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Statistical Procedures for the Design and Analysis of in virro
Mutagenesis Assays

John Kaldor

University of California, Berkeley

ABSTRACT

In previous statistical treatments of a certain class of mutagenesis assays,
stochastic moﬁels of mutation and cell growth have not been utilized. In this
paper, we review the assumptions under which these models are derived,)intro-
duce some further assumptions, and propose ways to éstimate and tt;sl
hypotheses regarding the parameters of the models from assay data. It is shown:
via simulation and exact calculation that Aif the models are valid, the proposed
statistical procedures provide very accurate Type I error rates for hypothesis
tests, and coverage probabilities for confidence intervals. The cases of a linear
dose response relationship for mutagenesis, and a comparison of a set of treated

cell cultures with a set of control cultures are treated in detail.

Approximate power functions for hypothesis tests of interest are then derived,
and these are a.lso shown to be satisfactorily close to the true power functions.
The approximations are used to develop guidelines for planning aspects of a
mutagenesis assay, including the number, spacing and range of dose levels
employed.

Examples of applications of the procedures are provided, and the paper con-
cludes with a discussion of future statistical work which may be carried out in

the area of mutagenesis assays.



1. Introduction
With the increasing use of in vitro mutagenesis assays as "short-term” tests for screening poten-
tial chemical carcinogens has come the need for associated statistical procedures, to determine

whether an assay result is positive or negative, and to estimate some measure of a chemical’s

_ potency. Stochastic models for the mutation process have been in existence for some time (e.g.

Luria and Delbruck, 1943; Armitage, 1952; Crump and Hoel, 1974). However, they have not
been utilized by authors who have proposed estimation and testing procedures for mutagenesis
assay data (e.g. Hsie, er al, 1975, Amacher, er al,, 1980; Snee and Irr, 1981), with the excep-
tion of the treatment vby Margolin, er al. (1981) of the Salmonella (Ames) assay. The major

reason has probably been that model development was generally confined to derivations of

characteristic functions and moments of the distributions of variables, rather than the distribu-

tions themselves. Recently, Tan (1980) elaborated upon previous models to allow for the pos-
sibility of cell death, and provided a means of explicitly. calculating the appropriate density func-
tions via a recursive formula. Tan (1981) made use of these results to derive the distribution

of the number of mutant colonies counted in the CHO/HGPRTase mutagenesis assay.

Although these developments have opened up the possibility of using asymptotic procedures for
parameier estimation vand hypothesis testing, evaluation of the likelihood is computationally
rather time-consuming. Furthermore, the complexity of the distribution does not allow closed-
form calculation of such qﬁantities as the information matrix, which is essential for asyniﬁtotic

power calculations.
In this paper, we introduce a normal approximation to the distribution of the number of mutant

colonies, which does not have these problems. We then suggest methods for interval estima-

tion and hypothesis testing of parameters, and examine their validity through Monte Carlo

. simulation and exact calculation. We also critically review the assumptions under which sto-

chastic models of mutagenesis, including the normal approximation, are derived. Finally,
aspects of assay design are considered from the point of view of maximizing the power of

specific hypothesis tests.



2. The AssayProtocol

In vitro mutagenesis assays are based on the fact that it is possible to set up experimental con-
"ditions in a cell culture under which only cells that have mutations at a specific genetic locus
can divide and form colonies. The ability of a chemical to induce mutations in cellular DNA
can then be examined by comparing the fraction of cells with a specific mutation in a cell popu-
lation which has been exposed to the chemical, with the fr_action of mutants in a cell popula‘tion
which has nét been exposed. A number pf different cell types and loci are currently used for
mutagenesis testing. The experimental procedures employed vary somewhat among cell lines
and loci, and even among laboratories using the same cell type and locus. However, many of
the protocols have in common a sequence of essential steps, which are summarized here. The
summary includes standard mammalian cell mutagenesis assay protocols, such as those
described by O’Neill er al. (1977); Clive et al. (1979); and Fox (1975). It does not include
certain specific mutagenesis assay protocols such as the "Ames test” (Ames et al, 1975), and
the fluctuation test (Green er al, 1976), and in situ protocols for V79 cells (Huberman and

Sachs, 1974).

(i). Exposure: A measured quantity of predominantly non-mutant cells (usually 1—6x10°)
growing in culture is exposed to the test chemical for a fixed period, usually 4-8 hours,

under conditions which allow cellular growth. Cell death may also occur.

(ii). Expression: The test chemical is removed and the cells are washed and allowed to grow
for a further time period, usually 2-7 days. During this period any mutations which have
been induced by the test chemical at the DNA level will presumably be expressed at the
phenotypic level, thereby enabling their subsequent detection. New mutations may also
arise spontaneously, and there may be residual effects of the chemical treatment on cellu-

lar growth, death and mutation rates.
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At various stages during the expression period, the cells may be recultured. .This involves
sampling a fraction of the cells, which is then diluted with growth medium and all‘owed to
continue growing. The remaining cells are discarded. The purpose of this process, which
may be carried out several times during expression, is to maintain a cell density at which
exponential growth can continue. The sampling fraction is chosen tb achieve this density,
which is generally specified by the assay protocol. Cell density is measured by a Coulter

counter or haemocytometer.

At the end of expression, most of the cell culture is carried forward to the next stage,

mutant selection, and a small fraction is employed for viable cell determination.

(iii). Mutant Selection: The cells are placed in growth medium on a Petri plate under condi-
;ions which allow only phenotypically mutant cells to multiply and form colonies. After

an incubation period of a few weeks, these colonies are counted.

(iv). Viable Ceil Count: This step is carried oui concurre'ntfy with mut‘ént; selection. Its pur-
pose is to.estimate the number of viable cells at the end of the eXpressidn period; that is,
the nﬁmber of cells in the cultufe which are capable of initiating colony growth when
placed on a Petri dish. A small known fraction of the cell population is sampled and
plated under conditions which allow both normal and mutant cells to multiply and form
colonies. The incubation period is the same és that used for mutant selection. The total
number of viable cells at the end of expression is then estimated by multiplying the

number of colonies counted after incubation by the inverse of the fraction sampled.

In a typical assay, these steps are carried out at 3-10 dose levels of test chemical including a
zero dose, with possible replication at each dose. The data on which statistical inference from
the assay is based are the counts of mutant and total colonies at the end of the mutant selection
and viable cell couﬁt steps, respectively. The ratio of mutant colonies to the estimated viable
cells in the culture sampled for mutant selection is called the murant fraction, and is used as the

summary measure of response for each replicate.



3. Critical Review of Assumptions Underlying Stochastic Models of Cell Growth and.

Mutagenesis

In order to carry out parametric inference using mutagenesis assay data, we require the distribu-
tions, or at least the moments, of the observed variables as functions of the unknownlparame-
ters. In this section we examine models under which distributions or moments of these vari-
ables can be derived, principallyi from the point of view of the biélogical and mathematical
assumptionsvwhich are employed. In so doing, we set the stage for the normal approximation

which is introduced in Section 4.

For the purpose of this discussion, it is useful to consider the protocol of a mutagenesis assay
as being made up of a series of stages. The first stage is exposure, the next R stages are the
reculturing periods during eipression (‘assuming the cells are recultured R—1 times) and the
(R+2) * and final stage is selection. The viable cell count, which is ;:arried out in paralle] with
selection, is auxiliary to this sequence and is not defined as a stage. Denote the number of nor-
mal, mutant and total cells at time ¢ by. N,,' M, and T, = N, + M, respectively, where ¢ is
méasured from the start of the assay. We employ a notation similar to that used by Tan (1981)
in defining the time interval occupied by the i stage as (r;,¢,,); and denoting N, M, and T’.-

by N, M; and T, respectively;, and N, M,, and T, by N,, M; and T,. Furthermore, let M

and T respectively represent the number of colonies counted on the mutant cell selectioq and
viable cell count plates. Finally, we suppose that a fraction 6, of the culture is sampled after
the end of the i” stage, and carried forward to the (i+1)" stage, for i = 1,...,R+1, and that a
fraction y of the culture is sampled for survival determination at the end of the expression
period. Figure 1 provides a schematic of the protocbl, and indicates where the above' variables

occur.



3.1 Models for a Single Stage

Of principal interest is the joint distribution (or moments) of T and M, the observed variables
from a culture which has undergone the assay protocol. How_ever, we initially restrict attention
to stochastic models which describe normal and mutant cell growth during a single one of the
first R+1 stages. We measure ¢ from the beginning of the stage. The most general model for
the process {(N,M,),t = 0} is a two-type branching process in which each cell, normal and

mutant, faces the following competing risks:

R1. It may divide, thereby "dying" itself, and "giving birth" to two new cells of its own type;
R2. It may divide and giile birth to one cell of its own type and one cell of the other iype;
R3. It may diQide and give birth to two cells of the other type;

R4. It méy be transformed into a cell of the other type;

RS. It may die without issue.

We may think of the times‘ to occurrence of each: of thése risks in the absénce of the ott'ler four
as failure times, with associated distributions‘. The fate of an individual cell then depends on
which of these failure times is the smallest. The risks R2 - R4 result iﬁ a mutation; that is, one |
or t;vo cells of‘ one type arise from the "death" of a cell of the other type. The risks R1 - R3
collectively constitute the risk of division. In the context of mutagenesis, R3 and R4 have not

been previously considered, and only Tan (1980) allows for RS.

As it stands, this formulation is too general to allow the derivation of the moments of (N,, M),
although asymptotic results are available for large ¢ under fairly weak assumptions (e.g. see
Jagers, 1975). Previous authors have adopted various simplifications to enable the exact deriva-
tion of these moments, or the probability generating function (p.g.f.) of (N, M,). We follow

all of them in assuming



Al. Each cell undergoes the risks R1 - _RS independently of all other cells.

A2. The process is time-homogeneous; that is, the time when the cell is born has no effect on

the probabilities of succumbing to R1 - RS.

There is some evidence that division times of cells from a common progenitor are correlated
(Kubitschek, 1967). However, without Al further analytic treatment appears to be impossiblé.
The assumption A2 is less crucial frdm a mathematical standpoint, and is not ggnerally valid
biologically. For example, during exposure, the concentration of a test chemical could decay
and alter the probabilities of R1 - RS. During expression, the division time distribution is
likely to decrease with time as the cells recover from the treatment and return to normal

growth. Also, cell density affects growth rates even if the chemical has no effect.

Some authors (the Markov models of Armitage, 1952; the D/M model of Crump and Hoel,
1974, Tan, 1980) have assumed thai the time to occurrence of .various of the risks R1 - RS is‘
independent of the cell's age for mutant cells, where age refers to the time since the cell’s
birth. This assumption, which in conjunction with Al and A2, implies-that.the failure times
are exponentially distributed, and hence have a coefficient of variation (c.v.) of unity, may be
acceptable for the risks R4 and RS provided their mechanisms are "single-hit". Howe?er, it is
almost certainly not valid for cellular division, which is known to bé a multi-stage process with
c.v. substantially less than one. Unfortunately, the other mathematically tractable alternative, a
fixed division time, errs in the other direction, since the c.v. is then zero. The truth would
appear to lie somewhere in between the two extremes, with c.v.;s for mammalian cell division
times somewhere in the range .1 - .7 (see Jagers and Norrby, 1974). The choice of a distribu-
tion for the time tq division or death is not really crucial for normal cells. As pointed out by
previous authors, their population size is very large and hence is effectively deterministic unless

cell killing is extreme. We adopt the assumption



A3. The probability of the risks R1°- RS occurring is independent of the cell’s age.

Under the assumptions Al - A3_, standard techniques can be used to derive differential equa-
tions from whose solutions the p.g.f. and moments of (N,,M,) conditional on (Ny, M) can be
straightfonfwardly obtained (see Karlin and Taylor, 1975.), Although the equations which yield
the moments can be solved directly, the eqﬁations from which tﬁe p.g.f. is obtained are Riccati

equations which cannot be solved in closed form without further simplification of assumptions.:

We now introduce the parameters x, for k =1,2 and /= 1,...,5, where kdr + o(d:) is the
probability of the /” risk occurring to a cell of type k (for normal cells kK = 1; for mutants,
k = 2) in the time (t,1 + dr). Equivalently, 1/, is the mean of the time to occurrence distri-
“bution of the /" risk for a cell of type k, in the absence of the other four risks. We again fol-

low all previous authors, who have explicitly assumed
Ad kp=Ky3=kKkyu=0,

ahd implicitly assumed

AS. ki3=x13=0.

The first of these assumptions, which states that mutation from mutant to normal cell cannot
occur, is biologically reasonable for assays which measure forward mutation. There are gen-
erally many more ways for a chemical to interact with cellular DNA in such a way that a mutant
is formed from a wild type cell than vice versa. The assumption can also be justified simply on
probabilistic grounds by the small number of mutant cells and the low probability of mutation
(Tan, 19é0). The validity of assumption AS depends on a number of factors. Its implication is
that a phenotypically mutant cell only arises at division, and then in only one daughter cell.
For this to be true, the mutation would have to arise only in one strand of the replicated chro-
mdsomes in the parent cell, and the mutant allele would have to be recessive. While the latter
condition holds for most loci used in mutagenesis assays there is generally insufficient biological

evidence to decide whether the former is valid.



Finally, we make the assumption
A6, ki +xpp=kn=Aand k5= K35= W,

which is based on the fact that the enzyme product of the locus at which mutation is being
measured is generally dispensable in vitro, so that normal and mutant cells should be at equal

risk of division and death (Abbondandolo, 1977).

- Bartlett (1978) describes how the p.g.f. of M, may be obtained under Al - A6 with u = 0.
However, this result is of limited use because toxicity is an important factor in mutagenesis -
assays. Tan (1980) derives the p.g.f. of M, for large N, under the assumptions Al - AS, and

the condition

p=p*Ng' + o(N5") @30

where p = k5 and p* 2 0. The condition (3.1) states that the initial number of normai cells is
“large comhared to the probability of mutation in one unit of time, but _-that their product is
non-negligible. .It is thus analogous to the condition under which the Poisson approximation to
the binomial di;tribution is obtained. It is in fact a very realistic assumption, as the initial
number of normal cells is generally of the order of 10 while p is typically in the range
10~* — 1078 where time is measured in hours. If A6 with u = 0 is applied to the p.g.f. derived
by Tan (1980), the resulting p.g.f. is equal to that derived by previous authors (Crump and
——— — —— ——Hoel;-1974; Bartlett,_1978) under_ the assumption of deterministic érowth of normal cells and !

age-independent division of mutants. However, Tan (1980) provided the very useful develop- }
ment of a recursive formula in k to calculate the probability that M, = k. Table 1 displays ‘the A ..
first two moments and the coefficient of skewness of this distribution, as compared to the
corresponding "exact" quantities obtained by solving the appropriate differential equations under
Al - A6 (see Appendix 1) for a range of values of Ny, 1, A, u and p which might occur in
practice. The table also displays the mean and c.v. of N,, and the correlation between N, and

M, It is clear that the approximation (3.1) is very good for these parameter values. We also

note that the c.v. of N, is very small, and that N, and M, are approximately uncorrelated.



3.2. Models for the Full Protocol

Tan (1981) is the only previous author to have applied stochastic models of muiagenesis to a
particular assay protocol of the type under consideration here. In order to do this, it is neces-
sary to make an assumption about the relationship between the number of cells of both types
present at the end of one stage, and the number present at the beginning of the next.

Specifically, he assumes

A7. The number of cells in a fractional sample of a culture is distributed binomially, condi-

tional on the number of cells in the sampled culture.

This assumption relies on uniform mixing of the sampled culture, and exact fractional sam-
pling. Chase and Hoel (1972) discuss a model in which the fraction' itself is random. Although
this is probably a more accurate representation of reality, we follow A7, which implies in partic-
ular that for i = 2,...,R+1, N, and M, have the binomial distribution conditional on N, and M,
with parameters N, and 0,_,, and M, and 8,_, respectively, and that.T.and M are distributed
binomially with parameters Tz4; and.ym, and Mg, and 8,7 respectively, conditional on
Tr+2 and Mg,,. Here m is the cloning efficiency, or the probability that a plated cell will form

a visible colony by the end of the incubation period for selection or viable cell count.

We note at this point that although 8, and y are assumed to be known exactly, they can vary
among replicate cultures. Under Al - A7, this variation is partly due'to randomness in total
cell density, but mostly due to the randomness associated with measuring the cell density.
(Recall that 8, is chosen to achieve a specified cell density; v is usually chosen to achieve a
specified number of cells.)

‘Tan (1981) utilized his earlier assumptions and results (Tan, 1980) to derive the p.g.f. and den-
sity function of M conditional on M, and N, i=1,..,R+1 by making use of the above-
mentioned conditional relationship between M, and M,, for i = 2,...,R+1 and between Mx.,

and M. The condition (3.1) was applied to all stages, through the assumption that

pi=p N1+ o(ND), i=1,.,R+1 (3.2)
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where p;, 2 0,.and N, is large for i = 1,...,R+1.

It is possible to obtain the moments of M and T conditional on (N;,M,) without relying on

(3.2). Under the assumptions Al - A7, we can derive difference equations in i for the
moments of (N;,M)), i =2,...,R+1, which can be easily solved, and use the solutions to obtain

the moments of (N, M,) for any t > 0 (see Appendix 1), and for ¢ = 1z, in particular. ‘Then

by making use of the fact that conditional on M}sz and Ngiy, M and T have binomial distri- )

butions, their moments conditional on (N, M}) can be derived.

For most protocols and parameter values which arise in practi;:e, the characteristics of the distri-

| bution of (N;}+2,M,}+z) are very similar to those of the distribution of (N, M,) evidenced by
Table 1. In particular, the moments of M;'Hz obtained under Al - A7 described above are very
close to those derived under the approximation (3.2); the c.v. of Ng., is very small; and Mgz
and Ng., are approximately uncorrelated. Therefore, since M4y << Ng4+2, most of the varia-
bility in T é’rises from the fact that y, the fraction of cells sampled from Tg., for viable cell -
count, is very small. Hence, the distribution of T conditional on (N, M) is very close to its
distribulion conditional on T,'H;;; namely, binomial with parameters Tg4; and ym, where Tris

is large and y= is small. We formalize these observations in the approximation

T is distributed as Poisson with mean ym E(Tg42), and is independent of M. (3.3)

— —— — —In-fact; since-the- number_of_mutants in the culture up to time t,}.,.z is always very small com-

pared with the number of normal cells, which is large, we could employ the more general

approximation that T, = N,, and that Var(N,) =0, for 0 < ¢ £ tg42. ..

Under Al - A7,

R+1
, R 2 d; r;
E(TR+2)=(N1+M1) ngi e”™ s

i=]

where d,'- Ai— My and ri = I,"+] - 1.
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Let Ay, i _and p; be respectively the division, death and mutation parameters for the i” stage,
for i=1,..,R+1. Under the assumptions Al - A7, the approximations (3.2) and (3.3), and

conditional on Mand N,, i=1,...,R+1

R+)
R+1 ). X 4 R+l
E(M)= II 9,‘ e’-] * Nl 2 p,' r,'+M1 (3.4)
iml i1 ' _— '
R+1 | R+l e d.r 2 d_," .
Var(M)=z n 9,,,8'""' e"0,~Ni
iml | m=i+]

me=]

i-1 M,
2_ Pmrm *+ W}-]

5,‘.+ 9,‘. (Xi +I-l-i) (ed""'— 1 - ‘lj—]

-+

- Y 2)\, r.
8, r,+80,; {T (e¥i=1) - W+ ) r,-] ;—] pi},’ 3.5

- - 0
where ;=0 for i=1,.,R and g1 = Ogym; and 8, =1 —9,. We define Y p,r,=0,

m=1

R o,
‘and J[ 6ne ™" =1

m=R+2

3.3. Additional Sources of Variability

In developing the distribution functions to be used as a basis for inferenqe, we have only incor-
porated variation arising through the random processes of cell division, death, and mutation,
and the sampling of cultures between stages. A number of previous authors (Grafe and
Vollmar, 1979; Margolin, er al, 1981) have noted in the context of the Salmonella (Ames)
mutagenesis assay, that the variability of counts is greater than that of the Poisson distribution
which would be predicted on comparable theoretical grounds. Margolin, er al. (1981) have
suggested that this increased variability is due to the inability of experimentalists to "maintain

near constancy across replicates of the [cells’] environment." For the protocols considered
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above, this phenomenon would be manifested by variation in such quantities as the initial
number of exposed cells, amount of nutrients supplied to the cells and dose of test chemical,
within dose levels. These quantities, which have been imp]iéitly regarded as constant, vwould
then be stochastic. In order to investigate the importance of these additional sources of varia-
bility, we require data from experiments in which the assay protocol was applied to a large
number of replicate cell cultures at a fixed dose of test chemical. Unfortunately, the availability

of data of this kind for the protocols discussed here is at present very limited.

We have also not discussed phenotypic delay .in this section, although its incorporation into
models of mutégenesis has been a major concern of previous authors. Briefly, phenotypic delay |
is the phenomenon whereby there is a lag between the time at which a mutation occurs at the
level of the gene, and the time at which the mutant cell can aciually be identified. This occurs,
for example, if selection of the mutant require§ a much reduced level of the enzyme product of
the normal gene, and a period of time after mutation is necessary for residual normal enzyme
- to be diluted out of the-cell. We have ignored phenotypic delay aS a factor in the derivation of
the moments and distribution of M because the expression period is generally long enough to
allow phenotypic expression of all mutations induced by the test chemical; only the relatively
few spontaneous mutants which arise during the latter stages of expression may not be

sufficiently expressed to permit their selection.

In what follows, we adopt the assumptions Al - A7 and the approximations (3.2) and (3.3),

except where specified.

4. A Normal Approximation to the Distribution of M

As discussed in Section 3, the density function derived by Tan (1981) should provide a very
good approximation for the density of M under Al - A6 over the range of mutation parameter
values which occurs in practice. However, because of its analytic and computational complex-
ity, it is natural to seek alternative approximations for use as a basis for statistical inference

regarding the unknown parameters of the model. One strategy is to employ a simpler
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distribution, ‘which agrees with the distribution of the number of mutant colonies up to a
specified number of moments. 'l_'he normal distribution suggests itself as a possibility, by the

following argument:

Let X* denote the number of mutant colonies arising by time t,};g (the end of selection) from

the k™ normal cell at the start of exposure. Then if we make the assumption

A8 -M] ’='0,
N, :

we may express M as M=2 X*. Since the random variables X* are independently and identi-
k=1

cally distributed with finite mean and variance (see Appéndix 3] straightforward application of
the Central Limit Theorem suggests that M is appréximately normally distributed for large N,.
This approximation is analogous to the normal approximation to the binomial distribution, just
as the abproximations (3.1) and (3.2) used by Tan (1980; 1981) are analogous to the Poisson
approximation. We do not claim that the norrhal approximation is as ,acrt:urate as that obtained
under the Tan approximation; the true distribution is dbviously skewed and only defined over
the positive integers, properties it shares with the latter approximation. However, the normal
approximation may’be quite adequate for larger E[M], and it certainly offers the advantage of

analytical and computational convenience.

5. Statistical Inference from Mutagenesis Assay Data

In Sections 3 and 4, we discussed the density derived by Tan (1981) for M, the number of
mutant colonies counted at the end of selection; thé normal approximation tb this density; and
an approximation to the distribution of T, the number of colonies counted at the end of the
viable cell determination. We now consider procedures for estimation and testing of the param-
eters of the model using dose-response data from an assay, when the assumptions Al - A8, and
the approximations (3.2) and (3.3) hold. Although the procedures will be generally applicable
to protocols which conform io the outline in Section 2, we will base numerical simulations and

computations on a specific protocol (Clive, er al, 1979) for measuring chemically induced
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mutation at the. TK*/~ locus in mouse lymphoma cells. The .values of relevant protocol vari- -~ -

ables are:
R =2 (5.1a) -
ry = 4 hours, r, = r; = 24 hours; (5.1b)
T, = 6x10% Ty = Tj, T3=min(T;,3x10%), Ty =min(T;,3x109); (5.1c) :
600 cells are sampled for survival determination. : . (5.1d)

Suppose C dose levels of é chemical plus a control are tested in a mutagenesis assay, with D,
replicates at the c¢” dose level. Let M9 and T respectively denote the number of mutant
colonig:s at the end of selection and the nﬁmber of colonies at thé end of viable cell count, in
the d" replicate at the ¢™ dose. We indicate the control by ¢ = 0, and let x. denote the dose
of test chemical at the ¢ level. Under the assumptions Al - A8, there are 3(R+1) +1°
parameters unknown at each dose level, namely, A S »§ and pffor i=1,...,R+1 and the clon-
ing efficiency =<, where. the superscripts reflect the possible dependence of the parameters on
the dose of chemical at the ¢ dose level. We will sometimes, where appropriate, write
Ai(x), ui(x), pi(x) and 7(x) to express the functional dependence on dose x for all x = 0.

Since in most assays D, < 3, further assumptions are required before we can carry out estima-

7 tion~and-testing-of-the-parameters_of the model using only the data (M9, T%9), ¢ =0,1,...,C

and d = 1,...,D.. Accordingly, we introduce the following simplifications. in Section 5.3 we -
discuss these assumptions, and indicate ways they may be weakened if various auxiliary meas- ‘.

.urements are utilized.

A9. Af= AL, uwf=pufand pf= p{ for i=2,.,R+1 and all c, indicating that "control" rates

of division, death and mutation return after exposure at all doses.
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~:-A10> The division rate -and cloning efficiency-are unaffected by the test chemical, so that A{ ="A

and w“= 7 for all c.
All. u{’ =0, so _that no cell death occurs during exposure in the controls.

These assumptions reduce the number of unknown parameters to X, «, pf for ¢ =0,1,..,C
and uffor c= 1,;..,C, representing one unknown parameter for the control dose, two fdr tﬁe.
other doses, and growth and cloning efficiency parameters which apply to all doses. In illustra-
tive computations a‘ndv simulations involving the protocol specified by (5.1), we will use the

values
X = 0578 | » | (5.1e)
=1 - | | SNCRY)

The value of A was chosen to correspond to the normal moﬁse lympﬁoma cellular division time
of about 12 hours. The choice of 7 represents a perfect ‘cl‘oning efficiency which wouid rivot
_apply in practice. However, for the purpose of such calculations, we can consider 7r; which is
generally in the range .5 - .95, as being absorbed into the fraction sampled for mutant selection

and viable cell count (i.e. 8 g4 and y respectively).

Since we would expect that increased dose of test chemical could only increase the risk of
mutation and cell death during exposure, there is a natural ordering within the mutation and

toxicity parameters; namely

pY < pl < < pof (5.2)
ud<ul < o Spuf (5.3)

Of principal interest is pf / A, the proportion of mutants produced per cell division during the
period of exposure to the test chemical, and the relationship between this proportion and the
dose of test chemical. The other unknown parameters are in effect nuisance parameters. We

are typically concerned with one or more of the following objectives:
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(i) Estimate and provide confidence intervals for p{ / X, for ¢ =0,1,...C.

(i) Test the hypothesis Hy.: pf = p{ against the one-sided alternative H,. p{ > p?, for

c=1,..C.

(iii) Test the hypothesis Hg: p?_=' pl= - = p,C of equal mutation rates against the alter-
native of increasing trend in rates, namely Hy: p{ < p} < --- < pf, with at least one )
inequal‘ity strict. This generalizes (ii) above. . .

(iv) Estimate, and provide confidence intervals for, the parameters of a functional relationship
between x, the dose of test chemical at the ¢ level, and p,(x) / X. For example, if the
chemical’s mutagenic activity followed "single-hit" kinetics, we would be interested in the

parameters a and B in the model
nix)/A=1—exp (~a—Bx) =a+Bx (5.4)

when p; is small, as is typiéally the case.

(v) Test hypotheses concerning the parameters of a functional relationship between x and
p1/ A. For example, in (5.4) we we may wish to test Hy 8 = 0 against the one-sided

alternative H;: g8 > 0.

5.1. Inference When Only the Mutation Parameters are Unknown

" 'First ¢onsider estimation—and -hypothesis. tests__for_.th_eMmg@ti_qn@ga_rg_nlgtg{_s {pf, c=0,1,..,C}

when A, and the nuisance parameters 7 and {uf, ¢ = 1,...,C} are known. Since the distribution .
of T4 is independent of the mutation parameters (see (3.3)) we can only utilize the mutant ..
colony counts M<9. Of the above objectives, (i), (ii), (iv) and (v) can be accomplished using
standard likelihood methods, based on either the iteratively-defined density derived by Tan
(1981) for M9 under the assumptions Al - All, or its normal approximation, as discussed in
Section 4. These methods include estimation of parameters by maximizing the joint density of
M9 ¢c=0,1,.,C and d = 1,..,D, with respect to the unknown parameters; and estimating

confidence intervals and testing hypotheses either by assuming that the maximum likelihood
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7

estimates of parameters are normally distributed, or by assuming that the likelihood ratio has a

central xz distribution under the null hypothesis in question.

It may be important to make explicit the conditions .under which the "standard likelihood
methods" referred to above are valid. We can either consider the limit as C, the number of
dose levels, becomes large, or the limit for large D, the number of replicates pér dose. In
Appendix 2, we prove general asymptotic results, and show that particular cases of interest
satisfy the assumptions. However, because typical assays rarely test more than 2 replicates at 10
doses, it is more important to know how well the large-sample approximations perform in what
are in fact rather small samples. The exact calculations in this section and the Monte Carlo
simulations carried out in Section 6 a're designed to answer this questidn for some of these

large-sample methvods.

In order to maximize the likelihood over unknown parameters, some non-linear functional
optimization procedure is required. We employ Newton-Raphson iieratibn, ‘with starting values
as in Appendix 4. The complex form of the Tan (1981) density requires special treatment to
obtain the required first and second derivatives of the likelihood with respect to the unknown
parameters. Moreover, evaluation of the vprobability of the observations for each new parame-
ter value in thé iterative process requires a re-application of the iterative formula for the den-
sity.
Estimates of the mutation parameters which are of a simpler form than the maximum likeli-
hood estimates may be obtained by making use of the fact that under the additional assump-

tions A9 - All, (3.4) reduces to

R+1

NI or-win R+1
e ! Ny-{pfn+pd T ri

R+1
| ) 2

i=]

EM<) = ¢
i=2

- Kcd]lpe + p! £ )
P n J 4 2 Tits
=2
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say, where N;, the number of cells initially exposed;. 6% the fraction sampled after the i
stage in the 4™ replicate at the ¢ dose; and r; the length of the i stage are all known; we
note that K. /= is in fact the expected number of normal cells in the culture at the start of

selection. Then

=]

R+1
Pl = M/ [K“ Y (5.5)

is an unbiased estimate of p{ based on the d" observation of the control. An estimate based .
on all Dg control observations can be obtained by simply averaging. The resulting estimate may

then be used in

R+1 . :
i’lc.ds Med ) Ked — 1310 2 riy /] r, (5.6)
=2

an estimate of pf based on the d" observation at the ¢” dose. Once again the average can be

taken to provide an estimate based on all observations at the ¢ dose.
These method-of-moments type estimators for pf also provide the basis for a simple means of
carrying out objective (ii) above. We consider testing the hypothesis Hy.: pf = pY = p, say,
against the alternative H,.: pf > p. Let
X R+1
_pc.d= Mc.d/ Kc.d 2 ri
iml
Then, under Hg., Al - Al2, and the approximations (3.2) and (3.3), p“¢ is unbiased for p,

with variance

Kc.d 2 ri

-]

Var(b“") = lT‘ Var(M©9),
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~where: Var(M¢%9) is given by (3.5).- Thereforé; under Hy,,

D D,

1l & ped — 1 & o4
Dc dw= 0 DO z P
F = D - 179 (57)
1 < - ~0,d
—_ Var(p‘ 9 + 1 Var(p™9)
D} i% Do Eo

is approximately a standard normal variate, for large D. and Dy The hypothesis Hy, is rejected
for T > Z(;_,), where Z is the value of a N(0,1) random variable below which a fraction Q

of the distribution lies, and v is the nominal significance level of the test.
Of course, the variance expressions in the denominator of (5.7) involve the unknown p as well
as the other parameters which we are at present assuming known. However, under Hy,,
s 1 R 04, W scd
P= DD, [2 "'Z,” }
is an unbiased estimate of p, which utilizes all the observations at the ¢ and control exposure
levels. This estimate is also consistent for large Dg and D,, since Var(M¢9) is finite. There-
fore, its use in place of p where required in (5.7) does not invalidate the asymptotic normality
of I’ , and the test can thus be used as a simpier alternative to the likelihood ratio test for Hy,.
Table 2A gives exact Type I error rates for both tests under the protocol of Clive, er al. (1979)

(see (5.1)) for the case where Dy= D, =1, for a number of values of the toxicity parameters

u{, and 2 values of the common p. The likelihood ratio test statistic A is calculated .using the

s,

normal approximation to the density of M. In the table, we use §, = e as the measure of

toxicity. This is the number of cells which survive exposure in the treated culture, as a fraction

. A . . .
of control, since by Al0, N;e I cells survive exposure in the control culture, while

=ud . . ' L. . .
“I'" survive in the treated culture. S,.. the surviving fraction, is used by biologists as the

N] e
measure of cell killing. The exact Type I error rates were obtained by employing the distribu-
tions derived by Tan (1981) to evaluate the probability of the outcomes which result in rejec-

tion of Hy, using one or the other of the two tests. It is clear that in both cases, the true Type
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1 error rates are very close to the nominal ones of the tests, even'though the sample size in

each case is only 2. :

This argument can be extended, with some modifications, to provide a means of carrying out
the objective (iii) above using the 22 isotonic regression test (Barlow, et al, 1972). The order-

ing (5.2) for the parameters pf is equivalent to the ordering .

. R+1- ' '
where ¢° = E (M%) [/ K% = pf ry+ p{ ¥ ri. If 879 does not depend on d for fixed i and
k=2

¢, so that K9 = K¢, say, the variables M¢4/ K satisfy the requirements of a theorem stated
in Appendix 3, which is a simple generalization of a theorem in the Appendix of Collings,
et al. (1981). If we let

1 &
—_ . Mc.d
rap>

Ma

__1
=D

]
=}

C

D
where D = 2 D,, and ¢° be the isotonic regression estimate of
c=0

D('
1 2 Mc.d
D. K° 25

——————— — __ with_respect to weights D.(K)?/ Var(M*), then

C : -
8 =73 DK (4= 9?2/ Var (M9
c=0

has asymptotically the )'(2 distribution on C+1 degrees of freedom, where Var (M9 is

obtained from (3.5), and under Hf, its estimate Var (}W"") is the same expression with

in place of pf.
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The isotonic regression test, while being intuitively appealing, has some distfnct drawbacks.
First, the isotonic regression used in the test statistic has to be calculated by an iterative algo-
rithm such as the Pool-the-Adjacent-Violators procedure (see Barlow, et al, 1972). More
importantly, the critical values of th§: statistic, which is asymptotically a mixture of x2 random
variables under Hp, are only available for C+1 < 6, in the unequal weights case which (possi-
bly) arises here even under equal sample sizes if K1 the toxicity; increases with dose. Collings,
et al. (1981) have recently shown that when the outcome variables are binomially distributed,
the- isotonic regression test has no better power to detect increasing trend alternatives ;han the
simpler Cbéhran-Armitage trend test. It is possible that a statistic analogous to the Cochran-
Armitage stafistic could be constructed to test Hp; it will be a subject of further 'research to
compare the isotonic regressiori test with a test based on such a statistié. in Section 6, we intro-
duce a likelihood-ratib statistic for testing that the slope of a linear relationship .between x, the
dose of test chemical, and p,(x) is equal to’ zero. This test.could also be compéred with the two

trend tests mentioned above, in terms of power to detect specific increasing trend alternatives.

5.2. Inference When the Mutation and Toxicity Parameters are Unknown

The assumption that the division rate and cloning efficiency are known is reasonable for most
varieties of cells used in mutagenesis assays, provided A10 is valid. However, it is more likely
that the toxicity parameters u{ are unknown, although some chemicals have well established

toxicity curves in specific cell lines. We now consider procedures for estimating u{.

The distributions of both M and T both depend on w1, so that it would be theoretically
possible to estimate the toxicity parameters simultaneously with the mutation parameters, by
maximizing the likelihood based on the joint density of | (M4, 19, for ¢ =0,1,...,C and
d=1,.,D over {uf, c=1,..,C} and (pf, c = 0,1,...,C). However, we take a more pragmatic
approach, and employ maximum likelihood estimation based only on the viable cell counts
T<9. This approach is justifiable on a number of grounds. First the mutation counts M9,

d=1,...,D would be expected to contain much less information about the parameter & than
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the survival counts. Second, the approach is.consistent with assay protocol, in that the viable
cell counts are made specifically to provide information about cellular growth. Finally, it pro-
vides a computationally simpler estimation algorithm, since the toxicity parameters need not be

re-estimated for different hypotheses concerning the mutation parameters.

Now under the approximation (3.3), T%7 is distributed as Poisson with mean J%%y 9, where -
Jed = K4/ 959 and y©9 is the fraction sampled for viable cell count in the d” replicate at
the ¢ dose. Therefore the' maximum likelihood estimate (m.l.e.) of u{ based on the viable

cell counts at the ¢ dose only is

{ >

Af=——log a= e ™ (5.8

D, R
N]‘IT 2 ,yc‘.d H olr.d]
de=1

=1

The control counts 797, for d =1,...,D can be used in a similar way to estimate A, if it is in
fact unknown. An éstimate of w( with better characteristics can possibly be obtained by utiliz-
ing the constraint (5.3) in the maximization of the likelihood, although the extra computational

effort may not be justified.

The methods discussed above for estimation and hypothesis testing of the mutétion parameters
when {uf, ¢ = 1,...,C} are known can be used with estimates in place of the true values. The
large sample approximations should still be valid, because the mutant counts M contain
negligible information about the toxicity parameters compared to the viable cell counts T¢7.
Table 2B gives estimated Type I error rates for the test of Hy. using I', (see (5.7)), and thé
likelihood ratio test statistic A, when the level of toxicity during exposure in the treated culture
is estimated as in (5.8), and Dy= D. = 1. The error rates were estimated using 5,000 simu-
lated "experiments” with S, = .1 and p = 7.5x1077, and the assay protocol (5.1). The density
derived by Tan (1981) was used to simulate. values of M? and the Poisson density with
parameters as in (3.3) provided values of 79 Once again, both statistics give very satisfactory

significance levels in this "worst case” situation of Dg= D, = 1.
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-8.3.. Utilization-of Additional. Measurements <+ ..

-The Assufnptions A9 - All are oversimplifications. Like assumptions. A2 and A4 - A6, they
are méde for reasons of parameter identifiability rather than mathematical tractability. A9 is
probably the rﬁost inaccurate, since cells which have been exposed tb high doses of a toxic
chemical usually require some time to resume normal growth, even after the chemical has been
removed by washing. Also, a certain proportion of exposed cells are likely to be at a higher risk
of death or mutation than the cells which were unexposed, even if they survive the exposure
period as "normal" cells. 'The assumption of constant cloning efficiency in AlO’m'ay be more
reasonable: CHO cells have been observed to return to 75-80%. of nofmal cloning efficiency
after a 5-day expression period (L. Thompson, personal communication). The assumption A10
.is also not unreasonable. Alth_ough there is some cell death taking place in all normal c;ell

populations, it is probably negligible compared to the effect of a toxic test chemical.

The methods of estimation ‘and hypothesis testing for the mutation parameters which we have
described employ only the final colony counts M“? and T9 ¢ =0,1,..,C, d=1,..,D. A
number of other measurements are made during the course of an assay, and their utilization in

statistical inference may allow the assumptions A9 - A1l to be somewhat weakened.

First,. the cell density measurements made at the end of the expression stages (i.e. at times
t i=3,..,R+2) can be used to estimate df=Af—puf, for i=3,. R+l and c=0,1,..C.
These‘ measurements are typically made by sampling a small fraction of the cell culture, and
counting the number of cells in the sample mechanically, or by eye. Denote the fraction sam-
pled in this manner at the end of the i” stage by p; and let Uf?be the number of cells
counted at the end of the i” siage in the d" replicate at the ¢’ dose. Then by the same argu-
ment which led to (3.3), in which T was shown to be approximately Poisson distributed, we

may also suppose that Uf-?is approximately Poisson distributed, with mean

‘r

E [Uf'1 =p, E [(Ti'-f-l)vc'd] =p,E [Tf'iedf"* Piof;i‘E [(Ti)c'rd edi

T
’
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if the fraction p, is small enough so that

(T) 4/ (T - Upd = 1.

Then we have the m.l.e.

D

[

3 v

df= 1 log 4= 5 (5.9)
(P i / P i—l) 2 olc—il U’L'_,tli
d=]

of df, for i=3,...,R+1. Note that typically 6 ~?is chosen to provide some specified density for
T5{, based on the density count US4 thus, we may expect that 8¢ Uf“= T}, say, indepen-
dent of d, unless cell killing is high and the required density cannot be attained without reduc-

ing the volume of culture.

~ If a cell density count is made at the end of the exposure period, df and 45 can be estimated

D

similarly (in the estimate of df, replace 3, 8 <{ U—; by D, T)). If such a count is not made,
’ d=1

as is the case in the protocol of Clive, er al. (1979), we can estimate d§ by fif , and df by for-

R+1 .
mula (5.8), replacing the exponent by — ¥ d r;, and removing the leading minus sign.
=2

—-~———————— _ _An estimate of the cloning efficiency may similarly be obtained at each dose by using

| D, 3

2 Tc.d

# ¢ = max|1, d'lD _ (5.10)
' (A/pr+) X Uié v
d=1

The measurements US4 like T¢9, proVide no information about the mutation parameters.

We are now in a position to replace A9 - All by
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A9* A= and pf= p? for = 2,...,R+.1

Al0*Af= A

for all c. Then o=\ — a,-‘ may be used in the vaﬁance exprés_sion (3.5) for the application of
the statistical procedures described in Section 5.1. If 3,-‘ > A, we define 4= 0. We may also
wish to use the ordering (5.3) to constrain the estimates. It may be noted that §ve still have not
been able to dispense with the assumption that the chemical affects only the cell death rate and
not the‘growth. rate. This assumption is still'reqdired to overcome the non-identifiability which
would arise if both A fand u [ were allowed to be dose-dep'enden‘t, and the gstimation was to be

based on (5.9).

The additional assumption

All*p%=0, i=1,...,R+1

allows A to be estimated from the counts U%?and 7%9.

. Use of these estimaies in place of the' true values is analogous to the use of estimates of u{ as
discussed in Section 5.2. We would thus expect the inference procedures developed in Section
5.1 to be valid with estimates of A, m¢ and ufin place of the true values, just as estimation of
uf did not have a significant effect on the procedures (see Section 6 for further confirmation of

this assertion regarding u{).

The main problém with using the counts Uf-9arises from the fact that cell cbunting procedures
éannot easily differentiate iiving cells from those which are recently dead but have not yet disin-
tegrated. The size of the counting error will differ according to the amount of cell killing which
has preceded the count, and estimation based on the counts may therefore not be particularly

accurate.

A variation which is often incorporated in protocols which otherwise conform to the outline in
Section 2 is a viable cell count after exposure. This involves plating a small fraction of the cul-
ture at time r;, and counting colonies after incubation in a manner similar to the viable cell

count made at rg4;. Such an extra measurement provides an alternative estimate of uf, if the
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cloning efficiency immediately after exposure-is.known. -If it is-not, the cloning efficiency can
be estimated at each dose level in the same way as the post-expression cloning efficiency is

estimated by (5.10).

6. Simulation Study of Likelihood Procedures for Dose-'Revsponse Data

In this section we use computer simulation to examine the validit} of some of the likelihood
methods discussed in the previous section. We employ ;he normal approximation, and focus in
particular on methods for interval estimation and hypothesis testing for 8, the slope parameter
in the relationship (5.4). This case is of particular interest, since B is the natural measure of
mutagenié potency if (5.4) is valid, and the determination of whether the data indicate a statist-
ically significant mutagenic effect can be made by testing Hy: 8 = 0. The simulations are based

on the protocol of Clive, et a(., (1979) (see (5.1)).

For the experiments we simulated, we aléo used the following:

© C=5D,=1,C=5D,=2C=10,D =2

(ii) For C =5, the actual ddses were 0, 2, 8, 32, 1.28; For C = 10, the doses _Qere 0,.5 1,2,
4, 8, 16, 32, 64, 128. | |

The numbers of doses and replicates in (i) were chosen to cover the range of values which are

used in practice. Five dose levels with no replication is tybical for routine screening of a chemi-

cal, while 10 dose levels with duplication would cbnst’itute the design for some U.S. Govern-

ment testing programs. Spacing of dose levels equally on a logarithmic scale as in (ii) is also

common practice.

For each set of parameter values, "experiments” were simulated using each of the three combi-
nations of C and D.. Observations on M, the number of mutant colonies counted at the end
of expression, were generated from the density derived by Tan (1981), with appropriate param-
eter values substituted. Observations on T, the number of viable colonies counted, were gen-

erated from a Poisson distribution with parameters as specified by (3.3).
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+*The -methods evaluated:in this section are-all-standard likelihood-based techniques for interval

estimation and hypothesis testing, in which we used the normal approximation derived in Sec-
tion 4 to provide the joint density of (M9, ¢ =0,1,..,C; d = 1,2,...,D_}, and hence the likeli-
hood. For each set of 5000 experiments in which 8 = 0, we compared nominal Type I error
rates with those estimated from the vsimulation;' for sets of 5000 experiménts in which 8 > 0,_
We calvculated confidence intervals of specified coverage, and compared nominal ‘coverage with
the coverage probabilities estimated from the simulations. The specific prdcedures used to test
the hypothesis Hy: 8 = 0 against .the one-sided alternative H;: 8 > 0 were the following:

H1. Reject Hyif B/ 65> Z(-y),

where [§ is the m.Le. of B; &g is its estimated asymptotic_standard error, obtained by substitut-
ing the m.l.e.’s of a and B into the appropriate term of the inverse of the information matrix,

and v is the nominal significance level of‘ the test.
H2. Reject Hyif /¥ > Z(1-),

where Wy is the likelihood ratio statistic for testing H: B = B¢, namely
Vo, = 24 1(&, B) — (ag, Bo}.

where /(a, B) is the log-likelihood evaluated at « and B, & is the m.lLe. of a, and ag, is the
m.l.e. of « when 8 = B¢

The following (1 — ») confidence intervals for 8 were calculated:

Cl. {B:IB/agl< Zyoy)

C2. B:¥s< Zyou)

‘We would expect in both cases that the first procedure would be computationally simpler, while

the second would be somewhat more accurate.

‘We first ‘examined the accuracy of these procedures for the case where A and uf, for

¢=1,...,C are assumed to be known, and their exact values used to simulate the experiments
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can therefore be substituted into the likelihood for the application of the above procedures.
Table 3A reports results of the Type 1 error rate estimation for two sets of data in which 8 = 0.
11:1 the first of these, there is no toxicity; in the second, uf= .001x. Table 4A reports the
results of the coverage probability estimation for a data set in which 8 > 0, with u{= 001x,.

For each set of parameter values, 5000 "experiments” were simulated.

It is clear from the tables that the methods for hypothesis testing and interval estimation based
on ¥g (i.e. H2 and C2 respectively) are extremely accurate, while those based on an assumed
normal distribution With known variance for é (i.e. H1 and C1) are only just satisfactory for the
largest sample size. The increased complexity of H2 and C2 appears to be justified. Method
H2 slightly overstated the significance, and C2 produced slightly narrow confidence ihtervals.
However, the errors inb both cases are very small, and generally within 2 standard deviations of

the simulation error.

In further simulations, we retained the assumption of known A, but estimated wu{ for

c¢=1,...,C as described in Section 5.2. Table 3B reports the results for one data set in which
B =0, and Table 4B contains results for a data set in wixich B > 0. For these data sets, 1000
experiments were simulated. Only methods H2 and C2 were examined, because of their

greater accuracy demonstrated in the simulations with u{ known.

Again, the nominal values are satisfactorily close to those estimated from the simulations. This
result-confirms-the assertion_made_in the_previous section that estimation of the toxicity param-
eters from the viable cell counts alone does not affect the distribution of the likelihood ratio

statistic used in methods H2 and C2.

No simulations were_carried out using the likelihood based on the density in the iterative form
derived by Tan (1981). Although it would clearly be of interest to examine the small-sample .
accuracy of likelihood methods based on this distribution, the computational expense of repeat-
edly maximizing the likelihood in the iterative form described in Tan (1981) far exceeded the
budget for this project. A small number of experiments were run, and it was found that the

cost of estimation using the density exceeded that incurred using the normal approximation by
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a factor 6f about 500.

7. Power and Design Considerations

In Sections 5 and 6 we introduced and evaluated procedures for analyzing data from in vitro
mutagenesis assays which are carried out according to the protocol specified in Section 2. We
now turn our attention to an investigation of the power of some of the proposed hypothesis .

tests, and develop guidelines for certain aspects of assay design.

The design of a mutagenesis assay refers to the values of all variables which are under the con-

trol of the experimenter. These variables may be conveniently classified into two groups.

(i) Protocol variables: These specify the experimenial steps to be applied to each experimen-
‘ tal cell culture, and include the length of the exposure stage, the-number and length of
expression stages, the initial number of cells exposed, the number of cells sampled for
viable cell count, and the cellular density to be maintained at the start of each expression

stage. Values of the protocol variables are usually specified by a formal assay protocol.

(ii) Dosing variables: These variables specify how many dose levels of chemical are tested,
what specific doses are employed, and how many replicates are tested at each dose. Their

values are decided upon by individual experimenters.

The values of thé protocol variables specified in the assay protocol are generally determined by
biological considerations, although there are economic and pragmatic factors involved as well.
For example, the initial number of cells has to be large enougﬁ to produce an adequate number
of mutant colonies by the end of selection even if the tést chemical is not mutagenic, but small
enough to be maﬁageable in an average laboratory setting. The duration of the expressién
period is experimentally determined to be that required for the mutants produced during ebxpo-
sure to become phenotypically mutant, enabling their detection at selection. However, it is
desirable to make the expression as short as possible while still being consistent with this objec-

tive, in order to minimize the overall duration of the assay.
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The individual experimenter arrives at the values of the dosing variables in a somewhat more
ad hoc manner. The total number of cultures employed is typically determined by the budget
available for the assay; within this constraint, most experimenters test as man); dose levels as
possible, with either 1 or 2 replicates at each dose level. The spacing of doses is usually equal
on a logarithmic scale, especially if the range of the chemical's toxic activity is unknown. If it
is known, spacing equal on an arithmetic scale may be employed. The highest dose is chosen to
be that which produces some specified maximum amount of toxicity during exposure (Sﬂ = .1}

and S, = .05 are often used).

It is clear from the formula (3.5) that the variance of the observed number of mutant colonies
is a function of the protocol variables. We would therefore expect that statistical optimality cri-
teria such as the precision of parameter estimates and the power of hypothesis tests are in turn
functions of these variables. If the test chemical affects cell growth, death or mutation rates, it
is also apparent from (3.5).that the choice of dose levels can be a determinant of these optimal-
ity criteria. Thus, both the protoeol and dosing elements of the desig’n can influence the statist-
ical precision of the exeerimem,»and if we were to approach assay design from a purely étatisti-
cal viewpoint, we would be faced with a very complex qptimization problem. It is more realistic
for the statistician to take the protocol variabies of the design as given, and concentrate on
assisting the biologist with strategies for choosing the dosing variables. It is concerning this
latter aspect of assay design that the statistician is most likely to produce useful results; and it is
here that the biologist is most likely to seek the statistician’s assistance. Of course, this is not
to say that the protocol aspects of design should be ignored by the statistician; within bounds of
biological acceptability, there is almost certainly room for statistical improvement of existing

protocols.

Reduction of the design problem to consideration of only the dosing variables still leaves us
with substantial difficulties. First, the observations have variances which are in general func-
tions of unknown parameters, and it is well known that in this situation, only local optimality is

achievable (Fedorov, 1971). Another difficulty lies in the choice of optimality criteria. From a
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theoretical point of view, a scalar function of the covariance matrix of parameter estimates,
such as its trace or largest éigenvalue, is the most useful measure of experimental precision.
On the other hand, from a practical point of view the power of certain hypothesis tests is of
more interest. In particular, it is desirable to maximize the power of the test that the chemical
has no mutagenic eﬂect, and the pov?er of a test to detect departures from a linear dose-
response. In any reasonable situation the fwo criteria of power and estimation variance should
produce neaﬂy identical design rankings. The power, hoWever, is a more meaningful quantity
for fhe biologist, and we accordingly adopt it for the remainder of this section. Finally, we have |
to deal with the problem of the great diversity in specific protocols. In tﬁis section we once
again use the mQuse lymphoma protocol (see (5.1)) for illustrative purposes. However, the

general principles should be broadly applicable, even if the specific conclusions are not.

Our strategy will be to develop approximate power vfunction's, iri some cases checking the
approximation by exact calculation or simulation. We will then illustrate how t‘he power func-
tions may be used to both obtimally select the dosing variables‘, and provide estimates of the
power (or Type II error rates) inherent in currently hsed protocols when the statistical tests are
applied.

We will first consider the test of no mutagenic effect fqr the case where a single treated culture
is td be compared to a single control, and examine the effect of the amount of toxicity in the
treated culture. We thgn treat the case where replicates and multiple dose levels are empldyed,
and it is possible to test the goodness-of-fit of the linear model (5.4). The assumptions Al -

All and the approximations (3.2) and (3.3) will be retained.

1.1. Single Treated and Control Culture

In section 5, two methods were suggested for testing Ho.: pf = p! against the one-sided alter-

native H;.: pf > p?. These were
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(i)  The likelihood ratio test statistic, which we.denoted. A,

(ii) The statistic I' (see.equation (5.7)).

It was shown by exact calculation that when only p{ and pf are unknown, and Dy=D.=1,
the nomiﬁal significance level of the test is very close to the true _lgvel. Monte Carlo simulation
revealed a similar finding for the case where a toxicity parameter in the treatea culture is also
estimated, frb‘m the viable cell determination. In order to investigate the power of these tests
as functions of the level of the tests, the true values of unknown parameters and the design

variables, we require closed form approximations for the power'.

Once again, we initially restrict attention to the case where only the mutation parameters p10
and pf are unknown. First consider the test statistic . The statistic is asymptotically (for large

Dy and D,) normally distributed, with mean
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Here Vlc,d, pl is the variance of the number of mutants in the d” replicate at the ¢” dose as

given by (3.5), but with pl=pf=5 and p= (Dop? + D.pf). Under

1
Dy+D.
Ho. E(T') = 0. Therefore, the large-sample power of the test based on I for a critical value

Z(l-,) is given by

1 - ¢[{Z“_,) - E(F)] / Vll"S].
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- where @®-is thestandard normal distribution function.

The likélihpod ratio statistié A is obtained as twice the difference between the log-likelihood
méximized over pf and p, and that maximized over p{ and p! subject to the constraint
pf = p?. Standard theory suggests that A is asymptotically distributed as x? with non-
centrality parameter r = (pf - pf’ )2-/ o? , where oziis the asymptotic variance of the m.l.e. of
pf — p1° . We obtain o2 by introducing the reparametrization § = pf - p,o , and computing the
information matrix with respect to the parameters p,° and 5. . The variaﬁce a?is then the diago-
nal entry corresponding to 6 in the inverse of the information matrix. The exact form of the
ihforrﬁation matrix under the normal approximation is given in Appendix 2. We then vcalculate

the large-sample power for a critical value of x{i-,) as

1 - Gl.r(x 12.(l—v))’

where G, . is the distribution function of a x 2 random variable with non-centrality parameter r.

There is some ambiguity in the literature regarding the value of & at which the information
matrix should be evaluated to obtain 7. As discusséd, for example, in Cox and Hinkley (1974,

p. 323), the non-central x? approximation is valid for "local” alternatives; that is, 8 such that

5p =589+ O(D™") where §; is the true value of §, D = Dy + D,, and the limit in D is taken

as Dgand D, both become large. In this case, evaluation of the information matrix at §, pro-
vides a satisfactory approximation up to terms'of order D% in A. On the other hand, Kendall
and Stuart (1961, p. 231) seem to suggest that the information matrix should be evaluated at

the alternative.

These asymptotic arguments are in fact somewhat irrelevant for the situation under considera-
tion here, with Dy = Dt = 1. In order to check the validity of the approximations in this case,
exact power calculations were carried out in a manner identical to that described for the exact
Type 1 error rate calculations reported in Section 5.1. We again employed the mouse lym-
phoma protoco! (Clive, et al, 1979) as a framework' within which to make the calculations (see

(5.1)). The distribution derived by Tan (1981) was used to evaluate the probability of the .
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outcomes (numberé of mutant colonies) in the treated and. control cultures which result. in
rejection of Hj. using the statistics I' and A. Table SA displays the exact powers thus calcu-
lated, and those obtained via thg appropriate approximation described in this section, for a
range of values of p§, pf, uf and v, the nominal significance level. We let K, = pf / p?, the

fold increase over the background mutation rate produced by the test chemical during expo-

- €
sure; and again S, = e “I" the fraction of cells surviving exposure in the treated culture as
compared with the control. For the approximation to the power of the test based on A, the

information matrix was evaluated at the alternative.

Once again, it is apparent thatr even for this smallest possible sample size (Dg= D, = 1), the
approximations for the power of the tests based on I’ and A are rémarkably good. We_can>drav'v
a’number of other spéciﬁc conclusions from this table. First, the tests based on T and A have
~ very similar exéct powers. The test based on I' appears to be slightly more powerful, but this
may simply be a reflection of the fact that for the same nominal type I error rate, the true error
rate for the test is somewhat larger than that based on A. Second, we note that the approxima-
tioﬁ for the power of the test based on I' is generally better than the approximation for A over
the parameter values for w!‘xich. the power was calculated. The approximation for the likelihood
ratio statistic starts to break down when both K, and A.f are large, while the approximation for
I' appears to be good over all the parameter values. The only area where the approximaiion for
I' performs badly is for alternatives close to the null hypothesis when pf = 2.5><10‘7.. Iﬁ this
case, the approximatioﬁ shows power increasing with w{, while all the exact calculations demon-
strate that increased toxicity produces lower power. However, the discrepancy is in a region of
low power, and is anyway rather small. Third, it can be seen that the power to detect the same
fold increase in p{ over p? is much higher for the higher level of p? (i.e. 7.5x10~"). This is to

be expected, since the absolute increase is obviously much greater.

Having obtained these approximations, we can use them to provide power curves for the
hypothesis tests. In the remainder of this section, we will use the approximation based on T,

since it is generally more accurate for the (roughly equal) power of both tests. We consider the
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-effect of toxicity during the exposure period:- Figure 2 displays contours of equal power for

varying values of K,and S, = ¢ *’

|, when p{ = 7.5 x 1075, the significance level is .05, and
the protocol variables are as in (5.1). The figure also indicates corresponding values of Kyr,
the ratio of treated to control expected mutant fraction. The mutant fraction M9/ K% is an

unbiased estimate of

R+1
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so Ky is a linear transformation of XK, = pf / p{.

The ratio K)r is of interest because biologists have suggested that an observed vaiue of Kyr of
greater than 2 be used as the minimum requirement for a chemical to be declared a mutagen.
Clearly such a rule, which is independent of sample size, is of limited use in a statistical con-
text. However the K scale can be used to read off ghe power available to detect various

expected values of Kyr.

It can be seen that the power to detect specific values of K » (or Kpp) is not much affected by
changes in u; down to about S, = 0.25. However, as the surviving fraction decreases from this
level, there is a rapid increase in the value of K,,.which is required for a mutagenic effect to be
detécted with the same power. It is of some note that a 2-fold increase in ¢ (i.e. Kyr=2) is
detected with greater than 0.9 probability when survival as a fraction of control is only as low as

about 0.7.
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Figure 3 provides the same information in a more conventional format: Each curve is a plot of
power against K, for a particular value of §,. It may be seen that a 10-fold increase in p{ will
be detected with probability about .9 when the survival after exposure is 50% of control, but

that at 5% survival, the same increase will be detected with probability less than 0.7.

It is common practice to test chemicals at doses up to that which causes no less than 10% sur-
- vival as a percentage of control (e.g. Clive, er al, 1979). Depending on the relationship
between the chemical dose x, and u; and p,, there may be an ’optimal’ dose,. at which the
power to detect a mutagenic effect is maximized. Even though increasing x will generally pro-
duce larger values of p;, thereby increasing the power for fixed u,, the effect of increasing u,
for fixed p, has the eﬁ'ect of decreasing the power by, incréasing variability in the treated cul-
ture. If ceil killing increases "faster” with x than does p;, the power will start to decrease. For
example, suppose a chemical at dose x; produced 50% killing and K, = 10., but at dose x; proQ
duced 95% killing and K, = 12. It can be seen from Figure 3 that the increase in dose would
result in a drop in power from about 0.9 to 0.7. Obviously p; as a function of dose is not known -
in advance for an assay. However, preliminary toxicity tests are often carried out which provide
some indication of the relationship between x and u;. An unreplicated assay which has desired
power to detect a mutagenic effect in- all pairwise comparisons 6f treated and contrdl can be
designed as follows: Choose the highest dose Xc to be thvat for which u € is such that a desired

value of K, (or Kp) is detected with a specified probability (presuming the appropriate power

contour in Figure 2 crosses the desired value of K,).

Since u(is usually estimated, simulations were carried out for a subset of the parameter values
in Table 5A, to determine the effect of estimation of wu on the power. It can be seen from

Table 5B that the approximations still hold good in this situation.
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7.2. Replication and Multiple Doses

It is well known from the theory of linear models that in least-squares linear regression of a
homoscedastic observed variable against a single predictor, the estimate of slope will Have
minimum variance if half the observations are made at each of the two extremes of the scale of
the predictor variable. It has also been shown (Chernoff, 1953) that for fairly general régres-
sion models, the asymptotic information is maximized when the number of points at which
observations are made is equal to the number of unknown parameters; ix_:r the case of the linear
relationship (5.4), this also implies that a design‘with two dose levels provides optimal esti-
mates of « and B. However, it is important to know not only whether the chemi;a] has a
mutagenic effect, but whether the effect is linear. A response which.is concave upward would

suggest a multi-hit mutagenic mechanism, while a concave downward response would probably
indicate to the biologist that a gaturation effect is taking place (Myers, 1981). it is obviously -
not possible to compare the fit of the linear assumption with that of a more general alternative

using data from an experiment in which only two dose points are tested.

While a visual examination of plotted data should always be made to check for linearity, it is
also desirable to have available a means of formally testing for linearity. There are a number of
ways this might be accomplished. First, we might fit a quadratic model and test for the
significance of the second-degree term. An alternative is to fit a "saturated” model, in which éf
ié estimated for each dose c, and compare the fit (or the maximized.likelihood) under this
mode! with that under the linear model using a likelihood ratio test. While the former test
probably has somewhat better power against specifically quadratic alternatives, the saturated
alternativé has the advantage that it can be used to test the fit of any model which relates the
dose of test chemical x to the mutation probability p,(x). We will adopt this goodness-of-fit

test for the remainder of this section.

Having decided upon a means of testing for non-linearity, we can examine the effect of various
dose allocations on the power of the tests of interest; namely, the likelihood ratio test for test-

ing HyB =0, and the goodness-of-fit test for linearity. We again use the non-central x?
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distribution to provide approximate power functions for the test, and as before suppose: that

only the mutation parameters are unknown.

Under the linear relationship (5.4), there are two unknown parameters, namely a and B, to be
estimated by maximum likelihood. The asymptotic approxirﬁation_ for the distribution of . the
likelihood ratio statistic for testing Hy: 8 =0isa x £ random variable with non-centrality param-
eter 7y = Bz/ 0'3, where 0'52 is the lower right-hand member of the inverse of the information
matrix with respect to the parameter vector w! = (a,B). The large-sample power for a critical

value xﬁ“_,) is therefore given by
1 - Gl.r](xlz.(l-v))'
The asymptotic power function for the goodness—of-ﬁt'test can be similarly derived. Under the

saturated model, we estimate the (C+1)-dimensional parameter vector p’ = (o0, p!.....p5).

Define the (C+1)‘X(C+1)-dimensional matrix

I, 0]
A4=1B 1,

where I, denotes the /x/-dimensional identity matrix, 0 is a 2x(C—l)-dimensiona1 matrix of
zeroes and B is av (C—1)x2-dimensional matrix with elements Bj = x/x;— 1 andv
B = — x;41/ x;, for I-‘ 1,...,C—1. Then it can be seen that the vector £ = Ap, represents a
non-singular, linear transformation of the dnknown parameter vector p;, such that
£1=p?, €= p!, and £, = p{™' + pP (xmi/x; — 1) = pixisi/ %, for 1=13,..,C+1. The null
hypothesis that the linear model fits as well as the saturated model is equivalent to the
hypothesis H;: £, =0, I = 3,...,C+1, since under H, the points (x;,p]) for I =2,..,C lie on
the unique line through (0,p?) and (x},p{). Now because § = Ap, Var(§) = AVar(p)AT,
where £ is the m.Le. of £, and p, is the m.l.e. of p,. Var(py) is in turn asymptotically gi\;en by .
the inverse of the (C+1)x(C+1)-dimensional-information matrix -with respect to p;. Let:S

denote the lower right-hand (C—1)x(C—1)-dimensional corner of Var(§). Sis the asymptotic
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_..covariance - matrix- .of .the .(unconstrained)» maximum likelihood estimate of the vector
ET = (&, ...,£c+) 7. Then standard large sample theory gives the asymptotic distribution of
the likelihood ratio statistic for testing A against the saturated model as: x c_;), With non-

- centrality parameter r,= ETS“E., The large sample power for a test using critical value

X fc=1).(1-) is given by

1= Gic-nr, X Ee-1).0-00)-

We now use the approximate power functions for the likelihood ratio tests of Hy: 8 =0 and
H,, to gain some insight into the effect of dose spacing and allocation on the power of these
tesvts. As before, the information matrices used in the calculation of non-centrality parameters
are based on the normal approximation to the deﬁsity of M""’. The rhatrices are evaluated at
the alternative, since this seemed to provide slightly more accurate approximate power func-

tions in the two-dose case described in Section 7.1.

Figures 4A and 4B show two linear relationships between x and p,(x), over the dose range -
[0,64]. Superimposed on each line is a non-linear alternative, chosen from the family of curves

h(x) = a + bx + fe® in such a way that

64
J (h(x) = la + BxD? ax
) |

is minimized over a and B; thus the line a + Bx is the "least-squares fit" to the non-linea;
curve h(x). The line and curve in Figure 4B represent more extreme departures from, respec-
tively Hyand H;, than do the line and curve in Figure 4A. For a number of alloc'ations. of 24
experimental cultures, Table 6A gives the approximate power to détect the non-zero slope 8 in
Figure 4A, using the likelihood ratio test for Hj and the approximate power to detect the

curve h(x) in Figure 4A as non-linear using the likelihood ratio test of H, against the

....saturated model.. The allocations chosen.were-equally spaced on either:an arithmetic or a loga-

rithmic scale, and were equally replicated at each dose. All allocations had the end-point doses
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0 and 64. The toxiciiy was modelled by. u;(x) = v)f,. with v chosen such that S,‘v= Jd at
x = 64. The.table indicates that when the doses are spaced equally on the arithmetic scale, the
power is much greater for testing goodness-of-fit than when the doses are equally spaced on a
log scale. The power for testing that 8 = 0 is also slightly higher. In both cases, the power for
the test of zero slope increases as the number of doses becomes smaller. For the test of linear-
ity, the power is maximized at three doses when sbacing is equal on an arithmetic scale, while
on a logarithmic scale, equal spacing results iq maximum power at six doses. Table 6B shows

similar results for the line and curve in Figure 4B.

These calculations argue strongly for usage of 3 dose pbims in mutagenesis testing. ‘While the
power to detect the slope as non-zero is somewhat decreased as compared with the 2-dose allo-
cation, the power to detect non-linearity of the kind modelled by h(x) appears to be maxim-

ized, as compared with the other equal-spacing allocations. .

We thep investigated the effect of the location of the middle dose on the power of.the two
tests. For the curves in Figure 4A, Figure 5A plots the power of the tests as a function of the -
. fraction of the disvtancve between dose 0 and dose 64 represented by the middie dose. There is,
as we might expect, a far greater effect on the power of the goodness-of-fit test than on the
power of the test for zero slope. The power of the latter test is maximized as the fraction
approaches .1; this reflects the increasing variance with dose, and the consequent gain in power
achieved by disproportionate replication in the high dose region. The power of the goodness--
of-fit test is maximized at about .6 of the di.stance between the lowest and highest dose. Similar

results were obtained for the curves in Figure 4B (see Figure 5B).

8. Data Analyses

In this section, some of the statistical methods introduced in Sections 5 - 7 will be illustrated by
analyses of data obtained under the mouse lymphoma protocol of Clive, er al. (1979). We will
also utilize replicated mouse lymphoma data to examine some of the assumptions which were

made in Sections 3 and 5. The protocol variables are given in (5.1a) - (5.1d). All experiments
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- discussed in this section were carried out at' SRI Imernationé] . The-author is. grateful “to
Dennis Tajiri and David Low (formerly of SRI International), and Ann Mitchell and Pam
Shrieve (presently at SRI International) for providing the data and assisting in their interpreta-

o tion.

8.1. Examples of Statistical Methods

Table 7 gives the results of an assay carried out on chemical X. Thé chemical was tested in
duplicate at 7 dose levels, including zeré; the table records the mutant énd viable cell colony
counts, and the culture size based on Coulter counts at the end of each of the two expression
stages. Under the mouse lymphoma protocol, no density measurement or viable cell count is
made immediatély after exposure.. The recurrence of specific values for the culture size (e.g.
13.05 and 12.01) is the result of the use of conversion. tables, .which transform a range of
Coulter counter density readings into the same estimate of overall density. .Also reported in the
table are estimates of = ¢, the cloning efficiency at each dose, and of the growth parameter df,
based on the formulae in Section 53 The procedure suggested in that section for estimating
df and 4§ when density counts immediately after exposure are unavailable does not provide
meaningful results in this experiment: Use of fif = 33‘ results in inappropriately Igrge negative
values for 31, since even in the control cultures the growth between r; and r; appeared to be
much slowér than the growth between ¢; and ts. We therefore employed an alternative ad hoc
procedure. Specifically, it was supposed that df = d¢ = A{, and that u = 0 for all c.

The resulting estimates of df appear in Table 7. There is some inconsistency in allowing 4§ to

be dose-dependent, while forcing d5 to be constant over dose. However, there appears to be

no alternative if we are to make some use of the density counts.

We also use the value r, = 16 hours rather than the 24 hours specified in the protocol, since

the former is the value used in practice by the experimenters at SRI International.

The statistical methods were first applied with the estimates of #¢, df, df and d§ in place of

their true values in the likelihood of the mutant colony counts. The parameters of the
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relationship (5.4) were estimated by maximizing the likelihood based on _the normal approxima-
tion to the density of M9 resulting in a = 2.36x107% and [3= S.SOXI0.‘6. The like_lihood
ratio test for zero sloée, Hy, was hfghly significant (p < .0001), and the likelihood ratio tést of
~the linear-fit against | a saturated model resulted in rejection of the linear hypothesis
(p = 0001). Figure 6A displays the m.le.s of pf, ¢ =0,1,...,C, obtained under the saturated
model, andvthe line pl(x) =a+ ﬁx. The lack of linear fit appears to be due to ﬁpward con-
cavity, suggesting a multi-hit mutational mechanism. Figure 6B displays the observed counts of
mutant colonies, and their corresponding expected values under the ﬁned linear model. The
method C2 (see Section 6) was used to calculate a 95.% confidence interval for B, resulting in

the interval (4.95x107%, 6.03x1079).

We then analyzed the experiment without utiliziﬁg the information from the density counts, as
outlined in Sections 5.1 and 5.2. The cléning efficiency was assumed to be constant (7 = .85),
the division parameter A was estimated from the control viable counts, resulting in A = 050,
and the toxicity parameters u{ were estimated from the viable counts at the c* dose. The
same procedures as above were applied, resulting in & = 2.46x1076 ‘and /§= 4.84x107° with
95% confidence interval (4.22810"6, 5.48x107%. The tests of zero slope and linearity were still
significant, but less so (p < 0001 and p = 018, respectively). The m.le. of fi is somewhat
lower than that obtained when the information from the density counts was used, and its
confidence interval is wider. Both of these results are due to the fact that when all of the
difference in the growth of the cultures is ascribed to toxicity during exposure, as is the case in
“the second analysis here, the variance at each dose as calculated by (3.5) is higher than when
the difference is distributed among the stages and the cloning efficiency. The effect on the vari-
ance is greatest at the higher 2 doses, and this results in the effective de-weighting of counts at
these doses in the estimation of 8. The estimate of 8 is lower than in the previous case, since
it is the counts at the higher 2 doses that appear to be greater than would be predicted by a

linear model fit to-the first S doses.

Py
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«-8.2.:. A.Data Set.with 60 Replicates

In order to obtain some insight into the distribution of the number of mutant colonies counted,
‘an experiment was cz;rried out at SRI International in which 60 replicate cultures of mbuse lym-
phoma cells were exposed to a fixed dose of the commonly used solvent, DMSO. 1t is gen-
erally believed that- DMSO is not mutagenic, so that mutant counts should not be elevated
above background; The compound is, however, soméwhat toxic to the cells (Amacher, et al,
1980). The usual procedure was followed of sampling a fraction of each culture to produce the
required density at the end of each day of expression. Because the fraction sampled varies
“among the cultures, they are not true replicates, in the sense of being handled identically (to
the best of the experimenter’s ability). However, the sampling fractions do not vary greatly.
They are in the range .1 - .16 at the end of the first stage of expression, and between’.16 and

.23 at the end of the second. We will therefore treat the cultures as true replicates in the con-

sideration of distributional properties.

The cloning efficiency = and the parameters d;, d; and d; were estimated from the cell density
counts and viable cell .coun'ts, as described in Section 5.3; the resulting estimates were .85, .047,
.072 and .072 respective]);. It was assumed that there was no cell death during expression, and
that the growth rate was constant. The mutation parameter p? was estimated from the data by
the formula (5.5). These parameter estimates were then used to generate the fitted, or
"theoretical” cumulative distribution function (c.d.f.) of the observations, by the method
described by Tan (1981). Figure 7 plots this theoretical c.d.f. against the empirical c.d.f of the
| mutant colony counts. It is apparent that although the location and general shape of the
theoretical c.d.f. closely match that of the empirical c.d.f., the variance of the fitted distribution .
is substantially less than that of the observations. In Figure 8, the c.d.f.’s are plotted on normal
probability paper. While both distributions are apparently somewhat skewed, the plots are
- sufficiently linear to suggest that the normal density can provide a useful approximation. This is
of course the conclusion we reached through the computations and simulations in Sections S -

7.
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It is a matter of some concern that the fitted distribution undérstated the variance of the obser-
vations. If the causé is simply the variation in the sampling fractiofxs, the inference procedures
we have developed should not be affected, since the sampling fractions are incorporated in the
density of each observation. On the other hand, if the cause is the uncontrollable within-dose
variability discussed in Section 3.3, the procedures may be seriously affected. In particu.lar, if
‘the models used are understating the variance of the observations, hypothesis tests will have
Type 1 error rates which are greater than their nominal level, and confidence intervals for unk-
nown‘ parameters will contain the true value of Ithe parameter with a lower probability than the
nominal coverage. It will be important‘ for experimenters to generate more data sets of the

kind examined brieﬂy here, in order to resolve some of these questions.

9. Discussion, Conclusions and Areas for Further Research

Using a modelling'approach to fhe analysis of mutagenesis assay data,vwe have presented a
framework within which hypothesis testing and poini and interval estimation of parémeteré can
be carried out. Specifically, we have demonstrated tha; standard asymptotic‘method's based on a
‘normal approximation provide acceptable results, provided the assumptions and approximations

discussed in Sections 3 - 5 are valid.

It is possible that other statistical procedures may have produced equally good results within the
assumed model. For example, estimation of the parameters a and 8 in the relationship (5.4)
could be accomplished by iteratively-reweighted least squares, using the variance formula (3.5)
to provide the inverses of the weights at each new step in the estimation. It is known that for
generalized linear models such a scheme is equivalent to maximum likelihood estimation
(Neider and Wedderburn, 1972) and the success of the likelihood methods based on the nor-
mal approximation suggests that such an equivalence may also hold (at least approximately) for

the model under consideration here.

Another way of dealing with heteroscedastic regression data is to derive or empirically estimate

a transformation which produces homoscedasticity. This is the approach taken by Snee and Irr
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(1981) for the analysis of CHO mutagenesis data. They estimate a Box-Cox-type power
transformatibn from a largeﬂamdum of historical data. vHowever, it is unlikely that a single
transformation can'pfoduce_ homoscedasticity of the observations M9, This can be simply
illuétrated by the fact that testing a chemical which is non-mutagenic but toxic could resﬁlt in
cultures at two different doses, which had the same means but very diﬁerent variances, because
of differential toxicity. Therefore, to first order any transformation will produce random var_i-

ables which again have the same mean but still have different variances. -

We have also shown how approximate power functions can be calculated for hypothesis tests df
interest, and used the functions to suggest guidelines for the dosing design of optimal experi-
} menis. The designs arrived at are only optimal in a restricted class. However, they appear to
provide substantial improvement in power over currently used dosing aiiocations, while being

still sufficiently "regular” to be acceptable to the biologist.

We now briefly discuss some topics which could be explored further than they have been taken

in this paper, and mention areas for future research which have not been examined here at all.

(i) The robustness of the statistical procedures against violation of thg assumptions A9-- All
should be considered. As wias noted in Section 5.3, the utilization of ad&itional measure-
mems.can enable the weakening of the assumptions A9 - All. However, the additional
number of parameters which must then be estimated may have an adverse effect on the
approximations to the distribution of test statistics, resulting in a trade-oﬁ' in overall accu-
racy. If the methods proposed are sufficiently robust to the violation of assumptions A9 -
All, retention of these assumptions may be preferable to utilization of the additional

measurements. Additional simulations would be required to resolve this question.

(ii) The assumption A8 can be removed if information on the growth of the experimental cul-
ture before exposure is available. For example, under the mouse lymphoma protocol as
carried out by SRI International, the cells to be used for an assay are sampled from a
much larger stock of cells which is kept in continuous exponential growth phase. The

stock cultures are "cleansed"” of any mutant cells which arise spontaneously, by weekly
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trealrﬁem with methotrexate (A. Mitchell, personal kcommunication). Under similar
assumptions to tho.se we have already made; the expected nﬁmber of mutant cells in the
stock culture at time ¢ as measured from the cleansing is E(M,) = pYN,. Then M5, the
number of mutant cells in the culture at the start of the exposure stage, can be aésumed
to be distribpted as Poisson, with mean p{tN;. This source of variability can be easily
incorporated into the expressions (3.4) and (3.5) for the mean and variance of M%¥,
using standard formuléé for iterated conditional means and variances. The statistical pro-
cedures suggested in Section 5 may still be applied, although the validity of the approxi-
mating distributions would égain need to be checked. The presence of pré-existing
mutants is not affected by dose. We could therefore expect that if A8 is employed when
there are in fact pre-existing mutants, the effect would be overestimation, by a constant

amount, of pf, for ¢ =0,1,...,C.

In any bioassay .which repeatedly uses the same s_pecies of test organism, a‘large bbdy of
data will accumulate about.the spontaneous level of response in the organism. We have
been implicitly assuming that prior information is equally vague regarding spontaneoﬁs
and indﬁced mutation rates in the cell cultures, whereas in fact much more information
about p{ (or a in the relationship (5.4)) should be available. Recently Tarone (1982)
proposed methods for incorporating historical control data in the analysis of binomial
dose-response data, by in effect estimating a prior distribution for the background
response rate. When this distribution has a large variance, it plays only a small role in the
analysis; if the background has been historically rather stable, this information is weighted

heavily in the analysis.

For mutagenesis assay data, a similar procedure could be utilized, by fitting a normal dis-
tribution to the historical estimates of p?. We may wish to restrict the historical data to
the particular laboratory whose experiment is being analyzed, as inter-laboratory variation

in spontaneous rates may be substantial.
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In the Salmonella mutagenesis assay (Ames test), dose-response ‘curves typicaily turn
downward at high doses due to cell killing. Bernstein er al. (1982) have suggested a
means of eliminating data at doses which are toxic enough to cause downward departure
from linearity. For the protocols consid:red here, an adjustment is made for cell killing
by using the mutant fraction as the summary response measure, so there is not such a
well-defined ratidnale for restricting attention to the initial portioh of the dose-response
curve. However, satufation eﬁ'ecfs may cause a plateauing of the dose-response, and

some data even show a marked, though as yet unexplained, downturn at high doses (L.

"Thompson, personal communication). It may therefore be sometimes desirable to utilize

" a point-rejection rule such as that used by Bernstein er al. (1981) to define an initial

region of linear dose-response.
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Appendix 1

In this appendix, we demonstrate how standard techniques may be used to derive the moments
of the number of mutant and normal cells under the assumptions Al1-A7. The same techniques
can be also used to obtain the moments for more general «,; under A1-A3 and A7. All quanti-
~ ties referred to are defined in section 3.

We first consider a single stage. Let (N, M) and (N} M?) respectively denote the number
of normal and mutant cells at time r arising from a single normal and a single mutant cell at
time ¢ = 0, with corresponding p.g.f.s ¢ (u,v) and ¢ 2(u,v). Then, if G,(u,v) is the p.g.f. of
(N,, M), ' ’ '

| G,(u,v) = [¢ Hu, ») ™ [¢ 2(u, 1M,

Following Karlin and Taylor (1975, p. 424), ¢ ! and ¢ 2 are the solutions of the backward equa-
tions

2 wisl ed, (ALI)

ar
where w' for i = 1,2 are the infinitesimal generating funciions
W) =p+ 0= plud+ puv = (\ +pu (A1.2)
wiuv) = +Avi— (A + u)v (A1.3)

The equation (A1.1) with i = 2 only involves ¢2 The solution is the p.g.f. of a simple birth-
and-death process starting from a single individual at time ¢ = 0, with birth parameter A and
death parameter u. The equation (Al.1) with i =1 does not appear to have a closed-form
solution, unless A = 0 (e.g.. Bartlett, 1978, p. ). However, successively differentiating (Al1.1)
with i=1 with respect to u -and v and setting u= v =1 at each stage results in linear
differential equations for the factorial moments of (N}, M) which may be solved directly, if
somewhat tediously. The moments of (N, M,) are simple functions of the moments of
(N}, M) and (N}, M?). The following are the first and second joint moments of (N,, M,)
conditional on (Ny, M), under the assumptions Al-Aé.

E(N) = NgeA—u-»pt (A1.4)

E(M) = Ny [e“"“)' - e("_'“‘”)’} + My e —w) (A1.5)

Var(N, = Atp=—p {em'“'”)’ - e(“‘“'p)'] (Al1.6)
A=pu—p

M =p?+2p2=3Mp=pp o= u-p
A=) AN=pn-p

Var(M,)=N,

FAte [ a0-w_ e(x—u):]
A—p

_20+p=p ea-w-p

A—pu
+ x+g-eezu—“—p):
A—u-—p
+ M, :tug PRI T e(x—u)r] (AL.T)
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P W=u=-p
o= + - “ P
CoviM NI = No O+ = DI O ¢

1 A = @) = Pt 1 | 2 —p-p)
+ ot wepi_ L 20-u-p AlL8
- ¢ A—p-p° | (ALS)

The higher moments can be similarly obtained. In particular, the third moment of M, which
was required for the skewness coefficient in Table 1 was derived in this manner, although the
formula is not given here.

Returning to the full assay protocol, we now derive the first and second joint moments of
(N, M), i=23,..,R+] conditional on (N,, M,). Consider for example E(M)). By A7, M,
is distributed bmomlally, with parameters M and 6,_,, conditional in M Therefore,

E(M,) = E[E(M, ' M,)] = E[oi_lMi] = 0,-_1E(M,-) = 9,-_15[E(M,- ' M'_l, ,‘_1)]
So '

ol

EM) =9,,E [Ni-l [edi—l'i—l - 1= pi-l)"-l] + M e";-lﬁ-u]

=0, [edi—l’i—l EM_) + [edi—l"-l - e(di =P ,-1] E(N-_;)]

where d,= A, ~u, r, = tisy = t;and making use of (AL.S5).

Slmllarly, we can obtain difference equations for the other first and second moments of (N
M). With @, =1—9,,

E(N) =9, %1~ 71 p(N_)
d’.;

- Var(N) = 0,- E(N) +0%, 4., E(N,_.l) +0%, e '-P"")"‘,‘, Var(N,_,)

ol

Y2
Var(M) = 0,., E(M) + 0%, { Gm17im1 e p"")""]- Var(N._p)

24

=17i=1

2

+202, [ - ""‘-""-'] Cov(N,_1, M)

+ 0,-2_ i1 E(M_]) +9 ~1 Cig E(N_l)

+02, X Var(M,_,)
Cov(N, M) = [e"""~' e G2 = ""“”'-'] Var(N,_,)
+ 602, Doy E(N)) + 02, e 2% 72700 Coy(M,_,, Ni_p)

where A4,_; and D,_; are obtained from respectively, formulae (A1.6) and (A1.8) with A .,
Mi-1, -1 and 7y in place of A, u, p and ¢, and with Ng= M= 1; and B,_; and C,_; are the
coefficients of Mg and N, respectively in (A1.7), with A, &, p and r similarly replaced.

These equations are all of the form a, = y; a;,-; + r,, which has the solution

i i i
a=2 111 v I1v,

j=2 { m=j+1 j=2

where the first product is defined as unity for j = i. The above difference equations may be
solved in this way, yielding successively E(N,), E(M}), Var(N,), Cov(N,, M,) and Var(M,).

The moments of (N,, M) for ; < r < t_; can be obtained by letting r, =t — t, and 8, = 1;
then the moments of (N,, M,) are the same as those of (N,y;, M,,;). when r; and 8, are
replaced by r, and 6, ; respectively.
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In Section 3, we discussed the assumptions which lead to the distribution of M (the number of
mutant colonies counted at the end of selection) as derived by Tan (1981); Section 4 intro-
duced a normal approximation for this distribution. In Section 5 it was suggested that "standard
likelihood methods", based on the normal approximation, be employed to carry out the estima-
tion and hypothesis testing for unknown parameters, using the counts
(M4 159 ¢=0,1,.,C and d = 1,..,D.. While the accuracy in small samples of some of .
these methods was validated by exact calculation and Monte Carlo simulation in.Sections 5 and
6, it is still important to check that the methods satisfy the asymptotic properties ascribed to
them. .

In particular, we would like to confirm the asymptotic normahty of maximum likelihood esti-

“mates (m. le. *s) of the mutation parameters and the asymptotic x 2 distribution of the likelihood
ratio statistic for testing various hypotheses about the parameters, when the m.l.e.’s are
‘obtained by maximizing the likelihood based on the normal approximation to the iteratively
defined distribution for M derived by Tan (1981). To this end, we will prove the following
result:

Theorem 1:Let y. 4 have the densrty functlon Sfe(yc. 4 @) with respect to Lebesgue measure on
R, where ' :

b’c.d - Yc(‘”)]zl

feyeq w) = R2m Vc(w)]“"’ exp [ - 2 7 @)

for c=0,1,...;C and d = 1,...,D,, where Y. and V, are known functions of the unknown k-

dimensional parameter w = (wl, ...,wn7,and k € C. We also suppose

(a) w is contained in 2, an open interval in k-dimensional space.

(b) Y.and V. are twice differentiable functions of @ on £, with commuous second deriva-
tives; V. (m) # 0 for all @ in Q. :

(c) The information matrix J, whose r,s” element is

oo 8k |
Ir.s E[aw,awsl’

is positive deﬁnrte for all w in Q, where the log-hkehhood

(w) = 2 2 log fo(y. 41 @).

c=0 d=1

D C
(d lim = =n,>0,where D=3 D,.
D—w D =0
Then, under (a) - (d), the maximum likelihood equations 8// dw = 0 have a unique root @
which is strongly consistent for ag, the true value of the parameter, as D — oo. Furthermore,
D*(& — wq) is normally distributed with mean 0 and covariance matrix L = J™! | wo

The proof of Theorem 1 is via standard techniques (see for example Rai and Van Ryzin, 1981). "
We first show that the likelihood equation has a consistent root. Suppose @ * is contained in
B= |w: |l @ — wg || = 8], where the metric is the standard Euclidean. By the result 1€6.6 in
Rao (1973, p. 59),

] <o,

E liog fe(y. 4 @*)] < E llog fe(y,d, wg)] = 0. (A2.1)

fc (.VC.d; w.)
E [ fog [ Se (yc.d; wgy
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Therefore by the Strong Law of Large Numbers,

— 2 log fe(yess @*) < — Z log fc(yc s wo)

D(’ dw] C d=1

as D. — oo, with probability 1.
Moreover, asymptotically,

- _
13 Il(w *) = 2 mch ?:‘,] log fc(yc & @ )]

< z Nel R 2 IOg fc(yc ds m(l)]

c=0 t‘ d=1

= 71)- Hawg)

with probability 1, and by the compactness of B, it is clear that in fact

Lo 1
sup lw*) < 5 Hwgy)

as D — oo, Thus, since /'is dlﬁ'erennable, it attains a local maximum at m within B, at which

9/

30 = 0. Since & can be made arbitrarily small, @ — wg with probabnhty 1. The matrix H,
m .

2
whose r,s" element is &, ; = a—-a—a— is negative definite when evaluated at @, with probabil-
w, 0w;
ity 1.
The consistent root is asymptotically unique, since if there exists @ * @ such that gai = 0 is.

@
also satisfied by @, Hl,_- must have a zero determinant, for some w* = €& + (1—e)@ , where
0 < € <1 (this is a consequence of a multivariate form of Rolle’s theorem, quoted in the
Appendix of Rai and Van Ryzin (1981)). But then w.* is also consistent for wg, and thus Hl, .
converges to a negative definite matrix. This contradiction proves the uniqueness.

To prove normality of @ under (a) - (d), we make the Taylor expansion

0=, =L L HIL. G- wp.
@
where w * = ew + (1—e)w for some 0 < € < 1, which can be rewritten as
-1
(o — wo) = 1— L HI. —%.@LL
D& — wp) ) H|, l Db - . (A2.2)
Now .
a|°gfc(yc.d; w) 15 a V __l_ (yc,d_ Yr)2 aYc 2(yc.d— Yc)
dw, dw, | V. % dw, V. ’
S0
logf.(y. 4 @)
Elaosf Ve.ds @ H. -0
dw, .
Also,

E

dlogf(yc.qi ) dlogfc(y 4w |l
dw, dw; 0
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av. oV, 1 'aYcﬁz‘

Bw, dw; V? aw, dw, V.

_ g} 8108/ (e i @)
Ow, dw; '0’

= Al —

Therefore, the Multivariate Central Limit Theorem applies to the vector h,., whose r” com-
ponent is ‘

& 0log fo(ye 4 @)

he = DI ,
¢ ‘ d=1 dw,
and therefore, as D — oo,
1 "
D = = z n¢e he — N(O, ) ) (A2.3)
0w w, :

in distribution, since a finite linear combinations of sequences which converge to multivariate
normality does likewise. We obtain the r,s" element of ™! = J as

av. aV 1 Y, 8Y, 2
1
= A 2 D{ P P + — 3. 3o Vc}' (A2.4)
We now rewrite
-D7'Hl,.= lD"' Hl, - D! Hl_.] - D' Hl,, (A2.5)

The strong consistency of @ and the continuity of H as a function of w (by (b)) imply that the
‘term in brackets on the right of (A2.5) approaches zero almost surely as D — oo; the Strong
Law of Large Numbers immediately gives

D'Hl, —E (A2.6)

with probability 1. Combining (A2.2), (A2.3), (A2.5) and (A2.6) shows that
D*(@& — wp) — N(0, ¥)

in distribution, as required; this concludes the proof.

We now return to the particular models under consideration in the text. Suppose once again
that only the mutation parameters pf, ¢ =0,1,...,C (or a smaller number of parameters of
which the p{ are functions) are unknown; that for a fixed / and c, the sampling fractions 8 /¢
do not depend on d; and that the normal approximation for the distribution of M is in fact
exact. Then the m.l.e.’s obtained by maximizing the likelihood based on the normal approxi-
mation to the distribution of M<¢ will be asymptotically normal, provided the conditions of
Theorem 1 are satisfied. Verification of the conditions (a), (b) and (c) must be done separately
for each parametrization of pf.

We consider estimation of the parameter vector w, where pf = pf(w) for ¢ = 0,1,...,C. In the
case of the relationship (54), k=2 and @’ = (a, B). For the saturated model,
k=C+land w” = (p?, p}..... pF). To satisfy condition (c) of Theorem 1, we need to
show that the information matrix J is positive definite.

The information matrix may be written as
J = F] F]T‘l’ F2 F27; (A27)

where F, = G,K, and F, = G;K;, here G; and G, are kx(C+1)-dimensional matrices, whose
" elements are respectively
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V.., dY._,
(Gl)r.c= —507’ (Gz)r,t= awr ).

and K, and K, are diagonal (C+1)x(C+1) matrices with ¢ diagonal elements
DA,/ (V._yv2) and (D..,/ V._)", respectively. Now since K, and K; are non-singular
when V. is defined and non-zero for ¢ =0,1,...,C, F, FTand F, Fy are positive definite if,
respectively, G and G, are of full rank k. This follows by an argument used in Lemma 3 of
the Appendix of Krewski and Van Ryzin (1981) [A result in Rao (1973, p..30) gives
rank (AB) = rank(A) for B square and non-singular; Searle (1971,-p. 37) shows that the pro-
duct of a matrix of full row rank with its transpose is positive definite.]. Thus if G, and G, are
of full rank k, J being the sum of two positive definite matrices will likewise be positive
definite. We have thus proven : ' :

Lemma 1:1f G, and G, in the decomposition (A2.7) for J are both of rank k, J is positive
definite. : . v
For the saturated model, Y. = E(M“?) and V= Var(M<9) are linear combinations of p{

and pf, and do not involve p{ for ¢ = 0 and ¢ # c¢ (see equations (3.4) and (3.5)). There-
fore, (G) = (G),.=0 for r>1 and. r# ¢, but (G);, >0 and (Gp; >0 for
c=1,.C+l; and (G).>0 and (Gp,>0 for c=1,.,C+1, provided pf >0,
¢ =0,1,..,C+1. Thus G, and G, are of the form

w XT
0 Z

where Z is diagonal with non-zero diagonal elements, w > 0, and the elements of the vector X
are positive; and are clearly of full rank k= C+l. Thus the theorem applies, for
w=(p? pl. ..., pf) contained in 0, the positive quadrant of (C+1)-dimensional space.

For any model of p{ as a function of x., the ¢ dose of test chemical, we can use resuits on
TchebychefT sets of functions, also quoted in the Appendix of Krewski and Van Ryzin (1981).
Specifically, we will need '

k
Lemma 2: A set of functions {¢,(x), r = 1,...,k} is a Tchebycheff set on [0, X] G.e. 3, a, ¢,
r=}

has at most k-1 zeroes on [0, X] for all a = (a,,...,a,) T = 0) if and only if the matrix whose
r.c™ element is ¢,(x.) is of full rank for every set of k distinct points {x.} in [0, X].

By Lemmas 1 and 2, a sufficient condition for J to be positive definite for a particular choice of
functional relationship between pf and x. is that under the relationship,

187, Y, V. V.
Vv, RS a——}randes-la 8

=a—a)T,...,awk awl,...,m
are TchebychefT sets of functions of x on [0, X]. Suppose for example that

ix) =a+ i B, x’', . : (A2.8)
rel :

a polynomial in dose. Now from (3.4) and (3.5), Y, = E(M“9) =¢, p? + ¢(x) pf and
V.= Var(M<9 = £, p{ + yy(x,) pf, where £ and £ are positive constants, and ¢, and ¢
are positive and (possibly) functions of dose x.. Thus, k = n+1, and

9&. + (26
da €| d’h aB,

v, av

¢
da =§2+¢29 aB,

= s Xc’, r-l,...,n

= l[lz Xcr ) r-=-1,...,n.
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As noted by Krewski and Van Ryzin, {1,x,...,x"} is a Tchebycheff set on any interval [0, X],
and a Tchebycheff set multiplied by a positive function (i.e. ¢, and ) is still a Tchebycheff
set. Since adding a constant (i.e. £ and £,) to one of the functions of a TchebychefT set also
maintains the property, the sets V), and ¥V, are Tchebycheff sets, and the information matrix J
is positive definite under the polynomial relationship (A2.8), provided n+1 < C+1. If we res-
trict w = (ay, B8y, ... .B,) to the positive quadrant of (n+1)-dimensional space, the conditions
of Theorem 1 are again satisfied. Thus under the stated conditions, the m.l.e. of w is asymptot-
ically normal as D — oo, and the result holds for the linear relationship (5.4) as a special case.

We now briefly indicate other conditions under which it would be useful to prove asymptotic
normality of the m.l.e.’s, and where possible, suggest how this may be done.

(i) If other parameters such as the toxicity parameters {u{, ¢ = 1,..., C} are in fact unknown,
the asymptotic normality of the mutation parameter estimates will hold , as long as a
'n-consistent estimate of the parameters is available. For the toxicity parameters, such
an estimate is provided by formula (5.6), for example.

(i) We have assumed in effect that the observations comprise a fixed number (C+1) of

independently and identically distributed (i.i.d.) samples of size D., ¢ =0,1,...,C. This
has been achieved by assuming that the number of doses is fixed as D — oo, and that
within dose levels, the sampling fractions @/ at the end of the i stage do not change
with d. If the first of these assumptions is relaxed, we require conditions on the first and
second derivatives of the likelihood under which the Strong Law of Large Numbers and
the Central Limit Theorem for not necessarily i.i.d. random variables can be applied. We
can, however, relax the second assumption and remain in a situation of having a fixed

" number of i.i.d. samples, by supposing, for example, that 8 S-4is distributed as N@Lod),
where 82 and o 2 are either known or may be estimated consistently.

(iii) If the true value of one of the parameters lies on a boundary of the parameter space such
as would be the case if 8 =0 in (5.4), the asymptotic distribution of the m.l.e. for that
parameter is a truncated normal distribution, with half its mass lying at the boundary
point (see Moran, 1971). Although a careful proof of this assertion in the present context
has not been attempted here, the model is sufficiently regular to suggest that it could be
accomplished straightforwardly.

(iv) Perhaps of most theoretical interest would be to show that the m.l.e.’s obtained using the
likelihood based on the normal approximation also have the asymptotic normal distribu-
tion when the true distribution of the observations M®¢ is given by the density of Tan
(1981). Huber (1967) has shown that m.l.e.’s from a family of densities which does not
include the true density of the observations are asymptotically normal, if the true density
is sufficiently regular. It will be a subject of further research to prove such a result in this
case.

Having verified asymptotic normality of parameter estimates, the asymptotic x? distribution of
the likelihood ratio can be obtained for parameter values within O(D™") of the true value, by
the argument used in Cox and Hinkley (1974, p. 322).

Appendix 3

The following result justifies the use of the isotonic regression test as discussed in Section 5.1. -

Theorem 2: Let y. 4 ¢ =0,1,...,c, d=1,...,D. be independent, with finite mean Y and finite,
non-zero variance o 2. Also let D, = 5 D, where 0 < n. < 1, and suppose s is a consistent
estimate of o 2

For a vector »7 = (vy,...,v,), let (5,,...,v,) denote the isotonic regression estimate of »
for weights @ 7 = (n¢/s¢. . .. .nc/sd. with respect to a partial ordering of the set {0,1,...,C}.
Then

c L 2
Jim Pr YD G3.=-%/st2u
- c=0

e
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: =2 Pk, C, w) Pr(Xk | 2 u),

. kel .
1 D,
where y, = 2 Vedr ¥ -5 z 2 Ye.qa » X} is a chi-square random variable on Id f., and
C d=1 cm() gwml )

P(t, ry n)is given in Barlow, er al. (1972, p. 126).

This theorem is a generahzétlon of the theorem in Appendix 2 of Collings, et al. (1981), in
which o 2 does not depend on ¢, and is hence not used. in the weights-for the isotonic regres-
sion. By analogy with the proof of those authors, we write _

2
.;c - y

[+

al/ s?

C. ) ~ 2 < )
z D.(y. -y / St2 = 2 Ne Dch
c=0 © c=0

The consistency of s2 implies both that o %/ s? — 1 and that the weights n./s2 — n./o ?in pro-
bability. The rest of the argument used by Collmgs, et al. (1981) now applies to give the
required result.

For the special case C = 1, the test reduces to a one-sided two sample test, and for the particu-
lar application in Section 5.1, the test statistic © is equivalent to the statistic T for testing H,
against H,.. v
In order to apply these tests to assay data, we must suppose that 0,“" does not depend on d (or,
in effect, that Var(M¢9) does not depend on d). Alternatively, 69 may be considered to be
random, as in point (ii) at the end of Appendix 2. ‘

‘Appendix 4

This appendix discusses the program used to calculate maximum likelihood estimates of the

~ mutation parameters pf, or the parameters a and 8 in the relationship (5.4). The following

notes explain particular aspects of the program.

(i) Newton-Raphson iteration is used to search for the maximum likelihood estimates. Thus
the k'™ step in the iteration consists of evaluating

a/

awk’

-1
w1 = w,— Hy

where w, is the vector of unknown parameters, at the k™ step in the iteration; 8// 8w,
is the vector of derivatives of the likelihood with respect to the parameter vector
evaluated at w,; and H, is the matrix of second derivatives evaluated at w .

(ii) Starting values w; are needed to use the Newton-Raphson procedure. For the saturated
model, these are obtained from formulae (5.5) and (5.6). For the linear model, we make
use of the fact that '

R+1
E(Mt°d) = K4 (a +ﬁX()f1 + a 2 T
2
so that
Mc.d R+1
E|l——5— =a+ﬂr]x‘./2r, (A4.1)

Kc,d 2 ri jeu |

=]



(iii)

(iv)
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Then deﬁning y9 to be the expression inside the braces on the left hand side of (A4.1),
and z¢ to be the coefﬁc;ent of B on the-right, we can- easily obtain the usual least squares.
" estimates .

c D
2 2 (z¢=32) (p9=13)
- w0 dml
B= = :
Y D (- 2)?
cw=0
&=y - B3,

e C .
where y = L > Y y9 and z= —ID— 3, D, z°. We use these estimates as starting
Cw= .

c=0 d=]
values.
Boundary conditions on the parameters are dealt with by resetting a parameter to the
boundary if it exceeds it at a step in the iteration. If the parameter returns to the boun-
dary a certain number of times (we use 10) it is fixed at the boundary.

Because the normal distribution is defined by its mean and variance, and because E(M®9)
and Var (M9 are linear functions of the mutation parameters with coefficients which are
known (or at least, estimated from other data), fitting alternative models is relatively
straightforward. Once. the coefficients have been evaluated, they are stored and can
thereafter be used to construct the mean and variance and hence the likelihood and its
derivatives, as functions of particular values of the mutation parameters.
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: Table 1
- Characteristics of the distribution of (N,,M,) under A1 -:A6,
Jor various parameter values* '

Parameter Values

EM)’ V(M) Sk(M) E(N) CV(N) Cor
t Ny w/N P/ .
4 6x10° 0 10~3 17.4802 21.8520 3213 7.6x10®  .0002  .0004
17.4803 21.8520  .3213

0 1073 | 1747.8243 2185.0049 .0321 7.6x106 .0002 .0036
1747.0264 2185.2029 0321

1 1073 17.0807 21.3186 3244 7.4x10° .0002 .0004 |
17.0808 21.3186 3244
1 10~3 13.8664 17.0719 3539 6.0x108 .0003 .0005
13.8665 17.0719 3539 '

10 10~3 173.1446 195.4466 0897 7.4x10° .0012 .0050
- 173.1646 195.4608 .0897 '

24 3x10® 0 1076 16.6615 55.4908 .8267 1.2x107  .0050 .0007
‘ 16.6615 55.4908 .8267

0 10-3 166.6137 554.9085 .2614 1.2x107 .0050 .0022
166.6148 554.9081 .2614 '

48 3x10® 0 107° | 1334.1077  13120.0860 2177 4.8x107 .0006 .0046
' 1334.1262  13119.8752 2177

The column headings are, respectively, the mean, variance and coefficient of skewness of
M,, the mean and coefficient of variation of N,, and the correlation between N, and M,.
In the first three columns, the upper of each pair is the approximate quantity obtained
under assumptions Al-A6, while the lower is the same quantity obtained under Al-A6
and (3.1), neglecting terms which are o(1/Ny).

A = 0578 and M= 0 in all cases.
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Table 2
Type I error rates for the test-of.Hy. against-the alternative H -
using the test statisticsT and A at nominal size v *

(A) Exact calculation, with only p) = p§{ = p unknown

v=05 v = 01 . Fraction of

p S, ' Distribution

r A r A Evaluated
2.5x1077 1.0 { .053 .051 .009 .009 .9997
51 .052 .049 .010 .010 .9997
.11 .050 .042 .011 .010 .9998
7.5x10~7 1.0 { .054 051 .011 .010 ~..9996
- S5 1.053 050 .011 .010 .9996
1].052 .044 011 .010 |  .9995

(B) Estimated error rates, with only pd = p{ = p and u{ unknown;
- p=15x10"",5,=0.1

y = 05 y =01
r A r A
051 044 012 011

*Protocol variables and parameter values not specified in the Table are.as in (5.1). See text for
definition of symbols.



Al

~.-Estimated Type I error rates for testing Hy: B = 0 against the. alternatlve Hi:-B >0
using the normal approximation, with nominal size v *

Table 3

(A4) Only @ and B unknown

v=.05 v =025 v= 01
Parameters C . D, H1 H2 H1 H2 H1 H2
a=75%x10"71 10 2 045 053 .021 ..028 .008 .013
Juf=0 5 2 .039 049 .018 .025 .007 .012
» 5 , 1 032 046 015 .025 .006 .012
a=175x10"7 |10 2 036 .054 018 .031 .006 .015
wi=:.005x. 5 2 024 047 011 .029 .003 .014
5 1 021 045 009 .025 .003 .013

(B) Method H2, with onlya, B anduf, ¢ = 1,

vy C unknown; a = 1.5x1077, pf= .00‘5x‘c.

v=05

C D, v=025 yp=01
10 2 055 032 013
5 2 048 029 015
5 1 046 025 014
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*Protocol variables and parameter values not specified in the Table are as in (5.1). See text for

definition of symbols.
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Table 4
Estimated coverage probabilities of the confidence interval for 3,
using the normal approximation, with nominal coveragel — v *

(4) Onlya and B unknown; a = 71.5%x1077, B = 1.0x1077, uf=005x,

1=y = 95 1-»= 975 1-v=99

C Dl 2 ¢ ¢ ¢ @
10 2 |'.933 937 965 .970 .985 .987
s 2 | 934 943 960 972 980 .988
s 1 | 926 946 954 971 974 .988

(B) Method C2, with onlya, B andpf, ¢ = 1,...,C unknown; a = 7.5%x1077, 8 = 1.0x1077, uf= .005x,

C D . |[1=v=95 1=-p=0975 1-v=.99
10 2 .945 975 .990
5 2 .944 974 .989
5 1 .950 .970 .986

*Protocol variables and parameters not specified in the Table are as in (5.1). See text for-
definitions of symbols. '
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.. ... .True and.approximate power of the tests of Hy. against the alternative H,,

using the test statisticsT' and A with nominal size v *

(4) Exact calculation for " Trué', with only p and p§ unknown. _

61

. v=.05 : v= 01 Fraction of
K, S, r A r A distribution
t! a t a t a t a "Evaluated

2.5x1077 - 2 1.0 { .082 .079 .080 078 .019- .018 .018 .018 .9998

' 5 1.081 079 .077 .078 .019 .019 018 .018 .9998

.11 .078 .081 .067 .076 .019 .020 .019 .017 .9997

S 1.0 | 219 218 .215 211 074 075 .070 .069 .9998

S5 1215 218 207 205 073 .076 .069 .066 .9998

A 0194 211 173 175 069 079  .066 _.053 .9997

10 1.0 | .546 542 539 523 294 296 285 .266 9997

: S 1.531 532 519 496 284 291 275 245 .9997

1 .445 465 416 371 232 261 .225 (155§ .9997

7.5%x10°7 2 1.0 | .110 106 .106 .104 .029 .027 .027 .026 .9996

S5 1.109 106 .103 .103  .029 .027 .027 .026 .9995

1] .103  .104 .090 .096 .028 028  .026 .023 .9994

-5 1.0 | .432 431 422 417 202 201 .196 . .186. .9995

5| .421 422 409 401 198 .198  .189  .175 .9995

1 .360 373 333 316 165 . .176 .156 .123 .9993

10 1.0 .911 909 .907 .898 .757 .754 751 .721 .9994

5| .898 895 .893 875 .737 .7133 .728 .679 .9994

1 .803 795 784 709 604 .607 591 448 .9992

(B) Estimates from simulations for " Trué', with only p{, p{ and u{ unknown; p{ = 7.5x10~7,

S,=0.1
v= 05 v = 01
K, r A r A
t a t a t a t a
2 {.098 .104 086 .096 .029 .028 .027 .023
S |.352 .373 324 316 .156 .176 .144 123
10 | .809 .795 .788 .709 613 .607 .600 .448

*Protocol variables and parameter values not specified in the Table are as in (5.1). See text for

definition of symbols.

Tt = true; a = approximate. .
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Table 6

Approximate power of likelihood-ratio tests of the hypotheses Hy and H, at nominal size v,
for equal spacing and allocation of 24 experimental cultures on the dose range [0, 64]*

(4) a = 1.5%x1077, B = 2.5x107%, f =2x1073 g = 08

Number Arithmetic Scale Logarithmic Scale
“of Dose . Hyp H; Hy . H;
Levels | v=05 v=01 »p=05 v=01 »=05 »=01 »=05 »= 01
12 .47 .22 12 .03 .40 17 A1 .03
8 .49 .24 A7 .06 - .43 .20 - .15 .05
6 52 .26 - .23 .08 47 .22 A7 .06
4 .57 .31 .39 .18 54 .28 .14 .05
3 .63 .36 53 .29 .63 .36 - .09 .03
2 .76 Sl - - .76 - .51 - -
(B) a=15x10"",8=5x10"%, f=10"% g=1
Number Arithmetic Scale ' Logarithmic Scale
of Dose H, ‘ H, Hy H,
Levels v=205 v=01 v=05 »= 01 »p=05 v=201  p=05 »=01
12 - .90 .72 32 14 .82 .59 .26 .10
8 .92 .76 .48 .25 .85 .64 41 .20
6 .93 .79 .64 40 .88 .69 .49 .26
4 .96 .86 - .87 .69 .93 .79 .39 .19
3 .98 91 .95 .85 .97 .89 .20 .07
2 .99 97 - - .99 97 - - -
*Protocol vari-éble—;:;El ;_J;r;ﬁ'l_aer vaiues not specified in the Table are as in (5.1). See text for

definition of symbols.
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Table 7

Data and estimates from an assay of chemical X
using the mouse lymphoma protocol*

Dose Cu!tpre Size (>§10‘6) Ted  ped e s s
1§ s .

0 11.85 13.05 557 @ 284 916 035  .060
. 12.51 12.01 542 337 ‘ :
39 10.47 12.01 497 395 .836 .0 .060

10.62 13.05 - 506 . 396
49 10.00 11.55 392 445 666 -.027 .056
9.00 11.55 407 419 '
6.1 9.37 7.32 414 436 643 -049 .039
8.04 8.11 358 432
7.7 6.00 7.50 366 424 613 -164 .040
496 8.34 370 475 ,
8.5 4.89 - 7.32 296 454 S17 0 -210 .035
4.24 . 6.67 324 - 539 ,
9.5 3.27 4.84 - 306 502 .484 -.288 - .017
342 423 275 504

definition of symbols.
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*For each dose, data from duplicate cultures are given in successive lines. - See -text for
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Figure Legends

Schematic of mutagenesis assay protocol.

Contours of approximate power for (K » S “) using the test statistic I at nominal level .05.
The protocol variables are in (5.1), Dg= D. =1, and S, the survival in the treated cul-
ture, is expressed as a percentage of control.

Approximate power of the test based on the statistic I' at nominal level .05, as a function
of K,, for various values of S,. The protocol variables are as in (5.1), Dg= D, =1, and
S, is expressed as a percentage of control.

- Linear relationship between dose x and p,(x) given by « + Bx; a non-linear relationship

a + bx + fe¥, whose line of best least squares fit is a + Bx.
(A) a=7.5x10"", B =25x1078 f =2x107%, g = 08.
(B) a=7.5%x10"", 8="50x10"% f=10"8 g=1.

Power of the likelihood ratio tests for zero slope (Hp) and linear fit (HL) as functions of
the location of the middle dose in a 3-dose, equally replicated design. Protocol variables
asin (5.1). H,tested at nominal level .01, H, tested at nominal level .05.

(A) Linear and non-linear alternative as in Figure 4A.
(B) Linear and non-linear alternative as in Figure 4B.
Results of the analysis of the data in Table 7.

(A) Maximum likelihood estimates of pf, ¢ = 0,1,...,C under the saturated model, and
estimates of a and B under the linear model.

(B) Observed (open circles and squares) and expected (solid circles and squares) mutant
colony counts under the linear model. _

Empirical (jagged line) and fitted (smooth line) cumulative distribution functions for the

replicated mutant colony counts, plotted on a linear scale.

Empirical and fitted cumulative distribution functions for the replicated mutant colony

counts, plotted.on a normal probability scale.’
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