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Abstract
Sustained attention is a dynamic process with rich temporal
structure. Eye-tracking provides a tool for capturing rich tem-
poral data relevant to sustained attention, but extracting rele-
vant insights from this rich data is nontrivial. This paper stud-
ies eye-tracking data collected from children, aged 3-5, per-
forming the TrackIt task, a visual object tracking paradigm de-
signed for studying sustained attention development in young
children. Building on a hidden Markov model paradigm re-
cently proposed for analyzing eye-tracking data with TrackIt,
we explore characterizations of participant behavior, such as
continuously maintaining attention on an object and transition-
ing attention between objects, that provide richer insights than
task performance alone. In particular, our results suggest that
improvement in TrackIt performance that accompanies devel-
opment in this age range may stem more from improved ability
to return to task after distractions, rather than from improve-
ments in ability to continuously maintain attention on the task.
Keywords: Sustained attention; eye-tracking; TrackIt

Introduction
A large amount of recent work has characterized sustained
attention as a dynamic and fluctuating process involving the
interplay of different attentional modes to achieve adaptive
behavior over time (Rosenberg, Finn, Constable, & Chun,
2015; Case, Arruda, & VanWormer, 2016; VanRullen, 2018;
Fiebelkorn & Kastner, 2019). Existing behavioral methods
have identified temporal fluctuations in measures of on-task
(versus off-task) behavior, including accuracy, reaction time,
reaction time variability, and experience sampling, as well as
more general characteristics of fluctuations such as periodic-
ity (Rosenberg et al., 2015; Christoff, Gordon, Smallwood,
Smith, & Schooler, 2009; Aue, Arruda, Kass, & Stanny,
2009). However, there is a lack of measures to probe locally
and densely what attention shifting and distractions look like
mechanistically and statistically, at least in the real-time con-
text of consciously perceivable behavior (i.e., on timescale of
seconds or minutes, rather than sub-seconds).

It is typical for sustained attention tasks to have “targets”
with which participants are asked to engage. For the pur-
pose of this paper, it is useful to decompose the behavior of
performing a sustained attention task into the following four
process states1:

1This decomposition is meant purely to describe the behavior of
attending, not the underlying cognitive processes.

1. Attending to the target
2. Transitioning from the target to a (goal-irrelevant) non-

target or “distraction”
3. Attending to a non-target
4. Transitioning from non-target back to target or to another

non-target

Sustained attention research has largely focused on charac-
terizing State 1 and, to a lesser extent, State 3 (the “attending”
states), and relatively limited data is available for understand-
ing States 2 and 4 (the “transitioning” states). We believe this
is in part due to a lack of experimental methods available for
directly probing the transitioning states, which are typically
very brief in duration and lack measurable behavioral signa-
tures in many task paradigms.

In this paper, we present experimental results from the
TrackIt task, a visual object tracking task designed for study-
ing sustained attention in children, that, in combination with
continuous eye-tracking data, provides a direct measure for
probing transitions between attentive states. In particular, we
use this framework to study how changes in different compo-
nents of children’s attending behavior contribute to improved
task performance, with a focus on State 1, which we refer to
as “Staying”, and State 4, which we refer to as “Returning”.

Methods for Probing Sustained Attention
Measures based on task performance, such as accuracy, re-
action time, and reaction time variability can only determine
the extent to which a participant is in State 1 (Staying). In
particular, when a participant is not attending to the task,
they could be in any of States 2, 3, or 4, which cannot be
probed more informatively by such measures. For example,
most versions of the continuous performance task (CPT), a
well-established task for studying sustained attention, cap-
ture information only at the relatively infrequent timepoints
that call for a participant response, typically once every few
seconds (Rosvold, Mirsky, Sarason, Bransome Jr, & Beck,
1956). This may fail to detect if a participant becomes dis-
tracted but returns to task between responses, for example,
and it provides little or no information about what partici-
pants are doing while distracted.
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Experience sampling (or the thought-probe method) which
probes the participant about their conscious experience at
random intervals (Stawarczyk, Majerus, Maj, Van der Lin-
den, & D’Argembeau, 2011), has been used to study mind-
wandering and can probe the distracted state (State 3) more
descriptively, but lacks the temporal resolution to pinpoint
transitions, and its intrusive nature can potentially alter
the dynamics of natural attending behavior (Smallwood &
Schooler, 2015). Post-task probing is one approach to al-
leviating the latter issue, but suffers from the limitations of
participants’ memory.

Finally, these methods’ low temporal resolutions make it
challenging to investigate whether the behavior of sustaining
attention can be decomposed into more fundamental behav-
iors. In particular, a major complicating factor is that the tran-
sitioning states 2 and 4 are often very brief and hence can be
probed only by measures with sufficiently high temporal reso-
lution. Eye-tracking is a natural candidate method for obtain-
ing this dense temporal data. Eye-tracking is especially infor-
mative in the context of the TrackIt task because the relevant
aspects of participant behavior in this task (visually tracking
the displayed objects) are directly coupled to the eye-tracking
measurements. In particular, this paradigm allows us to probe
all four of the process states described above.

TrackIt

Before Trial During Trial After Trial

Figure 1: An example trial of the standard TrackIt task, on
a 4× 4 grid with 4 distractor objects. The target object here
is the grey triangle, as indicated before the trial. A video of
an example TrackIt trial can be found at https://osf.io/
utksa/.

TrackIt, introduced by Fisher, Thiessen, Godwin, Kloos,
and Dickerson (2013), is a child-appropriate visual object-
tracking task recently developed to measure sustained atten-
tion, that can capture differential contribution of exogenous
and endogenous control of attention and allow flexible as-
sessment over a range of developmental years (including pre-
school years), with parameters for adjusting difficulty with
age (Kim, Vande Velde, Thiessen, & Fisher, 2017). In the
TrackIt task (illustrated in Figure 1), participants visually
track a single target object moving about on a grid, among
other moving distractor objects. At the end of each such trial,
all objects vanish from the grid, and participants are asked to
identify the target’s final grid cell location (i.e., the grid cell
the target occupied immediately before vanishing). The pro-
portion of trials in which participant correctly identifies this

grid cell is called “location accuracy”, and has been the main
quantity used to measure participant performance. Previous
work has shown that children as young as 3 years old can con-
sistently complete the TrackIt task and provide usable data
(Fisher et al., 2013). Moreover, TrackIt has been shown to
have good psychometric properties for measuring sustained
attention, and research in several labs has linked performance
on TrackIt to classroom learning, numeracy skills, prospec-
tive memory, and proactive control (Erickson, Thiessen, God-
win, Dickerson, & Fisher, 2015; Doebel et al., 2017; Doebel,
Dickerson, Hoover, & Munakata, 2018; Brueggemann &
Gable, 2018; Mahy, Mazachowsky, & Pagobo, 2018).

TrackIt has two conditions: a “Salient Target” (exogenous)
condition and a “Non-Salient Target” (endogenous) condi-
tion. In the Salient Target condition, the target rhythmically
“shrinks” and “unshrinks” (specifically, it alternates between
its default size and a 50% reduced size, at 3Hz) throughout
the trial. This increases the salience of the target relative to
the distractors to exogenously support maintenance of atten-
tion on the target.

Previous Related Work with TrackIt A number of pre-
vious studies using TrackIt have shown that childrens’ loca-
tion accuracy improves significantly between the ages of 3-5
years (Fisher et al., 2013; Kim et al., 2017). Kim et al. (2017)
analyzed the errors (in location accuracy) made by children,
suggesting that

(a) young children showed a preference (compared to chance
levels) for selecting the final locations of distractor objects,
suggesting that they were indeed distracted by these ob-
jects, and

(b) there was a reduction in these “distractor errors” that ex-
plained a significant proportion of the improvement in lo-
cation accuracy with age.

Previous work using eye-tracking to study attention with
TrackIt has focused on using eye-tracking as a secondary
validation measure for location accuracy (Thiessen, Dicker-
son, Erickson, & Fisher, 2012). For analysis purposes, all
previous work using eye-tracking with TrackIt has summa-
rized the eye-tracking data by the proportion of time during
which the participant’s gaze was on the target, versus on a
distractor (Thiessen et al., 2012; Kim, Singh, Vande Velde,
Thiessen, & Fisher, 2018).

Both of these lines of work suggest that, as children de-
velop, their performance (in terms of location accuracy) be-
comes less affected by distractors, but the work sheds little
light on what changes in behavior underlie this improvement
with respect to distractors. For example, do children improve
on staying on the target and avoiding being distracted in the
first place, or do they improve on returning to the target after
distractions?

Current Study
The current study begins to explore operational measures for
probing the above four process states, based on a combina-
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tion of eye-tracking and TrackIt. In particular, we study the
distinction between “staying” and “returning”, which respec-
tively correspond to process states (1) and (4) in our process
state breakdown.

Methods
Open Practices Statement All analyses in this paper were
preregistered on the Open Science Framework (OSF)2. All
data analyzed in this paper is publicly available on OSF3. All
code underlying the analyses is available on GitHub4.

Data
In this paper, we reuse a dataset of TrackIt and eye-tracking
data originally provided by Kim, Singh, Thiessen, and Fisher
(2020). Kim et al. (2020) used this data to validate a hidden
Markov model (HMM) algorithm for inferring the object to
which a participant is attending at each timepoint. The out-
put of this algorithm is a high-frequency (60Hz) sequence of
objects that the participant is estimated to be tracking, over
time. Each timepoint in this 60Hz sequence is refered to as
a “frame”. After applying preprocessing steps (as described
in Kim et al. (2020)), we apply this HMM algorithm and use
the output as a starting point for our analysis.

Participants 50 typically-developing children, aged 3.5-6
years (M = 4.60, SD = 0.67), each performed 11 TrackIt tri-
als, including 1 initial practice trial during which the experi-
menter explained the task. Practice trials were omitted from
analysis, giving 10 usable trials per participant in each con-
dition. Data from 8 participants was discarded due to eye-
tracking data quality issues, leaving 42 children, ages 3.5-6
years (M = 4.65, SD = 0.71) included in the analysis. Partic-
ipants performed Salient Target and Non-Salient Target con-
ditions on separate days (approximately 1 week apart), with
order counter-balanced.

Procedure Participants were asked to visually track (“fol-
low with your eyes”) a single target object as it moved around
on the grid, among moving distractor objects (with exact pa-
rameter settings as described under “TrackIt Settings” be-
low). As shown in Figure 1, before trial start, the target was
indicated by a red circle around it, which disappeared upon
the start of the trial (initiated by button press). The target
then flashed white repeatedly for a half-second before all ob-
jects began to move around the grid. At the end of each trial,
all objects vanished from the grid, and the child was asked to
indicate (by pointing) the final grid cell the target occupied
before vanishing.

TrackIt Settings Based on previous work calibrating
TrackIt to the 3-5 year old age group (Kim et al., 2017), the
following TrackIt settings were used: object speed was 500

2https://osf.io/4vtpc/
3https://osf.io/u8jbs/
4https://github.com/sss1/behavioral eyetracking

pixels per second, grid size was 6× 6, number of distractors
was 6, and minimum trial length was 10s (the actual length
of the trial was randomized between 10-20s, under the con-
straint that the target ended in the center of a grid cell, in order
to reduce predictability of trial end).

Measures of Performance
Each of the below performance measures was computed per
trial and then averaged over trials (within participant and con-
dition) to provide one value of each performance measure per
participant and condition; all discussion in the “Results” sec-
tion is in terms of these participant/condition-level measures.
The measures are defined in terms of “runs”, i.e., maximal
subsequences of consecutive frames in which the tracked ob-
ject (as estimated by the HMM) is constant. Between each
pair of consecutive runs, a “transition” occurs from one ob-
ject to the next.

In order to reduce sensitivity to factors such as overall
switch frequency (which is strongly influenced not only by
eye-tracking noise but also by choices of parameters in the
HMM), we normalized each measure to have a simple, fixed
expected value under the null hypothesis that participants’
attention was identically distributed among the 7 displayed
objects. This also improves interpretability of the measures,
because values can be compared to the null values.

Returning: Proportion of Transitions from Distractors to
Target (PTDT) Of all transitions from a distractor object,
PTDT is defined as the proportion that go to target. In expec-
tation, PTDT is the transition probability from distractors to
targets in the HMM, and hence, in the absence of any target
bias, PTDT has a mean value of 1/6.

Staying: Normalized Duration on Target (NDT) is de-
fined as the difference in mean duration of runs on target and
runs on any object. In the absence of any target bias, NDT
has an expected value of 0. Note that we used the difference
(rather than the ratio) of run lengths because this ratio would
be extremely sensitive to short runs off target and, moreover,
this ratio would not have the benefit of interpretation as a pro-
portion anyway.

Results
Target Preference In both Salient and Non-Salient Target
conditions, both returning (PTDT) and staying (NDT) had
means significantly higher than their respective chance values
of 1/6 and 0 (ps < .001, according to two-tailed, one-sample
t-tests, reported in Table 1). This indicates that children have
a consistent behavioral preference for staying on and return-
ing to the target object (as opposed to distractor objects).

Condition Difference Since the Salient Target condition
was expected to be more challenging than the Non-Salient
Target condition (at least for younger children), we next
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Table 1: Means and standard deviations (across participants)
of staying (NDT) and returning (PTDT) measures in Salient
(S) and Non-Salient (NS) task conditions. t-statistics and p-
values are for two-tailed, one-sample t-tests against chance
population means (1/6 for PTDT, 0 for NDT).

Cond. Measure M SD t(41) p
S Returning 0.49 0.20 10.56 < .001∗∗∗

NS Returning 0.48 0.22 9.01 < .001∗∗∗

S Staying 1.00 0.53 12.03 < .001∗∗∗

NS Staying 0.88 0.58 9.70 < .001∗∗∗

checked whether condition influenced participant perfor-
mance. As expected, location accuracy was somewhat higher
in the Salient Target condition than in the Non-Salient Target
condition, according to a two-tailed, paired t-test (MSalient =
0.46, SDSalient = 0.32, MNon-Salient = 0.40, SDNon-Salient =
0.29, t(41) = 2.38, p = 0.02). However, both returning
(PTDT) and staying (NDT) failed to show significant differ-
ences between the Salient Target and Non-Salient Target con-
ditions (according to two-tailed, paired t-tests for the means
and standard deviations in Table 1, t(41) = 0.50, p = 0.62
for PTDT and t(41) = 1.21, p = 0.23 for NDT). This was
somewhat surprising, since we had expected target salience
to assist either with re-grabbing attention when following a
non-target or with re-locating the target when searching for
the target with intention to return, either of which should im-
prove returning.

Regression over Location Accuracy As mentioned previ-
ously, one of the goals of this paper was to see whether chil-
dren’s performance, measured in terms of location accuracy,
can be decomposed into components of staying on and re-
turning to target. Hence, we checked how strongly return-
ing (PTDT) and staying (NDT) are related to Location Ac-
curacy. As illustrated in Figure 2, both quantities increased
significantly with Location Accuracy in both Salient Target
and Non-Salient Target conditions (ps < 0.05). Univariate
regression statistics are provided in Table 2.

Table 2: Simple linear regressions of returning (PTDT) and
staying (NDT) over location accuracy.

Condition Measure R2 F(1,40) p-value
Salient Returning .52 43.23 < .001∗∗∗

Non-Salient Returning .44 31.86 < .001∗∗∗

Salient Staying .12 5.27 .027∗

Non-Salient Staying .25 13.07 < .001∗∗∗

Regression over Age Motivated by previous observations
that 3-5 year old children’s location accuracies improve with
age, we asked whether children’s abilities to stay on and re-
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Figure 2: Linear regression of returning (PTDT) and staying
(NDT) over location accuracy (proportion of trials on which
the participant correctly identified the target’s final location).
Shaded regions indicate bootstrapped 95% confidence bands.

turn to target also improve with age. Hence, we regressed
each of location accuracy, returning (PTDT), and staying
(NDT) over age. As illustrated in Figure 3, in both Salient
Target and Non-Salient Target conditions, returning (PTDT)
increased significantly with age (ps < 0.001), whereas stay-
ing (NDT) failed to exhibit a significant increase with age
(ps > 0.05). Univariate regression statistics are provided in
Table 3.
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Figure 3: Linear regression of returning (PTDT) and staying
(NDT) over age. Shaded regions indicate bootstrapped 95%
confidence bands.

Mediation Analysis Since returning was found to signifi-
cantly improve with both age and location accuracy, we next
used mediation analysis to directly study the extent to which
the improvements in location accuracy that come with age can
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Table 3: Simple linear regressions of returning (PTDT) and
staying (NDT) over age.

Condition Measure R2 F(1,40) p-value
Salient Loc. Acc. .40 26.70 < .001∗∗∗

Non-Salient Loc. Acc. .28 15.82 < .001∗∗∗

Salient Returning .30 17.16 < .001∗∗∗

Non-Salient Returning .34 20.71 < .001∗∗∗

Salient Staying .05 2.25 .141
Non-Salient Staying .08 3.64 .064

be explained by improvements in returning. Table 4 shows
the results of this analysis. As expected from the previous
analyses, we see that returning (PTDT) plays a strong medi-
ating role between age and location accuracy, explaining 46%
of the relationship between age and location accuracy in the
Salient Target condition and 59% in the Non-Salient Target
condition.

Differential Regression over Age Finally, we investigated
whether age differentially affects staying and returning. To do
this, we first replaced Returning (PTDT) and Staying (NDT)
with their ranks (RPTDT and RNDT, respectively) across sub-
jects, within each condition, in order to make them directly
comparable. We then pooled RPTDT and RNDT and re-
gressed them over (1) age, (2) a binary indicator variable
measure type indicating whether the measure was RPTDT
(coded as 0) or RNDT (coded as 1), and (3) the interac-
tion of age and measure type. Results of this analysis are
provided in Table 5. The significant negative coefficient
βage×measure type confirms that age differentially affects ranks
of returning (RPTDT) and staying (RNDT); specifically, re-
turning improves more with age than does staying.

Discussion
In this paper, we introduced new measures of attentional re-
turning and staying based on eye-tracking in TrackIt. We pro-
vided experimental evidence suggesting that improvement in
children’s TrackIt performance may be better explained by
an improvement in their ability to return to the target after a
distraction than by an improvement in their ability to contin-
uously track the target. This finding can also be expressed
in terms of the four-state decomposition of attentional pro-
cesses provided at the beginning of this paper. In particular,
our results suggest that, over the course of development, the
behavioral changes that underlie improved task performance
may lie not so much in attention to the target (in State 1) as in
transitions from a distraction (State 4).

One model in the sustained attention literature that is es-
pecially relevant this discussion is the supervisory attentional
system proposed by Stuss, Shallice, Alexander, and Picton
(1995), which includes four processes: monitoring goal ac-
tivation, re-energizing goal activation, inhibition, and mon-
itoring the match between current behavior and the goal.

This fourth component is especially relevant for returning to
current-goal-relevant behavior after being distracted. (For a
meta-analysis review on neural bases of these components,
see (Langner & Eickhoff, 2013)). This proposed system pro-
vides a candidate model for the cognitive machinery support-
ing dynamic attention. In particular, it outlines mechanistic
pieces to support the movement or transitions of attention be-
tween various states of focus.

Another relevant model is the LC-NE (locus coeruleus-
norepinephrine) theory of adaptive gain (Aston-Jones & Co-
hen, 2005) in neuropsychiatry, which outlines a model of
adaptive attending behavior in which activity in LC neu-
rons and their noradrenic projections interface with reward
and cost judgments to drive perceptual modes of attending.
The modes outlined are enhanced processing of current-goal-
relevant features, disengagement from the environment alto-
gether, or disengagement specifically from the current task
set with continued general engagement in the environment
in search of other potential tasks when the utility of the cur-
rent task begins to diminish. Besides providing a breakdown
of the attentional modes and providing a rough mechanistic
theory for movement between these, Aston-Jones and Cohen
articulate an intuitive justification or functional value for the
“distractible” attentional mode, which is that it allows for ex-
ploration of alternative goals, given that a behavior that is
most beneficial to an organism in one moment may no longer
be in the next.

LC activity has been successfully tracked with measure-
ments of pupil dilation (Gilzenrat, Nieuwenhuis, Jepma,
& Cohen, 2010). Additionally, there is work on mind-
wandering which also uses pupil dilation measurements
to track and describe attentional lapses (Konishi, Brown,
Battaglini, & Smallwood, 2017). Hence, in future work,
it may be desirable to integrate the TrackIt-eyetracking
paradigm with measurements of pupil dilation, in order to
more richly characterize attentional lapses.

The fluid and cycling movement of sustained attention
between ideal engagement, disengagement, distraction, and
anywhere in between, has also been documented and studied
in several additional research areas. Recently growing litera-
ture on mind-wandering and its dynamics identifies and stud-
ies periods of distraction away from task, whether those pe-
riods are characterized by rumination of past events or plan-
ning or imagining of future events (Smallwood & Schooler,
2015). Finally, burgeoning work on meditation in health psy-
chology often draws on the idea of practicing “returning” af-
ter a distraction, or after the mind has wandered, to a space
of focus whether on the breath, another intended object of at-
tention, or just general focused awareness. Because of the re-
cent positive interest in meditation and its psychological and
functional dynamics, this work may be of interest to health
psychologists and the general community discourse on medi-
tation as well.
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Table 4: Results of mediation analysis of PTDT as a mediator of the relationship between age and location accuracy. 95%
confidence intervals and p-values are based on a bootstrap procedure as described in Preacher and Hayes (2008) with 10,000
bootstrap samples; p-values are for the null hypothesis of 0 indirect effect.

Condition Measure Standardized Indirect Effect 95% Confidence Interval Mediation Proportion p-value
Salient PTDT 0.29 (0.15,0.48) 46% < .001∗∗∗

Non-Salient PTDT 0.31 (0.16,0.49) 59% < .001∗∗∗

Table 5: Multiple linear regression of performance
(RPTDT/RNDT) over age, measure type, and their interac-
tion. t-statistics and p-values are based on a two-tailed t-test
for the individual regression coefficients, against a null popu-
lation coefficient of 0.

Covariate β t(164) p-value
age 10.2 6.09 < 0.001∗∗∗

measure type 24.6 2.21 0.028∗

age × measure type −5.3 −2.24 0.027∗

Limitations and Future Directions

While our results suggest that improvements in returning
(measured by PTDT) might mediate as much as half of the
improvement in location accuracy with age, it is not clear
what other factors contribute to the remaining improvement.
While improvements in staying (measured by NDT) might
contribute a small portion (as NDT showed a significant im-
provement with location accuracy and a trending but not sig-
nificant improvement with age), other possibilities include
improvements in motor function, task comprehension, or task
compliance, any of which might improve the location accu-
racy of participants who can already correctly track the target.
Some of these possibilities could be further probed by exam-
ining relationships between gaze behavior and different types
of location accuracy errors, such as the “spatial resolution”
and “distractor” errors characterized by Kim et al. (2017).

On the other hand, this and prior work (Kim et al., 2018,
2020) using the hidden Markov model to infer attentional
state from eye-tracking during TrackIt has assumed that chil-
dren predominantly rely on overt attention (i.e., attention as-
sociated with eye movements toward the object of attention)
for tracking the target, supported in part by the fact that partic-
ipants are explicitly instructed to follow the target with their
eyes. Still, there remains a possibility that participants could
attend to the target covertly, allowing for improvements in lo-
cation accuracy that are not accompanied by improvements
in eye-tracking based performance metrics. To understand
whether this occurs, future work could investigate trials with
significant “off-task” gaze behaviors that are followed by cor-
rect location accuracy responses.

Though the current study focused on pulling apart staying
and returning in terms of measurement during sustained at-
tending, and explored their differential development over age,

it did not focus on questions of underlying cognitive mecha-
nism. For example, it is not clear whether staying and return-
ing might operate on a shared cognitive or neural mechanism,
or are subserved by qualitatively different processes.

Theoretically, one could conceive of staying as just a ver-
sion of high-frequency returning, wherein the participant con-
tinuously shifts their attention back to the target over very fast
timescales. In this theory of a single mechanism, improve-
ment in returning over age may simply reflect an improve-
ment in the mechanism’s capacity to return after longer and
longer time gaps.

On the other hand, there is evidence (e.g., Aston-Jones and
Cohen (2005)) suggesting that externally directed attention
moves between modes of enhanced goal-relevant stimulus
processing and more distractible diffuse processing, which
could respectively differentially support staying or returning.
For example, the more distractible, diffuse processing mode
which promotes switching between objects of attention, may
support returning, but not staying. These findings could sup-
port the possibility of separate mechanisms behind staying
and returning. Though the question of shared or different
mechanisms is not directly explored in this study, the differ-
ential trends over age that we found in our results lends some
initial support to a theory in which separate mechanisms sup-
port the two constructs.
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