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Imagination is a biological function that is vital to human experience and
advanced cognition. Despite this importance, it remains unknown how
imagination is realized in the brain. Substantial research focusing on the
hippocampus, a brain structure traditionally linked to memory, indicates
that firing patterns in spatially tuned neurons can represent previous and
upcoming paths in space. This work has generally been interpreted under
standard views that the hippocampus implements cognitive abilities primarily
related to actual experience, whether in the past (e.g. recollection, consolida-
tion), present (e.g. spatial mapping) or future (e.g. planning). However,
relatively recent findings in rodents identify robust patterns of hippocampal
firing corresponding to a variety of alternatives to actual experience, in
many cases without overt reference to the past, present or future. Given
these findings, and others on hippocampal contributions to human imagin-
ation, we suggest that a fundamental function of the hippocampus is
to generate a wealth of hypothetical experiences and thoughts. Under this
view, traditional accounts of hippocampal function in episodic memory and
spatial navigation can be understood as particular applications of a more gen-
eral system for imagination. This view also suggests that the hippocampus
contributes to a wider range of cognitive abilities than previously thought.

This article is part of the theme issue ‘Thinking about possibilities:
mechanisms, ontogeny, functions and phylogeny’.
1. Introduction
The ability to imagine is essential to human experience. At a broad level,
imagination has a major role in human creativity, agency and everyday
thoughts and actions. More specifically, humans have and express many
types of imagined experiences. These include recollections, predictions, simu-
lations, counterfactuals, fantasies, suppositions and mind-wandering—and, in
pathological cases, hallucinations and confabulations. These wide-ranging
forms of imagination are relevant, if not essential, to a similarly wide range
of cognitive domains, such as memory, planning, learning and inference.
Despite this fundamental importance, our understanding of how imagination
is realized as a biological process in the brain remains nascent. Indeed, the
sheer diversity of imagined experiences makes it challenging to begin to
envision a possible biological approach.

As starting point, we identify a unifying characteristic of imagined experi-
ences: they do not refer to actual present experience, or directly reflect
ongoing circumstances in the external world. Rather, imagined experiences
refer to non-actualities, and arise from a source internal to the subject. Awake
healthy subjects can, in other words, ‘mentally’ self-generate thoughts and
experiences and distinguish them from thoughts and experiences driven by
ongoing stimuli in the actual present. We refer to this fundamental ability to
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generate possibilities that do not correspond to the actual
present as generativity. By this definition, generativity is a
basic function that underlies imaginative abilities broadly,
regardless of more specific properties, such as references in
time (e.g. remembering the past or simulating futures). As
further clarification, we also note that our present use of
‘generativity’ differs from its senses in linguistics and in
statistical models (notwithstanding potential connections
between these uses [1–3]). Defining generativity enables
us to focus on a single characteristic ability that may ulti-
mately facilitate our understanding of the diverse types and
components of imagination.

Crucially, generativity can be understood at the level of the
brain. Mirroring the subject-level ability to distinguish actual
from imagined experience [4], specific neural processes in the
healthy brain must ‘parse’ internal representations as ongoing
experience (actual) versus internally generated alternative
experience (imagined). Importantly, this substrate-level gener-
ativity does not presuppose features such as mental imagery,
mental time travel or conscious awareness. Indeed, defining
generativity enables us to refer to the brain’s capacity to
internally generate experiences that are distinguished from
externally driven present experience, without invoking these
features that are associated with subjective human imagin-
ation. As an example, a soccer player approaching a moving
ball can rapidly assess numerous dynamic ongoing events
and stimuli, consider multiple possible responses, and decide
on a play, all in a split second and without overt awareness
of each internally represented possibility. In animals, ethologi-
cally relevant scenarios such as predation and escape make
similar demands on cognition [5]. Thus, direct investigation
of the brain may be essential to understand generativity.

In this review, our overall aim is to describe and advance
our understanding of how generativity—an ability underlying
imagination—is realized in the brain. Our review is guided by
five questions: (i) where generativity might be implemented in
the brain, (ii) how generative neural activity can be identified,
(iii) what candidate generative neural activity patterns and
representational correlates have been previously described
and (iv) how the brain can organize actual versus generative
activity patterns. This discussion establishes that the hippo-
campus, a brain structure in the medial temporal lobe, is a
candidate biological substrate of generativity, and that patterns
of hippocampal neural firing reflect generative processes
by representing a diverse range of alternatives to ongoing
experience. Finally, we consider (v) what these observations
suggest about the biological basis of generativity and its role
in cognition. More specifically, in light of recent findings at
the level of neuronal firing patterns in rodents, in addition to
brain research related to imagination in humans, we suggest
that the hippocampus—often understood as a system that
characteristically represents actual experience, whether in the
past, present or anticipated future—may be better understood
as a system that also represents imagined alternatives to
actual experience.
2. The hippocampus as a locus of generativity
in the brain

What structure within the brain might implement generativ-
ity? One approach to this question is to determine whether
damage to specific parts of the brain causes deficits in
imaginative abilities relying on generativity, including recol-
lecting the past, envisioning the future or constructing
fictional scenarios. Notably, the earliest case studies linking
imagination of the future to specific brain areas are in indi-
viduals with previously established deficits in memory of
the past [6–10]. In one classic case, patient H.M. suffered
severe amnesia after his hippocampus and adjacent medial
temporal areas were surgically removed, which established
the hippocampus as an important site for memory, particu-
larly episodic memory [11,12]. Notably, while episodic
memory impairments are most traditionally reported, H.M.
and many other patients with hippocampal damage have
since been examined and found to have severe impairments
in future-oriented thinking and constructing fictional
events more generally [9,13–18]. These findings raise the
possibility that recollection of the past, anticipation of the
future and imaginative abilities more broadly may share
common underlying functions as well as dependence on
the hippocampus [17,18].

Complementing lesion studies, functional brain imaging
has revealed activation of the hippocampus during a variety
of self-reported imagined experiences that overtly differ
from subjects’ actual circumstances [19–22]. In such studies,
subjects are typically asked to imagine experiences that differ
from present experience through changes in time, space
and/or personal perspective. The hippocampus, in addition
to a group of cortical areas known as the default mode net-
work, is consistently activated during, for instance, recalling
autobiographical experiences, imagining anticipated future
episodes, imagining counterfactuals, mentally simulating
common activities (e.g. brushing teeth), constructing fictional
scenes, imagining non-actual events and stories, taking on
others’ perspectives and unprompted mind-wandering
[19,20,23–27]. These results highlight that the hippocampus,
along with other brain regions in the default mode network,
is important for the capacity to generate mental displacements
from actual present circumstances, whether in time, space, per-
sonal perspective and possibly other domains [14,17,19,28,29].
Thus, although the cognitive role of the hippocampus is often
conceptualized in relation to prior experience (i.e. episodic
recollection, recall) or explicitly anticipated experience (i.e.
planning, prospection) [30–32], the hippocampus appears to
play a more general role in imaginary experience [29].

In efforts to clarify this role, studies have often probed the
availability and character of mental imagery. Several further
studies help refine the role of the hippocampus beyond the
observation mentioned above that hippocampal damage
is associated with deficits in vividly visualizing fictional
scenes. First, patients with partial hippocampal lesions show
activation of residual hippocampal tissue when tasked with
imagining complex scenes [33,34]. Second, one patient with
longstanding hippocampal damage found it effortful but
possible to visualize single imaginary objects and simple
scenes, yet could not readily imagine complex scenes in one
automatic and coherent picture—instead, he built up the
scenes ‘bit by bit’ [33]. Residual hippocampal tissue in this
patient was not activated during these tasks as it was in
control participants [33]. These findings suggest that the hip-
pocampus is not strictly required for mental imagery, and
therefore that the role of the hippocampus in imagination
may be only indirectly related to mental imagery. The require-
ment of the hippocampus for readily constructing complex
scenes in particular suggests a different basis or principle by
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which the hippocampus contributes to imagination [33]; we
revisit this issue in the section ‘Generativity as a function of
the hippocampus’.

The above lesion and functional imaging work implicates
the hippocampus as a candidate substrate for generative think-
ing, typically by relying on conscious verbal or behavioural
reports. This approach is, however, limited in addressing
how generative processes are implemented at a neuronal
level. For example, the timing of underlying processes relative
to eventual behavioural reports remains unclear. Generative
processes may also unfold at timescales considerably faster
than behaviour, which suggests the need for complementary
approaches with finer temporal resolution. Here animal
models provide an important advantage by enabling greater
access to neural firing. This potential approach in turn
raises the question of whether animals also exhibit behaviours
indicating generative thought, and if so, whether the
hippocampus is also implicated, as in humans.

From work dating at least a century, it is clear that animals
behave based on memory of prior experience and conceptual
insight rather than solely trial and error, instinct and presently
sensed information [35–37]. This implies a corresponding abil-
ity to construct and use internal representations and suggests
the existence of generative neural processes in animals. In
the case of rats, a common model for hippocampal studies, a
seminal example of behaviour based on internal represen-
tations is spatial navigation. When navigating, rats can take
novel paths (for instance, shortcuts to goal locations), implying
an internal model enabling the ability to generate such novel
courses of action [38,39]. Rat behaviour can also appear delib-
erative and regretful, suggestive of internally generating
representations of possibilities, including counterfactual pasts
[40–42]. In service of these and other behaviours, the hippo-
campus is thought to be essential for using an abstract
internal model, or ‘cognitive map’ that relates items, events
and features of experience [42–44]. Indeed, hippocampal
damage impairs various behaviours thought to rely on abstract
internal representations such as rats’ abilities to infer relation-
ships between stimuli [45]. Further, hippocampal lesions
impair rats’ abilities to make choices dependent on an internal
model and predictions or plans made by that model [46].
These findings suggest that the hippocampus is an important
locus in the rodent brain for constructing abstract mental
models, which in turn could be used to generate repre-
sentations of prior, new and otherwise not presently
experienced possibilities, enabling insightful behaviours.

With the hippocampus as a starting point for investigating
generativity in both humans and animals, we now aim to clar-
ify what neural firing patterns have been observed in the
hippocampus and what internal representations they suggest.
To do so, it is necessary to address our second question: how
can generative neural activity patterns be identified?
3. Identifying neural firing patterns that are
generative

Identifying neural firing patterns that may represent imagined
experiences requires us first to identify neural firing that
corresponds to actual experience. Here, we focus on studies
of neural firing in the rodent hippocampus. To investigate
internal representations at the level of neurons, neurobiologists
have leveraged the well-established relationship between
spatial location and hippocampal firing in freely moving rats
[47]. Over 50 years of work have established that principal
neurons in the rodent hippocampus exhibit increased firing
rates when the animal is in distinct physical locations
(figure 1a) [47,48]. As the rat moves through an environment,
each of these ‘place cells’ consistently increases its firing rate
when the animal is in the neuron’s ‘place field’ location(s)
[47,48]. Importantly, place cell firing also varies based on
numerous factors besides location [49]; for example, in linear
environments, a large proportion of place cells fire more
when the animal is travelling in a particular direction [50].
Therefore, at a broader level, it is important to note that a
place field describes average firing over many individual
runs through a location, even though there is often substantial
variability in a place cell’s firing across individual runs
through the same place (figure 1a).

The basic notion of a place field, along with the ubiquity
of place cells in the rat hippocampus, provides a possible
approach to identifying actual and generative activity at a
neural level. If we take a place cell’s activity to represent its
place field location, then each instance of firing by that
neuron can be provisionally understood as representing
that location. By this interpretation, a place cell will reliably
fire when the animal is in the cell’s place field, thereby
representing the animal’s actual present location.

Importantly, in certain moments, a place cell can also fire
when the animal is not actually in the cell’s time-averaged
place field location (figure 1a,b) [51–53]. Accordingly, these
moments can be provisionally understood as times in
which a representation of the place field location is internally
generated, even though the animal actually occupies a
different location at that moment.

Strikingly, place cells have been found to fire outside of
their place fields in coordination with each other (figure 1b)
[54,55]. During these events, the collective activity of place
cells can be understood to express a representation that corre-
sponds to locations different from the animal’s current
location [52,53]. In other words, this neural firing is consistent
with a generative representation; while it appears displaced
from the animal’s actual state and present stimuli, it is intern-
ally coordinated across cells (figure 1b).

A variety of analysis methods have been used to investigate
these generative firing events and internal spatial representations
in the hippocampus [56–58]. Briefly, one approach is to model
the firing of many individual place cells as their time-averaged
place field locations, and then invert that model to produce an
estimate of the neurally represented location at each moment
in time [59–61]. Doing so enables us to infer, or decode, the
animal’s moment-to-moment ‘mental location’ based on hippo-
campal firing patterns. Thus, by identifying periods when the
decoded representation of location (or direction) differs from
the animal’s actual state, we can examine periods when hippo-
campal activity is collectively inconsistent with a representation
of actual experience and may instead be generative. This enables
us to address our third question: what kinds of generative
representations have been observed in the hippocampus?
4. Generative representations in hippocampal
neural firing

Single-cell and population decoding approaches have revealed
a striking variety of putative generative representations in the
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rat hippocampus over the past several decades [62–65].
Traditionally, these representations have been accounted for
as specific episodes and abstracted experiences that are
based on the past, or that anticipate experiences in the future
[66,67]. Recent results, however, imply that the hippocampus
also regularly represents alternatives to actual experience,
whether in the past, present or anticipated future [68–70].
Together, these findings suggest that the hippocampus may
generate a substantially wider range of internally constructed
alternatives to the animal’s actual experience than traditionally
understood.
(a) Representations consistent with past experiences
The first reports of hippocampal activity patterns related to
past experiences focused on sleep [51,54]. Firing sequences of
place cells that were active during running on a maze were
found to reactivate in similar sequential order during sub-
sequent sleep, as if briefly ‘replaying’ past spatial experience
[71–73]. These replays occur on the order of tens to hundreds
of milliseconds, far faster than the seconds-long timescale over
which the actual behavioural traversal of those locations
unfolds (figure 1b) [71]. Importantly, replay events were sub-
sequently found also to occur during waking periods in
which rats are behaviourally immobile, such as sitting still or
eating (figure 1b) [74,75]. During wake and sleep, replay typi-
cally occurs during a burst-like hippocampal network-level
activity pattern, the sharp wave-ripple (SWR), that is itself
internally generated (rather than externally driven), consistent
with the notion of generativity [76].

As suggested by its name, replay has been interpreted as
recapitulating specific episodes of prior experience. An early
observation was that after an animal ran towards and then
came to rest at a reward location, a path was replayed starting
at the animal location and proceeding in reverse, as if retra-
cing the path that led to the reward [75,77,78]. Replay
representations not only initiate at a stationary animal’s
location [74], but can also correspond to paths that start
farther away from the animal within the current maze, as
well as on a different maze experienced beforehand
(figure 1b) [79,80]. These examples are evocative of the hippo-
campus’ long hypothesized role in cognitive functions that
rely on experiences from the past, such as memory consolida-
tion and episodic recall [65,81].

Additional findings on replay suggest a more complex
picture. Unlike a rigidly recapitulative process that uniformly
represents recent experiences, replay can be enriched for pre-
viously taken paths associated with reward, paths associated
with aversive outcomes, nearby locations and paths that have
not recently been taken [61,82–84]. Further, these and several
additional findings [82,84–88] suggest that replay events are
collectively well described as reflecting an abstract internal
spatial model of the encountered environment, or a spatial
‘cognitive map’ [43,52,62]. For instance, replays can be
biased toward paths that are less behaviourally traversed,
and replays can be consistent with random trajectories
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through a familiar space [87,88]; replays like these may
sample locations that are not the most behaviourally salient
or the most physically occupied to support the maintenance
of a flexible model of the environment, and this function
could help explain why replays are inconsistent with a rigid
recapitulation that passively records recent experience
[84,87,88]. These reports suggest that replay, instead of
directly reinstating specific episodes, may abstractly reflect
past experience via an internal spatial map.

While there is little doubt that replays can be derived
from prior experience, both in the case of a rigid recapitula-
tion or abstract model based on the past, what remains
unclear is whether neural processes within or beyond the hip-
pocampus interpret replay events as temporally situated in
the past. For example, a replay of recently traversed locations
behind the animal, that are not subsequently traversed, is
better correlated with past than future behaviour, but this
does not rule out the possibility that this replay represented
a potential future traversal of those locations, or a spatial
sequence without a projection in time. Despite this ambiguity,
replay can indeed be related to prior behavioural experiences.
And, moreover, these findings on replay exemplify how gen-
erative activity in the hippocampus can represent various
possibilities that differ from the actual present—here, in the
form of spatial paths in known environments.

In parallel to replay during rest, neural firing in the hippo-
campus during movement has also been suggested to be
recapitulative. During movement, an internally generated
network-level activity pattern, the 8 Hz theta rhythm, is
observed throughout the rodent hippocampus [89–92].
Place cells are known to fire systematically in relation to the
theta rhythm, such that neurons with place fields behind,
at and ahead of the animal fire at early, intermediate and
later phases of theta cycles, respectively [55,93,94]. Accord-
ingly, collective place cell firing during a single cycle can
represent a series of locations consistent with sweeping
from the immediate past and present ahead to anticipated
future locations (rightmost example in figure 1b) [63].
Although firing in early phases of the theta rhythm can reca-
pitulate locations just traversed by the animal, this firing
appears to be consistent with the immediate actual past
(for instance, as opposed to alternative past (counterfactual)
locations) [63,95]. This suggests that early theta phase rep-
resentations may also be best understood as reflecting
actual experience, and not possible experience. That said,
hippocampal firing during movement can correspond to
locations behind the animal and is often thought to reflect
the recent past [53,96,97].
(b) Representations consistent with anticipated futures
Place cell firing can also correspond to upcoming spatial
paths, suggesting that generative representations may antici-
pate future experience. As introduced above, place cells firing
in late phases of theta cycles tend to have place fields in
locations ahead of the animal [53,55]. The extent to which
this activity projects ahead of the animal can correlate with
the distance the animal subsequently traverses, consistent
with the possibility of future anticipation or prediction [98].
When multiple paths are available (such as a path bifurcat-
ing), hippocampal firing has been found to proceed ahead
along only one path at a time [68,99]. Furthermore, place
cell firing corresponding to the left or right path ahead can
occur on interleaved theta cycles, consistent with serially
representing alternatives (figure 2a) [68]. These internally
generated representations are consistent with generatively
representing anticipated possibilities, and are reminiscent
of deliberation [99]. However, while in some cases theta-
associated neural firing can predict the animal’s subsequently
taken path [99–101], firing patterns associated with alterna-
tion between paths fail to reliably predict the animal’s
subsequent choice [68,99].

Apart from generative activity associated with theta,
replays suggestive of anticipated future experience have
also been reported. In early work, replay was found to corre-
spond to sequences of locations starting near and projecting
ahead of the animal, just prior to running along that same
path in the linear maze, consistent with anticipation of
upcoming experience [74,79,80]. Since then, several studies
have reported that replay in environments with more options
(an open arena or multi-arm maze) is biased toward goal
locations that the animal subsequently visits [102,103].
While replay can indeed correspond to subsequently taken
paths, recent work from our group shows that replay fails
to predict upcoming choices [82].

Seeking to relate generative firing to behavioural episodes
in subjects’ past or future (e.g. the choice of maze arm in the
previous or next trial) has been a common approach in
investigating the contributions of hippocampal activity to cog-
nitive functions, especially past-oriented functions such as
episodic recall and future-oriented functions such as
planning. Task paradigms that disambiguate prior from
upcoming experience are well suited for this approach [82].
However, relating generative neural activity to particular
locations behaviourally occupied in the past and future does
not necessarily indicate that such activity is an internal rep-
resentation that refers temporally to the past or future. For
example, neural firing corresponding to one of two paths
ahead of the subject is consistent with a possible future, yet
may also reflect recall of a prior traversal of that location, or
simply not have any reference in time. In this sense, it remains
an open question whether generative firing patterns observed
in the hippocampus can refer to experiences projected into the
future. Apart from this, it remains the case that some instances
of generative firing during theta and replay can correspond
to potential future locations, and may thereby contribute to
explicitly anticipatory functions such as planning.

(c) Representations consistent with alternative
possibilities

Firing patterns corresponding to locations different from a
subject’s actual location indicate that the hippocampus can
generate representations of alternatives to actual ongoing
experience. As discussed above, it has been hypothesized
that these firing patterns reflect internal representations refer-
ring to episodes of experience in the past or anticipated
future. Critically, recent findings indicate that generative
firing patterns exhibit properties that may be more consistent
with an underlying process that generates representations of
non-actual hypotheticals and possibilities more broadly,
rather than a process characterized primarily by projection
of actual experience in time [68–70].

In recent work focusing on periods of movement, we
found that neural firing in the rat hippocampus can regularly
represent various alternatives with striking speed and
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regularity (figure 2) [68]. In initial observations, we found
that alternative locations ahead of moving animals could be
represented not only as quickly as the frequency of the
theta rhythm (approx. 125 ms cycles), but also sustained
across many consecutive theta cycles (figure 2a) [68]. As in
previous work showing that place cell activity can serially
alternate between upcoming paths [99], or correspond to
paths subsequently taken [98,102], one possibility is to inter-
pret this pattern of neural firing as reflecting an essentially
anticipatory function, such as planning or deliberating over
future behaviour.

However, we also found that place cell firing corresponding
to opposite directions of travel exhibited the same pattern of
serial alternation: sustained 16 Hz cycling between the animal’s
actual direction and an alternative, or non-actual, direction
(figure 2b) [68]. Toward clarifying what this pattern of alternat-
ing activity might reflect about the underlying process in the
hippocampus, we highlight three points of consideration.

First, this generative firing pattern has no overt or intuitive
temporal reference. Unlike the case of alternative locations
ahead of the animal, alternative direction is neither more con-
sistent with upcoming experience, nor more consistent with
previous experience. This was especially the case given the
experimental setting, in which rats routinely travelled in
either direction through a maze as part of navigating in an
alternation task [68] (similar to figure 2). Thus, neural firing
signalling the non-actual direction was just as plausibly a
recollected past as an anticipated future. Importantly, this
ambiguity regarding time extends further: it is also just as
plausible that the firing pattern reflected a representation of
a counterfactual past, an alternative present or an experience
with no specific reference in time. This last possibility is remi-
niscent of imaginative thoughts in humans which do not
explicitly project experience into the past or future, but none-
theless differ from a subject’s present circumstances. Without
further knowledge, it may be relatively parsimonious not to
attribute temporal reference to the observed hippocampal
firing pattern—rather, a simpler interpretation is that this
neural activity corresponded to non-actual experience.

Second, the speed of alternations between actuality and
location or direction may be at odds with conscious human
thought processes that are, at least subjectively, slower than
approximately 125 ms theta cycles. For this reason, we specu-
late that a neural process at this speed is unlikely to be directly
coupled to conscious awareness, such as during a human sub-
ject’s internal deliberation over two choices, ormental imagery
of a remembered episode of navigating a path. Rather, these
generative neural firing patterns suggest a function that, like
generativity, is marked by moment-to-moment variability
and productivity.

The third point is that this generative hippocampal activity,
which alternated between possibilities not actually being
presently experienced, was largely independent from behav-
iour [68]. This was the case both for cycling of non-actual
locations and direction. Specifically, generative alternating
firing patterns occurred commonly across classes of locomotor
behaviours (e.g. running, crawling, turning, head scanning,
brief pauses in running). Additionally, the number of theta
cycles corresponding to alternatives varied widely between
instances of otherwise similar trajectories through the maze.
Further, activity that cycled between to two paths ahead at a
bifurcation did not reliably predict animals’ upcoming turn
behaviour on individual run trajectories [68]. These obser-
vations suggest an underlying process that can be uncoupled
from behaviour at three levels: classes of behavioural state,
behavioural trajectories and upcoming behavioural choices.
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These three points are complemented by an additional line
of investigation. Examination of the timing of neural firing
within theta cycles revealed a surprising commonality between
firing corresponding to alternative locations and direction: for
either representational correlate, firing corresponding to the
non-actual circumstance occurred specifically in late phases of
theta cycles (figure 2a,b) [68]. This observation indicates that
late theta phases, previously understood to contain firing
related to upcoming paths [53,67], are not exclusive to locations
ahead of the animal (figure 3). Rather, late phases can also con-
tain firing related to alternative direction, which raises the
possibility that firing corresponding to alternative possibilities
in any other domain encoded by the hippocampus may also
be generated in late theta phases. Toward this, further obser-
vations from our group suggest two additional examples of
generative firing during late phases of theta; firing may corre-
spond to locations behind the animal on a path that was not
just taken, suggesting an alternative past representation [68],
and may also correspond to locations relatively far from the
animal, not only locations immediately ahead [70]. Together,
these findings illustrate that late-phase firing can correspond
to multiple kinds of alternatives to actual ongoing experience
(direction and various locations). This is surprising because it
is not consistent with the canonical understanding of theta
cycles as organizing a sequential representation of locations
along a single path, sweeping from past to future locations,
or behind to ahead of the animal in space and time
(figure 3b) [53,55,67,94]. Rather, these findings suggest revising
the established view that hippocampal firing during late theta
phases corresponds to locations immediately ahead of the
animal. A more inclusive view is that late theta phases may
be enriched for firing related to a diversity of alternative possi-
bilities and hypotheticals, including, but not limited to,
anticipated experiences (figure 3a).

In the preceding discussion, we largely focused on recent
findings regarding hippocampal neural activity associated
with movement. Several parallel results indicate that replay
events, occurring during periods of immobility, can also rep-
resent possible or hypothetical experiences that are not
clearly recapitulative nor anticipatory. Replays can represent
trajectories that link physically connected spatial paths that
the animal has not traversed behaviourally, as if simulating
short-cut paths [84,104]. Such synthesized trajectories were
not directly experienced by the animal, and therefore are
inconsistent with strict recapitulation of the past. Further-
more, in some cases subjects never took the shortcut paths,
suggesting that these replays may not have been anticipatory.
Recently, another study found that replay is biased to an
unchosen path even when that path would not fulfil the ani-
mal’s motivational state (i.e. biased to water when hungry,
and food when thirsty) [69]. This finding is inconsistent
with both replay of the recent past and of the immediate
future. In sum, generative neural firing in the hippocampus
during both movement (theta) and rest (replay) may reflect
a process that represents a diversity of possibilities that are
alternatives to actual present experience (figures 3 and 4).
5. Organization and origin of generative activity
in the brain

Having reviewed multiple types of generative neural activity
in the hippocampus, we turn to our next question of how
generative representations may be organized and ‘parsed’
from representations of actual, ongoing experience. One
would expect that neural processes are in place to separate
actual and generative activity to avoid their confusion, remi-
niscent of the subject-level ability to internally distinguish
actual from imagined experience [4]. Multiple organizational
schemes are possible; different sets of neurons could partici-
pate in actual versus generative representations, these
representations could occur at different relative times, or
some combination of these schemes could take place.
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Findings in the rodent hippocampus indicate that neural
firing corresponding to actual and generative representations
occur at different relative times that are internally determined
[105]. Generative representations tend to occur not only with
temporal separation from representations of actuality, but
also in alignment with underlying network-level activity pat-
terns in the hippocampus that are internally generated: SWRs
and the theta rhythm (figure 3a) [68,106]. This results in a
serial alternation of neural firing corresponding to actuality
and generativity, or a temporal ‘multiplexing’ of actual and
generative representations in the brain.

This serial alternation is present across behavioural states.
During immobility, neural firing corresponding to the animal’s
actual present location is maintained for prolonged periods,
transiently suppressed during SWR events that typically con-
tain generative replays (tens to hundreds of milliseconds),
and then subsequently restored (figure 3) [106,107].

Similarly, during movement and exploratory behaviours,
neural firing corresponding to actual present and non-actual
alternative experience, or actual and generative represen-
tations, occurs serially and in alignment with characteristic
phases of the theta rhythm [3,68]. More specifically, early
phases characteristically contain representations of the ani-
mal’s actual past and present experience, while late phases
may contain firing corresponding to a variety of hypothetical
experiences, resulting in alternating actual and generative rep-
resentations (examples in figure 2, schematic in figure 3) [68].
Furthermore, there are multiple levels of alternation between
actual and generative activity during movement—represen-
tations not only alternate within approximately 125 ms theta
cycles (e.g. actual and upcoming position), but also across con-
secutive theta cycles (e.g. alternation of two possible paths
ahead; figure 2) [68]. Additional findings are also consistent
with the idea that multiple representations can be accommo-
dated in the hippocampus via serial alternation at a sub-
second timescale. For instance, studies in the rat hippocampus
have reported theta-modulated ‘flickering’ between represen-
tations of two environmental contexts, as well as dynamic
switching between two spatial reference frames, and separate
reverse and forward-ordered location sequences within theta
cycles [108–110].

The organization of actual and generative neural firing in
the hippocampus also extends to other brain areas, consistent
with the engagement of a distributed network in these
representations [20,111,112]. Network-level neural activity
patterns underlying generative representations can be coher-
ent across the hippocampus and prefrontal cortex during
replays and along the theta rhythm, with some reports of
concurrent expression of actual versus alternative location
representations across both regions [107,113–117]. Addition-
ally, some generative firing events in the hippocampus are
not only coordinated with but also predicted by the activity
of cells in the medial prefrontal cortex [70]. Numerous
other cortical and subcortical areas also share coordinated
firing patterns with the hippocampus, during both replay
events and the theta rhythm [67,118–125]. Recruitment of a
large network of brain areas during activity related to
actual and generative experience appears to reflect brain-
wide organization, and the question of how firing patterns
in other regions across the brain specifically contribute and
respond to generative representations in the hippocampus
remains an active area of research [113,122].

How might organized generative neural firing patterns in
the hippocampus come about through hippocampal and
extrahippocampal processes? This remains largely unknown,
but some initial points can be made. First, one would expect
generative firing patterns, which do not correspond to
immediately ongoing circumstances, to arise primarily from
internally driven activity patterns, as opposed neural activity
driven directly by external stimuli. Consistent with this, gen-
erative events are observed during SWRs and in association
with the theta rhythm—and both of these activity patterns
are generated internally in the brain (spontaneously) rather
than elicited by external stimuli [76,126]. More specifically,
SWRs spontaneously occur during sleep in the absence of
dynamic sensory stimuli and can be intrinsically generated
in isolated hippocampal slices in vitro [76]. Hippocampal
theta oscillations arise in vivo in coordination with a
rhythm generator region, the medial septum, and can also
be generated in isolated rodent hippocampus in vitro
[127,128]. Furthermore, late phases of theta, during which
generative representations tend to occur, are associated with
increased recurrent network activity from within the hippo-
campus, and relatively weaker influence from cortical areas
that are thought to provide multimodal information to the
hippocampus [63,67,129,130].

While SWR and theta oscillations are understood to be
internally generated and are associated with the occurrence
of generative neural firing patterns in the hippocampus, the
question of how specific groups of neurons (such as place
cells with overlapping place fields) are recruited during genera-
tive events remains open [131]. In addition to mechanisms that
support SWR and theta generation, it is likely the case that
input from brain regions beyond the hippocampus have a
role in this process [67]. One possibility is that the activation
of particular sets of spatially tuned neurons during generative
events is guided by extrahippocampal areas, such as the pre-
frontal cortex, that are also implicated in the default mode
network [20]. This possibility is consistent with evidence that
cortical activity can predict generative spiking during theta
oscillations several cycles in advance, as well as SWR activity
during sleep, and would argue against the idea that hippocam-
pal ensembles are activated by exclusively unstructured input
[70,125]. Studies focusing on the internal correlates of genera-
tive activity within the brain, over external behavioural
correlates, may be especially important to understand what
determines the generative neural firing patterns observed in
the hippocampus.
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The segregation of generative and actual representations
in the hippocampus also raises the question of whether the
hippocampus further differentiates subtypes of generative
representations. For example, are events that reflect veridical
experience from the past somehow distinguished from those
that reflect constructed alternatives, or those that are predic-
tive of future choices? At the level of neural firing, it
remains unclear whether or how the hippocampus might
separate these possible representations. However, two
points of reference in the human literature offer clues that
the relevant neural substrates may be outside the hippo-
campus. First, patients with hippocampal amnesia can
entertain thoughts that distinguish the past or the future,
despite impairments in episodic memory [132,133]. Addition-
ally, hippocampal activation during mental simulations
without temporal placement versus those specifically set in
the future result in similar activation levels in the medial tem-
poral lobe and default mode network [132,134]. These results
are consistent with the idea that temporally differentiating
representations related to the past or the future may not be
hippocampally dependent. Second, healthy human subjects
can subjectively discriminate internally and externally
derived information, an ability known as reality monitoring
[135]. Based on functional imaging studies in both healthy
subjects and patients with schizophrenia who experience hal-
lucinations, reality monitoring is thought to rely primarily on
prefrontal cortical networks [112]. By contrast, another study
reports that hippocampal activation was similar across cases
of true and false recognition memory [136], further
suggesting that this ability does not strictly rely on the hippo-
campus. Although probing reality monitoring in rodents is
not straightforward, it would be notable if, for example, fron-
tal cortical firing patterns systematically differed based on the
representation of possibilities in the hippocampus that
reflected veridical experience versus constructed alternatives.
Such a result would be consistent with the idea that the hip-
pocampus alone may not distinguish subcategories of
generative events, but that the brain may do so via the
engagement of prefrontal circuits.

Looking beyond rodents, it remains an open question as
to which patterns of generative activity in the hippocampus
are shared across species [137]. On the one hand, SWRs
have been observed in a range of vertebrates, as have
neural reactivation patterns suggestive of replay [138–144].
In humans, replay and replay-like patterns have also been
reported, including activity patterns consistent with reactivat-
ing prior experience, as well as inferred sequential activity
that is not simply recapitulative [145–149]. By contrast to
the ubiquity of SWRs across vertebrates, the theta rhythm
appears to be more prominent and continuous in the
rodent hippocampus than in various other species [137].
A notable example is the bat hippocampus, which shows
network-level activity fluctuations that are not generally rhyth-
mic yet still organize place cell firing according to phase
[140,150–153]. This may suggest that actual and generative
representations can be organized via temporal multiplexing
even in the absence of strong rhythmicity. In nonhuman
primates and humans, the hippocampal theta rhythm appears
to occur in intermittent bouts and at a lower frequency
[140,150–153]. Recently, theta phase coding has also been
shown in single cells in human subjects [154,155]. In all,
these results indicate some conservation across species of the
organization of neural firing with respect to network-level
hippocampal activity. More generally, they leave open the
possibility that the brains of many species temporally
multiplex actual versus generative internal representations.
6. Generativity as a function of the hippocampus
Recent findings described above suggest that the hippocampus
regularly generates a wider range of representations than
previously thought. What functional implications does this
suggest?

The cognitive roles commonly ascribed to the hippocampus
offer a starting point. Existing theories of hippocampal function
are often based on the established role of the hippocampus in
human episodic memory [30–32]. Under an essentially episodic
view, hippocampal activity necessarily represents or refers to
both to time and space, in accordance with the definition of
an episodic experience (figure 3b) [156]. Along these lines,
hypotheses based on this view propose that hippocampal
neural firing corresponds to cognitive processes such as
past-oriented memory retrieval and consolidation, or future-
oriented planning and prospection [3,65]. The view that
hippocampal neural firing can support memory of past epi-
sodes has been suggested by findings that causally link SWR
events (which generally co-occur with replay) to performance
on tasks requiring memory of a choice made on a previous
trial [157,158], although the diversity of generative neural
firing patterns reviewed above during replays suggests a
more complex picture [52,62,65]. Both replay as well as theta-
associated generative representations have also been posited
as anticipatory processes, such as planning, in support of
decision-making [159]. These ideas have been reinforced by
observations reviewed above that replay and theta-associated
activity can relate not only to past but also potentially upcom-
ing behaviour. To account for findings that neither of these
firing patterns appears to encode animals’ upcoming choice
with high reliability [52,68,82,99] (but see [98,100,101]), another
version of the anticipatory planning hypothesis posits that the
hippocampus generates a ‘menu’ of relevant options evaluated
by other brain areas prior to the decision [41,99].

Each of these functional interpretations is plausible and
conceptually important, yet only consistent with a subset of
the instances and properties of generative neural firing pat-
terns across studies reviewed above. Specifically, it is
unclear how retrieval of past experience and planning for
the future account for the prevalence and variety of genera-
tive representations observed, particularly those that are
ambiguously related or unrelated to behaviour in the past
or future, and those that run counter to immediate experi-
ences and choices [68,69,84].

As an alternative view, generative firing patterns may be
understood as characteristically expressing alternatives to
actual circumstances, irrespective of whether those circum-
stances are in the past, present or future. Indeed, we suggest
that temporal referencing to the past, present or future for a
given firing pattern in the hippocampus may not be intrinsic
or essential (figure 3a), a view which has also been posited
to account for recent findings in human subjects [132].

By this interpretation, past- and future-oriented cognitive
functions that require or involve the hippocampus would
be particular applications of a broader and more essential
underlying role in generativity, or representing non-actual
experiences including possibilities and hypotheticals. This
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view of the hippocampus’ role at the level of cognition is
closer to imagination (figure 4). A neural system implement-
ing generativity may often construct a variety of potentially
useful representations that do not necessarily relate to
known circumstances, or predict immediate behaviour, yet
remain relevant for behaviour in an indefinite horizon of
time. This advantage is akin to that of insightful thoughts
generated in the course of seemingly undirected mental
activity, such as free reflection or mind-wandering.

If generative neural activity in the hippocampus does not
intrinsically refer to actual experiences, what type of rel-
evance might it have to experience, thought and behaviour?
One unifying idea is that the hippocampus is a system for
‘relational’ memory: a system for inferring abstract relation-
ships between observable events (such as sensory stimuli,
actions and internal states). Integrating information in rela-
tional memory is beneficial in that it enables inference
and generalization to novel circumstances, such as those
where elements of previous experience are reconfigured
[42,160,161]. This can be advantageous regardless of whether
those novel circumstances can be anticipated at the time of
generating the relational information, consistent with the
idea that generative activity can but does not always relate
to immediate behaviour.

Generativity could support relational thinking by bringing
together elements from experience that are not actually experi-
enced together. Specifically, the role of generative activity
could be to combine otherwise separate elements of experience
so that their relationship can be inferred. To illustrate, one clas-
sic example is inference of a transitive relationship; if a subject
learns that A should be chosen over B and B over C from real-
world experiences, then the subject can infer that A should be
chosen over C, despite never having experienced A and C
together. This sort of inferential ability is dependent on the
hippocampus in rodents and is furthermore associated with
hippocampal activation in humans [45,162–164]. A second
example is inferring spatial relationships, which often relies
on the ability to link physically discontiguous prior experi-
ences. Rodent behaviour has long indicated the ability to
infer novel routes, including more efficient shortcuts, through
a spatial environment [38,39]. At the level of neural firing,
replay events can stitch together into one coherent represen-
tation two track segments that the rat has never traversed in
a single run, and can represent novel paths to goals that
have not been taken before [84,104]. Further, the mouse hippo-
campus has been shown to coactivate neurons related to
representation of distinct events during SWRs in an inferential
reasoning task [164]. Generative representations such as these
appear to combine information across separate prior episodes
into internally constructed possibilities that may have the
potential, but are not required, to inform behaviour. Consistent
with these findings, not only is human hippocampal activation
associated with correct inferential choices [164], human
subjects also exhibit internally generated sequences of hippo-
campal activity that reorder elements of experience into
novel, inferred sequences that do not simply recapitulate pre-
viously experienced sequences [145]. Taken together, these
results suggest that generative hippocampal activity may be
well suited to contribute to relational thinking, and ultimately
the internal generation of new knowledge that goes beyond
actual experience.

Importantly, inferences in such a relational memory
system can operate not only across various modalities, such
as sensory, motor and internal states, but also generate all
kinds of relations [161,165–167]. Under this view of the hip-
pocampus, temporal and spatial relations are instances of
relations which are rich and prevalent—and experimentally
accessible—yet not fully comprehensive. This is evidenced
by the involvement of the hippocampus in inferring relations
that are neither temporal nor spatial [45,162,164,168].

Understanding the hippocampus as intrinsically repre-
senting alternatives to actuality suggests that the
hippocampus may have a broader role in cognition than is
often described. If the role of the hippocampus in cognition
is not restricted to particular types of relations such as in
time and space, generative neural activity might involve the
construction and application of any number of relations
across additional domains. In rodents for instance, neural
firing in the hippocampus is often studied in relation to
space yet can also encode a wide variety of variables from
experience such as odours and sounds [100,169–174]. Accord-
ingly, we would expect the hippocampus to exhibit
generative activity corresponding to alternatives to actual
experience in terms of such variables. This could include link-
ing aspects of experience across modalities into internally
constructed representations of possibilities or hypotheticals
that have not actually been experienced. In the case of
humans, it is particularly notable that the hippocampus has
long been linked not only to the acquisition of episodic
memory, but of declarative memory more generally, which
entails acquisition of semantic memory. By this token, it
may be plausible that generative neural activity in humans
(in addition to animals) can represent alternatives to actuality
by engaging in semantic relations—for instance, in language
comprehension or production, and in creativity understood
more broadly [33,132,175–178].

This broader view of generativity in the hippocampus
may have additional implications at a higher level than
representation. An advantage of internal models is that they
enable internally directed exploration, or generative simu-
lations and hypothesis formation intended to yield
maximum information gain [159]. Interestingly, though such
exploration is recognized to be ultimately adaptive, it might
have little or no immediate utility, and, further, neural activity
implementing this process could be uncorrelated with
immediately upcoming behaviour. Exploration can also be
driven by curiosity, an intrinsic motivation that has notably
been linked to the construction of rich internal models
[179]. These are several points of contact between infor-
mation-based exploration and generative activity patterns.
Yet even beyond information-based exploration, it is increas-
ingly recognized that humans and a range of animals can
harbour intrinsic motivations expressed as self-determined
and self-guided goals, manifesting in behaviour as ‘play’
[180]. Critically, like exploration, play has (practically by defi-
nition) little or no immediate utility to subjects, though its
relevance or role in advanced cognition is potentially crucial
[180]. It is, therefore, worth speculating that analogous play-
like adoption of seemingly arbitrary internal aims and con-
straints is relevant to understanding generative activity
patterns in the hippocampus, both in animals and humans.
Thus generative hippocampal representations and the
hippocampus at large may represent alternatives to actual
experience not only to navigate immediately relevant
environments and objectives, but also to pursue any
number of internally directed and invented goals. Ultimately,
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doing so may be crucial not only to evolve a greater under-
standing of past and immediately relevant experience, but
also to deal adaptively and flexibly with unexpected
scenarios and unknown circumstances in the future.
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7. Conclusion
Imagination requires the ability to generate experience,
thoughts or representations that do not refer to the actual pre-
sent. This essential ability, termed ‘generativity’, can be
understood at the level of the brain and need not entail con-
scious awareness or mental imagery. Human studies have
linked imagination and the construction of hypotheticals to
the hippocampus and complementary studies in the rodent
hippocampus have identified neural firing patterns corre-
sponding to experiences that do not reflect the actual
present. Traditional accounts of hippocampal function often
interpret these generative firing patterns, such as those
observed during SWR replays and late phases of the theta
rhythm, in relation to actual experience in the past and
future. This important view may be limited in accounting
for the diversity of generative hippocampal firing patterns
suggested by recent findings. Rather, we propose that repre-
senting alternatives to actual present experience is itself
essential to the hippocampus. These representations may
span a wide range of self-generated possibilities, hypotheti-
cals and non-actualities of all kinds: from past episodes and
anticipated futures, to counterfactuals, alternative presents,
novel combinations of experiences and to creative or even
playful simulations, including those without spatial or tem-
poral reference. We further suggest that diverse generative
hippocampal activity patterns may be used to learn, infer
and consider various abstract relations. This in turn would
suggest that functions of the hippocampus that refer to time
or space (such as episodic memory and mental time travel)
may be particular applications of a broader system of imagin-
ation (figure 4) [7,15,17,176]. Notably, this view advocates
that the function of generative neural activity in the hippo-
campus may not be characterized by the strength of its
correlation to immediate behavioural choices, but rather by
its relationships to internal processes [68,113,122,181]. The
contribution of generativity to behaviour may not be immedi-
ate, and in fact might have an indefinite horizon in the
lifetime of subject. This system may be elaborated in
humans, supporting frequent and at times seemingly
undirected flights of creativity and imagination.
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