, the reflex scales of the NNNS and HNNE 
also reflect maturation of the infants’ central nervous 
system with increasing suboptimal reflexes on the NNNS 
and HNNE with decreasing gestational age. Infants born 
PT<30 had a substantially higher rate of suboptimal 
reflexes (32%) compared with MLPT and term-born 
infants (9% and 7%, respectively). Furthermore, the 
rates of suboptimal total scores on the HNNE, a reflec-
tion of an infant’s overall performance on the more 
neurologically based assessment, increased significantly 
with decreasing gestational age, highlighting the impact 
of preterm birth on the maturation and integrity of the 
central nervous system. This finding contrasts with other 
studies having reported that motor reflexes do not seem 
to be differentially affected by a short gestation, severity 
of illness or brain injury.42

brain–behaviour relationships
A number of relationships between brain MRI abnor-
mality scores and suboptimal neurobehaviour were 
identified in the current study. These brain–behaviour 
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relationships were more common on the HNNE than the 
NNNS, which may reflect its greater neurological focus.9

On the NNNS, various brain abnormality scores were 
associated with greater odds of non-optimal reflexes and 
suboptimal lethargy. In particular, the global, cerebral 
white matter and cortical grey matter abnormality scores 
were associated with suboptimal reflexes and the global, 
cerebral white matter and cerebellar with suboptimal 
lethargy on the NNNS. This is consistent with the study 
by Brown et al,17 who also reported both white matter 
signal abnormality and delayed gyral maturation to be 
associated with worse performance on the NNNS non-op-
timal reflex scale.

Previous studies have linked poor quality of movement 
with cerebral injury, in particular, white matter abnor-
mality and poor outcome.10 Similarly, the current study 
demonstrated a significant relationship between white 
matter abnormality and suboptimal performance on the 
HNNE spontaneous movement scale. This is consistent 
with the study by Brown et al who reported an associa-
tion between a worse grade of white matter abnormality 
and suboptimal HNNE spontaneous movement scores. 
In keeping with the current study’s findings, previous 
studies found no relationship between brain abnormality 
scores and the NNNS quality of movement scale.16 17 No 
other regional abnormality scores were associated with 
suboptimal movement in contrast with two earlier studies 
that reported delayed gyral maturation and higher grey 
matter abnormality were associated with lower HNNE 
spontaneous movement scores.17 43 On the GMA, however, 
global brain abnormality and cortical grey abnormality, 
a composite of signal abnormality, delayed gyration and 
dilated extracerebral space, was associated with abnormal 
GMA.

Limitations of the current study are important to 
consider in the interpretation of the findings. In partic-
ular, the low rates of brain abnormality scores may have 
influenced the power to detect relationships between 
brain abnormality and suboptimal neurobehavioural 
outcomes. Also, not all infants were able to have all 
assessments.

ConClusion
The current study demonstrated a clear continuum of 
neurobehaviour across three gestational age groups, 
with poorer behavioural regulation, increased stress 
response, greater tone abnormality, abnormal reflexes 
and poorer quality of movement with decreasing gesta-
tional age. A number of relationships between brain 
abnormality scores and suboptimal neurobehaviour were 
found, particularly the global, white matter and cere-
bellar abnormality scores with the more neurologically 
focused domains of the NNNS and HNNE evidence that 
the neurobehavioural assessment can provide insight 
into the integrity of the developing brain and can both 
supplement imaging findings when available or in the 
absence of MRI, provide guidance to clinicians who 

are identifying high-risk infants for early intervention 
services.
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