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Signed-Rank Tests for Censored Matched Pairs

DOROTA M. DABROWSKA*

1 consider the problem of testing bivariate symmetry in matched-pair experiments where the observations are subject to univariate
censoring. Thus the observable random variables are given by (Y, Y3) and (d,, d,), where Y, = min(X,, C) and 9, = I(X, =
C) (j = 1, 2). Here (X,, X;) is a random pair of partially observable lifetimes and C is a fixed or random censoring variable.
The hypothesis to be tested is that (X, X;) and (X;, X)) have the same distribution. Following Woolson and Lachenbruch
(1980), I consider censored data generalizations of signed-rank tests such as the sign, signed Wilcoxon, and signed-normal
scores tests. I derive the asymptotic distribution of these test statistics under fixed and contiguous alternatives. The efficiencies
of the signed-rank tests are considered in a log-linear model and compared with efficiencies of the paired Prentice-Wilcoxon

and log-rank tests.

KEY WORDS: Bivariate symmetry; Censored data; Paired-rank tests.

1. INTRODUCTION

I consider the problem of testing whether (X;, X;) has
the same distribution as (X,;, X};) (i = 1, . . . , n), where
(X, Xy) are iid nonnegative bivariate random vectors
representing failure or survival times of paired subjects.
Throughout the failure times (X);, X;) are subject to uni-
variate right censoring, so the observable random variables
are given by (Yy;, Yy;) and (8, 05), where Y; = min(Xj;,
C)andd, = I(X;=C)(j=1,2;i=1,...,n). Here
the C’s are independent random variables representing
withdrawal times from the study for reasons unrelated to
the failure mechanism. It is assumed that the C’s are in-
dependent of the X’s. The censoring mechanism assumes
that for both members of the pair the two time measure-
ments are made on the same time clock. This will occur
in the case of matched-pair experiments or twin studies
when the subjects undergo the study simultaneously and
are censored only if failure does not occur by the end of
the study. Batchelor and Hackett (1970), Holt and Pren-
tice (1974), and Woolson and Lachenbruch (1980), for
instance, reported data on survival of skin grafts on burn
patients, each of whom received two grafts. The donor
and the recipient were matched for blood groups and
closely or poorly matched for the transplantation anti-
gen system. Censoring occurred at the termination of
the study. Another well-known example is the study on
remissions in acute leukemia patients (Freireich et al.
1963), where patients were matched according to the re-
mission status. Within each pair, patients were assigned
to either placebo or treatment. The possibly censored re-
sponse variable is given here by the length of the remis-
sion period.

For uncensored data, tests for bivariate symmetry can
be based on signed-rank statistics; see Doksum (1980),
Lehmann (1975), and Woolson and Lachenbruch (1980).
In the presence of censoring, define Z, = Y,; — Y); and
leg ¢; be the sign of Z;. The censoring mechanism implies
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comments, especially a referee who pointed out mistakes in the original
version of the article. This research was partially supported by the Uni-
versity of California Presidential Fellowship and National Science Foun-
dation Grant DMS-8901603.

that ¢; = 0 and Z; = 0 whenever 8;; = d,; = 0,¢ = 1
whenever §;; = 1 and d,; = 0, and & = —1 whenever
dy; = 0 and d,; = 1. Moreover, if the underlying failure
times have a continuous distribution, then for each un-
censored pair ¢; = 1 or¢; = — 1 with probability 1. Define
sets By ={i: ¢ =1,0,0,, =1}, B, = {i : & = —1,
010y = 1}, By = {i : 6; = 1,65 = 0}, and B, = {i :
0y = 0,0, = 1}. Finally, forj = 1, ..., 4 let N;(t) =

i1 Nii(t), where N;(¢t) = I{|Z)| = ¢, i € B;], be processes
counting occurrences of uncensored and singly censored
pairs (1Z{, &,).

To test the hypothesis of bivariate symmetry we consider
statistics

T = f K.d(N, — N)) + f K.d(Ns — Ny, (L1)

where K, and K, are some scoring processes. Special cases
include (a) the sign test, K, = K. = 1; (b) the signed
Wilcoxon test, K, = 1 — F_and K, = 1 — F_/2; and
(c) the signed-normal scores test, K, = ®~'(1 — F_/2)
and K, = 2Fz'¢p{®'(1 — F_/2)}, where ¢ and ® are the
density and the distribution function of the standard nor-
mal distribution. Here F_ is the left-continuous version of
the product integral

F(r) = TI{1 - AA(s)}
S=t
with A(t) = [ U I(U > 0)d(N, + N,), where U(t) =
2 I[|Z]| = t, & = *1]. In the absence of censoring, A(¢)
is the Aalen—Nelson estimator of the cumulative hazard
function | X,; — X;,| and F(¢) is the corresponding empir-
ical survival function. Further interpretation of these sta-
tistics is given in Section 2.
In general, assume that K, = J,(1 — F.) and K, =
J.(1 — F_), where the score-generating functions J, and
J. satisfy the relationship

L) = —{(1 = v)J(v)}'. (1.3)

This choice of the scoring functions is motivated by the

(1.2)

© 1990 American Statistical Association
Journal of the American Statistical Association
June 1990, Vol. 85, No. 410, Theory and Methods

478



Dabrowska: Signed-Rank Tests for Censored Matched Pairs

censored-data signed-rank statistics considered by Wool-
son and Lachenbruch (1980), who discussed these tests in
the case of log-linear models. More precisely, let log
X =0+ nu + ¢ and log Xy = my, + &, where {n,,};_,
and {#;};_, are mutually independent samples from a dis-
tribution with density ¢ and {¢;}7_, is a sample independent
of #,’s and #,;’s. Woolson and Lachenbruch’s signed-rank
test for testing § = 0 against > 0 is based on statistic T
with score function J,(v) = —¢'(z)/¢(z) and J.(v) =
2¢(2)/(1 — v), where z = ®!(1/2 + v/2) and @ is the
distribution function corresponding to ¢. These scores
arise as the scores of the locally most powerful test derived
from the marginal likelihood of signed ranks that is ap-
propriate in the uncensored experiment given the observed
pattern of deaths and withdrawals. The sign, signed Wil-
coxon, and signed-normal scores tests correspond to
double-exponential, logistic, and normal-densities ¢,
respectively.

In this article, I consider the asymptotic distribution of
the signed-rank statistics (1.1). In Section 2 I derive their
asymptotic distributions under the null hypothesis of bi-
variate symmetry and under contiguous alternatives. The
signed-rank tests are in general inefficient within the class
of tests based on the absolute differences Z;, their signs,
and censoring indicators. A test that is efficient within this
class of tests assigns to uncensored and singly censored
observations scores that depend on the joint distribution
of the failure times and the censoring distribution. More-
over, depending on the form of the joint distribution
of the failure times, such a test may assign a nonzero
score to doubly censored observations. Thus the ineffi-
ciency of the signed-rank tests can be attributed to the in-
appropriate choice of scores assigned to uncensored and
singly censored observations and omission of doubly
censored observation. This is studied in more detail in
Section 3, where I consider a log-linear model and exam-
ine the asymptotic relative efficiency of the signed-rank
tests with respect to efficient parametric tests based on
(lZil’ &5 Oti 52i)~

Further, I briefly discuss paired-rank tests such as the
Prentice-Wilcoxon and log-rank tests (Albers 1988; Da-
browska 1989; O’Brien and Fleming 1987). These tests
have the same form as commonly used rank tests for two-
sample comparisons except that the variances of the test
statistics are modified so as to take into account the in-
trapair dependence. For both uncensored and censored
data the performance of these tests relative to signed-rank
tests strongly hinges on the joint distribution of the un-
derlying failure times. Using a log-linear model, it is shown
that these tests may perform both better and worse than
signed-rank tests. Moreover, they may have a relatively
low efficiency with respect to optimal parametric tests
when censoring is heavy and doubly censored observations
have a nontrivial contribution to the log-likelihood ex-
pansion corresponding to (|Zi|, &, 01, 9:)-

Finally, in Section 4 I apply the signed-rank and paired-
rank tests to the leukemia remission data of Freireich et
al. (1963).
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2. ASYMPTOTIC DISTRIBUTION OF THE
TEST STATISTICS

21 Preliminaries

Throughout we assume that the joint distribution of
(X1;» X»;) has density y(x, y) and the censoring times C;
have distribution function G and survival function G = 1
— G. Introduce subsurvival functions Fj(t) = Pr(|Z] = ¢,
i € B;), and let f,(r) = —F(t)' be the corresponding
improper densities. These are explicitly given by

() = j Glu)y(u — t, u) du
ft) = j Gy (u, u — 1) du

50 = [{[ v =) ar} a6

fu(8) = f { f w(x, u — 1) dx} 4G (w). (2.1)

Note that 2 F;(0) = 1 — p, < 1, where
Po = Pr(dy; = 0, 95 = 0)

= J {J: J:o w(x,y)dx dy} ac (u) (2.2

is the probability of a doubly censored observation.

The functions f;(¢) and F;(¢) are related to the intensities
of the counting process N = [{N;(¢) : j = , 40
=1,...,n}:0<t<x]. Each of the component pro-
cesses has jumps of size 1, and no two processes jump at
the same time. The behavior of the process N is deter-
mined by its intensity a(t) = [{a;(t) :j=1,...,4;i
=1,...,n}:0<t<] where a;(t) dt = Pr{dN,(t)
= 1|95-}j = 1, 2. Here dN;(t) denotes the increment of
Nj; over the interval [z, ¢ + dt], whereas {5} is the self-
exciting filtration generated by the null sets and processes
N:(t) (j =1 ,4;,i=1,...,n). Thus a;(t) dt is
the conditional probability that N;; jumps in an infinites-
imal interval of length dt around time ¢ given the history
J,_ It can be easily verified that in our case a;(t) =

AL(OIZ]| = t, i € Bj], where A;(1) = f,(t)/F(¢).

I can also provide an interpretation of A(#) and F(¢) in
terms of counting processes. For this purpose consider the
process No(t) = [{Nu(¢) + Nyu(t) :i=1,...,n}:0<
t < ] counting occurrences of uncensored | Z,|’s. An easy
calculation shows that its intensity ay(f) = [{ag(t); i =
1,...,n}:0<t<o]is given by an(t) = I[|Z] = ¢,
g = +1]/1(t) where A = (f; + fo)/H and H(t) = ).,
F(t) = Pr(|1Z| = 1, & = =1). We have explicitly

H(t)
- [ { [ 1wt = 1) + v - o) ) a

The process A(¢) can be thought of now as the Aalen—
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Nelson estimate of the integrated hazard function A(f) =
Ii A(s) ds, whereas F(t) is the Kaplan-Meier (1958) es-
timate of the product integral

F(t) =TI - A(ds)]

s=t

2.3)

associated with A(f). In the absence of censoring F(t)
reduces to the survival function of the differences | X, —
X,;| and FE(¢) is the corresponding empirical survival func-
tion.

2.2 Asymptotic Normality of the Test Statistics

Consider first the null hypothesis of bivariate symmetry,
and assume that the joint distribution of the failure times
(X1, Xo;) has a density w(x, y) such that w(x, y) = w(y,
x) for all x and y. Clearly, in this case the densities (2.1)
satisfy f; = f, and f; = f,.

Proposition 2.1. Suppose that the score-generating
functions J, and J, are continuous and |J,(v)| = a(1 —
v)~Y2+% and |J.(v)] = a(l — v)~V2*? for some constants
a > 0 and ¢ > 0. (a) Under the hypothesis of bivariate
symmetry, n~ 2T converges weakly to a mean-zero normal
distribution with variance

ok =2 {f (1 = F)f, ds + ffgu ~ B ds} ‘
2.4)

(b) A consistent estimate of the asymptotic null variance
is given by

2 4
6% = | KXdN, + > | K?dN..
i=1 i=3

The proof is in the Appendix. If the score-generating
functions are chosen as J,(v) = —¢'(z)/¢(z) and J.(v)
= 2¢(z)/(1 — v), where z = ®~}(1/2 + v/2), ¢ is a
symmetric density, and & is the corresponding distribution
function, then the growth rate conditions assumed in Prop-
osition 2.1 hold for most ¢’s arising in practice. In partic-
ular, they are satisfied by logistic, double-exponential ¢
and normal, so under the null hypothesis, the signed Wil-
coxon, sign, and signed-normal scores test statistics are
asymptotically mean-zero normal with asymptotic vari-
ances given by

o} = 2 { f (1 — FYf, ds + f (1 - FR)f, ds}
o} = 2{ff1ds + fﬁds}
=Pr(e; = 1) + Pr(e; = —-1)
o} = 2 { f wiE)f, ds + f wi(B)fs ds} : 2.5)

Here wi(s) = ®71(1 — s/2), wy(s) = 25 1p{® (1 — s/
2)}, and ¢ and ® denote the density and the distribution
function of the standard normal distribution. The form of

Journal of the American Statistical Association, June 1990

these asymptotic variances was given by Woolson and
Lachenbruch (1980).

To derive efficacies of tests based on statistics n~2T
consider now contiguous alternatives of the form y,(x, y)
= y(x,y){l + n"V%,(x, y)}, where y, is a sequence such
that y,(x, y) = y(x, y) for almost all (x, y), 7, and y are
asymmetric functions, and

[ e, ywx, v) i dy = j y(x, ) (x, y) dx dy = 0.

The last condition ensures that y, is a density. In the case
of parametric models, if y(x, y) is a symmetric density
and the alternatives are y, (x, y) with 6, = 6, + cn~'?,
the function y reduces to c¢ times the derivative of log
wo(x, y) at 0 = 0,

Let P and P, denote the joint distributions of (|Z], ¢;,
01:, 0;) under the null hypothesis and under the alterna-
tive, respectively. Then

4 n
log dP,/dP = 3. [ 10g(fu/£)) dN; + log(po,/po) 3. 1
j=1 i=1

where ; = (1 — d;;)(1 — 9y;). Here p,, and the densities
fin are defined by (2.2) and (2.1), respectively, with y
replaced by w,.

I shall derive the asymptotic joint distribution of log
dP,/dP and n'T under the null hypothesis and use Le
Cam’s third lemma to obtain efficacies of the test statistics.
Set

A= pi [ { [ f "y(x, ) (x, ) dx dy} dG (u),

A1) = fi(H) f Gy - &, Wy - t, u) du,

and

A = £ | { [ =ey

X y(u—ty) dy} dG (u),

and let A, and A, be defined similarly except that y(u —
t,u)and y(u — t, y) are replaced by y(u, u — ¢) and y(y,
u — t), respectively. In the case of parametric families
wo(x,y),if 6, = 6, + cn~V2 and 6, corresponds to the
hypothesis of symmetry, then Agand 4; (j = 1, ..., 4)
correspond to the usual scores and are given by c times
the derivatives of log py, and log fj, at 6 = 6,. We need
the following condition.

Condition A.  As n— @, Ay, = 2n"Y(pen/po)** — 1]
— Agandforj =1, ...,4, [{A;, — APf;ds— 0, where
A = 2n[(fi )2 - 1]

Proposition 2.2. Suppose that the assumptions of
Proposition 2.1 and Condition A are satisfied. Then under
the null hypothesis, (log dP,/dP, n~"2T) converge weakly
to a normal distribution with mean (—1/2¢3, 0) and co-
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g§ cr
cr 0%)’

where g% is given by (2.4) and

variance matrix

o} = j (A% + ADf, ds
+ j (A% + ADfs ds + Alp,
cr = f 11 = F)(A, — A)f, ds

+ f LA - F) (A — A)fsds.  (2.6)
As a consequence of Le Cam’s first lemma (Hajek and
Siddk 1967) I conclude that the family of distributions
P, is contiguous to P. Moreover, under the alternatives
wa(x,y), the statistic n ~'2T converges weakly to a normal
distribution with mean c¢; and variance ¢%. It follows that
the efficacy of the test statistic T is given by c}/¢%. In
particular, the efficacies of the sign, signed Wilcoxon, and
signed-normal scores tests are given by

es = {f (A, — A)fids + j(A3 ~ Afs ds}z/a§,

ew = {f (A — A)(1 - F)fl ds
+ f (A5 = A)(1 — F/2)fs ds}2 / ¥,

and
en = { f (A, — A)w(F)f, ds
S R

where w,, w,, 6%, and ¢% are as in (2.5).

From Proposition 2.2 it follows immediately that the
signed-rank tests are in general inefficient within the class
of tests based on (|Z|, ¢;, 6,,, 9;). This is in contrast with
tests for two-sample comparisons under the equal-censor-
ship model (Gill 1980; Harrington and Fleming 1982). If
the density of the paired survival times (X, X,) belongs
to a parametric family y,(x, y) with § = 0, corresponding
to symmetry, and if the censoring distribution is known
(e.g., in the case of fixed censoring), tests for symmetry
can be based on the likelihood ratio statistic. The efficiency
of the resulting test is ¢3. If the censoring distribution is
unknown, tests have to be constructed adaptively using
methods appropriate for semiparametric models.

3. DISCUSSION AND SOME COMPARISONS
34 Signed-Rank Versus Parametric Tests

I consider now the asymptotic relative efficiency (ARE)
of the signed-rank tests with respect to the asymptotically
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optimal parametric test within the class of tests based on
(lZiI’ &y O1is 02;).

If the data are uncensored, then A; = A, = 0 and the
functions f, and f, reduce to the improper densities cor-
responding to Pr(|Z;| = ¢, & = 1) and Pr(|Z,| = ¢, & =
—1), respectively, where Z;, = X,; — X,;. If A, = —A,
then the signed-rank test (1.1) associated with A, is fully
efficient within the class of tests based on the absolute
differences Z; and their signs. This will occur whenever
the distribution of Z; has density ¢(x — 0), where ¢(x)
is symmetric about origin. The efficient signed-rank test
is then given by (1.1) with J,(v) = A,[®"'(1/2 + v/2)],
where @ is the distribution function corresponding to ¢
and A\(z) = —¢'(2)/9(2). If A; # —A,, an efficient
signed-rank test can be easily constructed by assigning
scores A {®~'[1 — F(|Z|)/2]} and A{{®~'[1 — F(Z|)/2]}
to positive and negative Z;’s, respectively. Here F is the
empirical distribution function of |Z;|’s given by (1.2).
Doksum’s (1980) signed log-rank test is an example.
Asymptotic efficiency of such tests follows from a minor
modification of Proposition 2.2.

Whereas in the uncensored case the distribution of the
test statistics depends only on the underlying distribution
of the differences X,, — X,, in the presence of censoring
the finite sample and asymptotic distributions of these sta-
tistics depend both on the joint distribution of the failure
times and the censoring distribution. The structure of the
asymptotic distribution, however, is completely different
from that of the log-likelihood expansion, and the effi-
ciency loss is caused by the inappropriate form of the score
functions assigned to uncensored and singly censored ob-
servations and omission of doubly censored pairs, if A, #
0. Similar inefficiency problems arise in the case of signed-
rank tests with differences X,;, — X,; having asymmetric
densities.

As an illustration let us consider the log-linear model
log X;; = 0, + n;; + ¢;and log X,; = 0, + my; + ¢;, where
{n} and {#,;} are mutually independent samples from the
same distribution and {¢;} is a sample independent from
{m.} and {#,}. The variable ¢; represents the unknown
matching effect common to both pair members. Consider
two models. In Model 1 I set 0, = —0, = 0/2, whereas
in Model 2 I let 6, = 6 and 0, = 0.

In the uncensored case, signed-rank tests derived from
the marginal likelihood of the absolute differences of log-
failure times and their signs are the same for both models.
In the presence of censoring the behavior of their cen-
sored-data analogs is, however, different for the two
models. In particular, in Model 1 the score A, correspond-
ing to doubly censored observations is 0, whereas in Model
2,A0#0.

For numerical comparisons, #;; and #,; were chosen to
have extreme-value distribution with survival function
exp{—e*} and ¢, was chosen to be uniform on the interval
(—a, a). The correlation between log X); and log X, is
equal to p = a*/(a®> + n),s0p—> lasa— = Fora =
0, the log-failure times are independent, and in this case
Models 1 and 2 reduce to two-sample and one-sample
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location models. Finally, it was assumed that the censoring
variable has an extreme-value distribution with survival
function exp{ — Ae*}. The scale parameter A determines the
heaviness of censoring. In particular, under the null hy-
pothesis of symmetry (6 = 0) the probability of doubly
censored observations is given by p, = (2a)7' log[(2 +
4e?)[(2 + Ae )] fora # 0 and py = /(A + 2) fora =
0. The choice of uniformly distributed ¢’s is no doubt
artificial and was made merely to simplify calculations.
For distributions other than uniform, the behavior of the
test statistics is similar.

The parameter a was chosen so that the correlation be-
tween the underlying failure times is p = 0, .1, .25, .5,
.75, and .9. Further, for each of these p values the scale
parameter A of the censoring distribution was selected so
that under the null hypothesis the probability of a doubly
censored pair is equal to p, = .05, .1, .25, .5, .75, and .9.
The calculation of the asymptotic lower bounds of Prop-
osition 2.2 and of the efficacies of the signed-rank tests
was carried out numerically using the Gauss—Kronrod rule
(IMSL 1987, subroutines QDAG, QDAGI, and QDNG).

For uncensored data and both models, log X,; — log
X,; follows a logistic location model and the signed Wil-
coxon test is fully efficient within the class of all tests based
on the absolute differences of the log-failure times and
their signs. Table 1 gives thel ARE of the censored-data
signed Wilcoxon test with respect to the optimal para-
metric tests based on (| Z,|, &, 61, J,;). In the case of Model
1, the ARE of the signed Wilcoxon test is close to 1 and
not much efficiency is lost by considering this test rather
than the optimal parametric test. In the case of Model 2,
the ARE is a decreasing function of p, for all p values and
it is an increasing function of p for all p, values. When
censoring is light (p, = .05) the efficiency loss ranges
between 11% for p = 0 and 4.3% for p = .9. As p,
increases to .9 the efficiency loss increases and ranges
between 47.1% for p = 0 and 31.8% for p = .9.

Table 2 gives the ARE of the sign and signed-normal
scores tests with respect to the signed Wilcoxon test. The
ARE is the same for both models. The efficiency of both
tests increases as censoring gets heavier. In particular, for

Table 1. ARE of the Signed Wilcoxon Test With Respect to the
Optimal Parametric Test in Models 1 and 2

p
po  Model 0 .10 25 50 .75 .90
.05 1 .980 981 983 986 .991  .996
2 .890 893 899 911 933 957
10 1 .968 971 974 982 992  .998
2 819 826 839 869 913 954
25 1 959 963 970 .982  .994  .999
2 702 718 745 806 .891  .954
50 1 .975 977 979 983 991  .997
2 617 632 660 .728 .840  .937
75 1 .993 993 992 990 .988  .990
2 559 569 588 633 .722  .841
90 1 1.000 1.000 .999 .997 .994  .990
2 529 530 539 561 .608  .682

Journal of the American Statistical Association, June 1990

Table 2. ARE of the Sign (S) and Signed Normal Scores (N) Tests
With Respect to the Signed Wilcoxon Test

p
Po Test 0 .10 .25 .50 .75 .90
.05 S .751 751 751 752 .754 .755
N 971 971 .970 .968 .956 .961
.10 S .753 .753 .755 757 .760 .762
N .983 .981 .979 .975 .967 .961
.25 S 767 .769 771 776 779 779
N 1.001 .996 .992 .982 .970 961
.50 S .814 .814 .813 .810 .802 .787
N 1.005 1.003  1.001 .994 978  .963
.75 S .892 .887 .879 .861 .835 .811
N 1.003  1.001 1.000 999 996  .984
.90 S .952 .948 941 925 895  .859
N 1.001 1.000 1.000 1.000 .999  .999

the sign test efficiency gain is approximately between
20.1% for p = 0 and 10.4% for p = .90 as p, increases
from 0 to .90. For the signed normal scores test the gain
in efficiency is about 5%. For some choices of p, and p
the signed-normal scores test is slightly more efficient than
the signed Wilcoxon test, which can be explained by re-
calling that the signed Wilcoxon test is a “locally most
powerful” signed-rank test only in the uncensored version
of the experiment and loses this property when the joint
distribution of the failure times and the censoring ‘distri-
bution are taken into account.

3.2 Signed-Rank Versus Paired-Rank Tests

For uncensored data a thorough treatment of the paired-
rank tests was given by Snijders (1981) in the context of
conditional-rank tests. Essentially, the idea is to pool X,;’s
and X,/s and look for the locally most powerful rank test
conditionally on the observed configuration of ranks.
Given the observed ranks {r;, r,;} of (X;, X5;), under the
null hypothesis of bivariate symmetry the rank r; is equally
likely to be the rank of X;; and X,;. Unfortunately, the
scores of these tests are usually too complicated to eval-
uate. Evaluation of the scores of the paired-rank tests and
derivation of their finite sample and asymptotic properties
require considering nonlinear rank statistics. In spite of
this problem, tests such as the paired Wilcoxon test (Lam
and Longnecker 1983; Snijders 1981) or the paired log-
rank test (Doksum 1980) have gained some popularity,
since in many situations they can be more efficient than
the signed-rank tests and parametric tests derived from
the likelihood of absolute differences X,; — X; and their
signs, because the latter procedures do not use information
or intrapair dependence.

Censored data analogs of paired-rank tests were devel-
oped by O’Brien and Fleming (1987), Albers (1988), and
Dabrowska (1989), among others. Here we consider a
Prentice-type method of ranking of the observations; that
is, the paired data are pooled, uncensored observations
are ranked among themselves, and each censored obser-
vation is assigned the same rank as the nearest uncensored
observation on the left. For suitably chosen score functions
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J(u, d), with u € (0, 1) and d = 1, 0, the test statistics
reject the hypothesis of symmetry for large values of n'?W/
g, where

W=n! {2::1 J(8(Yy), 61) — é:lJ(S(YZi)’ 52:‘)} (3.1)

and 62 is an estimator of the asymptotic variance of W of
the form

2 n
5 = no {2 S I(S(Y), )
J=1i=1

-2 E::l J(S(Y), 01 (S(Ya), 52:’)} .

Here S(¢) is the Kaplan-Meier estimate from the pooled
sample or an estimator asymptotically equivalent to it; for
example, $(1) = 1 — exp{—A(r)}, where A(¢) is the
Aalen—Nelson estimate based on the pooled sample. The
choice J(u, 1) = 2u — 1 and J(u, 0) = u yields the
Prentice—Wilcoxon text statistic, whereas the choice of
J(u,1) = =1 — log(1 — u) and J(u, 0) = —log(1l — u)
leads to the paired log-rank test.

Asymptotic distributions of tests based on n'?W/& were
derived in Dabrowska (1989) for arbitrary fixed and con-
verging alternatives. If S is the common marginal distri-
bution function of X|; and X,; under the null hypothesis,
the efficacy of tests based on the statistic (3.1) is given by
c¥/o%y, where

cw = J{J[S(X), 1] = J[S(x), 0BT (x)G(x) dS ()

and

ol = 2 f UIS(x), 1] — J[S(x), OJFG (x) dS (x)

- 2EJ[S(Y1,), 51,]J[S(Y2:)’ 62i],

provided that J(u, 1) = —{(1 — u)J(u, 0)}'. In the no-
tation of Proposition 2.2, the function I'(x) is given by

I'(x)

= yo(x) / J w(x,y)dy - f yo(£) dt/ 1 - S(x)]

and

yo(x) = j (6, y) = 7(0 Ol (x, y) dy.

Note that the expectation in the second term of 6% is equal
to the asymptotic covariance between J[S(Y};), J;;] and
J[S(Y5), 6] and accounts for the possible intrapair de-
pendence between the underlying failure times. On the
other hand, the mean cy is the same as in the case of two-
sample comparisons under the equal-censorship model
and depends only on the marginal distributions of the fail-
ure times and the censoring distribution.

For both uncensored and censored data, the perform-
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ance of paired-rank tests relative to optimal parametric
tests and signed-rank tests depends heavily on the struc-
ture of the joint distribution of the failure times. Table 3
gives the ARE of the paired log-rank and paired Wilcoxon
tests with respect to the signed Wilcoxon test in the log-
linear model of Section 3.1.

For uncensored data (p, = 0) both paired-rank tests
lose efficiency when the correlation between the paired
failure times increases. This is especially pronounced in
the case of the log-rank test, where the efficiency loss is
approximately 81.6% when p increases from 0 to .90. The
efficiency loss for the paired Wilcoxon test is only 21.9%
for the same range of p values, and as p increases this test
becomes more efficient than the log-rank test. This pattern
is present also in the case of censored data, though the
amount of efficiency loss decreases for both tests as cen-
soring gets heavier. Moreover, for heavily censored data
the ARE approaches 1, so both paired tests are asymp-
totically as efficient as the signed Wilcoxon test.

The ARE of the paired-rank tests with respect to the
optimal parametric test based on (|Z/, &;, d,;, J;) can be
obtained by multiplying entries of Tables 1 and 3. Similar
to the signed-rank tests, the efficiency loss can be attrib-
uted to the omission of doubly censored observations in
the test statistics (3.1). Note that in the presence of uni-
variate censoring, each member of a doubly censored pair
is assigned the same rank and score; consequently, such
pairs do not contribute to (3.1).

The log-rank test is fully efficient only in the case of
Model 1 with p = 0. For p > 0 or Model 2 the scores of
the fully efficient tests depend on the joint distribution of
the survival times and their rank counterpart is a nonlinear
rank statistic. Similar to the optimal parametric test based
on (|Z}, &, ,;, 02;), the fully efficient test assigns score 0
to doubly censored observations in Model 1. In Model 2,
however, this score is nontrivial. Numerical integration
shows that the ARE of the paired-rank tests with respect
to the fully efficient test is in the range 50%-63.7% for
the log-rank test and 37.5%-79.5% for the Wilcoxon test

Table 3. ARE of the Paired Log-Rank (L) and Paired Wilcoxon Test
(W) With Respect to the Signed Wilcoxon Test

p
Po Test 0 .10 .25 .50 .75 .90
0 L 1.500 1.375 1.241 1.061 .869 .684
w 1.125 1.096  1.053 .906 929  .906
.05 L 1.430 1.324 1.203 1.031 .841 .660
w 1.107 1.084  1.048 .990 .939 919
.10 L 1.369 1.281 1.175 1.014 .829 .651
w 1.091 1.073 1.045 .996 949 .930
.25 L 1.227 1.182 1.118 1.000 .827 .639
w 1.054 1.049 1.040 1.015 .971 .928
.50 L 1.085 1.078 1.063 1.014 .881 .668
w 1.018 1.022 1.028 1.028 .984 .874
.75 L 1.019 1.020 1.021 1.017 .980 .839
w 1.003 1.006 1.010 1.016 1.006 913
.90 L 1.002 1.003  1.003 1.005 1.004 .983
w 1.000 1.000 1.001 1.004 1.006 .992
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Figure 1. Paired Remission Times for Leukemia Patients. Censored observations are indicated by asterisks.

in the case of Model 2, whereas in Model 1 the range is
62.1%-100% and 75%-99.7%, respectively. In both
models the Wilcoxon test has higher efficiency under
stronger dependence and/or heavier censoring. Finally,
the ARE of the optimal parametric test based on (|Z}, ¢;,
d1i, 05;) With respect to the fully efficient test is in the range
37.5%-95.4% in the case of Model 2 and 75%-99.8% in
the case of Model 1.

4. AN EXAMPLE

To conclude, we consider the leukemia remission data
of Freireich et al. (1963). This data set was analyzed many
times, primarily as a two-sample problem without refer-
ence to the original matched-pair setting. Figure 1 gives
remission or withdrawal times in weeks, as given by Lach-
enbruch, Palta, and Woolson (1982).

The standardized log-rank and Spearman rank corre-
lation statistics for testing independence (Cuzick 1982; Da-
browska 1986) are —.602 and —.680, respectively. Thus
it seems that matching does not introduce association be-
tween the paired failure times. Oakes (1982) reported sim-
ilar results based on his modified Kendall’s tau.

The standardized sign, signed Wilcoxon, and normal-
scores statistics are approximately —3.273, —3.389, and
—3.426, respectively, and, using normal approximation,
the corresponding two-sided tests have p values of .001,
.0006, and .0006. This is consistent with earlier findings
of Lachenbruch et al. (1982) for the sign and signed Wil-
coxon tests. The standardized paired log-rank and paired
Wilcoxon statistics are equal to —3.252 and —3.071, re-
spectively, so the p values of the associated tests are .0012
and .002. By using any of these tests we can reject the
hypothesis of symmetry and equal marginal distributions
for the paired remission times.

APPENDIX: PROOFS

To prove Propositions 2.1 and 2.2, consider first statistics
n~'"?T, and 6%, where

7= [4 - PaV - Ny + [50 - P - N
and
G=nt3 fff,(l —Fyan, + n—'S [ 120 - Fyan,

Under the assumed growth-rate conditions on the score functions
J, and J,, T, is a sum of iid mean-zero random variables with
variance o} (0} < «), so the asymptotic normality of n~'"*T,
follows from the central limit theorem. Similarly, 6% is a sum of
iid random variables with mean ¢% and its consistency follows
from the law of large numbers.

To show the joint asymptotic normality of log dP,/dP, and
n~'2T,, note that by Le Cam’s second lemma (Hajek and Sidak

1967) it is enough to consider the asymptotic joint distribution
of L, and n~'"?T,, where

4 n
Ln = n—l/Z 2 Ajn dIV] + n_”ZAOH Z ’7:'
j=1 1=1
Under the null hypothesis,
4 n
S =n"' 2 AjdN, + n~'74, 2 U
=1 =1

is a sum of iid mean-zero random variables with variance 3.
Furthermore, Condition A and a little algebra yield

4
—1/4 % | ALf;dt — 1/4A3,py— —1/40}

J=1

EL,
and
4
var(L, — §) = E (A, — A)f;dt + (Ay, — A))’py— 0.
=1

It follows that under the null hypothesis L, is asymptotically
normal with mean —o3/4 and variance ¢}. Le Cam’s second
lemma completes the proof of the asymptotic normality of the
log-likelihood log dP,/dP. Proposition 2.2 follows then after ap-
plication of the Cramer-Wold device to n~'2T; and S.

It remains to show that n="%(T — T) = 0p(1) and 6} — 6%
= 0p(1). The proofs are analogous, so I consider the first of
these statistics only.

Arguments similar to those of Gill (1980) and Gill and Jo-
hansen (1989) show that F(f) and A(t) converge in probability
of F(t) and A(t), respectively, uniformly in ¢t € [0, t], where
H(z_) > 0. For any such t,

n-i f ‘A = B) = LA = BN, — No) > ,0.
0
Furthermore,

lim lim Pr

=

[n-w f U1 - F) = J,(1 - F)| aN, >a] =0

(A1)

for any ¢ > 0 and j = 1, 2. We have F = U/n, and by theorem
1.1 of Van Zuijlen (1978), for given n > 0, (U/n)~1** =<

fpH ~'2*¢ with probability at least 1 — » and f = #~"2*%. On the
set where this holds,

n-\2 J’" Ul — B) - 1, - F)| dN, < cn-? fxﬁ—uzm dN,,

where ¢ = a(1 + f). (A.1) follows now immediately from Mar-
kov’s inequality applied to the square of this bound. The terms
involving the score J.(v) can be treated analogously.

[Received June 1988. Revised November 1989.]
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