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Abstract

Scalable, hierarchical and dynamic modeling of communities in networks

by

Pedro Regueiro Martinez

The class of Bayesian stochastic blockmodels has become a popular approach for

modeling and prediction with relational network data. This is due, in part, to the fact that

inference on structural properties of networks follows naturally in this framework. Here,

we study the problem of community detection under stochastic blockmodels in different

settings.

First, we evaluate a stochastic gradient variational algorithm for stochastic models.

Stochastic gradient variational algorithms have become a popular tool for approximate

posterior inference in the statistics and machine learning literatures. We develop a new

version of the algorithm and compare its performance to that of Markov chain Monte

Carlo, the conventional method used to fit Bayesian stochastic blockmodels. We show that,

although the SGV algorithm is scalable, its performance can be very poor, specially when

there is substantial uncertainty in the community structure in the data.

Then, we turn our attention to the study of multilevel community structures in

network data. That is, arrangements in which vertices group to form communities and,

in turn, communities group into supercommunities. We propose a Bayesian hierarchical

extension of stochastic blockmodel that is capable of identifying and recovering multilevel

communities when these are present on the data. Markov chain Monte Carlo as well as

variational algorithms are derived and evaluated.

ix



Finally, we introduce a new dynamic stochastic blockmodel that allows us to study

the evolution of communities across time. Our approach models both shifts in community

membership using a fragmentation-coagulation prior, and changes in the propensities of

interaction among communities using a variant of the autoregressive process. Computation

is performed using a Markov chain Monte Carlo algorithm.

All models and algorithms are illustrated using both real and simulated data.
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Chapter 1

Introduction

Complex systems of interrelated components are an essential part of our everyday

lives. Interactions between proteins and other metabolites regulate our biological functions,

individuals and organizations develop different types of relationships, and we rely on the

Internet for communication and commercial purposes, to cite some examples. Networks

constitute an adequate mathematical object to model interactions among components of

such systems and, thus, their study can provide important qualitative information on the

effect that the structure of interactions has over the system.

For this reason, networks have been extensively studied for many years now; in

fact, their analysis is usually traced back to Leonard Euler in eighteenth century. Moreover,

research in networks has been developed across various fields of science. Such is the case of

mathematics, physics, statistics, sociology, computer science and, more recently, machine

learning. This has led to a vast and diverse body of literature studying various properties

and characteristics of networks. A good overview of the development of the field can be
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found in Newman (2003) or the more extensive treatment of Newman (2010).

Now, probabilistic modeling of networks is much more recent than the study of

networks. Early work in the area is found in Solomonoff and Rapoport (1951) and Luce

et al. (1955), but it was not until the 1960s that this approach drew attention. With Erdős

and Rényi (1959) and subsequent work, Paul Erdős and Alfréd Rényi popularized what

today is the most widely studied model for networks, the random graph. Since then, a

variety of extensions have been proposed; most notably, the configuration model of Bender

and Canfield (1978) and the exponential random graph of Frank and Strauss (1986). These

simple models have helped grasp an understanding of many features of networks, such as

the distribution of vertex degrees (number of ties), vertex centrality (relative “importance”

of a vertex), or transitivity (propensity of two vertices to be connected when they share

a neighbor). Also, models like preferential attachment (Price, 1976; Barabási and Albert,

1999) and the small world model of Watts and Strogatz (1998) have shed light into the

process of network formation, while Grassberger (1983) and Pastor-Satorras and Vespignani

(2001) have studied how processes evolve in a network. A good overview of the statistically

oriented literature can be found in Goldenberg et al. (2010).

Perhaps the best well studied problem within network analysis is that of community

detection, which refers to the splitting a graph into clusters or communities. As accounted

in Fortunato (2010); Newman (2004); Porter et al. (2009); Schaeffer (2007), many different

solutions to this problem have been proposed in the literature. Among the most successful

approaches are those based on the ideas of agglomerative clustering, modularity (density of

subsets of vertices), and betweenness (extent to which a vertex lies on the path between

2



other vertices). However, the majority of the methods developed in this direction have

been deterministic algorithms which are not able to provide a measure of the uncertainty

associated with the solution they produce. Another drawback from this literature is the

fact that these algorithms are usually developed to recover assortative structures; that is,

communities with high density of connections within the vertices of the same community

but few interactions across communities.

Among probabilistic models that can be used for community detection are latent

social space models of Hoff et al. (2002) where induced communities are found using a

mixture model in the latent Euclidean space as in Handcock et al. (2007). In contrast, the

present work explores the topic of community detection based on stochastic blockmodels of

Holland et al. (1983). Stochastic blockmodels naturally lend themselves to the problem of

community detection as they are based on the idea of modeling interaction probabilities

by partitioning the network into groups of structurally equivalent vertices. Furthermore,

stochastic blockmodels posses the appealing features of being capable of simultaneously

recovering assortative and disassortative mixing.

In particular, we look at three different problems within this context. First, given

the heavy computational requirements of Markov chain Monte Carlo algorithms, in Chapter

2 we explore an alternative computational method to fit the model. Stochastic variational

inference combines ideas from stochastic optimization (Robbins and Monro, 1951) and vari-

ational Bayes algorithms (Saul et al., 1996), and it has been applied to a wide range of

models including topic models in the original paper by Hoffman et al. (2013) and the mixed

membership stochastic blockmodels of Airoldi et al. (2009) in Gopalan et al. (2013). Our

3



goal here is to evaluate the performance of the stochastic variational algorithm in the spe-

cific setting of community detection under the stochastic blockmodel and compare it to that

of the MCMC. These comparisons are carried out both in terms of computational efficiency,

and posterior inference and predictive accuracy.

Secondly, a feature that is commonly observed in network data is the hierarchical

structure of communities. That is, nested arrangements in which vertices in the network

group to form communities and, in turn, communities group into so-called supercommuni-

ties. With exception of agglomerative clustering based methods, little attention has been

paid to having mechanisms that are capable of recovering this kind of multilevel commu-

nity structure. Agglomerative clustering methods, such as the work of Clauset et al. (2007),

place a probability distribution directly over the space of dendrograms with the network’s

vertices as leaves. Instead, in Chapter 3 we introduce a hierarchical extension of the stochas-

tic blockmodel that is able to capture the multilevel structure of communities, our work

is closest to that of Ho et al. (2012), though we use a fundamentally different approach to

introduce the hierarchy in the community parameters.

Finally, in Chapter 4 we turn our attention to the problem of modeling the evolu-

tion of communities in dynamic networks. That is, in a setting where a network is observed

repeatedly across multiple points in time. A common strategy to deal with dynamic network

data has been the generalization of static models. In this way, works like Sarkar and Moore

(2005), Westveld and Hoff (2011), Durante and Dunson (2014) and Sewell and Chen (2015)

have extended latent space models, while Guo et al. (2007) and Hanneke et al. (2010) intro-

duced temporal versions of the exponential random graph. See also Goldenberg et al. (2010)

4



for a good overview of the early work in the area. Dynamic extensions of the stochastic

blockmodel have also been proposed in works like Rodŕıguez (2012) and Betancourt et al.

(2015) where an extension based on hidden Markov models models is introduced. Here, we

propose an extension based on the fragmentation-coagulation processes of Bertoin (2006).

We begin the discussion in Section 1.1 by introducing the main ideas behind

stochastic blockmodels.

1.1 Stochastic blockmodels

The stochastic blockmodel (Holland et al., 1983) is a simple, yet very flexible

model that allows to represent different kind of interactions among different types of agents

in a complex system. In this section we concentrate on the case of simple, unweighted

and undirected networks, which can be characterized in terms of their adjacency matrix or

sociomatrix, Y ∈ <I×I , given by

Yi,j =


1 if there is an edge between vertices j and i

0 otherwise

where I represent the number of vertices in the network. For any undirected network the

adjacency matrix is, by construction, symmetric and, therefore, is possible to disregard the

observations below (or above) the main diagonal. Furthermore, in the case of a network

without self interactions, it is also possible to disregard the observations on the main diag-

onal as they ate all assumed to be structural zeros. Consequently, the set of observations

is taken to be

Y = {yi,j : 1 ≤ i < j ≤ I, i, j ∈ N}.

5



The binary nature of interactions naturally suggests these are modeled trough a

Bernoulli distribution

yi,j | λi,j ∼ Ber(λi,j); 1 ≤ i < j ≤ I. (1.1)

Now, the basic idea behind the stochastic blockmodel is that the network can be partitioned

into K ≤ I groups or communities, where two vertices are in the same community only if

they have equal interaction probabilities across the network. Formally,

λi,j = g(θξi,ξj )

where the block indicators ξ1, ξ2, . . . , ξI take value in the set {1, 2, . . . ,K}, the elements of

the set {θk,l}Kk,l=1 are usually referred to as the community parameters, and g is an appropi-

ate link function. Notice that, again, because of symmetry, attention can be constraint to

the set

Θ = {θk,l : 1 ≤ k ≤ l ≤ K, k, l ∈ N}.

Assuming conditional independence in the interactions both within and across

actors the likelihood can be expressed as

p(Y | Θ, ξ) =

I−1∏
i=1

I∏
j=i+1

p
(
yi,j | θφ(ξi,ξj)

)
. (1.2)

where henceforth φ : <2 → <2 denotes φ(u, v) = (min{u, v},max{u, v}), which ensures

mapping to the elements in Θ. In turn, (1.2) implies that

p(Y | Θ, ξ) =
K∏
k=1

K∏
l=k

{g(θk,l)}sk,l {1− g(θk,l)}nk,l−sk,l (1.3)

with sk,l =
∑
Sk,l yi,j and nk,l =

∑
Sk,l 1, and the sum is taken over the set

Sk,l = {(i, j) : i < j, (k, l) = φ (ξi, ξj)} .

6



With respect to the maximum number of communities K, a nonparametric ap-

proach can be taken as in the infinite relational model of Kemp et al. (2006). This model

allows for the effective number of communities in the network K? ≤ K to be learned from

the data, being able to take any integer value between 1 and I. Specifically, ξ is assumed

to follow a Chinese restaurant process (CRP) prior, which implies that its distribution is

given by Ewens sampling formula (Ewens, 1972), i.e.,

p(ξ1, ξ2, . . . , ξI) =
Γ(α)αK

?

Γ(α+ I)

K?∏
k=1

Γ(nk).

Alternatively K can be fixed trying to overestimate the number of communities in the

network, thus leading to a finite mixture model as in Nowicki and Snijders (2001). Here, for

simplicity, we take this later approach. However, for the block indicators we assume that

the entries of ξ are exchangeable and follow a Categorical distribution in {1, 2, . . . ,K}

Pr(ξi = k | wk) = wk; i = 1, 2, . . . , I, (1.4)

with weights vector w satisfying

w ∼ Dir (αw) . (1.5)

which, as discussed in Ishwaran and Zarepour (2000) and Neal (2000), if the parameter

vector is chosen as αw =
(
α
K ,

α
K , . . . ,

α
K

)
, as K → ∞, leads to a model that approximates

the infinite relational model.

Regarding the community parameters, a simple and computationally convenient

choice of prior is achieved by taking g to be the identity function and the elements of Θ

independent a priori from a common Beta distribution

θk,l ∼ Beta(a, b). (1.6)

7



Assuming conditional independence in the elements of Θ leads to a model where communi-

ties and actors are exchangeable in the network. The hyperparameters a and b control the

propensity of interactions within and across communities a priori; they could be fixed, for

example to imply a non-informative Uniform distribution with a = b = 1. Otherwise, an

additional hierarchical layer can be added to allow further information pulling by assigning

a prior distribution π(a, b) such as independent Exponential distributions.

Alternatively, a logit structure can be used under a Gaussian prior for the elements

of Θ. Specifically, if g is taken to be the canonical link, that is, θξi,ξj = log
(

λi,j
1−λi,j

)
, each

element in Y satisfies

p(yi,j | θξi,ξj ) =
(exp{θφ(ξi,ξj)})yi,j

1 + exp{θφ(ξi,ξj)}
,

and in this case the likelihood reduces to

p(Y | Θ, ξ) =

K∏
k=1

K∏
l=k

(exp{θk,l})sk,l
(1 + exp{θk,l})nk,l

. (1.7)

The community parameters can then be assumed conditionally independent from

a common Gaussian prior

θk,l | µ, σ2 ∼ N (µ, σ2). (1.8)

In this case µ affects the overall density of the network, while σ2 control the variability

among the propensity of interaction between the different clusters. Thus, setting µ = 0

centers the interaction probabilities at 1
2 , while, considering the transformation, choosing

σ2 = 1 leaves approximately 95% of the mass in [0.12, 0.88] a priori for all λi,j . If instead

a hyperprior, π(µ, σ2), is to be placed in these parameters, one computationally convenient

option is choosing conditionally conjugate distributions

µ ∼ N (µµ, σ
2
µ) and σ2 ∼ IG(ασ, βσ). (1.9)
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The concentration parameter, α, controls number of occupied communities in the

network K?. In the limit case of the infinite relational model, from Antoniak (1974), it is

known that the distribution satisfies

Pr(K? = k | α) = S(I, k)αk
Γ(α)

Γ(α+ I)

where S represents the unsigned Sterling numbers of the first kind. Thus,

E[K? | α] = α [Ψ(α+ I)−Ψ(α)] ≈ α log

(
α+ I

α

)

and

V[K? | α] = α [Ψ(α+ I)−Ψ(α)] + α2
[
Ψ′(α+ I)−Ψ′(α)

]
≈ α log

(
α+ I

α

)

with the first order approximations valid for large I.

In the parametric case we explore the effect of α via simulation. As an example,

Figure 1.1 shows the empirical CDF of K? for four different values of α in the case where

I = K = 100. From this figure is possible to observe that, in this case, the behavior expected

in the nonparametric model is also present for a finite K; namely, that the expected number

of clusters increases with α in the order of α log(I/α).

If alternatively, α is to be learned from the data, a common choice of hyperprior

is

α ∼ G(αα, βα) (1.10)

with the Gamma distribution parametrized in terms of shape and rate.
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Figure 1.1: CDF of the effective number of communities K? implied by the prior for four
different values of α, α = 1 (black), α = 3 (blue), α = 5 (red), and α = 10 (green) when
K = I = 100

1.2 Posterior inference using Markov chain Monte Carlo al-

gorithms

The model described above does not lead to closed form posteriors and, thus,

some form of approximation is required. The most usual way to fit this models is posterior

sampling via Markov chain Monte Carlo (Metropolis et al., 1953; Hastings, 1970; Geman and

Geman, 1984; Gelfand and Smith, 1990). In this section we describe an MCMC algorithm

for the stochastic blockmodel under the Beta prior. For brevity in the exposition, consider

the case in which α, a and b are assumed know.

Making use of Bayes theorem, equations (1.3) to (1.6) can be combined to express

10



the posterior distribution as

p(Θ, ξ,w | Y) ∝
K∏
k=1

K∏
l=k

{θk,l}a+sk,l−1 {1− θk,l}b+nk,l−sk,l−1
K∏
k=1

w
α
K

+nk−1

k (1.11)

where nk = nk(ξ) =
∑
Sk 1 and the sum is taken over Sk = {i : ξi = k}. From equation (1.11)

is possible to obtain the full conditional distributions of the model parameters. Particularly,

in the case of ξ,

P r(ξi = k | Θ, ξ−i,w,Y) ∝ wk
I∏
j=1
j 6=i

{
θφ(ξj ,k)

}yφ(i,j) {
1− θφ(ξj ,k)

}1−yφ(i,j)
(1.12)

for k ∈ {1, 2, . . . ,K}. Thus, for every i = 1, 2, . . . , I, ξi can be sampled from a Categorical

distribution with weights vector given by normalizing the RHS of equation (1.12).

Now, in the case of Θ,

p(θk,l | Θ−kl, ξ,w,Y) ∝ θa+sk,l−1
k,l (1− θk,l)b+nk,l−sk,l−1 (1.13)

which is easily identified as the kernel of a Beta distribution with parameters a + sk,l and

b+ nk,l − sk,l. From this distribution is interesting to observe that, in the case of an empty

component, that is if no actor is assigned to either community k or l, the full conditional

distribution reduces to the prior.

Finally, the weights can be sampled from

p(w | Θ, ξ,Y) ∝
K∏
k=1

w
α
K

+nk−1

k (1.14)

a Dirichlet with parameter vector
(
α
K + n1,

α
K + n2, . . . ,

α
K + nK

)
.
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Chapter 2

Stochastic variational inference for

the stochastic blockmodel

The methods described in Section 1.2 possess certain desirable properties. Namely,

they are relatively easy to implement, the Markov chain implicitly defined is guaranteed to

eventually converge to the posterior distribution, and and they allow to control the accuracy

level of the approximation by controlling the number of samples. In practice, however, the

rate of convergence may be slow and, as the number of parameters grows, the computational

burden can make this approach infeasible. Specific to the setting of network analysis, notice

that as a network grows the number of interactions grows O(I2), and, although perhaps

not at the same rate, the number of communities, and hence the number of parameters,

is expected to increase accordingly. Thus MCMC algorithms can result impractical, even

for moderately large networks. This chapter explores an alternative class of methods to

approximate the posterior distribution.
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2.1 Variational approximations

Consider the problem of approximating an unknown function that can be evaluated

up to a proportionality constant (p), by another function (q) that is restricted to be a

member of a certain family of functions. To this end, it is possible to define a functional

measure of “dissimilarity” between p and q, and use calculous of variations techniques to

minimize that measure, thus finding the q in such family that is “closest” to p. The idea

of applying this technique to case where p is chosen to be a posterior distribution and q is

a density can be traced back to the mid 90’s, in works like Saul et al. (1996), and is now

known in the literature as variational Bayes. A good overview of the early development in

this topic can be found in Jordan et al. (1999).

Briefly, the main idea can be summarized as follows. Let ϕ be a set of parameters

and p(ϕ | x) its posterior distribution after some data x has been observed. The purpose is

to approximate p(ϕ | x) with q(ϕ). Specifically, if the Kullback–Leibler divergence is chosen

as a measure of dissimilarity, the problem becomes

min
q

∫
q(ϕ) log

q(ϕ)

p(ϕ | x)
dϕ. (2.1)

Now, it is easily shown that

∫
q(ϕ) log

q(ϕ)

p(ϕ | x)
dϕ = log p(x)−

∫
q(ϕ) log

p(ϕ,x)

q(ϕ)
dϕ

and, thus, minimizing KL[q || p] is equivalent to maximizing Eq(ϕ)

[
log p(ϕ,x)

q(ϕ)

]
which is

known in physics as the free energy and in the computer science literature as the evidence

lower bound (ELBO). Note that the ELBO can be decomposed as

F (q,x) = Eq(ϕ)[log p(x,ϕ)] +H [q(ϕ)]

13



where H denotes the Shannon entropy. Furthermore, if q is assumed to satisfy the mean

field assumption

q(ϕ) =
∏
i

qi(ϕi)

where qi(ϕi) are the marginal variational densities, the solution of this problem satisfies

log q?i (ϕi) ∝ Eq(ϕ−i) [log p(ϕ,x)] (2.2)

which leads to a coordinate optimization algorithm. In particular, when in the exponential

family of distributions, the solution to (2.2) is readily available.

It is important to notice that the choice of the Kullback–Leibler divergence is an

arbitrary one. Naturally, other choices could be taken, such is the case of L1 or L2 diver-

gence. Even more, since Kullback–Leibler is not symmetric, it would also be possible to

consider the minimization of KL[p || q], which has been studied under the name of expec-

tation propagation. In practice, the choice described in (2.1) is computationally convenient

since it leads to closed form optimization, which is not generally true for other measures.

Consider the Beta blockmodel with fixed hyperparameters as discussed in Section

1.2. Before going into the variational algorithm, notice that when interest lies in the com-

munity indicators only, it is possible to marginalize (collapse) over the weight parameters

to obtain

p(ξ) =
Γ(α)[

Γ
(
α
K

)]K
Γ(I + α)

K∏
k=1

Γ
( α
K

+ nk

)
(2.3)

and, thus,

Pr(ξi = k | ξ−i) =
n−ik + α

K

(I − 1) + α
for all i ∈ {1, 2 . . . , I} and k ∈ {1, 2, . . . ,K} (2.4)

where n−ik =
∑

j 6=i 1{ξj=k}
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In this way, it is possible to find the variational approximation q(Θ, ξ) to the

marginal posterior distribution p(Θ, ξ | Y) ∝ p(Y | Θ, ξ)p(Θ)p(ξ) rather that approximating

the complete posterior distribution p(Θ, ξ,w | Y). This, effectively reduces the number of

constrains imposed by the mean field assumptions and, thus, potentially improving the

approximation. Now, for 1 ≤ k ≤ l ≤ K, the solution to (2.1) satisfies

log q?(θk,l) ∝ Eq(Θ−kl,ξ)[log p(Y,Θ, ξ)] ∝ Eq(Θ−kl,ξ)[log p(Y | Θ, ξ)] + log p(θk,l)

which implies that

q?(θk,l) ∝ exp


I−1∑
i=1

I∑
j=i+1

[yi,j log θk,l + (1− yi,j) log(1− θk,l)]ri,jk,l

 θa−1
k,l (1− θk,l)b−1 (2.5)

where

ri,jk,l =


q(ξi = k)q(ξj = l) + q(ξi = l)q(ξj = k) if k 6= l

q(ξi = k)q(ξj = l) if k = l.

That is, the variational distribution of θk,l is a Beta(a?k,l, b
?
k,l) with

a?k,l = a+
I−1∑
i=1

I∑
j=i+1

ri,jk,lyi,j and b?k,l = b+
I−1∑
i=1

I∑
j=i+1

ri,jk,l(1− yi,j). (2.6)

Also, for i ∈ {1, 2, . . . , I}

log q?(ξi) ∝ Eq(Θ,ξ−i)[log p(Y,Θ, ξ)] ∝ Eq(Θ,ξ−i)[log p(Y | Θ, ξ)] + Eq(ξ−i)[log p(ξi | ξ−i)].

Following Kurihara et al. (2007) the second term in this last expression can be

approximated using the second order Delta method and the fact that n−iξi is a sum of

independent Bernoulli random variables. Specifically, for any i

Eq(ξ−i)

[
log
(
n−iξi +

α

K

)]
≈ log

∑
j 6=i

q(ξj = ξi) +
α

K

−
∑
j 6=i

q(ξj = ξi)(1− q(ξj = ξi))

2

∑
j 6=i

q(ξj = ξi)

2
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Therefore, for any k ∈ {1, 2, . . . ,K}

log q?(ξi = k) ∝
∑
j 6=i

[
yφ(i,j)χk,1 + (1− yφ(i,j))χk,2

]

+ log

∑
j 6=i

q(ξj = k) +
α

K

− 1

2

∑
j 6=i q(ξj = k)(1− q(ξj = k))[∑

j 6=i q(ξj = k)
]2 (2.7)

where

χk,1 =
K∑
l=1

[(
ψ
(
a?φ(k,l)

)
− ψ

(
a?φ(k,l) + b?φ(k,l)

))
q(ξj = l)

]
,

χk,2 =

K∑
l=1

[(
ψ
(
b?φ(k,l)

)
− ψ

(
a?φ(k,l) + b?φ(k,l)

))
q(ξj = l)

]
and ψ represents the Digamma function. Finally, in a similar fashion, the free energy is

given by

F (q,Y) ≈
1

2
K(K + 1) (log Γ(a+ b)− log Γ(a)− log Γ(b)) + log Γ(α)− log Γ(I + α)

−K log Γ
( α
K

)
+

K∑
k=1

K∑
l=k

log Γ(a?k,l) + log Γ(b?k,l)− log Γ(a?k,l + b?k,l)

+
K∑
k=1

[
log Γ

(
I∑
i=1

q(ξi = k) +
α

K

)
+ ψ1

(
I∑
i=1

q(ξi = k) +
α

K

)(
I∑
i=1

q(ξi = k)(1− q(ξi = k))

)]

−
I∑
i=1

K∑
k=1

q(ξi = k) log q(ξi = k)

where ψ1 denotes the Trigamma function.

In general, variational Bayes algorithms tend to converge to a local optimum in

a relatively small number of iterations, making them fast in comparison to Markov chain

Monte Carlo algorithms. However, because the calculations required in the computation of

Eq(ϕ−i) [log p(ϕ,x)] are similar to those of the corresponding full conditional, p(ϕi | ϕ−i,x),

these methods also suffer from scalability issues. Essentially, the difficulty lies on the fact

that, for each parameter, calculations involving the entire data matrix are required.
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An extension of this algorithm, introduced by Hoffman et al. (2013) to address

these scalability concerns is stochastic variational inference. Using stochastic optimiza-

tion ideas, this algorithm speeds computations producing noisy estimates of the (natu-

ral) gradient within a coordinate ascent approach. This algorithm relies on a split of

the parameter set into local and global parameters ϕ = (ϕl,ϕg) in such a way that

p(ϕl,x | ϕg) =
∏
i p(ϕi, xi | ϕg), and p(ϕl,x | ϕg) and p(ϕg) are conjugate in the ex-

ponential family. Specifically, if

p(ϕi, xi | ϕg) = h(ϕi, xi) exp{ϕgT t(ϕi, xi)− al(ϕg)}

and

p(ϕg) = h(ϕg) exp{hT t(ϕg)− ag(h)},

conjugacy implies that t(ϕg)
T = (ϕg,−al(ϕg)) and thus

p(ϕg | ϕl,x) ∝ h(ϕg) exp{ηT (ϕl,x)t(ϕg)}

where ηT (ϕl,x) = hT +(
∑N

i t(ϕi, xi), N), with N the dimension of x. Furthermore, in that

case the solution to the variational distribution is in the same exponential family

q(ϕg) ∝ h(ϕg) exp{hq
T t(ϕg)− ag(hq)}

and, therefore, the natural gradient of the free energy can be written as

∇̂hqF (q,x) = Eq?(ϕl)[η
T (ϕl,x)]− hq

where q?(ϕl) is the regular variational distribution for the local parameters. This result can

be used in a Robbins and Monro (1951) algorithm taking x(L) a random subsample of the
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data, ϕl
(L) the corresponding local parameters and C the appropriate scaling factor, and

setting

hq
(t) = (1− ρt)hq

(t−1) + ρtCEq?(ϕ
(L)
l )

[ηT (ϕl
(L),x(L))] (2.8)

which is guaranteed to converge to a local minimum as long as the positive real sequence

ρt satisfies
∞∑
t=1

ρt →∞ and
∞∑
t=1

ρ2
t <∞. (2.9)

A common choice for the sequence of step sizes is given by ρt = (t+ τ)−κ where κ ∈
(

1
2 , 1
]

represents the forgetting rate and τ ≥ 0 is known as the delay. This scheme is illustrated

in Figure 2.1 for various choices of τ and κ. From this figure is possible to observe that κ

determines how fast the step size declines, and τ affects the starting level of the sequence

{ρt}.

Since the stochastic blockmodel previously discussed satisfies the assumptions of

the stochastic variational inference algorithm, it is straightforward to derive the required

updates from equations (2.2) and (2.8). The resulting algorithm is summarized as follows:

1. Randomly initialize the global parameters a
?(0)
k,l , b

?(0)
k,l for 1 ≤ k ≤ l ≤ K.

2. Repeat

2.1. Randomly obtain a subnetwork S by uniformly sampling the vertices in the

original network.

2.2. Update the local variational probabilities q(ξi = k) for all i ∈ S and all k using

equation (2.7) with the corresponding scaling factor.
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Figure 2.1: Evolution of the step size in the stochastic variational algorithm under the
scheme ρt = (t+ τ)−κ for different choices of κ and τ .

2.3. Compute the intermediate global parameters â?k,l, b̂
?
k,l using the noisy gradient

into equation (2.6).

2.4. Update the estimates of the global variational parameters using (2.8).

a
?(t)
k,l = (1− ρt)a?(t−1)

k,l + ρtCâ?k,l and b
?(t)
k,l = (1− ρt)b?(t−1)

k,l + ρtCb̂?k,l.

Notice that some of the computations required to calculate the ELBO are precisely

those avoided by the stochastic variational algorithm. For this reason, in order to asses

convergence of the algorithm, we track a noisy estimate of the ELBO computed over a fixed
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subnetwork composed of randomly selected vertices. Finally, it is worthwhile mentioning

that the multimodality of the problem makes both MCMC and variational approximation

algorithms susceptible to initial conditions. This problem is particularly salient in the

standard variational Bayes, and is slightly ameliorated with the noisy gradient estimates

of stochastic variational Bayes. Nonetheless multiple runs, which can be parallelized, are

required.

2.2 Evaluation

2.2.1 Simulated data

In this section we evaluate the performance of the stochastic variational algorithm

described in Section 2.1 in a setting in which the ground truth is known. To this end we

make use of the simulated dataset represented graphically in figure 2.2. This network is

constructed with I = 350 actors, split evenly in K? = 7 communities. In the experiments

throughout this section we set the maximum number of communities to K = 20 and the

model hyperparameters as a = b = α = 1.

The first issue we address is the selection of the parameters in the sequence {ρt}

and the block size |S|. In principle, any sequence satisfying conditions (2.9) leads to an

algorithm that is guaranteed to converge to a local mode. However, the choice of these step

sizes can have an important effect in the rate of convergence. Furthermore, the effect of {ρt}

is also dependent in the block sizes |S|. Using this simulated dataset, setting the maximum

number of communities K = 20 and choosing the hyperparameters α = a = b = 1, while

fixing the form of ρt = (τ + t)−κ, Figure 2.3 compares different choices of τ ≥ 0 and
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Figure 2.2: Pictorial representation of the adjacency matrix. Here actors in the network
are placed along the x and y axis. Yi,j = 1 is represented by a red dot, while a lack of
interaction is shown in white.

κ ∈
(

1
2 , 1
]
. Here, for 32 random initial conditions and each combination of κ, τ and ω

the stochastic variational algorithm is allowed to run for a time budget equal to the time

that the standard variational algorithm takes to converge. The free energy and entropy are

then calculated using the complete network and the difference is evaluated. The resulting

boxplots, which show the variability due to the starting point, are displayed in this figure.

In particular, notice that the case of ω = 1 does not correspond to the variational Bayes

algorithm as, even though the gradient is calculated with the whole dataset, the algorithm

takes only a partial step in the direction of the gradient. With almost 3, 000 runs of the

stochastic variational algorithm, this figure encompasses a vast amount of information for

the dataset at hand and suggests the use of non extreme values of ω, τ and κ. In particular,

very small fractions for ω tend to provide poor results, while 25% to 33% seems to work

well in this case. Although these results are specific to this dataset and do not necessarily
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Figure 2.3: For distinct parameter configurations and values of ω = |S|/I, a box plot
summarizing the distribution of F (q,Y)−H[q(·)] for 32 initial conditions is shown. For every
initial condition, the standard variational Bayes algorithm is executed until convergence.
Then, the corresponding stochastic variational algorithms are run for as much time as the
variational algorithm.

generalize, Figure 2.3 supports the idea that the selection of the step sizes greatly influences

the efficiency of the algorithm. The optimal choice of these parameters is problem specific,

both the network size and the expected community sizes should be considered when selecting
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these tuning parameters for the algorithm.

The second topic we address is the ability of the model of recovering the under-

lying community structure, comparing the performance of the two computational methods

available. For this purpose we fit the model and obtain 100, 000 samples from the posterior

distribution using the MCMC algorithm of Section 1.2, as well as 32 runs of the stochastic

variational algorithm setting κ = 0.6, τ = 1 and |S| = ωI with ω = 0.25.

With respect to the execution time of these algorithms, an average run of a C

implementation of the stochastic variational algorithm for this dataset takes 15 seconds on

a standard laptop with 8GB of RAM and a 2.66GHz Intel Core i7 processor; in contrast,

it takes approximately 4.5 hours for the MCMC under similar conditions. Although this

is not intended as a formal algorithm efficiency comparison, it gives a rough idea of the

significant difference in computational time between the two approaches.
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Figure 2.4: (Left) Monte Carlo estimates of pairwise posterior probabilities of same com-
munity. That is, for every pair (i, j), P r(ξi = ξj | Y) is shown ARI = 1. (Right) Variational
approximation q(ξi = ξj) ARI = 0.9.
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The left panel of Figure 2.4 shows the resulting mean pairwise incidence matrix

for the MCMC; that is, for every pair (i, j) of vertices in the network, this matrix shows

the posterior probability of i and j belonging to the same community i.e, p(ξi = ξj | Y).

From this figure, it is clear that the model is capable of fully recovering the underlaying

community structure in the network. In turn, the right panel of Figure 2.4 shows the inferred

cluster structure from q(ξi = ξj) for the stochastic variational approximation achieving the

highest lower bound out of 32 runs. Here, it can be seen that the variational approximation

recovers most of the underlying community structure in the network, although higher levels

of uncertainty are observed; particularly in the fourth, fifth and sixth communities. In

this case, given that true vertex partition is known, we are able to evaluate the resulting

community structure using the adjusted Rand index (Hubert and Arabie, 1985). The ARI

is a chance-corrected measure of similarity between two clusters based pairwise agreements.

Although negative values are possible, under this metric a value of zero indicates that the

is no more agreement than that expected by chance, while a ARI of one signifies that the

two partitions are equivalent. For the results shown in Figure 2.4, the ARI between the

true vertex partition and that obtained from applying the clustering procedure proposed

by Lau and Green (2007) with relative error cost of 0.5 to the mean posterior co clustering

probabilities is 1, while the corresponding ARI using the variational approximation takes

the value 0.9.

Next, we test the stochastic variational algorithm is through its predictive per-

formance. To this end, we carried a twenty-fold cross validation exercise where, for each

validation subset, the receiver operating characteristic (ROC) curve, and its corresponding
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Figure 2.5: (Left) Receiver operating characteristic curves for a typical validation subset.
(Right) Boxplots of the area under the ROC curve for MCMC and SVB algorithms.

area under the curve (AUC), for the SVB algorithm is compared to that of the MCMC.

These results are shown in Figure 2.5, where it is possible to observe that, in this case,

the stochastic variational algorithm performs reasonably close to the MCMC in terms of

prediction. Furthermore, it is worthwhile mentioning that even in the case where the true

underlying community structure is fully recovered, the ROC curve is not necessarily that

of the perfect classifier; this is because in this dataset some of the community interaction

probabilities are, in fact, close to 0.5.

Figure 2.6 compares the evolution of the variational and stochastic variational

algorithms. It shows the bound calculated over the complete network as a function of elapsed

execution time. From this figure it is possible to observe that, in this case, the stochastic

variational optimization performs reasonably close to the MCMC algorithm, supporting

the findings of Figures 2.4 and 2.5. More interestingly, Figure 2.6 suggests that even in a
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Figure 2.6: Evolution of Eq(Θ,ξ)[logP (Y,Θ, ξ)] with respect to execution time in seconds.

As before, ω = 0.25, τ = .6 and κ = 1 in the stochastic variational algorithm.

case where the variational algorithm converges closely to the posterior distribution, since

the stochastic algorithm climbs faster in the early stages, if the algorithm cannot be run

until convergence, the stochastic version may be preferable. The horizontal dashed line in

this plots corresponds to the value obtained by averaging logP (Y,Θ, ξ) evaluated at the

posterior samples. This quantity, differs from Eq(Θ,ξ)[logP (Y,Θ, ξ)], as the former averages

over the posterior while the later takes the expectation with respect to the variational

distribution. However, these two quantities are in a similar scale and, therefore, give an

idea of how well the variational approximates the posterior distribution.

Now, we explore a second simulated dataset with a similar structure, i.e. I = 350

individuals evenly split among K? = 7 communities, but with interaction probabilities

that are less clearly differentiated. Specifically, as can be seen in Figure 2.7, interaction

probabilities for the sixth community have been have been selected near the average of

26



those corresponding to communities five and seven.

Figure 2.7: Adjacency matrix for second simulated dataset. Yi,j = 1 is represented by a red
dot, while a lack of interaction is shown in white.
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Figure 2.8: (Left) Monte Carlo estimates of pairwise posterior probabilities of same commu-
nity. That is, for every pair (i, j), P r(ξi = ξj | Y) is shown ARI = 0.81 (Right) Variational
approximation q(ξi = ξj) ARI = 0.67.

Figure 2.8 shows the inferred community structures for this dataset under both
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computational approaches. In this case solid black lines are added to facilitate the recogni-

tion of the true community structure. From this figure it can be seen that both algorithms

have difficulties separating the individuals in the sixth community. While the MCMC places

part of these vertices in community five and the rest on community seven with high probabil-

ity, the stochastic variational algorithm tends to average over the modes mixing individuals

from the three communities into a single cluster. The Adjusted Rand Index between these

point estimates to the partition and the true community structure is 0.81 and 0.67 for the

MCMC and variational approximation respectively.
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Figure 2.9: (Left) Receiver operating characteristic curves for a typical validation subset.
(Right) Boxplots of the area under the ROC curve for MCMC and SVB algorithms.

In turn, from Figure 2.9 it can be seen that the predictive performance is affected

similarly for both algorithms. In both cases there is a reduction in the AUC level, and a

small increase in the variability is observed.
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2.2.2 Coauthorship network

In this section we consider the coauthorship network by Newman (2006). In this

network, vertices represent (I = 379) scientists working in the field of Network Science

and an edge connecting two vertices indicates the existence of collaboration(s) among those

scientists. This dataset includes a total of 914 publications up to early 2006, and is a subset

of a larger network constructed from the bibliographies of the two reviews Newman (2003)

and Boccaletti et al. (2006).

Figure 2.10: Raw data for the collaboration network of Newman (2006). In this network
vertices represent authors of scientific papers in the field of network science, and an edge
represents the existence of at least one collaboration between those authors.

In this case, since the number communities in the network K? is unknown, we

choose the maximum number of communities in the model as K = 30, trying to overes-

timate number of communities in the network while, simultaneously, keeping the model

computationally tractable. As in the previous example, the hyperparameters in the model
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are fixed to the values α = a = b = 1, and in the stochastic variational algorithm the batch

sizes are taken as |S| = ωI with ω = 0.25, while the step sizes sequence is defined by taking

κ = 0.6 and τ = 1.

Figure 2.11: Pairwise incidence matrices under MCMC (left) and stochastic variational
approximation (right).

Figure 2.11 shows the results generated by the MCMC and the stochastic varia-

tional algorithm. The left panel shows the mean pairwise incidence matrix resulting from

200, 000 samples of the posterior distribution taken after a burn in period of 300, 000 itera-

tions. With a different ordering of the vertices, the right panel shows the inferred community

structure using the best out of 32 runs of the stochastic variational approximation. Here,

is possible to see that, in contrast to the simulated dataset, there is not a clear correspon-

dence between the communities found by the two methods. Figure 2.12 shows the overlap

between the partitions derived from both algorithms. This plot displays the pairwise in-

cidence matrix of the stochastic variational approximation under the ordering obtained

from the MCMC. Thus, confirming that the two approaches lead to qualitatively differ-

ent solutions; particularly, white spaces in the anti-diagonal blocks correspond to MCMC
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Figure 2.12: Overlap in community structure from the two methods. This figure plot
the incidence matrix from the stochastic variational algorithm using the ordering from the
MCMC.

communities being separated by the stochastic variational approximation, while red areas

outside of the main anti diagonal blocks indicate grouping of individuals in distinct MCMC

communities. Lastly, Figure 2.13 presents the adjacency matrix (raw data) permuted to

Figure 2.13: Adjacency matrix ordered with respect to MCMC (left) and stochastic varia-
tional approximation (right) communities.

show the corresponding elicited communities. The lines correspond to the clustering esti-

mate that result from the method proposed by Lau and Green (2007) with relative error
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cost of 0.5.

Next, we evaluate the out-of-sample performance of the model. A randomly se-

lected subset consisting of 5% of the potentially observed links are treated as missing values

and predicted in the same way as in Section 2.2.1. Figure 2.14 shows the ROC curves

and the boxplots corresponding to the area under the ROC curves for the twenty test sets

under both the MCMC and the SVB algorithm. From this figure it is clear that, for this

dataset, the MCMC substantially outperforms the stochastic variational algorithm in terms

of predictive performance.
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Figure 2.14: (Left) Receiver operating characteristic curves for a typical validation subset.
(Right) Boxplots of the area under the ROC curve for MCMC and SVB algorithms.

2.2.3 Internet Movie Database network

To asses its scalability, we tested the stochastic variational algorithm using a net-

work constructed from a subset of the Internet Movie Database. This network consists

of 9, 647 vertices representing movies and 1, 050, 162 edges indicating whether two movies
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Figure 2.15: Receiver operating characteristic curve for a randomly selected validation
subset with the IMDb dataset.

share at least one cast member. In this case the algorithm takes approximately eight hours

to reach convergence in 60 iterations with K = 40, ω = 0.25, κ = 0.6 and τ = 1. The re-

sults suggest the existence of K? = 25 different communities. Interestingly, we observed an

association between the resulting communities and the IMDb genre classification with, for

example, a third of documentaries in the data being clustered together to form a single com-

munity. Additionally, we evaluate the predictive accuracy of the model under this dataset

using cross validation. Figure 2.15 shows the corresponding receiver operating characteristic

curve which, in this case, attains an area under the curve of 80%.

2.2.4 Simulated IMDb dataset

To further explore the performance of the stochastic variational algorithm for a

dataset with dimension such as the one introduced in Section 2.2.3, we created a simulated
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dataset with similar characteristics. Specifically, we take the recovered community structure

and mean variational community parameters and set them as the ground truth. Then, using

these values, we randomly generate a new set of edges among the same 9, 647 vertices. The

resulting network consists of 1, 051, 101 connections.

Setting K = 40, κ = 0.6 and τ = 1, we test the algorithm for two different values

of the proportion of subsampled vertices, ω = 0.15 and ω = 0.25. The ARI corresponding

to the highest achieving lower bound out of 32 runs are shown in Table 2.1. There it can be

seen that in both cases the algorithm recovers the underlying structure only partially, and

that, in this example, a greater proportion of co-clustering is recovered when ω = 0.25.

ARI ω = .15 ω = .25

truth 0.495 0.7

Table 2.1: Adjusted Rand index comparing inferred community structure to the true par-
tition used for data simulation.

Next, Figure 2.16 explores the quality of the stochastic variational approximation

trough its predictive performance. The green ROC curve in this plot is calculated by

predicting a randomly selected subset of 25, 00 interactions in the network using the true

partition and true interaction probabilities in the data. In turn, the red and pink ROC

curves are obtained using the inferred community structure and interaction probabilities

from the stochastic variational algorithm with ω = 0.15 and ω = 0.25 respectively. Here it

can be seen that the predictive performance is fairly close to prediction under the truth in

both cases, with ω = 0.25 slightly outperforming ω = 0.15 in terms of the AUC.
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Figure 2.16: Receiver operating characteristic curves for a randomly selected validation
subset with the simulated dataset.

2.3 Discussion

In this section we have introduced a stochastic variational algorithm for the stochas-

tic blockmodel. In light of the well known computational efficiency of variational methods,

here we investigate into the quality of the approximation to the posterior distribution that

this algorithm is able to produce; specifically, we explore both the inferential and predictive

accuracy of this algorithm.

As a first step we note that the results for the stochastic variational algorithm

are highly dependent on the value of the tuning parameters τ, κ and ω. Providing general

guidance for the selection of these parameters is complicated as the results will typically

depend on true number and size of structurally equivalent factions in the data. Thus, every

application of the algorithm requires careful consideration of this topic. Furthermore, in

the illustrations explored in this section a subsample size of at least 25% is required to
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obtain adequate results, therefore limiting the gains in computational efficiency. Also, it is

worthwhile mentioning that, despite stochastic gradient optimization helping avoiding local

modes when compared to standard variational Bayes, in a multimodal parameter space,

such as the one of the stochastic blockmodel, multiple runs from different starting points

are still required.

Another characteristic that we have observed from the stochastic variational al-

gorithm is “smoothing over modes” which in the setting of community detection means

that the algorithm will have a tendency to miss communities that are not very clearly

differentiated. Most importantly, we highlight the fact that when there is substantial un-

certainty in the cluster structure the stochastic variational algorithm might be significantly

outperformed by the MCMC.

In practice, the stochastic variational approximation has the advantage of being

able to fit the stochastic blockmodel to networks where MCMC is simply infeasible, such

as the example of Section 2.2.3. In these cases it is important for the user to proceed

cautiously, being aware of the drawbacks of the algorithm.
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Chapter 3

Identifying hierarchical structures

in network data

As described in the introduction, networks frequently exhibit multilevel commu-

nity structure by which we mean that they can be partitioned into groups of structurally

equivalent vertices and, in turn, communities that exhibit similar interaction patterns across

the network might be further clustered into supercommunities. A couple efforts have been

made in the literature to study the topic of hierarchical structures in network data. In each

case, however, the definition of concepts such as supercommunity or hierarchical structure

has been slightly different. For example, Clauset et al. (2007) defines hierarchical orga-

nization as rooted binary tree with leaves representing the network vertices. Denoting

D = {D1, D2, . . . , Dn−1} the internal nodes of the tree, they model directly in the space of

dendrogram by taking a likelihood of the form

P(Y | D, θ) =

n−1∏
i=1

θ
Li(Y)Ri(Y)
i (1− θi)Ei−Li(Y)Ri(Y) (3.1)
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where Ei is the number of edges in the network with lowest common ancestor Di, and Li

and Ri are the number of vertices to left and right of Di respectively. Then, the profile like-

lihood P
(
Y | D, θ̂(D,Y)

)
is combined with a uniform prior to generate a pseudo-posterior

distribution, P (D | Y)), which is explored using a Metropolis-Hastings algorithm. This al-

gorithm uses simple switch moves into single internal nodes sampled uniformly at random,

attempting to explore the space of dendrograms. The result of this algorithm is a consensus

dendrogram which defines a hierarchical structure among the vertices in the network. How-

ever, it is not straightforward to know how or where to “cut” the tree in order to obtain

communities or higher level group structures.

In turn, Ho et al. (2012) define a model where vertices are sequentially clustered ci

according to a nested Chinese restaurant process (Blei et al., 2010), while interaction prob-

abilities are derived from denominated community compatibility matrices B. Specifically,

each vertex is assigned a multiscale membership vector θi according to probabilities drawn

from a stick-breaking process (Sethuraman, 1994); then, for each possible interaction, yi,j ,

the interaction probability is taken to be a function S(B, zi,j , zj,i, ci, cj) with zi,j following

a Multinomial(θi) and

S(B, zi,j , zj,i, ci, cj) =


Bh,h′ if h and h′ have the same parent

0 otherwise

where h = ci[min{zi,j , zj,j}] and h′ = cj [min{zi,j , zj,j}]. Inference in this model is carried

out trough MCMC and, again, a consensus hierarchical structure c = {c1, . . . , cn} can be

found. Under c communities and higher order structures are naturally defined; however, it is

important to note that communities obtained in this setting will be fundamentally different
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from those in a stochastic blockmodel as interaction probabilities will be inhomogeneous

within communities; thus, leading to group of vertices that are not necessarily structurally

equivalent across the network.

In this chapter we introduce a simple extension of the stochastic blockmodel that

allows for multi-level community detection, we describe a Markov chain Monte Carlo sam-

pler as well as a variational algorithm for approximate posterior inference in the model, and

we explore the model using simulated and real datasets.

3.1 Multilevel stochastic blockmodel

The stochastic blockmodel can easily be generalized in a hierarchical fashion and,

thus, it naturally lends itself for the problem at hand; namely, the discovery of multilevel

structures in networks. For this purpose the logit Gaussian prior structure is favored over

the Beta model, as it provides a more convenient parametrization of the second level mixture

through its mean parameters.

For each element in Y let

p(yi,j | θξi,ξj ) =
(exp{θφ(ξi,ξj)})yi,j

1 + exp{θφ(ξi,ξj)}

where θξi,ξj = log
(

λi,j
1−λi,j

)
, so that the likelihood function is given by

p(Y | Θ, ξ) =
K∏
k=1

K∏
l=k

(exp{θk,l})sk,l
(1 + exp{θk,l})nk,l

. (3.2)

Now, we assume that the community parameters come from a mean mixture of

Gaussians

θk,l | ηζk,ζl , σ
2 ∼ N (ηφ(ζk,ζl), σ

2), (3.3)
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where the location parameters, ηr,s, are assumed conditionally independent from a common

distribution

ηr,s |µ, τ2 ∼ N (µ, τ2), (3.4)

and where, once again, symmetry restrictions allow to consider only the subset

H = {ηr,s : 1 ≤ r ≤ s ≤ R, r, s ∈ N}.

As in the single level model, σ2 controls the variability in the propensity of interactions

between communities in a supercommunity and µ governs the overall density of the net-

work; while, in the second level, τ2 controls the dispersion of the mean of the community

parameters.

The community indicators remain as in Section 1.1; namely,

Pr(ξi = k | wk) = wk; i = 1, 2, . . . , I, (3.5)

with

w ∼ Dir (αw) . (3.6)

and αw =
(
α
K ,

α
K , . . . ,

α
K

)
. In turn, the supercommunity indicators ζ mimic the structure

of the first level indicators, taking a Categorical distribution in the set {1, 2, . . . , R}

Pr(ζk = r | vr) = vr k = 1, 2, . . . ,K, (3.7)

with weight vector v such that

v ∼ Dir (αv) , (3.8)

where αv =
(
β
R ,

β
R , . . . ,

β
R

)
.
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Analogous to the single level model we have that, as K → ∞,

P r(K? = k | α) = S(I, k)αk
Γ(α)

Γ(α+ I)

and further, when R → ∞,

P r(R? = r | K?, β) = S(K?, r)βr
Γ(β)

Γ(β +K?)

Then, conditionally, the expected number of supercommunities can be approxi-

mated as

E[R? | β,K?] ≈ β log

(
β +K?

β

)
and the expected number of supercommunites is found to satisfy

E[R? | α, β] = E[E[R? | β,K?] | α] ≈ β log

(
β + α log

(
α+I
α

)
β

)
−

βα log
(
α+I
α

)
2
(
β + α log

(
α+I
α

))2 ,
the details of this derivation can be found in Appendix C.

Figure 3.1 shows the effect of the hyperparameters α and β in the number of

occupied communities and supercommunities implied by the prior. It can be seen that, as it

is usual, larger values of the concentration parameters favor a larger number of components

at both levels. Note also that the standard stochastic blockmodel can then be recover by

either setting R = 1 or letting β → 0.

Finally, all hyperparameters are assumed independent a priori, that is

π(µ, σ2, τ2, α, β) = π(µ)π(σ2)π(τ2)π(α)π(β).

with conditionally conjugate hyperpriors in the community parameter’s side

µ ∼ N (µ0, σ
2
µ), τ2 ∼ IG(ατ , βτ ) and σ2 ∼ IG(ασ, βσ) (3.9)
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Figure 3.1: Prior CDF of effective number of communities K? and supercommunities R?

under four different scenarios for the hyperparameters α and β.

and a Gamma hyperpriors for the concentration parameters

α ∼ G(αα, βα) and β ∼ G(αβ, ββ). (3.10)

3.2 Posterior inference using Markov chain Monte Carlo

Irrespective of the choice of the prior distributions the model described above does

not lead to closed form posteriors and, thus, some form of approximation is required for

inferential purposes. In this section a Markov chain Monte Carlo algorithm to generate
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samples from the joint posterior distribution is derived for the model. As a first step notice

that the form of the likelihood already suggests that the full conditionals for Θ are not

members of a standard family of distributions. However, following Polson et al. (2013),

(exp{θk,l})sk,l
(1 + exp{θk,l})nk,l

= exp
{(
sk,l −

nk,l
2

)
θk,l

}
E

[
exp

{
−
θ2
k,l

2
γk,l

}]

where γk,l ∼ PG(nk,l, 0) is a Polya-Gamma random variable. Thus, augmenting the param-

eter space with Γ = [γk,l] a matrix of a priori independent Polya-Gamma random variables

the likelihood can be expressed as

p(Y | Θ, ξ,Γ) ∝ exp

{
K∑
k=1

K∑
l=k

(
sk,l −

nk,l
2

)
θk,l

}
K∏
k=1

K∏
l=k

exp

{
−
θ2
k,l

2
γk,l

}
. (3.11)

Denoting the set of all parameters in the model Υ =
{

Θ, ξ, H, ζ, µ, σ2, τ2,w, α,v, β,
}
, the

augmented joint posterior satisfies

p(Υ,Γ | Y) ∝ exp

{
K∑
k=1

K∑
l=k

(
sk,l −

nk,l
2

)
θk,l

}
K∏
k=1

K∏
l=k

E

[
exp

{
−
θ2
k,l

2
γk,l

}]

(σ2)−( 1
4
K(K+1)+ασ+1) exp

{
− 1

2σ2

K∑
k=1

K∑
l=k

(θk,l − ηφ(ζk,ζl))
2 − βσ

σ2

}
exp

{
− 1

2σ2
µ

(µ− µ0)2

}

(τ2)−( 1
4
R(R+1)+ατ+1) exp

{
− 1

2τ2

R∑
r=1

R∑
s=r

(ηr,s − µ)2 − βτ
τ2

}
K∏
k=1

w
α
K

+nk−1

k

R∏
r=1

v
β
R

+mr−1
r

Γ(α)[
Γ
(
α
K

)]K ααα−1 exp {−βαα}
Γ(β)[

Γ
(
β
R

)]Rβαβ−1 exp {−βββ}π(Γ) (3.12)

where, for all r ∈ {1, 2, . . . , R}, mr =
∑
Tr 1 with Tr = {k : ζk = r}.

From (C.4) we derive an MCMC algorithm that allows us to obtain sampling-based

approximate inference for the model. The main ideas behind this algorithm are summarized

in what follows, while the details can be found in Appendix A.

First, from the form of the augmented likelihood (3.11) it can be anticipated that

the community parameters are conditionally conjugate given the auxiliary variables. Thus,
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the elements of Θ are sample from their corresponding Gaussian full conditional distribution.

Importantly, the full conditional distribution for the auxiliary parameters remains in the

Polya-Gamma family and can, therefore, be sampled as described in Polson et al. (2013).

The indicators are sampled from their Categorical full conditional distributions

both for the communities and the supercommunities. At the supercommunity level the

clustering probabilities are affected from the data trough the term

exp

{
− 1

2σ2

K∑
k=1

K∑
l=k

(θk,l − ηφ(ζk,ζl))
2

}

which plays a role equivalent to that of the likelihood in the community level.

The full conditional for ηr,s is also Gaussian with mean and precision parameters

that can be expressed as linear combinations of the prior mean µ and the proportion of

observed interactions among the vertices in supercommunities r and s. In turn, if condi-

tionally conjugate priors are assumed, the full conditional distribution for the mean µ and

variance σ2 and τ2 hyperparameters are straightforward. Namely, a Gaussian and Inverse

Gamma distributions respectively.

Finally, the concentration parameters α and β can be sampled following ideas from

Escobar and West (1995).

3.3 Posterior inference using variational Bayes

In this section we introduce a variational Bayes algorithm to approximate the

posterior distribution of the multilevel stochastic blockmodel. Again, we discus the main

ideas behind the algorithm here and leave the details to Appendix B.
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Similar to its full conditional distribution, the variational distribution for the ele-

ments of Θ is not member of a standard family of distributions. In order to overcome this

issue, a first alternative would be to introduce Polya-Gamma auxiliary variables in the form

of (3.11); this approach conduces to a Gaussian update for the elements of Θ, but trans-

lates into non-standard updates for the auxiliary variables. In turn, these updates could be

handled using, for example, ideas from non-conjugate variational message passing (Knowles

and Minka, 2011). However, this approach introduces two additional sources of error to

the variational approximation. Namely, it uses an approximate solution to the variational

distribution for the auxiliary variables, and it gives an approximation for the posterior dis-

tribution of the extended set of parameters whose marginal does not necessarily minimize

the Kullback-Leibler divergence to the original posterior distribution. Instead, we relax the

evidence lower bound following the approach of Jaakkola and Jordan (2000), which yields

an exact solution to the original variational problem. To this end, using a first order Taylor

expansion around γφ(ξi,ξj) ∈ <, it is easily seen that

p(Y | Θ, ξ) ≥ p̃(Y | Θ, ξ,Γ) ≡
I−1∏
i=1

I∏
j=i+1

exp
{
yi,jθφ(ξi,ξj)

}
S
(
γφ(ξi,ξj)

)

× exp

−
(
θφ(ξi,ξj) + γφ(ξi,ξj)

)
2

+ λ
(
γφ(ξi,ξj)

)(
θ2
φ(ξi,ξj)

− γ2
φ(ξi,ξj)

) ,

where λ(x) = 1
2x

(
S(x)− 1

2

)
, S(x) = (1 + exp{−x})−1, and the equality holds whenever

θ2
k,l = γ2

k,l for all k ≤ l. Then, the relaxed lower bound is given by

F̃ (q,Y) ≡ Eq(Θ,ξ) [log p̃(Y | Θ, ξ,Γ)] + Eq(Υ) [log p(Υ)] +H[q]

≤ Eq(Θ,ξ) [log p(Y | Θ, ξ)] + Eq(Υ) [log p(Υ)] +H[q] = F (q,Y).

Maximization of F̃ (q,Y) leads to an approximation of the variational distribution for the
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community parameters with the form

log q̃(θk,l) = −1

2

{
2λ(γk,l)Eq(ξ) [nk,l] + Eq(σ2)

[
1

σ2

]}
θ2
k,l

+

{
Eq(ξ) [sk,l]−

Eq(ξ) [nk,l]

2
+ Eq(σ2)

[
1

σ2

]
Eq(H,ζ)

[
ηφ(ζk,ζl)

]}
θk,l + C, (3.13)

a Gaussian kernel, while maximizing Eq(Θ,ξ) [log p̃(Y | Θ, ξ,Γ)] gives that the optimal aux-

iliary parameters satisfy γ2
k,l = Eq(θk,l)

[
θ2
k,l

]
.

The variational distributions for most of the parameters in the model take the same

form as their full conditional counterpart. The expectations involved in the calculation of

the variational parameters can then be found in closed form and a (iterative) variational

Bayes algorithm can be implemented. The only notable exception is given by the variational

distribution of the concentration parameters α and β, since the Gamma distribution is not

conjugate in this case. However, using a first order approximation to log Γ(x) we are able to

approximate the variational distributions q?(α) and q?(β) with Gamma distributions closely

related to those of Escobar and West (1995).

3.4 Evaluation

In this section we illustrate the model and compare the performance of the two

algorithms described in sections 3.2 and 3.3.

3.4.1 Simulated data

As a first step, we make use of the simulated dataset shown in Figure 3.2, this

network is constructed with I = 140 individuals evenly split into K? = 7 communities. In
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turn, these communities are split into R? = 2 supercommunities formed by the first four

and the last three communities respectively. Our goal is to explore the the performance of

the model in recovering community structure in a case in which the ground truth is known.

Figure 3.2: Image representation of the adjacency matrix. Here actors in the network are
placed along the horizontal and vertical axis. yi,j = 1 is represented by a red dot, while a
lack of interaction is shown in white.

Choosing K = 20 and R = 10, and the rest of the hyperparameters as µ0 = 1,

σ2
µ = 1, ατ = ασ = 2, βτ = βσ = 1, αα = βα = αβ = ββ = 1, the top two panels of Figure

3.3 show the MCMC posterior pairwise co-membership probabilities for communities and

supercommunities respectively. That is, for every pair (i, j), P r(ξi = ξj | Y) is shown in the

left panel, while the right side shows Pr(ζξi = ζξj | Y). From here it can be observed that the

model is capable of recovering the underlying community structure with little uncertainty
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Figure 3.3: Community estimates for simulated data. Top: Monte Carlo estimates of
pairwise posterior probabilities of same community, Pr(ξi = ξj), ARI=0.99 (left), and
supercommunity, Pr(ζξi = ζξj ), ARI=1 (right). Bottom Variational approximations q(ξi =

ξj), ARI=0.75 (left), and q(ζξi = ζξj ) ARI=1 (right).

in both levels, achieving an ARI of 0.99 and 1 respectively. In turn, the bottom panels of

Figure 3.3 show the respective results for the solution achieving the highest lower bound

out of 32 parallel runs of the variational approximation. In this case the algorithm is able
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to learn most of the structure on the data, although it is worthwhile noticing the higher

levels of uncertainty and the fact that, in this particular solution, communities three and

four are not well discerned. In this case the ARI for the lower level is 0.75, while the ARI

between the supercommunities and the true partition at this level is 1.

Figure 3.4 shows the evolution of the evidence lower bound as a function of ex-

ecution time, and the mean posterior likelihood from the MCMC after 100, 000 posterior

samples have been obtained in approximately 4, 500 seconds (75 minutes).
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Figure 3.4: Evolution of the lower bound as a function of execution time.

Looking deeper into the results from the MCMC, Figure 3.5 shows the prior and

posterior distributions associated with the parameters σ2, α and β. These plots show reason-

able agreement between the prior and posterior, although the data appears to pull towards

a larger number of communities than those suggested by the prior. Also, in order to inves-

tigate the sensitivity to π(σ2), we tested taking ασ = 2 and βσ = 10, as well as ασ = 2
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Figure 3.5: prior (line) and posterior (histogram) distributions for the hyperparameters α
(left), β (center) and σ2 (right) for the simulated dataset under (a) α, β ∼ Exp(1) and
σ2 ∼ IG(2, 1) (b) α, β ∼ Exp(1) and σ2 ∼ IG(2, 10) (c) α, β ∼ Exp(1) and σ2 ∼ IG(2, 0.1)
(d) α, β ∼ Exp(5) and σ2 ∼ IG(2, 10).
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and βσ = 0.1. The corresponding posteriors can be seen in the bottom three rows of Figure

3.5. Furthermore, we note that inference in the community structure (not shown) remained

unaffected.

Lastly, we look at the results of clustering the vertices in the network using an ag-

glomerative approach based on modularity maximization (Clauset et al., 2004). Figure 3.6

shows the resulting dendrogram with colors corresponding to the true community structure.

From this figure it can be seen that the algorithm identifies subgroups in the community

structure, but fails to identify whole communities. This is due, in part, to the fact that mod-

ularity maximization will tend to find groups of vertices with assortative mixing patterns,

but will not uncover dissasortative structures such as the third community.

Figure 3.6: Hierarchical structure from agglomerative clustering for simulated dataset.
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3.4.2 Coauthorship network

As a second illustration we consider again the co-autoship network by Newman

(2006) introduced in Section 2.2.2. As a reminder, in this network the vertices represent

(I = 379) authors of scientific papers in the field of network science and the existence of an

edge between two vertices indicates that those authors have collaborated in at least in one

of the 914 publications included in the network.

Figure 3.7 shows the structure recovered with K = 100, R = 15 and hyperparam-

eters µ0 = 1, σ2
µ = 1, ατ = ασ = 2, βτ = βσ = 1, αα = βα = αβ = ββ = 1, from the

MCMC (top) and, with a different ordering of the vertices, for the variational Bayes (bot-

tom) for communities (left) and supercommunities (right) respectively. From these plots it

can be seen that, in this case, the inferred structure is significantly different between the

two methods. In particular, the MCMC finds a much larger number of smaller communi-

ties, with most of the clustering occurring in the second level. This partition appears to be

consistent with a structure where scientist form close-knit small research groups which, in

turn, form four supercommunities with higher level of collaboration. Instead, the variational

approximation finds five larger communities but does not capture any hierarchical struc-

ture. In order to asses the proximity of these two solutions, Figure 3.8 presents the overlap

between the supercommunities obtained from the MCMC and the communities found by

the variational algorithm. That is, the variational estimates for the the first level pairwise

co-clustering probabilities are shown displayed under the optimal ordering obtained with

the MCMC. From this figure it is interesting to note that although the communities from

the variational algorithm are broken into different supercommunities in the MCMC, a good
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Figure 3.7: Community estimates for collaboration network. Top: Monte Carlo estimates
of pairwise posterior probabilities of same community, Pr(ξi = ξj | Y) (left), and supercom-
munity, Pr(ζξi = ζξj | Y) (right). Bottom Variational approximations q(ξi = ξj) (left),

and q(ζξi = ζξj ) (right).

proportion of the vertices remain together.

In turn, Figure 3.9 shows the the adjacency matrix permuted to show the corre-

sponding community structure under the MCMC (left) and variational Bayes (right). From
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Figure 3.8: Overlap in community structure between obtained under the MCMC and vari-
ational algorithms. Colors correspond to the variational probabilities of same community,
while the ordering is taken to represent the hierarchical community structure from the
MCMC.

this figure it can be seen all four supercommunities recovered by the model trough the

MCMC are highly assortative, while the multiple communities found within each super-

community exhibit a slightly higher propensity of interaction. Instead, the larger commu-

nities found by the variational algorithm display a mixture of assortative and disassortative

groups in the network

Figure 3.10 shows the evolution of the evolution of the ELBO with respect to

execution time, along the mean posterior likelihood of the 100, 000 posterior realizations

from the MCMC obtained in approximately 153, 000 seconds (42 hours). From this figure

is interesting to observe that the ELBO improves rapidly in the early on, but then takes

a large number of steps until convergence resulting in a total execution time of around 22
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Figure 3.9: Adjacency matrix of the collaboration network ordered with respect to MCMC
(left) and variational (right) community structure.

hours, which is not a dramatical improvement over the MCMC.

Figure 3.11 shows the prior and posterior distributions for α, β and σ2 under

different choices of prior for σ2 and α and β. Here it can be seen that, the data pulls

the first level concentration parameter significantly to the right, suggesting, as saw also in

Figure 3.7, a much larger number of communities than those implied by the prior. Also,

the posterior distribution for σ2 concentrates around larger values, which is consistent with

the communities observed in Figure 3.9 that exhibit either very low or very high proportion

of interactions.

Finally, Figure 3.12 shows the result of applying agglomerative clustering based

on modularity maximization to this dataset. Here, colors represent the supercommunity

membership inferred from the MCMC. Again, the lack of structure in the ordering of the

colors in this plot suggests that the agglomerative clustering method leads to solution that
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Figure 3.10: Evolution of the lower bound as a function of execution time.

is qualitatively different from that obtained under the stochastic blockmodel.

3.4.3 Food network

As a third illustration we use a network of 86 actors in a biological food web of par-

asitoids in Tetramesa, a genus of grass-infesting chalcid wasps (Clauset et al., 2008; Dawah

et al., 1995). In this section we concentrate on the results from the MCMC only as, from

the previous illustrations, we expect better behavior than the variational approximation.

Figure 3.13 shows the results from fitting the MCMC using K = 30, R = 5, µ0 = 1, σ2
µ = 1,

ατ = ασ = 2, βτ = βσ = 1, and αα = βα = αβ = ββ = 1.

As it can be seen in this figure, the model has found no evidence of hierarchical

structure in the network. This feature illustrates a significant difference with agglomerative
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based methods where, once the dendrogram is cut at the second level, the algorithm will

always return a partition. In contrast, the stochastic blockmodel has the possibility of

selecting a single supercommunity.

Finally, Figure 3.14 show the corresponding sensitivity analysis under IG(2, 1),

IG(2, 10) and IG(2, 0.1) priors for σ2, as well as a Exp(5) for α and β. Again, it can be

observed that the posterior distributions for α and β are unaffected by the choice of prior

for σ2. In turn, the second choice of prior allows the distribution for the variance parameter

to be slightly shifted to larger values.

3.5 Discussion

In this chapter we have introduced a hierarchical extension of the stochastic block-

model with the goal of being able to identify multilevel community structure in networks.

We have also presented a Markov chain Monte Carlo and a variational Bayes algorithm

that allow to fit the model and obtain approximate posterior inference. Using simulated

and real dataset we have observed that, in fact, the model is capable of identifying commu-

nities and supercommunities when these are present in the data. Furthermore, we note that

the model is able to return a single supercommunity when there is no evidence of multilevel

community structure in the data.

As expected from the case of the single level stochastic blockmodel we observe that

the Markov chain Monte Carlo algorithm consistently outperforms its variational Bayes

counterpart. For this reason, we recommend the use of MCMC whenever the network size

makes it computationally feasible.
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Although our results in terms of inference for the community structure have shown

to be robust to the choice of prior for the scale parameters in the model, others have argued

against the use of the Inverse gamma as a non-informative distribution (Gelman, 2006). For

this reason, a possible direction for future research is testing an alternative prior distribution

for these parameters, such as the scale Beta2 of Pérez et al. (2017).

Finally, we note that, for simplicity, throughout this chapter we have focused on

the case of undirected and binary networks. However generalizations to undirected and/or

count networks are straightforward, requiring removing the symmetry constraints in the

community parameters and changing the form of the kernel respectively.
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Figure 3.11: prior (line) and posterior (histogram) distributions for the hyperparameters
α (left), β (center) and σ2 (right) for the collaboration network dataset under (a) α, β ∼
Exp(1) and σ2 ∼ IG(2, 1) (b) α, β ∼ Exp(1) and σ2 ∼ IG(2, 10) (c) α, β ∼ Exp(1) and
σ2 ∼ IG(2, 0.1) (d) α, β ∼ Exp(5) and σ2 ∼ IG(2, 10).
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Figure 3.12: Hierarchical structure from agglomerative clustering for the collaboration
network.
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Figure 3.13: Inferred community and supercommunity structure for the food web of grass-
land species.
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Figure 3.14: prior (line) and posterior (histogram) distributions for the hyperparameters
α (left), β (center) and σ2 (right) for the food web network under (a) α, β ∼ Exp(1) and
σ2 ∼ IG(2, 1) (b) α, β ∼ Exp(1) and σ2 ∼ IG(2, 10) (c) α, β ∼ Exp(1) and σ2 ∼ IG(2, 0.1)
(d) α, β ∼ Exp(5) and σ2 ∼ IG(2, 10).
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Chapter 4

Dynamic evolution of communities

in networks

Many real-world applications consist not of a simple network but of a collection a

networks measured over time. We are particularly interested in situations in the longitudinal

study of the relationship between a fixed set of network nodes. A popular approach to tackle

dynamic modeling of networks has been to extend static models by introducing dynamic

dependency across some set of parameters in the model. In this way, Sarkar and Moore

(2005), Westveld and Hoff (2011), Durante and Dunson (2014) and Sewell and Chen (2015)

have presented extensions of latent space models. The main idea behind these models is to

express the transformed interaction probabilities as a quadratic combination

g(λi,j,t) = µ(t) + vi(t)
′vj(t)

with vi and vj time dependent latent variables. Notice that none of these models is focused

on community detection and, therefore, there is no direct community structure obtained
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from fitting the model. One possibility to explore dynamic community structures under

this type of models would be to apply a clustering algorithm in the latent space for each

time step independently.

Alternatively, Rodŕıguez (2012) and Betancourt et al. (2015) have looked at ex-

tending stochastic blockmodels using hidden Markov models. In this setting it is assumed

that there are S distinct possible states for the network corresponding to a set of commu-

nity parameters Θs and a vector of community parameters ξs. Then, an interaction between

vertex i and vertex j at time t occurs with probability θξζti ,ξζtj ,ζt where ζt = s indicates that

the network is at state s at time t and a dynamic can be introduced through ζ. Specifically,

a first order Markov process is taken as

Pr(ζt = s | ζt−1 = r,πr) = πr,s

with symmetric Dirichlet priors for the transition probabilities. This models are particularly

useful for change point identification in the network structure; however they can lead abrupt

changes in the community structures.

Here we focus on community evolution. Specifically, there are two ways in which

communities might evolve as the network changes across time: migration of individuals

between communities, and changes in the propensity of interaction between individuals

within or across communities. In this chapter we concentrate on modeling dynamic network

data in a way that is capable of capturing the community structure in the network at each

period and the evolution of these communities by “borrowing” information across time.

A first possibility to study network dynamics is to track specific features or sum-

maries of the network, such as transitivity or degree, over time; this, however, implies an
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intrinsic loss of information when modeling only these summaries as opposed to the whole

data. A second option would be to try to put the data into the framework of the model

introduced in Chapter 1 by projecting these networks into a single consensus network that

can then be analyzed using the static stochastic blockmodel. However, this procedure will

typically be inappropriate and lead to an artificial reduction of the uncertainty in the model.

Furthermore, this approach does not allow to identify features that are common across time

or possible structural changes in the network; both interesting questions from an application

perspective. On the opposite end of the spectrum, a stochastic blockmodel could be fitted

separately to each network, but this approach has the obvious drawback of ignoring any

dependence structure in the data. Instead, in this chapter we propose the use of a dynamic

extension of the stochastic blockmodel.

A major challenge in dynamically extending the stochastic blockmodel is defining

an appropriate transition probability for the community indicators p(ξt | ξt−1). To this

end, Yang et al. (2011) assume a Hidden Markov model for each sequence {ξt,i}Tt=1 with a

constant transition probability matrix, while Xing et al. (2010) extend the mixed member-

ship stochastic blockmodel using an autoregressive structure on the hyperparameters. Here

we propose the use of fragmentation-coagulation processes (Bertoin, 2006) described in the

following section.

4.1 Random partitions

A generalization of the Chinese restaurant process prior used in the previous chap-

ters is given as follows:
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We say that ξ follows a generalized Chinese restaurant process (GCRP) with pa-

rameters α and β if its distribution corresponds to the EPPF of a two-parameter Poisson-

Dirichlet (Pitman-Yor) process, i.e.,

p(ξ1, ξ2, . . . , ξI) =
Γ(α+ 1)

(α+ βN I)Γ(α+ I)

NI∏
k=1

(α+ βk)
Γ(nIk − β)

Γ(1− β)

for 0 ≤ β < 1 and α > −β, and where N I = max{ξ}. Notice that the GCRP reduces to the

standard Chinese restaurant process when β = 0.

Now consider two partitions of {1, 2, ..., I}, ζ and γ. It is said that γ is a fragmen-

tation of ζ if and only if γi = γj implies that ζi = ζj ; alternatively, it can be said that ζ

is a coagulation of γ. In particular, following Bertoin (2006), we say that a partition ξ is

a random GCRP coagulation of the partition γ if ξi = ςγi where ς follows a GCRP prior.

Similarly, we say that a partition γ is a random GCRP fragmentation of ζ if it is generated

by sequentially splitting each cluster in ξ according to a GCRP.

Figure 4.1 presents a graphical example of a fragmentation-coagulation process in

which, in a fist stage, each of the first two clusters fragments in two, while the third remains

unaffected. In a second stage, clusters one, four and five combine into a single group and,

similarly, clusters two and three coagulate.

An appealing feature of random fragmentation-coagulation processes is given by

the fact that, if ζ | α ∼ CRP(α), and ξ is generated by letting γ | ζ, β ∼ GCRPFrag(ζ, 0, β)

and ξ | γ, α, β ∼ GCRPCoag(γ, α/β, 0), then the marginal distribution of ξ is also a

CRP(α). Thus, fragmentation-coagulation processes provide a natural way to define tran-

sition kernels that lead to a stationary process on the community indicators for a dynamic

extension of stochastic blockmodels. Having a stationary process on these parameters is

65



γt,1	
  

ξt,1	
  
ξt,4	
  

ξt,5	
  

ξt,10	
  

ξt,7	
   ξt,2	
  
ξt,3	
  

ξt,8	
  

ξt,9	
  

ξt,6	
  

ξt,11	
  

ξt+1,1	
  

ξt+1,6	
  

ξt+1,7	
  ξt+1,9	
  

ξt+1,11	
  

ξt+1,2	
  

ξt+1,3	
  

ξt+1,4	
  
ξt+1,5	
  

ξt+1,10	
  
ξt+1,8	
  

γt,7	
  
γt,4	
  

γt,5	
  

γt,10	
   γt,2	
  

γt,3	
  

γt,8	
  

γt,9	
  

γt,11	
  

γt,6	
  

Figure 4.1: Graphical example of fragmentation-coagultion processes.

consistent with the fact that, a priori, we have no information that allows us to distinguish

the partition across time. Furthermore, it also leads to a prior structure that is compu-

tationally convenient as, conditionally, at any point in time, the prior for the community

indicators reduces to that of the static model.

4.2 A model for dynamic networks

In this section we propose a dynamic extension of the stochastic blockmodel. Turn-

ing attention to directed networks, for i, j = 1, 2, . . . , I and i 6= j interactions are assumed

conditionally independent with

yi,j,t | Θt, ξt ∼ Ber (λi,j,t) , for t = 1, 2, . . . , T, and i 6= j. (4.1)
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where

λi,j,t = expit(θξti,ξtj ,t) ≡
exp{θξti,ξtj ,t}

1 + exp{θξti,ξtj ,t}
.

Using the result from Section 4.1, a joint prior for {ξ1, ξ2, . . . , ξT } can be constructed by

placing a CRP(α) on ξ1, and sequentially assuming a common fragmentation-coagulation

process γt | ξt, β ∼ GCRPFrag(ξt, 0, β) and ξt+1 | γt, α, β ∼ GCRPCoag(γt, α/β, 0). This

leads to a strongly stationary process in which, for any t, we have that ξt ∼ CRP (α), which

means that marginally the model retains the properties of the static stochastic blockmodel.

In this case the parameter β ∈ (0, 1) controls the dependency in the community indicators

across time. As β → 0 the partition becomes more stable leading to ξt = γt = ξt+1 for

all t. In turn, β → 1 yields a total fragmentation in which γt is comprised of I singleton

clusters; therefore implying independence between ξt and ξt+1. As before, the parameter

α controls the expected number of communities a priori, as well as the prior co-clustering

probabilities

Pr(ξti = ξtj | α) =
1

1 + α
for any t = 1, 2, . . . , T.

The hyperparameters α and β are assigned a G(aα, bα) and Beta(aβ, bβ) prior respectively,

and learned from the data.

A second difficulty in extending the stochastic blockmodel is the specification of a

joint prior on the community parameters {Θ1,Θ2, . . . ,ΘT }. Assuming time independence in

the interaction probabilities may lead to simple but unrealistic models, as we expect certain

features of the communities to remain fairly stable. To the best of the authors’ knowledge,

dynamical modeling of the community parameters remains an open research question. Here,

we propose the use of autoregressive priors that account for the structure of the communities.
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This kind of prior allows for smooth changes in the interaction probabilities. Intuitively,

our choice of mean function can be thought as letting, the community parameters at time

t be (in mean) an average of the values of the community parameters at t − 1 weighted

by number of current possible interactions. Formally, for any t ≥ 2 the elements of Θt are

assumed to be conditionally independent from

θk,l,t | ξt,Θt−1, ξt−1 ∼ N
(
mk,l(ξt,Θt−1, ξt−1),vk,l(ξt)

)
(4.2)

with the mean function given by

mk,l(ξt,Θt−1, ξt−1) =


1

nk,l,t

∑
Sk,l,t θξti,ξtj ,t−1 if nk,l,t > 0

0 otherwise

(4.3)

and variance function

vk,l(ξt) =


σ2

nk,l,t
if nk,l,t > 0

σ2 otherwise

(4.4)

where nk,l,t =
∑
Sk,l,t 1 and the sum is taken over Sk,l,t =

{
(i, j) : i 6= j, ξti = k, ξtj = l

}
.

Interestingly, notice that for a model with constant partition in the indicators, this prior

reduces to independent random walk processes. For Θ1 we maintain the prior structure as

θk,l,1 | ξ1, σ
2 ∼ N

(
0, σ2

)
(4.5)

for k, l = 1, 2, . . . ,K1, with Kt = max{ξt}. The hyperparameter σ2 can then be fixed, or an

extra layer can be added to de model by assigning conditionally conjugate prior

σ2 ∼ IG(aσ, bσ).
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4.3 Posterior sampling

As before, we introduce Polya-Gamma auxiliary variables (Polson et al., 2013) in

order to have a closed form full conditional distribution for the community parameters. In

this case each term in the likelihood can be re-expressed as

p(Yt | Θt, ξt) ∝ exp

{
Kt∑
k=1

Kt∑
l=1

(
sk,l,t −

nk,l,t
2

)
θk,l,t

}
Kt∏
k=1

Kt∏
l=1

E

[
exp

{
−
θ2
k,l,t

2
ωk,l,t

}]
(4.6)

where ωk,l,t ∼ PG(nk,l,t, 0) is a Polya-Gamma random variable and sk,l,t =
∑
Sk,l,t yi,j,t.

Denoting Υ =
{
{Θt}Tt=1, {ξt}Tt=1, {γt}

T−1
t=1 , {Ωt}Tt=1, α, β

}
the posterior can then

be written as

p
(
Υ | {Yt}Tt=1

)
∝

T∏
t=1

p(Yt | Θt, ξt,Ωt)p(Θ1 | ξ1)
T∏
t=2

p(Θt | ξt,Θt−1, ξt−1)
T∏
t=1

p(Ωt)

p(ξ1)
T∏
t=2

p(ξt | γt−1, α, β)p(γt−1 | ξt−1, β)p(α, β) (4.7)

from where a Markov Chain Monte Carlo algorithm can be envisioned. Specifically, we

implement a collapsed algorithm similar to algorithm 4 in Neal (2000) for nonconjugate

Dirichlet process mixture models. This algorithm can be broken down into three main

steps. In the fist stage, the indicators and interaction probabilities are sampled jointly.

Next, the algorithm resamples the interaction probabilities given the indicators to improve

mixing, as is customary for collapsed samplers. Lastly we sample the hyperparameters

controlling the fragmentation-coagulation process α and β.

For the first step, following Rodŕıguez (2014), the elements of the parameters as-

sociated with the community indicators, {ξ1, ξ2, . . . , ξT ,γ1,γ2,γT−1}, are sampled jointly

in pairs (γt−1, ξt) and (ξt,γt+1), in order to improve the mixing of the algorithm. Specifi-

cally, for t = 2, . . . , T − 1 the full conditional probabilities for the update of (γt−1i , ξti) are
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obtained from

p(γt−1i = l, ξti = k,θ?t | Υ−(γt−1i
,ξti )

, {Yt}) ∝ p(Yt | Θt,θ
?
t , ξ

(i,k)
t ,Ωt)p(Θt,θ

?
t | ξ

(i,k)
t ,Θt−1, ξt−1)

p(Θt+1 | ξt+1,Θt,θ
?
t , ξ

(i,k)
t )p(γt | ξ

(i,k)
t , β)p(ξ

(i,k)
t | γ(i,l)

t−1 , α, β)p(γ
(i,l)
t−1 | ξt−1, β)

(4.8)

where ξ
(i,k)
t = (ξt1, . . . , ξti−1, k, ξti+1 . . . , ξtI), γ

(i,l)
t = (γt1, . . . , γti−1, l, γti+1 . . . , γtI) and

θ?t is the vector of interaction probabilities for the case in which a new community is

opened. Denote ξt−(i) = (ξt1, . . . , ξti−1, ξti+1 . . . , ξtI), γt−(i) = (γt1, . . . , γti−1, γti+1 . . . , γtI)

and K−it , R−it−1 the number of clusters associated with ξt−(i) and γt−(i) respectively; notice

that, in principle, there are (R−it−1 + 1) × (K−it + 1) distinct possible ways of allocating

(γt−1i , ξti) corresponding to either assigning actor i to an existing cluster or opening a

new one at both levels. However, many of these combinations have zero posterior prob-

ability as they lead to partitions that do not correspond to a fragmentation-coagulation

process. From a computational perspective, this observation is crucial, as it leads to an

efficient implementation of the algorithm, in which only combinations that are consistent

with a coagulation-fragmentation process are explored, effectively reducing the amount of

computation required.

Implied from the fragmentation-coagulation process, the priors satisfy

p(ξt+1 | γt, α, β) =
Γ(α/β)

Γ(Rt + α/β)

(
α

β

)Kt+1
Kt+1∏
k=1

Γ(gt+1,k) (4.9)

where Rt the number of clusters induced by γt and gt+1,k the number of clusters from γt

that have been grouped together to form the k-th cluster of ξt+1, and

p(γt | ξt, β) =

Kt∏
k=1

βQtk−1Γ(Qtk)

Γ(ntk)

Qtk∏
s=1

Γ(qtk,s − β)

Γ(1− β)
(4.10)
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with ntk the size of the k-th community associated with ξt, Qtk is the number of subclusters

into which the k-th cluster of ξt is fragmented, and qtk,s is the size of the s-th subcluster in

γt associated with the k-th cluster in ξt.

For the case in which a new community is opened, sampling from (4.8) is handled

in two steps; first the new interaction probabilities are obtained from its full conditional

p(θ?t | γt−1i = l, ξti = K−1
t + 1,Υ−(γt−1i

,ξti )
, {Yt}) ∝ p(Yt | Θt,θ

?
t , ξ

(i,K−1
t +1)

t ,Ωt)

p(Θt+1 | ξt+1,Θt,θ
?
t , ξ

(i,K−1
t +1)

t )p(θ?t | ξ
(i,K−1

t +1)
t ,Θt−1, ξt−1) (4.11)

and then, the community indicators are then sampled with probabilities proportional to

p(γt−1i = l, ξti = k | θ?t ,Υ−(γt−1i
,ξti )

, {Yt}) ∝ p(Yt | Θt,θ
?
t , ξ

(i,k)
t ,Ωt)p(Θt,θ

?
t | ξ

(i,k)
t ,Θt−1, ξt−1)

p(Θt+1 | ξt+1,Θt,θ
?
t , ξ

(i,k)
t )p(γt | ξ

(i,k)
t , β)p(ξ

(i,k)
t | γ(i,l)

t−1 , α, β)p(γ
(i,l)
t−1 | ξt−1, β).

(4.12)

The case for t = T is slightly different as there is no contribution from the term

of future interaction probabilities, in this case the full conditional distribution is given by

p(γT−1i = l, ξTi = k,θ?T | Υ−(γT−1i
,ξTi )

, {Yt}) ∝ p(YT | ΘT ,θ
?
T , ξ

(i,k)
T ,Ωt)

p(ΘT ,θ
?
T | ξ

(i,k)
T ,ΘT−1, ξT−1)p(γT | ξ

(i,k)
T , β)p(ξ

(i,k)
T | γ(i,l)

T−1, α, β)p(γ
(i,l)
T−1 | ξT−1, β) (4.13)

An analogous approach is used to jointly sample (ξti , γti). The full conditional

distribution for t = 2, . . . , T − 1, is

p(ξti = k, γti = l,θ?t | Υ−(ξti ,γti )
, {Yt}) ∝ p(Yt | Θt,θ

?
t , ξ

(i,k)
t ,Ωt)p(Θt,θ

?
t | ξ

(i,k)
t ,Θt−1, ξt−1)

p(Θt+1 | ξt+1,Θt,θ
?
t , ξ

(i,k)
t )p(ξt+1 | γ

(i,l)
t , α, β)p(γ

(i,l)
t | ξ(i,k)

t , β)p(ξ
(i,k)
t | γt−1, α, β) (4.14)
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and, in particular, when t = 1

p(ξ1i = k, γ1i = l,θ?1 | Υ−(ξt1 ,γ1i )
, {Yt}) ∝ p(Y1 | Θ1,θ

?
1, ξ

(i,k)
1 ,Ω1)p(Θ1,θ

?
1 | ξ

(i,k)
1 )

p(Θ2 | ξ2,Θ1,θ
?
1, ξ

(i,k)
1 )p(ξ2 | γ

(i,l)
1 , α, β)p(γ

(i,l)
1 | ξ(i,k)

1 , β)p(ξ
(i,k)
1 | α) (4.15)

with

p(ξ1 | α) =
Γ(α)αKt

Γ(I + α)

Kt∏
k=1

Γ(n1k). (4.16)

To implement the second second step of our algorithm, we exploit the fact that,

by introducing the auxiliary variable {Ωt}, the community parameters are conditionally

conjugate and can be sample directly from the corresponding full conditional

p
(

Θk,l,t | Υ−(Θk,l,t), {Yt}
T
t=1

)
∝
∏
Sk,l,t

p(Yi,j,t | Θk,l,t, ξt,Ωt)p(Θt,k,l, | ξt,Θt−1, ξt−1)

p(Θt+1 | ξt+1,Θt, ξt) (4.17)

which is identified as a Gaussian distribution with mean and variance that can be found

exploiting the linearity of mk,l(ξt,Θt−1, ξt−1).

Now, as in the case of the static stochastic blockmodel, the full conditional for the

auxiliary variables remains in the Polya-Gamma family, which can be sample following the

approach described in Polson et al. (2013).

Finally, the hyperparameters governing the fragmentation coagulation process

(α, β) are jointly sampled from their full conditional distribution using a random-walk

Metropolis-Hastings (Metropolis et al., 1953; Hastings, 1970) with α and β proposed from

a bivariate Gaussian distribution in the log and logit scale respectively, and where the pa-

rameters in the covariance matrix are tuned to achieve an approximate acceptance rate of

40%.
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4.4 Evaluation

4.4.1 Simulated data

In this section we illustrate the performance of the dynamic extension of the

stochastic blockmodel in terms of the quality of the inferred community structure in a case

in which we know the true structure of the partition. To this end we make use a dataset sim-

ulated from the model itself with T = 10 observations over time of a network consisting of

I = 30 individuals. In particular, the true mean for the marginal distribution of the interac-

tion probabilities at t = 1 is taken to be −2 which leads to an overall sparse network, and a

relatively large variance, σ2 = 4, such that initial blocks are clearly distinguishable. In the

community indicators side, the true parameters governing the fragmentation-coagulation

process are set to α = 1 and β = 0.15, implying a number of expected clusters in the order

of four, and a gradual community migration of vertices. The left column of Figure 4.2 shows

the adjacency matrices matrices at three different point in time; note that the vertices have

been ordered in a slightly different way in each row in order to simplify the representation

of the true community structure. From these figures it can be observed that the model is

flexible enough to allow for significant variation both in the number of communities in the

network, as well as propensity of interaction between these communities.

The center column of Figure 4.2 show the posterior mean for the interaction prob-

abilities at t = 1, t = 3 and t = 8 obtained from 20, 000 MCMC samples obtained after a

burn-in period of 20, 000. In turn, the right column of this figure shows the corresponding

posterior co-clustrering probabilities p(ξti = ξtj | {Yt}) for every pair of vertices at the same

three points in time. From these plots we note that the model reasonably recovers the
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underlying community structure in the first two cases; in contrast, for t = 8 we see that

the small number of interactions in the dataset make it hard for the model to distinguish

between the fist two communities.
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Figure 4.2: Adjacency matrix (left), matrix of posterior mean interaction probabilities λ̂i,j
(center) and posterior co-clustering probabilities (right) for three snapshots of the simulated
dataset at t = 1 (top), t = 3 (middle), t = 8 (bottom).
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4.4.2 Financial trading network

For a second illustration we make use of a dataset consisting of financial trad-

ing networks from the natural gas futures market in the New York Mercantile Exchange

(NYMEX). This data, which was first analyzed by Betancourt et al. (2015), consists of

T = 201 weeks of trading between January 2005 and December 2008. In this network the

I = 71 vertices represent traders, and the presence of an edge (yt,i,j = 1) signifies that trader

i sold to trader j at least once during week t. From the characteristics of the market, we

expect to observe traders with similar transaction patterns and, thus, groups of structurally

equivalent vertices, generating community structure. Also from background knowledge of

the dataset, we expect to observe a change in the structure of the network after September

2006, when electronic trading was introduced into the market.

The algorithm described in Section 4.3 was used to obtain 20, 000 samples after a

burn-in period of equal length. Figure 4.3 shows the resulting community structure for four

of the 201 time points, using different ordering of the vertices. From this Figure it is clear

that the model does recover community structure from the data and that this structure, in

fact, evolves with time.

Next, in order to investigate the stability of the community structure, for each pair

of the resulting optimal partitions we compute the adjusted Rand index (Hubert and Arabie,

1985). This measure of similarity between two partitions is a chance-corrected proportion

of pairwise agreements and, thus, higher values represent higher levels of agreement with

an upper limit value of one, representing perfect agreement. The resulting matrix of ARI

values is shown in Figure 4.4 where it can be seen that there is a clear disruption in the
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Figure 4.3: Mean posterior co-clustering probabilities for four out of the 201 observations
of the network, t = 16 (top left), t = 37 (top right), t = 98 (bottom left), and t = 171
(bottom right).

community structure that coincides with the introduction of electronic trading. Prior to this

event the community structure appears fairly stable, while some similarity is also present

in the communities for the last two years of data.

Finally, we evaluate the predictive accuracy of the model by performing out-of-

sample cross validation for the last ten observations. That is, for each T = 191, 192, . . . , 200,

the one-step-ahead prediction of YT+1 is produce using the information contained in the set

{Y1, Y2, . . . , YT } only. For each case the receiver operating characteristic (ROC) is computed
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Figure 4.4: Matrix of pairwise adjusted Rand index. That is, for each observation the
optimal community structure is obtained by fitting the model, and then for each pair (t, s)
the ARI is computed from the inferred partitions.

along its corresponding area under the curve (AUC). These results are shown in Figure 4.5.

The predictive accuracy of the model averages 80% across the ten left-out weeks.
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Figure 4.5: ROC (left) and corresponding AUC (right) for each of the ten cross validation
points using the NYMEX dataset.
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4.5 Discussion

In this section we presented an extension of the stochastic blockmodel that intro-

duces dynamics both in the community indicators ξt and the community parameters Θt.

We also described a Markov chain Monte Carlo algorithm to obtain approximate posterior

inference from the model. Using simulated data, we observe that the model successfully

recovers the community structure in a case in which the ground truth is known. Also, we

have applied the model to a real financial trading network, where we see results that are in

line with our knowledge of the network external to the dataset. Furthermore, even though

is not the main focus in this setting we have observe that the model appears to retain an

acceptable level of predictive accuracy.

Importantly, we note that the dynamics introduced in the community parameters

do not lead to a stationary process, which would be a desirable property since, a priori,

there is no reason to assume a different form in the interaction probabilities across time.

Modifying the autoregressive structure to force a stationary process is one direction we

would like to explore in future work. Other interesting generalizations of the model would

be allowing α and β to change over time, as well as consider adding or dropping vertices

in-between observations as a plausible change in a network.
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Chapter 5

Conclusions

Throughout this work we have studied the problem of network community detec-

tion using stochastic blockmodels in different settings. Being able to partition a network into

smaller groups of vertices –denominated communities– helps us uncover structural equiva-

lences between the individuals in the network and, therefore, gain a better understanding

of their structure and the system that the network represent.

In the fist part we explore a stochastic variational algorithm as an alternative to

MCMC, the usual method for fitting stochastic blockmodels in a Bayesian framework. Here

we note that, in fact, the reduction in computational time can be staggering; however, it

might come at a price of significant loss int he accuracy of the solution.

Next we introduce an extension of the stochastic blockmodel that, using simple

ideas from Bayesian hierarchical modeling, enables the recovery of multilevel community

structures. A key feature of this model is its capability of simultaneously recovering assor-

tative and disassortative mixing both at the community and the supercommunity level.
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Finally we turn our attention to the problem of community detection in a dynamic

setting. We introduce an extension of the stochastic blockmodel that allows for smooth

transitions in the community structure by including a temporal dependency that accounts

for changes in the community membership and, simultaneously, a dynamic structure in the

community parameters that reflects on the evolution of the propensities of interaction.
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Appendix A

Details for MCMC algorithm for

the multilevel stochastic

blockmodel

The full conditionals distributions can be derived from (C.4). As a first step,

let Υ−θk,l be the set of all parameters in the model with the exception of θk,l. Then, for

1 ≤ k ≤ l ≤ K,

p(θk,l | Υ−θk,l ,Γ,Y) ∝ exp

{
−1

2

(
γk,l +

1

σ2

)
θ2
k,l +

(
sk,l −

nk,l
2

+
ηφ(ζk,ζl)

σ2

)
θk,l

}
(A.1)

which can be identified as a Gaussian kernel N (µ?θk,l , σ
2?

θk,l
) with mean parameter given by

µ?θk,l =
(
γk,l + 1

σ2

)−1
(
sk,l −

nk,l
2 +

ηφ(ζk,ζl)
σ2

)
and variance σ2?

θk,l
=
(
γk,l + 1

σ2

)−1
.

Now, for the auxiliary variables,

p(γk,l | Υ,Γ−(k,l),Y) ∝ exp

{
−
θ2
k,l

2
γk,l

}
π(γk,l) (A.2)
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that remains in the Polya-Gamma family, specifically, γk,l | Υ,Γ−(k,l),Y ∼ PG(nk,l, θk,l),

and, thus, can be sampled using the approach proposed by Polson et al. (2013) that builds

on Devroye (2009).

In the case of the community indicators,

Pr(ξi = k | Υ−ξi ,Γ,Y) ∝ wk
I∏
j=1
j 6=i

(exp{θφ(ξj ,k)})
y
φ(ξj ,k)

1 + exp{θφ(ξj ,k)}
, (A.3)

which is a Categorical distribution.

For the first level variance parameter σ2,

p(σ2 |,Υ−σ2 ,Γ,Y) ∝ (σ2)−( 1
4
K(K+1)+ασ+1) exp

−
[

1
2

∑K
k=1

∑K
l=k(θk,l − ηφ(ζk,ζl))

2 + βσ

]
σ2


(A.4)

which is an IG(α?σ, β
?
σ) with α?σ = ασ+ 1

2K(K+1) and β?σ = 1
2

∑K
k=1

∑K
l=k(θk,l−ηφ(ζk,ζl))

2 +

βσ. Notice, however, that it may be the case that some communities have no subjects

assigned to them. Therefore, mixing in this sampling scheme can be improved by defining

xk,l =


1 if nk,l ≥ 1

0 otherwise,

for 1 ≤ k ≤ l ≤ K and N =
K∑
k=1

K∑
l=k

xk,l, and sample σ2 from an IG(α??, β??) with

parameters α??σ = N+2ασ
2 and β??σ = 1

2

∑K
k=1

∑K
l=k(θk,l − ηφ(ζk,ζl))

2xk,l + βσ.

For the elements of H,

p(ηr,s | Υ−ηr,s ,Γ,Y) ∝ exp

{
−1

2

(
mr,s

σ2
+

1

τ2

)
η2
r,s +

(
tr,s
σ2

+
µ

τ2

)
ηr,s

}
(A.5)

where mr,s and tr,s play the role of nk,l and sk,l respectively in the second level of the

hierarchy. That is, tr,s =
∑
Tr,s θk,l while mr,s =

∑
Tr,s 1, with the sum taken over the set
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Tr,s = {(k, l) : k ≤ l, (r, s) = φ (ζk, ζl)} . Thus, ηr,s can be sampled from of a N (µ?ηr,s , τ
2?
ηr,s)

with mean µ?ηr,s =
(mr,s
σ2 + 1

τ2

)−1
(
tr,s
σ2 + µ

τ2

)
and variance τ2?

ηr,s =
(mr,s
σ2 + 1

τ2

)−1
.

Similar to the case of ξ, the full conditional for ζ satisfies that

p(ζ |,Υ−ζ ,Γ,Y) ∝ p(ζ |v)p(Θ |H, ζ, σ2).

That is, for every r = 1, 2, . . . , R, and every k = 1, 2, . . . ,K,

Pr(ζk = r | Υ−ζk ,Γ,Y) ∝ vr exp

{
− 1

2σ2

K∑
l=1

(θφ(ξj ,k) − ηφ(r,ζl))
2

}
(A.6)

The full conditional for µ is given by

p(µ |,Υ−µ,Γ,Y) ∝ exp

{
−1

2

(
1
2R(R+ 1)

τ2
+

1

σ2
µ

)
µ2 + µ

(∑R
r=1

∑R
s=r ηr,s

τ2
+
µµ
σ2
µ

)}
(A.7)

which is then sampled from a Gaussian N (µ??µ , σ
2??
µ ) with variance σ2??

µ =
(
M
τ2

+ 1
σ2
µ

)−1
,

and mean µ??µ =

(
M

τ2
+

1

σ2
µ

)−1
(∑R

r=1

∑R
s=r ηr,szr,s
τ2

+
µµ
σ2
µ

)
, and where, analogously to

the first level, M =
∑R

r=1

∑R
s=r zr,s and, for 1 ≤ r ≤ s ≤ R

zr,s =


1 if mr,s ≥ 1

0 otherwise.

As in the case of σ2, for τ2

p(τ2 |,Υ−τ2 ,Γ,Y) ∝ (τ2)−( 1
4
R(R+1)+ατ+1) exp

−
[

1
2

∑R
r=1

∑R
s=r(ηr,s − µ)2 + βτ

]
τ2


(A.8)

which is sampled from IG(α??τ , β
??
τ ) with α??τ = M+2ατ

2 and β??τ = 1
2

∑R
r=1

∑R
s=r(ηr,s −

µ)2zr,s + βτ .
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Now, the weights can be sampled from

p(w | Υ−w,Γ,Y) ∝
K∏
k=1

w
α
K

+nk−1

k (A.9)

a Dirichlet with parameter vector
(
α
K + n1,

α
K + n2, . . . ,

α
K + nK

)
and, similarly,

v | Υ−v,Γ,Y ∼ Dir
(
β

R
+m1,

β

R
+m2, . . . ,

β

R
+mR

)
.

Finally, for the concentration parameters,

p(α | Υ−α,Γ,Y) ∝ Γ(α)[
Γ
(
α
K

)]K ααα−1 exp{−βαα} (A.10)

that does not lead to a closed form. Thus, α could be sampled using a Metropolis-Hastings

step with, for example, a random walk on the log scale. Alternatively, by recognizing that

for large enough K this distribution approximates the full conditional for the concentration

parameters of a Dirichlet process, α can be sampled from a mixture of Gammas borrowing

from Escobar and West (1995). The case of β is analogous for large enough R.
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Appendix B

Details for the variational Bayes

algorithm for the multilevel

stochastic blockmodel

The optimal variational distribution for the community indicators is Categorical

satisfying:

log q?(ξi = k) = Eq(wk) [logwk] +
∑
j 6=i

yφ(i,j)

K∑
l=1

Eq(θφ(k,l))
[
θφ(k,l)

]
q?(ξj = l)

+
∑
j 6=i

K∑
l=1

Eq(θφ(k,l))
[
log
(
1 + exp

{
θφ(k,l)

})]
q?(ξj = l) + C. (B.1)

For the first level variance,

log q?(σ2) = −
(

1

4
K(K + 1) + ασ + 1

)
log σ2

−
1
2

∑K
k=1

∑K
l=k Eq(Θ,H,ζ)

[
(θk,l − ηφ(ζk,ζl))

2
]

+ βσ

σ2
+ C (B.2)

93



which is readily identified as an Inverse Gamma distribution.

The distribution for the location parameters H is also approximated by a Gaussian,

in this case

log q?(ηr,s) = −1

2

{
Eq(σ)

[
1

σ2

]
Eq(ζ) [mr,s] + Eq(τ)

[
1

τ2

]}
η2
r,s

+

{
Eq(σ)

[
1

σ2

]
Eq(ζ) [tr,s] + Eq(τ)

[
1

τ2

]
Eq(µ) [µ]

}
ηr,s + C. (B.3)

Similar to the case of ξ, the supercommunity indicators follow a Categorical dis-

tribution with probabilities given by

log q?(ζk = r) = Eq(vr) [log vr]−
1

2
Eq(σ)

[
1

σ2

]∑
l 6=k

Eq(Θ,H,ζ)

[(
θφ(k,l) − ηφ(ζk,ζl)

)2]
+C. (B.4)

Now, for the second level mean parameter,

log q?(µ) = −1

2

{
1

2
R(R+ 1)Eq(τ)

[
1

τ2

]
+

1

σ2
µ

}
µ2

+

{
Eq(τ)

[
1

τ2

] R∑
r=1

R∑
s=r

Eq(H) [ηr,s] +
µµ
σ2
µ

}
µ+ C, (B.5)

again, a Gaussian distribution, while the variational distribution for the variance parameter

is an Inverse Gamma such that

log q?(τ2) = −
(

1

4
R(R+ 1) + ατ + 1

)
log τ2−

1
2

∑R
r=1

∑R
s=r Eq(H,µ)

[
(ηr,s − µ)2

]
+ βτ

τ2
+C.

(B.6)

With respect to the weight vectors, it can be observed that

log q?(w) =

K∑
k=1

(
Eq(ξ) [nk] +

1

K
Eq(α) [α]− 1

)
logwk + C (B.7)

and

log q?(v) =

R∑
r=1

(
Eq(ζ) [mr] +

1

R
Eq(β) [β]− 1

)
log vr + C (B.8)
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which remain in the Dirichlet distribution.

Finally, for the first level concentration parameter α,

log q?(α) = log Γ(α)−K log Γ
( α
K

)
+

1

K

K∑
k=1

Eq(wk) [logwk]+(αα−1) logα−βαα+C (B.9)

which, using that log Γ(x) = (x− 1) log x+O(log x), can be approximated by

log q̃(α) = logα (αα +K − 1− 1)− α

(
βα −

1

K

K∑
k=1

{
Eq(wk) [logwk]− log

1

K

})
+ C

(B.10)

and, analogously,

log q̃(β) = log β (αβ +R− 1− 1)− β

(
ββ −

1

R

R∑
r=1

{
Eq(vr) [log vr]− log

1

R

})
+C. (B.11)

From equations (3.13) to (B.11) is possible to derive the complete algorithm with

the respective optimal variational parameters as shown below

q̃(θk,l) = N (mk,l, νk,l) (B.12)

with mk,l = νk,l

I−1∑
i=1

I∑
j=i+1

yi,jε
i,j
k,l −

1

2

I−1∑
i=1

I∑
j=i+1

εi,jk,l +
o

p

R∑
r=1

R∑
s=r

gr,sδ
k,l
r,s

 and

νk,l =

1

2

I−1∑
i=1

I∑
j=i+1

εi,jk,l

(
1− exp{−γk,l}

γk,l(1 + exp{γk,l})

)
+
o

p

−1

, while γ2
k,l = νk,l +m2

k,l where

εi,jk,l =


q(ξi = k)q(ξj = l) + q(ξi = l)q(ξj = k) if k 6= l

q(ξi = k)q(ξj = l) if k = l.

and analogously,

δk,lr,s =


q(ζk = r)q(ζl = s) + q(ζk = s)q(ζl = r) if r 6= s

q(ζk = l)q(ζl = s) if r = s.

95



While, for the community indicators

q?(ξi = k) = $i,k (B.13)

with

log$i,k = Ψ (ψk) +
∑
j 6=i

[
yφ(i,j)

K∑
l=1

mφ(k,l)$j,l −
K∑
l=1

(
log

(
1 + exp

{
mk,l +

1

2
νk,l

})
−

(exp{νk,l} − 1) exp{2mk,l + νk,l}
2
(
1 + exp

{
mk,l + 1

2νk,l
})2

)
$j,l

]
+ C

and where it has been made use of the fact that, from the second order Delta method,

Eq(θk,l)[log(1+exp θk,l)] ≈ log
(
1 + exp

{
mk,l + 1

2νk,l
})
− (exp{νk,l}−1) exp{2mk,l+νk,l}

2(1+exp{mk,l+ 1
2
νk,l})2

.

In the case of the first level variance parameter,

q?(σ2) = IG(o, p) (B.14)

with p = βσ +
1

2

K∑
k=1

K∑
l=k

(
νk,l +m2

k,l

)
−

R∑
r=1

R∑
s=r

gr,s

K∑
k=1

K∑
l=k

mk,lδ
k,l
r,s +

1

2

R∑
r=1

R∑
s=r

(
g2
r,s + h2

r,s

) K∑
k=1

K∑
l=k

δk,lr,s

and o = ασ + 1
4K(K + 1).

For the upper level, the location parameters satisfy

q?(ηr,s) = N (gr,s, h
2
r,s) (B.15)

where gr,s = h2
r,s

[
o

p

K∑
k=1

K∑
l=k

mk,lδ
k,l
r,s +

a

b
c

]
and h2

r,s =

[
o

p

K∑
k=1

K∑
l=k

δk,lr,s +
a

b

]−1

, and the sup-

percommunity indicators probabilities are such that

q?(ζk = r) = %k,r (B.16)

with

log %k,r = Ψ (ϕr)−
1

2

(
o

p

) K∑
l=1

[
νφ(k,l) +m2

φ(k,l) − 2mφ(k,l)

R∑
s=1

gφ(r,s)%l,s +
R∑
s=1

(
h2
φ(r,s) + g2

φ(r,s)

)]
+ C.

In the case of the hyperparameters, the optimal variational distribution for the

mean is

q?(µ) = N (c, d2) (B.17)
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where c = d2

[
a

b

R∑
r=1

R∑
s=r

gr,s +
µµ
σ2
µ

]
and d2 =

[(a
b

) 1

2
R(R+ 1) +

1

σ2
µ

]−1

, while for the vari-

ance

q?(τ2) = IG(a, b) (B.18)

with b = βτ +
1

2

R∑
r=1

R∑
s=r

(
h2
r,s + g2

r,s

)
− c

R∑
r=1

R∑
s=r

gr,s +
1

4
R(R+ 1)

(
d2 + c2

)
and a = ατ + 1

4R(R+ 1).

Lastly, for the weight parameters on the indicators side,

q?(w) = Dir(ψ) (B.19)

with ψk =
1

K

(
aα
bα

)
+

I∑
i=1

$i,k, and

q?(v) = Dir(ϕ) (B.20)

with ϕr =
1

R

(
aβ
bβ

)
+

K∑
k=1

%k,r,

while their respective hyperparameters satisfy

q̃(α) = G(aα, bα) (B.21)

with parameters aα = αα+K−1 and bα = βα−
1

K

K∑
k=1

[
Ψ (ψk)−Ψ

(
K∑
l=1

ψl

)
− log

(
1

K

)]
,

and

q̃(β) = G(aβ, bβ) (B.22)

where aβ = αβ +R− 1 and bβ = ββ −
1

R

R∑
r=1

[
Ψ (ϕr)−Ψ

(
R∑
s=1

ϕs

)
− log

(
1

R

)]
.
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Finally, it is found that the ELBO satisfies

F̃ (q,Y) ≈
∑
i<j

yi,j∑
k≤l

mk,lε
i,j
k,l −

∑
k≤l

log (1 + exp {−γk,l}) εi,jk,l −
1

2
(mk,l + γk,l) ε

i,j
k,l

−
1− exp {−γk,l}

4γk,l (1 + exp {−γk,l})
(
m2
k,l + vk,l − γ2

k,l

)
εi,jk,l

]
− K(K + 1)

4
(log p−Ψ(o))

− o

2p

∑
k≤l

(m2
k,l + vk,l)− 2mk,l

∑
r≤s

gr,sδ
k,l
r,s +

∑
r≤s

(
g2
r,s + h2

r,s

)
δk,lr,s

+
K∑
k=1

[
Ψ(ψk)

I∑
i=1

$i,k

]

−IΨ

(
K∑
k=1

ψk

)
+ασ log βσ−log Γ(ασ)−(ασ−1)(log p−Ψ(o))−βσ

o

p
−R(R+ 1)

4
(log b−Ψ(a))

− a

2b

∑
r≤s

(
g2
r,s + h2

r,s

)
− 2c

∑
r≤s

gr,s +
1

2
R (R+ 1)

(
c2 + d2

)+
R∑
r=1

[
Ψ(ϕr)

K∑
k=1

%k,r

]

−KΨ

(
R∑
r=1

ϕr

)
−1

2
log(σ2

µ)−
c2 + d2 − 2cµµ + µ2

µ

σ2
µ

+ατ log βτ−log Γ(ατ )−(ατ−1)(log b−Ψ(a))

− βτ
a

b
+ log Γ

(
aβ
bβ

)
+

1

2
Ψ1

(
aβ
bβ

)
aβ
b2β
−R

[
log Γ

(
aβ
Rbβ

)
+

1

2
Ψ1

(
aβ
Rbβ

)
aβ
R2b2β

]

+

R∑
r=1

(
aβ
Rbβ

− 1

)(
Ψ(ϕr)−Ψ

(
R∑
s=1

ϕs

))
+ log Γ

(
aα
bα

)
+

1

2
Ψ1

(
aα
bα

)
aα
b2α

−K
[
log Γ

(
aα
Kbα

)
+

1

2
Ψ1

(
aα
Kbα

)
aα
K2b2α

]
+

K∑
k=1

(
aα
Kbα

− 1

)(
Ψ(ψk)−Ψ

(
K∑
l=1

ψl

))

+ αα log βα − log Γ(αα) + (αα − 1)(Ψ(aα)− log bα)− βα
aα
bα

+ αβ log ββ − log Γ(αβ)

+ (αβ − 1)(Ψ(aβ)− log bβ)− ββ
aβ
bβ

+
K(K + 1)

4
+

1

2

∑
k≤l

log(vk,l)−
I∑
i=1

K∑
k=1

$i,k log$i,k

+ o+ log p+ log Γ(o)− (1 + o)Ψ(o) +
R(R+ 1)

4
+

1

2

∑
r≤s

log(h2
r,s)−

K∑
k=1

R∑
r=1

%k,r log %k,r

+
1

2

(
1 + log d2

)
+ a+ log b+ log Γ(a)− (1 + a)Ψ(a) +

K∑
k=1

log Γ(ψk)− log Γ

(
K∑
k=1

ψk

)

−

(
K −

K∑
k=1

ψk

)
Ψ

(
K∑
k=1

ψk

)
−

K∑
k=1

(ψk − 1) Ψ(ψk) +
R∑
r=1

log Γ(ϕr)− log Γ

(
R∑
r=1

ϕr

)

−

(
R−

R∑
r=1

ϕr

)
Ψ

(
R∑
r=1

ϕr

)
−

R∑
r=1

(ϕr − 1) Ψ(ϕr)+aα− log bα+log Γ(aα)+(1−aα)Ψ(aα)

+ aβ − log bβ + log Γ(aβ) + (1− aβ)Ψ(aβ)
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which is used to monitor for convergence of the algorithm.
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Appendix C

Details for derivation of expected

number of clusters in the

multilevel stochastic blockmodel

Direct calculation from the distribution of K? yields that

E [K?] = α {Ψ(α+ I)−Ψ(α)} ≈ α log

(
α+ I

α

)
, (C.1)

and

V [K?] = α {Ψ(α+ I)−Ψ(α)}+ α2
{

Ψ′(α+ I)−Ψ′(α)
}
≈ α log

(
α+ I

α

)
. (C.2)

Therefore, using the law of iterated expectations,

E [R?] = E [E [R? | K?]] ≈ E
[
β log

(
β +K?

β

)]
= βE

[
log

(
β +K?

β

)]
(C.3)
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And applying a second order Taylor approximation yields the desired result:

E [R?] ≈β

log

(
E
[
β +K?

β

])
− 1

2

V
[
β+K?

β

]
E2
[
β+K?

β

]
 (C.4)

= β

log

(
β + E [K?]

β

)
− 1

2

1
β2V [K?](
β+E[K?]

β

)2

 (C.5)

≈ β

{
log

(
β + α log

(
α+I
α

)
β

)
− 1

2

α log
(
α+I
α

)(
β + α log

(
α+I
α

))2
}
. (C.6)
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