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Abstract

Individual heterogeneity in life history processes: Estimation and applications of
demographic models to stage-structured arthropod populations

By

Katherine Scranton

Doctor of Philosophy in Environmental Science, Policy, and Management

University of California, Berkeley

Associate Professor Perry de Valpine, Chair

Life history variation is a general feature of natural populations. Most studies assume
that local processes occur identically across individuals, ignoring any genetic or phenotypic
variation in life history traits. In part, this is because a realistic treatment of individual
heterogeneity results in very complex population models. Fitting models with individual
heterogeneity to real data is further complicated by random effects in groups of the data,
observations set at specific intervals, and the non-independence of data following a cohort
of individuals through time. In this dissertation, I assume that individuals differ in the
duration they spend in each developmental stage and also in the amount of time they live.
Stage durations and survival times follow probability distributions with parameters specific
to populations and stages. Parameters of these distributions may also include random
effects when considering a subset of sampled populations and covariates such as
temperature. In the first chapter I formulate a model and likelihood for variable
development, using the time-to-event model framework. In the second chapter I use this
model to ask whether field populations of herbivorous arthropods (Tetranychus pacificus)
form host-associations on different cultivars of the same host species. In the third chapter I
incorporate variable development with variable survival and ongoing reproduction in a
stage-structured population model. I explore the ability of the approximate Bayesian
computation framework to fit such a complex model to data, evaluating posterior
distributions and model performance.

I first focus on variable development in a stage-structured population. I consider the
distribution of maturation times (time from birth to adult) as time-to-event data, which
are very common in other fields such as survival analysis, machine failure, and disease
onset. Time-to-event data are also common in ecology but are rarely analyzed with
sophisticated tools common in other fields. The main obstacles in applying time-to-event
models to ecological data are the variation of natural systems and interval-censored data. I
develop a mixed-effects Weibull model for interval-censored data on time-to-maturation of
individuals in a cohort. I incorporate a fixed difference between types of cohorts and two
levels of random effects. There is no available software for mixed-effects survival analysis
for interval-censored data, so likelihood calculations with numerical integration of random
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effects were programmed in R. A simulation study under different magnitudes of variation
is used to evaluate the power of the likelihood ratio tests and the precision of parameter
estimates. Differences in the mean scale as small as 5% can be detected with high power
under low variation. Under higher variation, larger differences of 18% can be detected with
80% power. Omitting random-effects produces biased estimates of the Weibull parameters
and highly inflated type I error rates in likelihood ratio tests. The methods developed in
this paper for fitting hierarchical frailty models to interval censored data would be
applicable to a wide range of ecological processes such as survival, oviposition, or onset of
disease.

I apply the time-to-maturation model in a common garden experiment with Pacific
spider mites (Tetranychus pacificus) to detect any significant intraspecific life history
variation associated with the cultivar of original host plant (Vitis vinifera). Tetranychid
mites in particular display large amounts of life history variation. They are prone to
host-associated differentiation and forming host races on different host species, but the
strength of their association with cultivar is less clear. To address this question I collect
individuals from many field sites of two cultivars of grape, Zinfandel and Chardonnay. I
then conduct a “common garden experiment” with bioassays of mites on bean plants
(Phaseolus lunatus) in the laboratory. Assay populations are founded and sampled
non-destructively with digital photography over 12 days to determine development times,
survival times, and fecundity rates of individuals in single cohorts. Two classes of models
are fit to the data: standard generalized linear mixed models and the time-to-event model
for development. The time-to-event model allows for interval-censored data and random
effects for the replicate sample sites and for the replicate assay populations. I employ a
maximum likelihood approach to fit the time-to-event model and perform all likelihood
ratio tests with randomized null distributions because of sample size concerns. Both
models find a significant effect of cultivar on development time: individuals from Zinfandel
grapes develop more quickly than those from Chardonnay grapes. There is a trend towards
higher juvenile survival in populations from Zinfandel grapes and no difference in fecundity.
I show that the time-to-event model provides more information about life history processes
than standard GLMMs. Differences in development time in these lab populations may
indicate field differences of these economically-important pests on grape crops. Growers
and pest managers should consider the possibility of population-level differences on crops
that are genetically similar and geographically close.

Including a time-to-event model of development in a stage-structured population
model of ongoing dynamics increases the complexity of the model. Individual heterogeneity
in development and survival, coupled with ongoing reproduction causes intractable
likelihoods, making it impossible to use likelihood-based model inference. We lack a
statistical framework flexible enough to analyze and fit such a stage-strucutred model to
cohort data. The problem is further complicated by the non-independence caused by
following the same individuals through time, with interval censoring. A potential solution
is to use an approximate Bayesian computation (ABC) approach to model inference,
replacing the likelihood calculations by comparing repeated simulations with an observed
data set. I use the ABC framework to fit the stochastic stage-structured model to
simulated cohort data with a sequential Monte Carlo (SMC) sampler to increase efficiency.
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The computational methods are all programmed directly in R and C. I demonstrate a
systematic way to select summary statistics and distance metrics using simulated data and
the ROC curve from classification theory. I evaluate the performance of the ABC SMC
algorithm, showing the posterior distributions of parameters and 95% credible intervals. I
also show the computational performance of the algorithm in moving to the target
posterior. I conclude that ABC shows great promise as a framework for parameter
estimation and model inference of realistic stage-structured population models. My
approach could be extended to include model selection, covariates or random effects on any
of the demographic parameters, correlations between distributions of stage durations, or
imperfect detection of individuals.
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I dedicate this manuscript to my family. Especially to my mother, Dr. Joan Gluch, and her
excellent metaphor for the strategy of writing a dissertation:

“What is the best way to eat an elephant? A spoonful at a time.”
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1 Chapter 1

1.1 Introduction

Ecological studies commonly yield time-to-event data, such as an individuals survival
time, maturation time, or behavior durations (Zens and Peart, 2003; Ma and Bechinski,
2009; Wajnberg, 2006). A class of models, collectively known as Survival Analysis models
or Failure Time models, have been developed in other fields for similar data, such as time
to machine failure, disease onset, or time to death (Wong et al., 2005; Lindsey and Ryan,
1998). When exact event times are known, there are numerous parametric, semi-parametric
and non-parametric approaches to model fitting and hypothesis testing (Hougaard, 2000).
However, in practice an individual is rarely continuously monitored, but observed at regular
times (known as “interval censoring”) producing a range in which we know the event has
occurred. Similar approaches can be taken to fit models to interval-censored data, although
the calculations can become more complex (Goethals et al., 2009). Wider use of these
methods in ecology would allow more accurate estimation of any time-to-event process from
groups, giving some estimate of the amount of individual heterogeneity in the population.

One basic concept of survival analysis is that the time-to-event, T, is treated as a
random variable with a probability density function f(t). Each density function has a
corresponding Survival function (S(t)) and the hazard rate (λ(t)). The Survival function is
defined as S(t) = P (T > t), the probability of the event not having occurred yet, or the
proportion of the population that has yet to experience the event. The hazard function is
the instantaneous rate of occurrence where λ(t)dt = P (t ≤ T < t+ dt |T ≥ t). The three
functions have one-to-one relationships such that λ(t) = f(t)/S(t) (Sun, 2006).

These equations describe how the event times of individuals in one population are
distributed. Fixed effects (covariates) that may affect the distribution of event times can
be incorporated using the accelerated failure time (AFT) model and the Cox or
proportional hazard (PH) model. Parametric AFT models assume a specific distribution
for the probability density function, commonly using the Weibull or Gamma model. The
covariates act directly on the (log) timescale, either accelerating or delaying the
time-to-event (Sun, 2006). In a PH model, covariates act on the (log) hazard rate such
that a change in the value of a covariate produces a proportional change in the
non-parametric hazard function. PH models are used to assess risk relative to the
covariates, not absolute risk (Hougaard, 2000). Other common approaches include
proportional odds models, additive hazards models and linear transformation models
(Sun, 2006). Many standard statistical software packages are capable of estimating
parameters for these simple survival analysis models (Lindsey and Ryan, 1998)

Another basic concept of survival analysis models is the underlying assumption of
individual heterogeneity in the population: individuals experience the event at slightly
different times, according to the probability density function. Survival analysis models can
be extended to include not only individual variation, but also variation between groups.
These random-effect models stem from the idea that unknown, inherent traits would cause
an individual to be more or less frail (more or less likely to survive) and could be shared
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between members of a group, such as a family (Hougaard, 2000; Service, 2000). We expect
the members of the group to be more similar to each other than to outsiders, but we have
no reason to predict that they would be more or less frail than another group. These
clustered random effects are known as shared frailty terms and enter the model in the same
way as a covariate (Hougaard, 2000). Frailty terms are commonly assumed to follow a
Gamma distribution, but other forms are also possible, including log-normal or positive
stable distributions (Wintrebert et al., 2005). Frailty models have been used frequently in
assessments of failure of medical devices or machines, disease onset in clinical trials and
veterinary medicine, and for survival of related individuals, including human twins
(Bellamy et al., 2004; Goethals et al., 2009; Wong et al., 2005).

Simpler fixed effects survival analysis models for exact event-time data are not new to
ecology. Data from insect survival and development (Van Dooren et al., 2005; Ma, 2010;
Ma and Bechinski, 2008) and plant mortality and residence time (Woodall et al., 2005;
Ozinga et al., 2007) have been described by models with covariates that include individual
characteristics such as size or age. Fire return interval data has also been modeled using
survival analysis (Polakow and Dunne, 1999; Moritz et al., 2008). Survival analysis models
have also been applied to behavioral data on insect dispersal time (Bishop et al., 2000),
deer migration times (Fieberg and Delgiudice, 2008), parasitoid behavior during
oviposition (Velema et al., 2005), time between attacks of pine weevils (He and Alfaro,
2000) and predator preference as evinced by prey survival (Schauber and Jones, 2006).
These models are limited to considering covariates (fixed effects), excluding any random
effects that may be due to replication within a trial or sampling within a site.

Random-effects (frailty) models for exact event-time data have entered the ecological
literature with respect to mortality and survival. Frailty models with Gompertz hazard
functions are commonly used to model senescence, but in this application the frailties
represent individual heterogeneity, not an unexplained source of variation shared by
members of a specific group (Service, 2000; Zens and Peart, 2003). Few examples of frailty
models exist outside of the senescence literature in ecology, but shared frailty models have
been developed for sage-grouse chick survival where frailties are grouped by brood
(Aldridge and Boyce, 2007), larval survival of a geometrid moth with frailties grouped by
habitat patch (tree) (Tanhuanpää et al., 2001), and scrub jay survival where frailties are
grouped by relatedness: shared mother, father, natal territory (Fox et al., 2006).
Wintrebert et al. (2005) used frailty models to estimate the joint probability of survival
and breeding in interval-censored data on kittiwakes, but the frailties are shared between
the two life history processes in the same individual, not shared by individuals of a group.

Frailty models can also be formulated for interval-censored data, in which the exact
event time is unknown. Interval censoring is common in clinical trials and in observational
studies of animals in which the subject or phenomenon is observed at semi-regular intervals
(Lindsey and Ryan, 1998; Ma, 2010). Two observation times create a lower bound and
upper bound for the exact event time. Right censoring and left censoring occur when the
event occurs outside of the study period, either before the first observation (left) or after
the last observation (right). Model estimation becomes increasingly difficult with
interval-censoring due to more complex likelihood calculations (Lawless, 2003). Many
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analyses sidestep this problem by imputing the exact event time as one bound or the
midpoint of the interval, but this creates biased estimates of the underlying parameters
(Goethals et al., 2009; Radke, 2003).

A handful of studies have analyzed mixed-effects frailty models for interval-censored
data, fully accounting for the interval censoring instead of imputing an exact event time.
Zuma (2007) analyzed a proportional hazards model with a Weibull baseline hazard and
multiplicative Gamma frailties in an MCMC framework. Instead of using the interval data
and corresponding likelihood, Zuma treated the exact event times as unobserved variables,
adding dimensions, but simplifying the likelihood. Banerjee and Carlin (2004) analyzed
interval-censored data on smoking cessation with Weibull and Gamma frailty models fitted
in a Bayesian framework using MCMC. The authors assumed that several of the model
parameters (including the frailties) were spatially correlated, so they used a multivariate
conditionally autoregressive (MCAR) prior, with a precision matrix dependent on spatial
relatedness (Banerjee and Carlin, 2004).

Bellamy et al. (2004) modeled the age at onset of asthma in a community-based study
with a Weibull hazard and a normal frailties with additive effects. They directly calculated
the likelihoods by approximating the integral over the frailty using quadrature,
implemented as SAS macros. Wong et al. (2005) used a similar model in a Bayseian
MCMC framework for the time-to-arrest of active dental carries. They simplified the
Weibull by holding the rate parameter equal to 1, but added a level of frailty clustering
(one for carries in the same individual, one for individuals in the same group). Most
recently, Goethals et al. (2009) modeled time to infection in cows, using a Gamma frailty
for the dependence of multiple infections in the same animal. They used a proportional
hazard model where the frailty affects the hazard rate multiplicatively, and calculated
likelihoods directly for several baseline hazard models (Weibull, Exponential, and
log-Logistic) for likelihood ratio and AIC comparisons.

This study presents a general approach for maximum likelihood estimation of a
mixed-effects time-to-event model for ecological applications. We directly calculate the
likelihoods using quadrature to approximate the integrals over each random effect,
assuming we have interval-censored data. To evaluate the performance of this model in
parameter estimation and hypothesis tests, we present a simulation study exploring
different levels of random variation and fixed differences between groups. We also compare
results to those from a näıve fixed-effects model that ignores the shared sources of
variation. Our example uses a Weibull model with two levels of hierarchical clustered
normal frailties that act additively on the log-hazard rate. In this formulation the AFT
and PH models are identical, illustrating the flexibility of our approach. There is no widely
available statistical software for interval-censored mixed-effects survival analysis, so we
programmed the calculations directly in R (R Development Core Team, 2010).

1.2. Methods

Suppose we have many source populations from which we sample individuals. Source
populations are of two types: A and B. The two types may be experimental treatments or
any other natural contrast. Many replicate cohorts from each source will be followed from
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birth to maturation. The development times for individuals in the cohort will be affected
by the fixed source type (A or B), the random variation between source populations of one
type, and the random variation between replicates from one source. We wish to ask if we
can detect a true difference between types A and B, while accounting for the two random
effects: source and replicate. We assume that our event data is interval censored and that
our observation time is long enough to capture all mature individuals, excluding the need
to consider right-censored data. This model is similar to that analyzed by Bellamy et al.
(2004), but includes another level of frailty clustering.

1.2.1 Methods: Model description

Suppose we have p source populations (of two types: A and B), each of which supplies
m replicate populations with n individuals per replicate. Dijk is the unobserved
development time (time from egg or birth to adulthood) of the kth individual in the jth

replicate from the ith source population. We assume the development times follow a
Weibull model with the probability density function and survivor function

f(t) = λγ(λt)γ−1exp (−(λt)γ) (1)

S(t) = exp (−(λt)γ) (2)

The shape parameter, γ, forces the hazard function to be monotone decreasing for
γ < 1, increasing for γ > 1 and constant for γ = 1. The rate parameter, λ, controls the
position of the curve with respect to time and has a simple biological interpretation. It is
easily shown that approximately 63% (1− e−1) of the individuals will have developed by
1/λ units (e.g. days, weeks, years). The Weibull can also be formulated in terms of the
scale parameter (1/λ), and we will interpret some of the results with respect to changes in
scale. The frailties and covariates enter the model via the log of the rate parameter,
yielding the modified survivor function

Sij(t) = exp
(
−(λt)γ eγ(εi+νj+βX)

)
(3)

where ε ∼ N (0, σ2
ε ) allows for variation between populations from different sources (source

variation) and ν ∼ N (0, σ2
ε ) allows for variation between replicate populations from the

same source (replicate variation). β and X are vectors of coefficients and covariates,
respectively. The only covariate in this case is the Indicator variable xi for source type
(type effect), which is 1 for source type A and 0 for source type B.

Interval-censored studies yield an interval of observation times, [Lijk, Hijk], such that
Lijk < Dijk < Hijk for each individual. The likelihood of an individual maturing in any
interval [Lijk, Hijk], conditional on values for the source effect and replicate effect, is

P [Lijk < t < Hijk] =
∫ Hijk

Lijk

fij(t)dt = Sij(Lijk)− Sij(Hijk) (4)

This model now depends on five parameters, the set of which we will call θ, such that
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θ : {λ, γ, β, σε, σν}. We build the full likelihood starting at the scale of one individual. We
move up in scale from one replicate to one source, and then finally to all sources in order to
reach the full likelihood of our dataset. Every step up in scale corresponds with a product
over all of the likelihoods at the smaller scale. Because we include random effects we will
also need to integrate over all possible values of each random effect term at the appropriate
scale. The likelihood contribution of the kth individual in the jth replicate from the ith

source population, conditional on values for both random effects is

Lik [ [Lijk, Hijk ] | θ, εi, νj ] = exp
(
−(λLijk)

γ eγ(εi+νj+βX)
)
− exp

(
−(λHijk)

γ eγ(εi+νj+βX)
)
(5)

The likelihood contribution from the jth replicate from the ith source is the product of the
likelihoods of the n individuals in that replicate, which can be calculated directly.

Lik[ repij | θ, εi, νj ] =
n∏
k=1

Lik[ [Lijk, Hijk ] | θ, εi, νj ] (6)

Integrating over all possible replicate effects in (7) yields the marginal likelihood
contribution for the jth replicate from the ith source, which has no closed form.

Lik[ repij | θ, εi ] =
∫
Lik[ repij | θ, εi, νj ]f(νj)dνj (7)

Moving up in scale to a source population, we calculate the likelihood of the ith source as
the product of likelihoods of all m replicates of a common source, sharing a source effect.

Lik[ sourcei | θ, εi ] =
m∏
j=1

Lik[ repij | θ, εi ] (8)

Similarly to the likelihood construction for the jth replicate, we can construct the marginal
likelihood for the ith source by integrating across all possible source effects, which again has
no closed form.

Lik[ sourcei | θ ] =
∫
Lik[ sourcei | θ, εi ]f(εi)dεi (9)

The full likelihood of all data from all sources is the product across all p sources.

Lik[ data | θ ] =
p∏
i=1

Lik[ sourcei | θ ] (10)

Maximizing this likelihood (10) over the parameter set, θ, yields estimates of all model
parameters. In equations (7) and (9) we encounter intractable integrals, which we estimate
with numerical integration using quadrature. For each such likelihood, we have the general
expression ∫

Lik[ data | θ, ηi ]f(ηi)dηi (11)
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which we replace with

100∑
i=1

Lik[ data | θ, ηi ] f(ηi)∆ηi (12)

where η ∼ N (0, ση) and {η1, η2, ..., η100} is a sequence within the bounds [−6ση, 6ση ] evenly
spaced by ∆η = (12/100)ση. Substituting this estimation yields the full likelihood
expression for a dataset

Lik[ dataset | θ ] =
p∏
i=1

 100∑
s=1

 m∏
j=1

(
100∑
r=1

[
n∏
k=1

(∫ Hijk

Lijk

f(t)dt

)]
f(νr)∆ν

) f(εs)∆ε

 (13)

We will refer to this model as the mixed-effects model, reflecting the fact that we include a
fixed effect (type effect) and two random effects (source variation and replicate variation).
In the simulation analysis we will compare this model to a näıve analysis of a fixed-effects
model, which incorporates the type effect (covariate) into the Weibull model, but no
random effects.

1.2.2 Methods: Simulations

We conducted a simulation study, varying levels of source and replicate variation to
assess the precision and accuracy of parameter estimates and the power of the likelihood
ratio tests. We compared the performances of the mixed-effects model to the näıve
fixed-effects model of under a range of true differences between groups.

A simulated data set consisted of 200 trial cohorts: 20 source populations, each with
10 replicate cohorts. Of the 20 source populations, 10 were of type A and 10 were of type
B. Each trial cohort consisted of 10 individuals whose development times were distributed
according to a Weibull model, with constant shape and scale parameters and appropriate
type, source, and replicate effects. The baseline shape parameter (γ = 8) and scale
parameter (1/λ = 8.33) are consistent with development of small herbivorous arthropods
(such as aphids or spider mites) with time units in days. Type effect (β) was constant for a
data set, but varied between simulations in the range: {0, 0.05, 0.1, 0.2, 0.3, 0.4}. This
range corresponds to decreases in the value of the true scale (1/λ) from 8.33 time-units to
{8.33, 7.93, 7.54, 6.82, 6.17, 5.59}, representing decreases of {0% , 4.88%, 9.52%, 18.13%,
25.92%, 32.97%}. Source and replicate effects were drawn from independent normal
distributions with mean zero and one of 3 levels of variation: zero, low (σ = 0.05), and high
(σ = 0.15). We examined all combinations of source and replicate variation, except the two
that paired zero variance with high variance, yielding 7 variation schemes.

Exact development times for the 10 individuals in a trial cohort were drawn from the
appropriate Weibull distribution. A sampling interval of 2 time-units was imposed to
create interval-censored data, instead of exact-time data. Mortality, observation error and
reproduction were assumed to be absent. 200 data sets were simulated for each
combination of type effect and source and replicate variation (42 scenarios). For each data
set, likelihood ratio tests were conducted to determine if type effect was a significant factor
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in each of two models: the mixed-effects model with source and replicate variation, and the
näıve fixed-effects model. likelihood calculations were programmed directly in R using
optim and the Nelder-Mead method to minimize the negative log-likelihood functions.

1.3 Results

The likelihood function behaved well across all combinations of type effect and source
and replicate variation, consistently reaching a global maximum. True parameter values
were consistently well estimated by the mixed-effects model and were always covered by
the interquartile range (figure 1 for example). Increasing either the source or replicate
variation increased the standard error of all parameter estimates, but did not bias the
estimates. For true non-zero source and replicate variation, estimates of the source
variation had consistently higher standard error than estimates of replicate variation.

The näıve fixed-effects model underestimated both Weibull parameters, resulting in
large biases in the shape parameter (γ) and smaller biases in the rate parameter (λ) (figure
1). Biases increase dramatically with either source or replicate variation. Weibull curves
resulting from the biased parameter values are wider than those produced by the true
parameter values. Under zero variation, both the mixed-effects model and the fixed-effects
model detected decreases in scale (1/λ) as small as 5% (decrease in scale from 8.33 to 7.93
time-units) with 100% power. When variation is included at any level, the fixed-effects
model yields highly inflated type I error rates in the range of (0.5 - 0.8) (figure 2).

For the mixed-effects model, increasing either source variation or replicate variation
decreased power over weak-medium type effects (figure 2), with changes in source variation
affecting power more drastically than changes in replicate variation. Increasing replicate
variation (moving left to right in the same row in figure 2) lowered power slightly for weak
type effects (β < 0.2). In contrast, increasing source variation (moving down in the same
column in figure 2) decreased power at all but the strongest type effect (β = 0.4). Type I
error rates for likelihood ratio tests of the mixed-effects model did not always match
nominal rates, but the differences were minor.

1.4 Discussion

Although survival analysis methods are being applied more frequently to diverse
problems in ecology (Ma, 2010; Moritz et al., 2008; Marzolin et al., 2011) , we have lacked
the methods to easily analyze mixed-effects survival models for interval-censored data.
This gap will affect ecologists more strongly than other researchers whose systems are not
as highly variable and complex. The framework we have developed in this paper for
estimating survival models will hopefully motivate more ecologists to apply these
sophisticated tools to their systems.

A strength of even the simplest survival time model is the assumption of individual
heterogeneity in event time. It may be tempting to propose that this description of
variation is sufficient in representing all of the variation in population data. However, the
inflated type I error rates and biased parameter estimates clearly show how inadequate and
inappropriate a fixed-effects survival model would be for most ecological data. The bias of
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the näıve fixed-effects model in our study towards lower values of the shape parameter (γ)
widens the Weibull curve to fit data that are actually distributed according to multiple
narrow Weibull curves. The bias in the rate parameter (λ) contributes to the widening of
the distribution, but to a lesser degree.

It may also be tempting to simplify the analysis by imputing an event time as the
midpoint of the interval, or as one extreme. It has been well demonstrated that estimating
an exact event time from an interval introduces bias in the parameter estimates and can
lead the researchers to a different conclusion than they would reach by using the
interval-censored data (Goethals et al 2009, Radke 2003). We do not attempt to replicate
their results here in favor of exploring more levels of type effect and variation.

There are a few limitations to our analysis. Type I error rates did not always perfectly
match nominal rates, and although we were satisfied the likelihood tests were valid for our
simulations, in cases with fewer sources or replicates, we would urge consideration of
randomization tests. Under the highest levels of variation we considered, the mixed-effects
model could not reliably detect a type effect weaker than β = 0.1, which corresponds to a
9.5% decrease in the scale (1/λ), or approximately 0.79 time-units for our parameter
choices. This type effect may seem weak or strong, depending on the organism and
timescale. For example, the ability to detect, under high variability, a difference between
two populations of 0.79 days (19 hours) in the development time of an arthropod pest
would be incredibly powerful and useful to a pest manager or farmer. Choice of time unit
and time scale will be very influential in any application to field data.

We have provided a framework for developing and analyzing a mixed-effects (shared
frailty) time-to-event model for interval censored data in the context of individual
development time. Any ecological time-to-event data could be analyzed in this framework,
including oviposition, behavioral durations, or survival. Our model could easily be
extended to incorporate additional sources of variation or other features of survival analysis
models such as gender differences or a cure rate for individuals that die, migrate, or are
otherwise lost to the population.
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2 Chapter 2

2.1 Introduction

Life history variation is a characteristic feature of many natural systems (Uchmański,
1985). The scale and drivers of variation may vary, with considerable consequences for
population dynamics (Bjornstad and Hansen, 1994; Souissi and Ban, 2001; van Noordwijk
and de Jong, 1986). Variation at different scales may include phenotypic variation within a
genotype, standing genetic variation within a population, and fixed differences between
populations. Phenotypic or genetic differences between populations range from non-genetic
polyphenisms to speciation (Diehl and Bush, 1984) and can be driven by host use (Dickey
and Medina, 2010). Many Acarine mites, and spider mites (Family Tetranychidae) in
particular, display significant amounts of life history variation and are prone to
host-associated differentiation (Magalhães et al., 2007b). Host race formation is not
commonly thought to occur between panmictic populations using different varieties of the
same plant species. In this study we test whether mites are differentiated in ecologically
important life history traits at small scales, between two cultivars in a landscape mosaic.

Evidence can be found to support the hypothesis that mites may evolve differences on
hosts as similar as cultivars and at small geographic scales. Numerous studies have shown
rapid adaptation to host species evinced by marked changes in life history processes such
as survival, development and reproduction. T. urticae lines adapted to favorable (bean) or
unfavorable (bean and cucumber) hosts each have higher fitness and survivorship than the
other line on the “native” host. Lines adapted to the unfavorable hosts also have higher
survivorship on novel marginal hosts (Gould, 1979). Populations of T. urticae adapted to
hosts that impose high juvenile mortality (tomato and brocolli) show lower mortality,
greater acceptance, and increased developmental rate (tomato only) than bean-adapted
mites introduced to the unfavorable host plants (Fry, 1989). T. urticae populations reared
on unfavorable hosts (cucumber, tomato, and pepper plants), show high variation in
juvenile survival, longevity, and fecundity, and increases in mean trait values (excepting
longevity) after adapting to novel favorable hosts (Magalhães et al., 2007a). Lines of T.
urticae adapted to different hosts (tomato, arapidopsis, and bean) vary in fecundity and in
feeding damage on novel hosts. Lines also differentially induce and respond to jasmonic
acid plant defenses (Kant et al., 2008). T. urticae populations show adaptive plasticity in
fecundity when comparing bean and tomato plant hosts (Agrawal et al., 2002).

Rapid adaptation to host species has also been demonstrated genetically, in addition
to the above studies of ecological traits. Evidence from a genome-sequencing study of
Tetranychus urticae shows that 24% of genes are differentially expressed upon host transfer
from bean to a less favorable host (tomato or arapidopsis), with the most profound changes
occurring in genes in the detoxification and pepsidase families (Grbić et al., 2011). Other
genetic differences between spider mite lines adapted to different host plants are present in
micro satellite markers (Nishimura et al., 2005), allozyme and nuclear ribosomal sequences
(Navajas et al., 2000), and at the phosphoglucose isomerase locus (Gotoh et al., 1993).
These genetic differences can become so extreme that lines of the same species (T.
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kanzawai, T. urticae, and O. gotohi) become reproductively isolated (Gomi and Tetsuo,
1996; Navajas et al., 2000; Gotoh et al., 2007). Other herbivorous Acari species (A. hystrix
and N. paspalivorus) are also reproductively isolated on host plant (Famah Sourassou
et al., 2010; Skoracka, 2008). The above studies clearly demonstrate both life history and
genetic differences between isolated mite populations adapted to different plant species. It
is less clear what to expect from populations feeding on different cultivars (genotypes) of
the same host species in a mosaic pattern on the landscape.

While cultivars of the same species are likely to be more similar than different species,
they do vary in their response to herbivores and pathogens. Suitability of the host cultivar
as measured by resistance to herbivory may provide a basis for mite adaptation. Plant
species clearly differ in their resistance to herbivory by spider mites (Karban and
English-Loeb, 1988). Similarly, levels of induced and constitutive resistance to T. pacificus
vary widely among six cultivars of V. vinifera as well as among other Vitis species
(English-Loeb et al., 1998). Abundances of several species of herbivorous and predatory
mites were found to differ by cultivar (Merlot vs Verduzzo and Riesling vs Prosecco) in two
V. vinifera vineyards about 3 ha large (Duso and Vettorazzo, 1999). V. vinifera cultivars,
as well as other grape species, also vary in their constitutive resistance to pathogens such
as grey mold emph(Botrytis cinerea) (Pezet et al., 2003) and powdery mildew (Gee et al.,
2008; English-Loeb et al., 2005; English-Loeb and Norton, 2006). Genotypes of different
Vitis species, including 13 cultivars of V. vinifera have genetic differences in the PR1 gene
family that is involved in host resistance to pathogens (Li et al., 2011). This pattern of
resistance varying by cultivar has also been shown in other systems, such as plant bug
herbivory on strawberry (Rhainds and English-Loeb, 2003) and spider mite herbivory on
cotton (Agrawal and Karban, 2000; Thaler and Karban, 1997)). This evidence suggests
that we may expect cultivar-associated differences that are similar to host-associated
differences in life history and genetics when lines are allowed to evolve in isolation, but
provides no insight into expected differences in sympatric populations.

Vineyard herbivore populations live on a contiguous landscape in a mosaic of suitable
host plants. Hosts vary widely, including vegetables in gardens, plants in residential
landscaping, and crops in agricultural fields (Helle and Sabelis, 1985). Our study site lies in
California grape crush district 11, which has 69,220 total standing acres of wine grapes (in
2009) including Zinfandel (18,800 acres), Chardonnay (13,563 acres), Cabernet Sauvignon
(11,272 acres), and Merlot (7,497 acres) (California Department of Food and Agriculture
and USDA National Agricultural Statistics Service, California Field Office, 2010). Fields of
single cultivars are distributed across San Joaquin and Sacramento counties and are often
adjacent to different cultivars. Spider mites disperse between host plants by crawling on
leaves and in the soil and by ballooning on a thread of silk carried by wind, with median
dispersal distances around 0.7 meters (Jung and Croft, 2001). The balance between the
isolation caused by small scale dispersal and mixing from large scale dispersal events may
determine the extent to which field populations adapt to host cultivar.

Our study investigates whether field populations of pacific spider mites (Tetranychus
pacificus) sampled from different cultivars of grapevine (Vitis vinifera) display significant
life history differences on a common host. We aim to detect specific differences in
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developmental rate, juvenile survival rate, and fecundity between field populations from
Zinfandel and Chardonnay cultivars in a “common garden” experiment on lima bean plants
(Phaseous luteus) in the laboratory. Replicate sites are sampled from each cultivar and
replicate bioassays are run from each site. Assay populations are non-destructively sampled
using digital photography in order to count individuals over 12 days of density-independant
dynamics. We analyze the bioassay data with standard generalized linear mixed models
and with time-to-event models which are standard in other fields, but rarely applied to
ecological data. Time-to-event models allow for variation between individuals in the rate at
which individuals experience a discrete event, such as death or maturation. Fitting the
time-to-event model is made more complicated by two levels of replication and the
observations made at discrete time intervals. Since there is no widely available software for
mixed-effects survival analysis with interval-censored data we use original code presented in
Scranton and de Valpine (2012) for likelihood calculations.

2.2 Methods

The Pacific spider mite (Tetranychus pacificus) is an herbivorous arthropod pest in
many agricultural systems, including the vineyards of California’s central valley. This
phytophagous mite feeds by piercing leaf cells with its mouthparts and sucking out the cell
contents (Sabelis, 1986). T. pacificus has 5 distinct life stages including one larval stage
and two nymphal stages (protonymph and deutonymph) and undergoes a quiescent period
at each stage transition. Its demography (including development rate and fecundity) is
highly temperature sensitive (Stavrinides and Mills, 2011) and highly variable (Benton et
al, 2005).

T. pacificus were collected from vineyards (Vitis vinifera) near Lodi, CA in the San
Joaquin Valley from mid-July through late-August 2009. Possible sites were chosen
through discussions with local farm advisors and pest control advisors, and vineyards were
sampled opportunistically due to the prompt spraying of miticide at outbreak sites. Mites
were sampled from two different cultivars of grapevine: Zinfandel and Chardonnay. Over
the sampling period, mites were collected from 8 Zinfandel vineyards and 3 Chardonnay
vineyards (figure 3). At each site 10-15 leaves were clipped from infested grapevines and
placed in paper bags labeled with identifying information. Sample bags were transported
back to the lab in a cooler at 15◦C.

2.2.1 Methods: Common garden experiment

Field samples were processed at the Oxford Tract Greenhouse and Insectary at UC
Berkeley. If samples were not processed on the same day as collection, they were
transferred to sealed Tupperware containers with moistened paper towels and kept in an
incubator at 22◦C with a 16L : 8D photocycle for less than 24 hours. 50-100 mated adult
females were transferred from samples to greenhouse-grown, uninfested bean plants
(Phaseolus lunatus) via leaf disc to found a sample colony.

All sample colonies were kept in a growth room on a 16L : 8D photocycle at 28◦C
constant temperature and 36% relative humidity. Each sample colony was maintained on 2
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large bean plants in a 8 ft3 cage on an elevated rack under fluorescent grow lights. Cages
were made of plexiglass with large openings on three sides and the top, all covered with a
mesh, fine enough to prevent movement of mites and sealed tightly at edges with plexiglass
glue. Door edges and hinges were sealed with duct tape and precautions were taken to
prevent mite movement when cage doors were opened to water plants. Cages were elevated
on overturned pots, whose bases were ringed with stikem (Seabright Laboratories, 2009).
Fresh plants were rotated in after 7-10 days to provide extra habitat and promote growth.
Sample colonies were maintained for 14-21 days. The actual time that individuals spent on
bean plants was long enough to discount any maternal effects from field conditions and
short enough to prevent adaptation to the lima bean host. All field samples were processed
using the same procedures and there were no systematic differences between cultivars in
field collection date or assay date.

Individuals from each sample colony were used to found 4 assay populations. Two
assay populations were initiated with a cohort of 10 eggs and two with a cohort of 5 mated
adult females. Egg cohorts were initiated by directly transferring 10 nearly hatched eggs
(with visible eyespots) to the assay population host plant with a paintbrush. To obtain an
adult cohort of 5 newly-emerged, mated adult females, we removed approximately 10
females in the third (final) quiescent stage and 10 adult males from the sample colony and
placed them on a large leaf disc surrounded by damp cotton in a petri dish. After 24 hours
we transferred 5 adult females that had emerged and mated to a new, clean leaf disc and
pinned the disc to the assay population host plant.

Each assay population host plant was a greenhouse bean plant approximately 3 weeks
old. Plants were washed to protect against pest infestation, repotted, and trimmed to two
large, paired leaves each. Leaves were trimmed to flat rectangular sections approximately 6
cm by 4 cm to control leaf surface area across all assay populations and to allow for clearly
focused images. Trimmed, repotted plants were kept under grow lights in the growth room
for 1-3 days before use to ensure they were healthy and free of pests.

Assay populations were maintained for 12 days on a plastic covered wooden rack under
grow lights in the same growth room (16L : 8D photocycle at 28◦C 36%) and hourly
temperature recordings were kept. Temperature recordings showed reliably constant
temperatures, with slight fluctuations that were not a significant factor in any of the
analyses. Each assay population host plant sat in a small tray in one square of a large grid
of stickem. Mite movement was further prevented by stikem around the lip of the tray and
the top edge of the pot. No mites were noted in the stikem over the course of the
experiment.

2.2.2 Methods: Non-destructive sampling

We chose to follow the assay populations in situ with a non-destructive sampling
scheme. Non-destructive sampling of leaves to quantify leaf damage has been accomplished
using photographic methods (Hargrove, 1988). Several recent studies have had success in
using image processing tools, such as those available in MATHEMATICA or more
specialized software (Škaloudová et al., 2006; Boese et al., 2008). Non-destructive sampling
of herbivores in situ is more difficult because of our inability to physically manipulate the
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leaf. Many studies still rely on image analysis with leaf damage as a proxy for abundance
(Gilbert and Grègoire, 2003; Luedeling et al., 2009). We sampled leaves in situ with a
digital camera (Nikon D5000) and 60 mm macro lens without touching the leaves. Every
48 hours, photographs were taken of each assay population. Four images (1 per quadrant)
were taken of each side of each leaf for each assay population with 2 leaves. This summed
to 16 images per assay population per sampling time. Mites were counted by eye with the
aid of basic MATLAB image analysis and data organization tools. Individuals were
categorized as eggs, immatures, or adults, and resulting data sets follow population
abundance for each stage for 12 days.

2.2.3 Methods: Mixed-model analysis

The common garden experiment yielded 44 assay populations (11 sample colonies with
4 replicates each). Each of the 44 assay populations yielded a data set that tracked the
abundance of a cohort over 12 days. Individuals were classified as either egg, immature, or
adult from the images. Observations were made at 2 day intervals, yielding 7 observations
per assay population. We highlighted data on development time and juvenile survival from
the 22 egg-initiated assay populations and data on fecundity from the 22 adult-initiated
assay populations. The goal of our analyses was to detect any difference in these 3 life
history processes between assay populations from Zinfandel vineyards and assay
populations from Chardonnay vineyards.

To obtain development intervals from egg-initiated assay populations, we highlighted
the number of adults on each day. If the number of adults increased between observations,
we inferred that immature individuals developed into adults sometime in the interval
between observation times. Thus for each assay population, we formed a count of adults
maturing in each observation interval. The two observation times created a lower bound
and upper bound for the exact maturation time, which remained unknown. We first
analyzed the development data with a generalized linear mixed model (GLMM). For the
GLMM, we condensed the development intervals by grouping individuals into those who
matured before day 6 and those who matured after day 6. We used a binomial regression
to estimate the effect of cultivar on the probability of maturing to adulthood before day 6,
with random effects for the sample colony and for the replicate assay populations. We used
a second approach in analyzing the interval development data: a mixed-effect time-to-event
model that allows incorporation of all development intervals.

Time-to-event models are a class of models from survival analysis with an underlying
assumption of individual heterogeneity in the population: individuals experience the event
at slightly different times, according to a probability density function (Hougaard, 2000).
The specific probability density function can be chosen to fulfill specific assumptions in the
data or to allow for a flexible shape in the probability of an individual experiencing the
event. Time-to-event models can be extended to include covariates and random effects, or
variation between groups (Hougaard, 2000). Models that include random effects (frailty
models) stem from the idea that unknown, inherent traits would cause an individual to be
more or less frail (in our case more or less likely to mature) and could be shared between
members of a group (in our case an assay population or a field source) (Service, 2000).
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Time-to-event models can be fit to data with exact event times with a number of existing
software packages. Likelihood calculations are more complicated when data is
interval-censored, as our development data was.

We fit a mixed effects time-to-event model to development times using a Weibull
distribution to describe the probability of maturing as the individual ages. We included the
cultivar as a fixed effect and included two random effects for the sample colony and for the
replicate assay populations. We estimated the Weibull parameters (shape, γ, rate: λ) and
tested the significance of the fixed cultivar effect (beta β the difference between cultivar
sources in log lambda) while accounting for these two sources of random variation. Since
there is no widely available software for mixed-effect time-to-event models with interval
censored data we programmed likelihood calculations directly in R (R Development Core
Team, 2010) using code from Scranton and de Valpine (2012).

To obtain juvenile survival rates from the egg-initiated assay populations we
highlighted the number of individuals present on day 4 out of the initial 10 eggs in an
egg-initiated assay population. We used a binomial regression to estimate the effect of
cultivar on the probability of surviving to day 4, with random effects for the sample colony
and for the replicate assay populations.

To obtain fecundity data from the adult-initaited assay populations, we counted the
number of eggs present on day 2. We weighted the count by the number of surviving adult
females on day 2 in that assay population. We again included the cultivar as a fixed effect
and two random effects for the sample colony and for the replicate assay populations in a
GLMM. We used a poisson regression for egg counts. All GLMM analyses were done in R
using the lme4 package, version 0.999375-34, (Bates and Maechler, 2010).

For both the time-to-event model and the GLMMs, we fit models with and without
the (null) cultivar effect and assessed the significance of the fixed effect with likelihood
ratio tests. These tests use large sample approximations to the chi-squared distribution,
but we had concerns about our small sample sizes so we performed randomization tests.
We randomized the dataset by cultivar 1000 times to create a null distribution for each of
the likelihood ratio test statistics (D), on which we base our main conclusions.

2.3 Results

The developmental rate of spider mite populations in our experiment differed
significantly with source cultivar. The best-fit time-to-event model yielded a Weibull
distribution for the development times of individuals from each cultivars (figure 4a). Each
distribution depended on three parameters: a constant shape parameter (γ) and a rate
parameter (λ) that was affected by the fixed cultivar effect (β) on a log scale. Maximum
likelihood estimates of the Weibull parameters revealed that populations founded from
mites on the Zinfandel cultivar developed more quickly than those from the Chardonnay
grapevines (shape: γ̂ = 8.090, rate: λ̂ = 0.1596, fixed cultivar effect coefficient:
β̂ = 0.1299). Likelihood ratio tests showed that the fixed cultivar effect was significant in
the mixed-effects Weibull time-to-event model (D = 5.499, p < 0.0110 by randomization,
p = 0.0190 by large sample chi-squared approximation). The estimated random effects
show that assay populations varied randomly in development time, but different sample
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colonies did not. Maximum likelihoods estimates of the standard deviation of each random
effect revealed moderate variation between assay populations ( σ̂assay = 0.0702 ) and zero
variation between sample colonies σ̂source = 2.98x10−5). Figure 4a depicts the range of
variation due to these random effects with dashed lines depicting lower and upper bounds
for the estimated Weibull distribution.

The GLMM for the proportion of individuals matured after 6 days found a significant
effect of source cultivar (D = 5.934, p < 0.0190 by randomization, p = 0.149 by large sample
chi-squared approximation, Fig 4b). Survival of juveniles after 4 days was, on average,
76.7% for Zinfandel and 63.3% for Chardonnay. Analysis with a GLMM found that this
difference was marginally significant (D = 4.246, p < 0.063, by randomization, p = 0.0393,
by large sample chi-squared approximation, Fig 4c). Females laid on average 10.8 eggs in
the first two days of observation, independent of source cultivar (D = 0.06923, p < 0.835,
by randomization, p = 0.792, by large sample chi-squared approximation, Fig 4d).

2.4 Discussion

Our study has demonstrated life history differences in spider mite populations
associated with host cultivar. When reared on a common, favorable host, mites from a
source population on Zinfandel grapes matured more quickly and likely experienced higher
juvenile survival than individuals from Chardonnay source populations. Populations were
not strictly isolated even while these associations developed, but were distributed in a
mosaic on the landscape with limited movement. The host plants that drove these
differences were also similar; different cultivars of the same plant species are associated
with different life history traits.

Our analysis of the cultivar-associated life history differences using a mixed-effects
time-to-event model provided additional detail and biological realism. Time-to-event
models yielded information about the rate and shape of the distribution of development
times over the entire time span of the study. The fitted model gave us insight into times at
which individuals are most likely to mature and how likely individuals are to mature at the
extremes, either very early or very late. Standard GLMM analysis only provided
information about the development rate at one discrete time and ignored data from the
larger time span of the study. Many likelihood tests for many discrete time points would be
necessary to get some of the insight provided by time-to-event models.

Photographic sampling is common in observational studies of other species using
camera traps, remote sensing or other aerial data. Most studies on herbivory that employ a
photographic sampling scheme quantify leaf damage, not herbivore abundance. Our
methods were limited by the difficulties of creating and testing feasible algorithms for
automated counts. One main challenge is the lack of color contrast in the spider mite and
lima bean system. Other ecological systems and advances in image processing and
object-based image analysis may allow future studies to employ fully or semi-automated
counting of individuals.

Our study did not attempt to address any evolutionary aspects of the
cultivar-assocaited life history differences such as the timescale of adaptation to cultivar,
the potential for speciation or the amount of gene flow between field populations. However,
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numerous studies have found that tetranychid mites respond to selection on life history
traits rapidly, within 6-15 generations (Fry, 1989; Magalhães et al., 2009; Tien et al., 2010).
Adaptive phenotypic plasticity and host-assocaited differentiation can lead to evolutionary
and ecological changes (Agrawal and Karban, 2000; Dres and Mallet, 2002) and sympatric
speciation is common among phytophagous insects (Berlocher and Feder, 2002). These
studies suggest that the capacity for rapid adaptation places some evolutionary questions
in an ecologially relevant timescale. Future studies are needed to investigate this interplay
between ecological and evolutionary dynamics, especially in these sympatric populations.

The scope of our study was also limited to populations on a common lab host
(Phaseolus lunatus); we did not attempt to follow populations on the native grape cultivar.
Management decisions could be affected depending on the degree to which our findings
translate to field populations on native hosts. Pest managers and growers weigh the
strength of outbreak, the speed of development (mostly relying on temperature as a proxy),
and the harvest time of the crop against the cost of pesticide applications or release of
natural enemies. Differences in development and survival in field populations would impact
the decision to apply miticide and the timing of application. Our results may directly affect
the way growers think about the speed of spider mite development in different vineyards.

Our results also highlight the need to investigate the impact of life history variation on
on population growth rate on spider mite populations. Some empirical studies have found
host-associated differences between spider mite populations in the intrinsic rate of increase
(Gotoh and Gomi, 2003) and theoretical studies predict strong effects of life history
variation on population dynamics (Bjornstad and Hansen, 1994; Vindenes et al., 2008).
Our study was limited to specific demographic rates, not any metric of overall dynamics,
but by establishing the presence of life history differences in sympatric populations on very
similar host plants we have hopefully highlighted the importance of investigating the effects
of life history variation on dynamics. A central tenet of population ecology is the
importance of understanding the drivers of population dynamics and in many cases life
history variation merits consideration as one of those drivers.
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3 Chapter 3

3.1. Introduction

Many biological systems require complex models to accurately represent the dynamic
processes and variability present in nature. In many cases, the complexity in the model
results in a likelihood function that is analytically or computationally intractable.
Commonly used likelihood-based methods cannot be used to evaluate these models,
perform model selection, or estimate model parameters. In these cases we can turn to a
more flexible statistical framework: approximate Bayesian computation (ABC). An ABC
approach allows us to replace the likelihood function with repeated simulations from a
model. By selecting simulations that are similar to the observed data, we can move from a
prior distribution to the approximate posterior distribution using one of several established
algorithms. The development of the ABC framework is a relatively recent advance (Tavare
et al., 1997; Pritchard et al., 1999) that is occurring in a variety of fields (Beaumont, 2010).

ABC methods are used extensively in population genetics to infer demographic
parameters from molecular variation in a sample (Csilléry et al., 2010). Parameters of
interest include coalescence time (Tavare et al., 1997), crossing-over
rates (Padhukasahasram et al., 2006), expansion times and migration rates (Hamilton
et al., 2005), and mutation rates (Bazin et al., 2010). ABC methods are also commonly
used in conservation genetics to estimate parameters that affect endangered populations
such as inbreeding, effective population size, and minimum viable population size (Lopes
and Boessenkool, 2010; Rabosky, 2009). The use of ABC is spreading beyond molecular
genetics to a diverse group of fields such as epidemiology (Blum and François, 2008),
systems biology (Barnes et al., 2011), veterinary medicine (Tinsley et al., 2012), human
demography (Shriner et al., 2006), and psychology (Turner and Van Zandt, 2012).

ABC methods are slowly filtering into the field of ecology (Hartig et al., 2011;
Beaumont, 2010). Jabot and Chave (2009) estimated immigration rates and regional
diversity under the neutral model of biodiversity for tropical forest trees. ABC techniques
have been used with simulated data to estimate parameters of classical theoretical models,
such as Lotka-Volterra equations Toni et al. (2009) and continuous time models of
host-parasite dynamics (Drovandi et al., 2011). Parameter estimation using simulated data
has also been performed for mechanistic models such as a stochastic cellular automata
model of range expansion (Rasmussen and Hamilton, 2012) and in adaptive management
scenarios of deer herbivory control measures (Ramsey et al., 2012).

The ABC framework has the potential to fill a gap in our ability to fit models in
population ecology: fitting models of stage-structured populations to variable cohort data.
Many organisms develop through distinct life stages with highly variable stage durations,
survival, and fecundity. Often individuals are grouped into size or stage classes as a proxy
for their exact developmental state. Fitting models to data of highly variable
stage-structured populations is a difficult problem and is most commonly solved by making
simplifying assumptions in the model. Existing models, such as matrix models, can be fit
with likelihood based approaches but lack individual heterogeneity in life history processes
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and assume unrealistic stage durations (de Valpine, 2009; Birt et al., 2009). Likelihoods
based on more realistic models with individual heterogeneity would be intractable. Using
only the ability to simulate from our population models we can turn to the more flexible
statistical framework of ABC to perform parameter estimation, model inference or model
selection.

The simplest ABC algorithm is a rejection algorithm. Many simulations are generated
from a model using parameter values drawn from a prior. Those simulations that match
the data exactly or fall within some acceptable distance of the data are kept and the rest
are thrown out. A threshold is introduced to delineate simulations that are “close” to the
data from those that are “far.” The specific parameter values that generate accepted
simulations represent a sample from the posterior distribution. Such algorithms are not
practical when it is unlikely that a randomly generated simulation may be accepted, due to
the dimensions of the parameter set, the nature of the observed data, or large discrepancies
between the prior and posterior. More sophisticated algorithms have been developed to
address this high rejection rate (Appendix A) such as an ABC rejection sampler with
regression adjustments (Beaumont et al., 2002), an ABC MCMC algorithm (Marjoram
et al., 2003), and several different particle filter samplers (Cappé et al., 2004, 2007).

A large obstacle to implementing any ABC algorithm is the choice of summary
statistics and distance metrics, which define the closeness of a simulation to the observed
data. For those fields in which ABC has been used extensively, such as population genetics,
summary statistics can be chosen from previous studies. For novel applications of ABC the
choice of summary statistics and distance metrics is a difficult problem, with many authors
conceding that there is no good rule (Wilkinson, 2008). In general, potential summary
statistics can be identified from previously published studies or from the researcher’s own
knowledge of the system (Marjoram et al., 2003). Summary statistics should be
sufficient (Beaumont, 2010) and independent (Wilkinson, 2008). There should be a
homoskedastic relationship between the resulting distance metric and the parameter
values (Blum and François, 2008).

Many different strategies are used to adhere to these general guidelines in choosing
summary statistics. Some seek to ensure independence and reduce the number of summary
statistics using linear discriminant analysis (Estoup et al., 2012), partial
least-squares (Wegmann et al., 2009) or principal components analysis (Wilkinson, 2008).
Other studies forgo the use of summary statistics and instead compare the raw data using
distance metrics, such as the sum of absolute differences or sum of squared
distances (Drovandi and Pettitt, 2011a; McKinley et al., 2009). However, this strategy
merely transfers the issue of selection to the distance metrics.

The most common approach is to create training sets of simulated data for pilot ABC
runs with different combinations of summary statistics, choosing the combination that
produces the best results (Li and Jakobsson, 2012). Comparisons of results can be made
directly using the estimated mean and variance of the posterior or by using the odds ratio
of posteriors with and without each summary statistic (Joyce and Marjoram, 2008).
Minimizing entropy or mean root sum of squared errors (MRSSE) of the accepted
parameter sets from pilot ABC runs can also be used to select a combination of summary
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statistics (Nunes and Balding, 2010). Jung and Marjoram (2011) use a genetic algorithm
on their pilot ABC runs that “evolves” a set of weights for summary statistic by
maximizing the “fitness:” the inverse of the sum of squared differences between each
accepted parameter value and the estimated posterior mean. Fearnhead and Prangle (2012)
use pilot ABC runs (with arbitrarily chosen summary statistics) to create informative
priors and calculate summary statistics based on the posterior means of the parameters.
They use non-linear regression of parameters on the simulated data to estimate the
coefficients, which become the summary statistics for their ABC algorithm. This pilot run
approach amounts to trial and error ABC until summary statistics are found that perform
adequately, with extremely high computation costs.

Other approaches attempt to avoid extra computation steps by modifying the ABC
algorithm. Hamilton et al. (2005) add a step that weights summary statistics according to
the R2 values from a regression adjustment (Beaumont et al., 2002). Drovandi et al. (2011)
introduce an auxiliary model, whose parameters are estimated using maximum likelihood
and used as the summary statistics for the more complex model. Blum (2010) add a
forward stepwise selection step based on maximizing the marginal likelihood (evidence
function) over all possible additional summary statistics.

In this paper, we present a novel application of the ABC framework to a model of
stage-structured population dynamics. We use an ABC SMC algorithm with an
approximated optimal backwards kernel in the weights and an adaptive threshold schedule
for parameter inference. The stochastic stage-structured model explicitly includes
individual heterogeneity in development and survival and allows for ongoing reproduction.
Although the model is simple, fitting it to cohort data has not been successfully done in
the past. Previous work has used cohort data with independent samples at each time and
without reproduction (Read and Ashford, 1968; Hoeting et al., 2003). The estimation
problem is considerably harder with ongoing reproduction and the temporal
non-independance created by following unmarked individuals through time. We also
develop a systematic method for evaluating potential summary statistics and distance
metrics a priori, without costly computation steps. In the next section we provide specific
descriptions of the population model, the ABC framework, the ABC SMC algorithm, and
the methods for selecting summary statistics and distance metrics. In the third section we
evaluate the performance of our estimation method with simulated data. We provide a
discussion of the potential of ABC in population ecology and the obstacles we still face.

3.2. Methods

In this section we first formulate the specific problem we face in modelling the
dynamics of a stage-structured cohort with individual heterogeneity in life history
processes. We briefly touch on the general ABC framework, deferring to the existing
reviews and comparisons of various ABC algorithms (Beaumont, 2010). In the third
section we give a specific description of the ABC SMC algorithm and then provide a
description of the methods used to select summary statistics and distance metrics

3.2.1 Methods: Stochastic stage-structured population model
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A stage-structured population is a group of individuals of the same species who age
through discrete life stages, experiencing different demographic rates in each stage. We
expect individuals in the same stage to have inherent genetic differences in specific survival
and fecundity rates and in the speed at which they develop through these stages. In
addition, we would expect some phenotypic variability in the expression of those genotypes.
These sources of individual heterogeneity in life history processes are important for
population dynamics (de Valpine, 2009) and motivate the development of the model.

Data on stage-structured populations commonly results from studies of cohorts, or
groups of individuals born at the same time and monitored for a certain amount of time.
We follow the same individuals through time, so that observations are not temporally
independent. Observation cannot be done continuously, so the exact times of stage
transitions, births, and deaths are unknown. Instead the data is interval censored;
individuals are observed at set points. Additionally, individuals are often unmarked, so we
only have data on the number of individuals currently in each stage at each observation
time.

We consider a population model for the demographic processes in a closed population.
Each individual ages through 3 life stages: egg, immature, and adult. The duration of the
egg stage (de) and the duration of the immature stage (di) follow Weibull distributions
with scale and shape parameters (1/λe, γe), (1/λi, γi) respectively:

f(de) = λeγe(λet)
γe−1exp (−(λet)

γe) (14)

f(di) = λiγi(λit)
γi−1exp (−(λit)

γi) (15)

Adults experience mortality (m) such that survival time(ds) follows an exponential
distribution

f(ds) = me−mt (16)

In order to simulate a population, we generate exact stage durations, exact survival
times, and exact birth times of offspring for a cohort of individuals. These individuals with
known birth times found a population which we follow for a period of time [ 0, T ]. There
is an exact stage duration for the egg and immature stages and an exact death time for
each individual, according to equations (14), (15), and (16). Each individual reproduces at
a constant rate (r) from maturation until death. As new eggs enter the population with
exact birth times, they are also assigned stage durations and survival times. The
bookkeeping for each individuals amounts to birth time, egg stage duration, immature
stage duration, and survival time. The full stochastic stage-structured model has 6
parameters {λe, γe, λi, γi,m, r}.

In order to simulate a data set that would be observed from a population, we
“sample” the exact population every 2 time steps. We count individuals according to stage,
ignoring the exact ages. This creates a data set of the number of individuals in each stage
at each sampling time, [ 0, 2, 4, ..., T ].

Fitting a stage-structured population model to cohort data is made very difficult by
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the individual heterogeneity in survival and stage durations, ongoing reproduction,
temporal non-indenpendence of data, unmarked individuals, and interval censoring.
Standard likelihood based methods cannot be used, so we turn to the ABC framework for
model inference and parameter estimation.

3.2.2 Methods: Approximate Bayesian Computation

We assume that we observe some data, D, generated by an underlying model, M(θ).
The set of model parameters, θ, have prior distribution π(θ). Our goal is to estimate
P (θ|D), the posterior density of the parameters given the data, where
P (θ|D) ∝ P (D|θ)π(θ)

An ABC approach replaces P (D|θ), the likelihood of the observed data given model
parameters, with comparisons of observed data and model simulations. A rejection sampler
algorithm proceeds as follows. A candidate parameter vector, θi, is drawn from the prior
distribution and a simulated data set, xi, is generated from the model M(θi). The
simulated data set is compared to the observed data set by calculating a distance (see
section 3.2.3 for details). θi is accepted if the distance is less than some threshold (ε). The
posterior density is approximated by the distribution of accepted parameter values over
many repeated draws of θi (Pritchard et al., 1999). Very often the rejection rate of a
rejection sampler algorithm is very high, necessitating a more sophisticated algorithm
(appendix A). We focus on the sequential Monte Carlo (SMC) sampler following Toni et al
(2009), but refer the reader to the discussion in appendix A for details of other algorithms.

3.2.3 Methods: Summary statistics and distance metrics

All ABC algorithms rely on summary statistics and distance metrics to calculate the
distance between an observed and simulated data set. We define a summary statistic as
some value computed from one data set that may summarize or capture some information
about the observation. We define a distance metric as some function of two data sets (or
two summary statistics) that may capture some information about both observations. The
distance metric may compare the actual data sets, ρ(D, xi), or may compare summary
statistics of the data, ρ(S(D), S(xi)). The objective is to choose distance metrics, summary
statistics, and thresholds such that P (θ|D) ≈ P (θ|ρ(S(D), S(xi)) < ε).

Our goal is to select summary statistics and distance metrics without resorting to
generating many pilot ABC runs with high computation costs. We propose the following
procedure, guided by the idea that summary statistics and distance metrics should be
necessary, but sufficient descriptors of the difference between two data sets. First we
compile a large set of possible summary statistics and distance metrics by looking to ABC
analyses of similar systems or similar data sets and by using the intuition and expertise of
scientists familiar with our specific problem. Then we narrow down the field by explicitly
quantifying the ability of each metric to track changes in each parameter. This second step
does require the simulation of data sets, but the cost is negligible compared to one step of
one ABC SMC run.

Among the few examples of ABC with temporal count or temporal frequency data,
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distance metrics using the raw data are more common than summary statistics (table 1).
Goodness of fit statistics include the square root of the sum of chi-square differences in
allelic frequencies over all alleles in the sample (Sousa et al., 2009) and a scaled
Freeman-Tukey statistic that compares observed and expected counts of mature
microparasites marginalized over the sacrifice time of the host (Drovandi and Pettitt,
2011a). For a data set with many replicated leukocyte cell trajectories (but no random
effects), the Kolmogorov-Smirnov distance between the simulated histogram and data was
used as a distance metric (Liepe et al., 2012). Another chi-squared goodness of fit statistic
on count data was used for an SEIR model of Ebola transmission, with 4 discrete classes
(susceptible, exposed, infectious, and removed), analogous to our discrete stage classes
(egg, immature, and adult) (McKinley et al., 2009). In fitting tuberculosis models to
epidemiological data, (Sánchez et al., 2009) minimize a goodness of fit statistic (GF) of

model outputs to data, where GF =
∑ (Obs−Exp)2

0.5(Obs+Exp)2
. McKinley et al. (2009) also define an

envelope around the observed data with absolute count differences as a threshold for
accepting simulated data. Similarly, Walker et al. (2010) use the Euclidean distance
between simulated counts of reported cases of SARS and the actual data smoothed with a
moving average filter. The average population size and the sample variance of population
sizes were used as summary statistics for a stochastic cellular automata model of range
expansion (Rasmussen and Hamilton, 2012). The Euclidean distance of the log-sig
transformed differences was used as a single distance metric that incorporated all summary
statistics.

We combined the examples from past studies with ideas motivated by both the
literature and by the population model to come up with a list of potential summary
statistics and distance metrics (table 2). For clarity, we will call each combination of
summary statistic and distance metric a distance function and give a complete description
of each metric in Appendix B. To select a subset from this group, we develop a way to
quantify the ability of each distance function to track changes in each parameter. To
correctly identify a change in a parameter value from θ to (θ + ∆θ), a distance function
should classify two data sets as different if one was generated from θ and the other from
θ + ∆θ. Also the distance function should classify two data sets as the same if both were
generated from θ. To quantify each distance function’s ability to do this we turn to
classification theory, specifically the receiver operating characteristic (ROC).

We use the ROC curve to show the performance of each distance function in
discriminating between two groups of data. Group A are distances between data sets all
generated with the same parameters θ. Group B are distances between pairs of data sets,
where one is generated with parameters θ and one with parameters (θ + ∆θ). The ROC
curve plots the proportion of distances in group A correctly identified as “close” versus the
proportion of distances in group B that are incorrectly identified as “close.” The area under
the curve (AUC) is a statistic that summarizes the ROC curve. If the distance function
were classifying distances at random, we would expect the AUC to be 0.5. A perfect
distance function would always discriminate between two sets of distances at some
threshold and would have an AUC of 1.

We quantified the ability of each proposed distance function to correctly identify
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changes in parameter values using the AUC statistic. We chose a range of ∆θ’s around a
baseline θ, varying only one parameter at a time. For each value of ∆θ, we plotted ROC
curves using 1000 distances in groups A and B. We calculated the AUC statistic for each
value of ∆θ and plotted them with boxplots of the distances. Using these graphs and
pairwise plots of distances, we identified uncorrelated metrics that discriminated well
between groups of data sets simulated with different parameter values.

Commonly in ABC algorithms one distance value is calculated as the Euclidean
distance over many summary statistics, creating a circular acceptance region (in 2D space).
Summary statistics may be weighted differently to account for different variances or
importance. Instead of using one overall measure of distance, we allow many distance
functions with equal weighting. Thus for any simulated data set a vector of distances is
calculated. Each element in the distance vector must be below a certain threshold for the
particle to be accepted. This creates a rectangular acceptance region for a 2 dimensional
distance vector (Pritchard et al., 1999).

3.2.4 Methods: ABC SMC algorithm

Instead of moving from the prior distribution to the posterior in one step, an SMC
sampler introduces a number of intermediate steps. At the initial step (s=0), we draw a
sample of parameters from the prior, {θi}(0), which we now call particles. This set of
particles has a corresponding set of simulated data sets {xi}(0), distance vectors {di}(0),
and weights {wi}(0). Each data set xi is simulated from the model. Each distance vector di
is a J-dimensional set of distance values that are calculated with summary statistics and
distance metrics. Again we refer to each combination of summary statistic and distance
metric as a distance function. Using the systematic procedures outlined above, we select a
set of J distance functions that we believe accurately track changes in parameter values
and contain a sufficient amount of information to discriminate between “close” and “far”
data sets. For j in J , the jth distance function, ρj(S(D), S(xi)), is used to compare the
observed data set and a simulated data set. We calculate a value, dij, the distance from the
observed data set to the ith model simulation using the jth distance function. The same set
of distance functions {ρj} are used in each step.

In this initial step we keep all N particles and assign them equal weight such that
wi = 1/N for i = 1, ..., N , but in subsequent steps we calculate weights (equation 17). For
each of the next steps (s = 1, ..., S), we resample particles from the previous set {θi}(s−1)
by weights {wi}(s−1). We perturb a sampled particle using a Gaussian kernel with a mean
of zero and a variance equal to twice the sample variance of parameter values at the
previous step. Again each data set xi is simulated from the model. Again, each value in
each distance vector, dij, is calculated using the distance functions, {ρj}.

Unlike the initial step, where all particles were kept, we keep only those particles that
pass a test. For any particle θi we require every dij in j=1, ..., J, to be less than some
threshold, εj. If dij < εj for all j=1, ..., J, then we keep θi. Weights are calculated according
to the argument for a backwards perturbation kernel by Beaumont et al. (2009) (equation
17). We repeat this process until we have N new particles that pass our threshold test.
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ABC SMC algorithm
All notation follows table 3
1. At s=0 initialize

Repeat N times:
1.1 Draw a particle θi ∼ π(θ)
1.2 Simulate data xi ∼M(θi)
1.3 Calculate the distance vector di for the set of J distance functions {ρj}:

for j = 1, ..., J : dij = ρj(S(D), S(xi))
1.4 Set weight wi = 1/N

2. For each step s=1, ..., S:
2.1 For each distance function reset the threshold:

for j = 1, ..., J : εj = qths quantile of {di}(s−1)j

2.2 For each parameter reset the perturbation variance:
for l = 1, ..., L: τ 2l = 2Var({θi}(s−1)l )

2.3 Repeat until N particles are accepted
2.3.1 Draw θ∗ ∼ {θi}(s−1) with probabilities {wi}(s−1)
2.3.2 Perturb the particle to get θi ∼ K(θ|θ∗)

if π(θi) = 0 return to 2.3.1
2.3.3 Simulate data xi ∼M(θi)
2.3.4 Calculate the distance vector di for the set of J distance functions {ρj}:

for j = 1, ..., J : dij = ρj(S(D), S(xi))
2.3.5 Reject particles with distances greater than the threshold:

for j = 1, ..., J : if dij ≥ εj, return to 2.3.1
otherwise, accept θi into {θi}(s)

2.3.6 Calculate the weight for particle θi

wi =
π(θi)

N∑
k=1

(w
(s−1)
k

L∏
l=1

ϕ[τ−1l (θ
(s)
il − θ

(s−1)
kl )])

(17)

return to 2.3.1
2.4 Normalize the weights
We define all notation in table 3 and give details below on the adaptive thresholds and

weighting scheme. In considering many distance functions, we must also consider many
thresholds. The jth distance function has a corresponding threshold εj, set to the value
that would have included the particles with the smallest qs% of distances in step
(s-1) (Drovandi and Pettitt, 2011a). Tolerances are specific to the distance function so that
we need not worry about scale or weighting of some dimensions over others. As s increases,
each of the thresholds decreases and we move closer to the target posterior:
ε
(1)
j > ε

(2)
j > · · · > ε

(S)
j > 0. We use a particle weighting scheme after Beaumont et al.

(2009), with the formula explicitly given for the case of an L-dimensional parameter vector
with independent Gaussian perturbation kernels (equation 17).

We evaluate algorithm performance in several ways. We fit the population model to
simulated data, showing the posterior distributions. We compute 95% credible intervals for
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the estimates of all parameters, where the probability of a value less than the interval and
the probability of a value greater than the interval were both 0.025. We assess the
convergence of the intermediate distributions to the posterior by comparing the
distributions and by tracking the mean, median, and variance over all iterations. We
evaluate the choice of threshold schedule using the effective sample size (ESS) at each step
where

ESS({wi}(s)) = (
N∑
i=1

(w
(s)
i )2)−1 (18)

Under equal particle weights, ESS=N . ESS values decrease as particles differentially
contribute to the next step.

3.2.5 Methods: Algorithm settings

The ABC SMC algorithm was programmed in R (R Development Core Team, 2010).
The population model was programmed and compiled in C and called from R to increase
efficiency. We initiate a population with a cohort of 10 newly laid eggs (birth times equal
0). The shape parameter of egg stage duration and the shape parameter of immature stage
duration were both fixed at 6 to reduce the number of parameter dimensions involved in
applying a new method. Having fewer parameters allowed more simulations and a more
extensive evaluation of the performance of our metric selection method and the ABC SMC
algorithm itself. Once we have been satisfied as to estimation ability and model
performance, we can extend the use of the method to real problems with more parameter
dimensions to estimate. We used parameter values
{1/λe = 4, γe = 6, 1/λi = 3, γi = 6,m = 0.6, r = 5} to simulate 1000 data sets and chose
from them one representative data set as the “observed data” for evaluating our algorithms
before trying them on many simulated data sets.. The number of particles (N) in each step
was 10,000. Uninformative uniform priors were used for each parameter, with limits based
on biological realism for a small, quickly developing, arthropod species. The quantiles used
to determine thresholds were {0.9, 0.8, 0.7, 0.6, 0.6, 0.6, 0.5, 0.4, 0.4, 0.4} for S=10 steps.

3.3.1 Results: Summary statistics and distance metrics

We evaluated 21 summary statistics and distance metrics for their ability to correctly
classify two data sets as similar or different (table 2, Appendix B). We first chose a subset
of metrics by AUC value. All metrics have AUC values of 0.5 when comparing data sets
generated by the same parameters (zero change in parameter values). We select metrics for
which AUC values increase as steeply as possible with increasing or decreasing parameter
values. Next, using pairwise plots of metric distances, we eliminate metrics that are highly
correlated with others in the subset, narrowing our list to 4: the sum of Chi-square
differences in counts of individuals in each stage at each observation, the sum of squared
differences in the number of adults at each observation, the cross-correlation function (with
zero time lag) between the observed and simulated number of immatures over all
observations, and the sum of earth mover distances between the distribution of individuals
between stages at each observation (figure 5).
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3.3.2 Results: Parameter estimation

The ABC SMC algorithm yielded posterior distributions for each parameter (figure 6).
The 95% credible intervals contained the true value of each parameter. Distributions were
all unimodal, but the variance varied widely between parameters, with much smaller
variances for the distribution of egg scale and immature scale as opposed to fecundity and
mortality.

We also evaluated the performance of the algorithm convergence to the posterior. Over
the 10 resampling steps, the intermediate distributions shifted from the prior to a steady
target posterior (figure 7). The mean and median of the parameter values approached the
steady-state values, indicating these are likely to have converged to the desired posterior
mean and median (figure 8). The variances for egg and immature scale also stabilized,
while those for mortality and fecundity have nearly stabilized but show small downward
trends even after 10 steps. ESS values decreased slightly from 10,000 to approximately
8500 (not shown), but did so smoothly, indicating an acceptable threshold schedule.

3.4. Discussion

Our study has shown that an ABC SMC algorithm is able to fit complex population
models to variable stage-structured cohort data. The 95% credible intervals contained the
true values of the parameters, although the variance of the posterior estimates depended on
the parameter. Additionally we have shown that careful a priori investigation of summary
statistics and distance metrics can greatly reduce the computation time by eliminating
costly multiple ABC SMC runs.

This tool will allow ecologists to fit more realistic models to data, estimating
parameters and making inference about processes that might be very important to
dynamics. For example, knowledge about the shape of stage distributions, as opposed to a
constant rate, may make it easier to detect real differences in distributions between
treatment groups. Stage-structured models have long been used in conservation, where the
ability to predict changes in real populations is vital. The ability to include realistic
amounts of individual heterogeneity would provide more insight for managers evaluating
specific conservation plans. Indeed, the flexibility of the ABC SMC algorithm makes it
likely that it will perform well across many different systems with varying model
assumptions.

The specific SMC sampler is one of many algorithms that increases the efficiency of a
simple rejection algorithm (see Appendix A). All of these algorithms improve on the large
inefficiencies in a rejection algorithm caused by the disparity between the target posterior
and an uninformative prior. The SMC sampler in particular produces uncorrelated samples
and does not become stuck in areas of low probability as an MCMC chain might. The
algorithm eliminates particles that do not represent the posterior in favor of those that do,
causing the particles to move more quickly from the prior to the posterior. The SMC
algorithm also allows us to observe the intermediate distributions of parameter estimates,
yielding information on the convergence to the posterior. Another advantage of an ABC
SMC algorithm is the fact that it is independent of the specific simulation model. You can
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apply the algorithm to different problems by plugging in a different simulation model.
One limitation of any ABC algorithm is the computation cost involved simulating the

large number of data sets needed. This cost cannot be avoided, but it can be minimized by
efficient code and in the choice of programming language. Another limitation of the ABC
approach is the challenging issue of choosing summary statistics and distance metrics. The
approach we have identified here avoids the huge computation time it would take to
conduct separate ABC SMC runs with different subsets of summary statistics and distance
metrics. Systematically investigating a large set of metrics and choosing one subset for use
in the algorithm allows us to spend the computation time in the actual algorithm,
producing more accurate posteriors.

The ABC framework is a particularly good fit for ecologists, who commonly represent
their systems with a straightforward and intuitive stochastic model. Software packages for
use in population genetics are already widely available (Purcell et al., 2012; Liepe et al.,
2010). The ABC framework can easily incorporate many extensions important for
ecologists, such as correlations between parameters (Drovandi and Pettitt, 2011a), model
uncertainty (Wilkinson, 2008; Ratmann et al., 2009), and model selection (Toni et al.,
2009; François and Laval, 2011; Grelaud et al., 2009). ABC provides an appealing
alternative to likelihood based inference in situations where the likelihood is intractable or
too computationally expensive to approximate and remains flexible enough to be useful in
a wide range of systems.
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4 Legends, Tables, and Figures

Table 1: Summary statistics and distance metrics used in previous studies of models or
data sets similar to the model or data set we consider.

Table 2: The entire set of summary statistics and distance metrics under consideration.

Table 3: Notation used in the ABC SMC algorithm

Figure 1: Box and whisker plots of mixed-effects and fixed-effects model parameter
estimates for a) rate parameter λ, b) fixed-effect coefficient β, c) shape parameter γ, d)
random-effect standard deviations σsource and σrep. True values are represented by dashed
lines at λ = 0.12, β = 0.3, γ = 8 and 3 levels of standard deviation: σ = 0, 0.05, or 0.15.
Hatched plots show parameter estimates for simulated data with low variance
(σsource = 0, σrep = 0.05). White plots show parameter estimates for simulated data with
high variance (σsource = 0.05, σrep = 0.15).

Figure 2: Power curves for four combinations of variation: a) σsource = 0.05, σrep = 0.05, b)
σsource = 0.05, σrep = 0.15, c) σsource = 0.15, σrep = 0.05, d) σsource = 0.15, σrep = 0.15. The
results from the mixed-effects models are represented by solid lines; the results from
fixed-effects models by dashed lines. likelihood ratio tests were done at type I error rate
α = 0.05, represented by a star at β = 0.

Figure 3: Map of sampled vineyards in San Joaquin, Scaramento and Yolo Counties,
surrounding the town of Lodi, California. Rivers are shown as solid lines. ”C” markers
denote fields of Chardonnay grapes and ”Z” markers denote Zinfandel. The white square
on the state map shows the location of our sites within California.

Figure 4: Results from the time-to-maturation model and generalized linear mixed model
analysis. Throughout, data from Zinfandel source vineyards are in red, those from
Chardonnay source vineyards are in green. a) Histograms of development times, grouped
by source cultivar. Best-fit Weibull models for Zinfandel (solid red line) and Chardonnay
(solid green line) source vineyards are shown, along with dashed lines that represent the
extreme curves (0.05 and 0.95 quantile) under the estimated random effects variation for
the sample colony and for the replicate assay populations. b) Binomial GLMM of the
probability of individuals maturing before day 6. c) Binomial GLMM of the proability of
individuals surviving through day 4, d) Poisson GLMM of the number of eggs laid per
mature adult female by day 2.

Figure 5: Distance boxplots and AUC plots used to evaluate the ability of each distance
function to track changes in each parameter: the scale parameter of egg stage duration, the
scale parameter of immature stage duration, mortality, and fecundity, by column. Each row
of plots represents the same distance function over all parameters. The first row uses the
sum of χ2 differences in counts of individuals in each stage at each time. The second row
uses the sum of squared differences in the number of adults at each time. The third row
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uses the cross-correlation function (with zero lag) between the counts of immatures at each
time. The fourth row uses the Earth Mover Distance between the distributions at each time
of the relative number of individuals in each stage. See Appendix B for further explanation
of metrics. Boxplots show the distribution of distances between data sets simulated with
baseline parameters and data sets simulated with slightly different parameters. The center
boxplot in each plot shows the distribution of distances between data sets simulated from
the same baseline parameters. Each plot tracks changes in one parameter while he other 3
are held constant. Distance scale is on the left axis. Open circle show the AUC statistic of
the ROC curve for each pair of distributions of distances. AUC scale is on right axis.

Figure 6: Posterior distributions of parameters for a) the scale of egg stage duration, b) the
scale of immature stage duration, c) mortality, d) fecundity. Red lines indicate the true
parameter values that were used to simulate the ”observed” data set. Solid lines show the
median and dashed lines show the bounds of the 95% credible interval.

Figure 7: Intermediate distributions of parameter estimates as boxplots for each of the 4
parameters over 10 steps of the algorithm.

Figure 8: The changes in mean (green), median (blue), and variance (red) of parameter
estimates for a) the scale of egg stage duration, b) the scale of immature stage duration, c)
mortality, d) fecundity over the 10 steps of the algorithm. Plot c shows the scale of the
mean and median of mortality estimates on the left axis and the scale of the variance of
estimates on the right axis.
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summary statistic distance metric source

data
envelope of absolute differences

McKinley et al. (2009)X 2 goodness of fit
data Kolmogorov-Smirnov distance Liepe et al. (2012)
average pop. size euclidean distance of log-sig

Rasmussen and Hamilton (2012)
sample var of pop. size transforms
data square root of the sum of X 2 Sousa et al. (2009)
data Freeman-Tukey statistic Drovandi and Pettitt (2011a)

data smoothed with a
euclidean distance Walker et al. (2010)

moving average filter

Table 1: Literature summary statistics and distance metrics

summary statistic distance metric

individuals in each stage at each time
sum of X 2

total individuals at each time
eggs at each time

sum of squared differences

new eggs at each time
immatures at each time
adults at each time
individuals in each stage at each time
total individuals at each time
relative stage class distribution
transformed stage class distribution

relative stage class distribution

sum of Kullback-Leibler divergence
sum of squared Kullback-Leibler divergence
sum of Bhattacharyya distance
sum of Hellinger distances
sum of squared Hellinger distances
sum of earth mover distance

eggs at each time

cross-correlation function
immatures at each time
adults at each time
total individuals at each time
individuals in each stage at each time ln Pr[X = xi] where X ∼ Pois(D)

Table 2: All summary statistics and distance metrics
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Symbol Value Definition

S 10 number of steps
s indicates current step
N 10,000 number of particles at each step
i indicates current particle
θ particle (model parameter vector)
θ∗ intermediate particle
L 4 number of parameters
l indicates current parameter
π(θ) Uniform joint prior distribution of parameters
θil lth parameter value in the ith particle
{θi}(s) set of all particles at step s

{θi}(s)l set of the lth parameter in all particles at step s

K(θ|θ∗) N (0, τ 2)
perturbation kernel - distribution of perturbed particles
given an intermediate particle

τ 2 variance of perturbation kernel
M(θ) population model
x simulated data set
D observed data set
S() summary statistic that may be used in a distance function
d vector of distances
ρ() distance function
J 4 number of distance functions
j indicates current distance function
{di}(s) set of all distance vectors at step s

{di}(s)j set of the jth distance in all distance vectors at step s
{ρj()} set of all distance functions
ε threshold
q fraction denoting the quantile
w weight
{wi}(s) set of all weights at step s
ϕ() N (0, 1) standard Normal distribution

Table 3: Algorithm notation
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Figure 3: Site map
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Figure 4: Demographic rate results
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Figure 7: Intermediate distributions
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Škaloudová, B., V. Křivan, and R. Zemek, 2006. Computer-assisted estimation of leaf
damage caused by spider mites. Computers and Electronics in Agriculture 53:81–91.

Skoracka, A., 2008. Reproductive barriers between populations of the cereal rust mite
Abacarus hystrix confirm their host specialization. Evolutionary Ecology 22:607–616.

Souissi, S. and S. Ban, 2001. The consequences of individual variability in moulting
probability and the aggregation of stages for modelling copepod population dynamics.
Journal of Plankton Research 23:1279 –1296.

Sousa, V. C., M. Fritz, M. A. Beaumont, and L. Chikhi, 2009. Approximate Bayesian
computation without summary statistics: The case of admixture. Genetics
181:1507–1519.

48



Sun, J., 2006. The statistical analysis of interval-censored failure time data. Springer.

Tanaka, M. M., A. R. Francis, F. Luciani, and S. A. Sisson, 2006. Using approximate
Bayesian computation to estimate tuberculosis transmission parameters from genotype
data. Genetics 173:1511–1520.
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A Appendix: ABC algorithms

Simple rejection sampler algorithms often have very high rejection rates, due to model
complexity or stochasticity, or high disparity between the prior and posterior. This issue
can be solved by modifying the algorithm to include a regression adjustment (Beaumont
et al., 2002), by using ABC in markov chain monte carlo (MCMC) methods (Marjoram
et al., 2003), or by employing a particle filter or sequential Monte Carlo approach (Cappé
et al., 2004, 2007).

Local linear regression adjustments to the proposed parameter values are made by
weighting parameter sets by the distance between their simulated data and the observed
data set (Beaumont et al., 2002). Weighted linear or quadratic regressions of the
parameter value on the distance yield an intercept estimate that corresponds to the
posterior mean of the parameters (Blum and François, 2008). Posterior densities are
approximated by kernel density estimation with the weighted parameters (Beaumont
et al., 2002). Regression adjustments do not universally improve parameter estimation but
do achieve better performance with a homoskedastic relationship between distance and
parameter (Blum and François, 2008). Improvements to local linear regression include
neural network modelling and importance sampling (Blum and Tran, 2010).

An MCMC approach can also be applied in the ABC framework, where proposed
changes to a parameter value are accepted with a probability proportional to some distance
from the observed data based on summary statistics (Marjoram et al., 2003). MCMC
improves on the inefficiencies of a rejection algorithm, but high rejection rates along with
the correlated nature of accepted samples may trap the chain in areas of low probability
(Sisson et al., 2007). ABC MCMC algorithms are used to estimate transmission rate,
doubling time, reproductive value of a strain of tuberculosis (Tanaka et al., 2006) and the
size of ellipsoid imperfections in the manufacturing of clean steel (Bortot et al., 2007).

Algorithms based on the sequential Monte Carlo (SMC) approach improve on the
“brute-force” rejection algorithm (Del Moral et al., 2006, 2012). In a SMC algorithm,
particles are sampled from a prior distribution and propagated through intermediate
distributions until they resemble a sample from the target posterior distribution (Sisson
et al., 2007). This propagation can occur through parameter space or through a time
series, as in a population Monte Carlo (PMC) algorithm (Cappé et al., 2004). Any SMC
algorithm depends on a weighted resampling that favors particles that generate simulations
“closer” to the observed data and a set of decreasing thresholds for particle acceptance
(Beaumont et al., 2009). The choice of weights can be problematic, with biased posteriors
arising from the backwards kernel in the partial rejection control algorithm (Beaumont
et al., 2009; Sisson et al., 2009). Using an approximation to the optimal backwards kernel
(Beaumont et al., 2009) has a higher computation cost (Del Moral et al., 2012), but may
not substantially slow computation time of the overall algorithm (Toni et al., 2009). Using
an an MCMC kernel for the parameter transition kernel allows the use of the exact
backwards kernel and avoids the extra computation cost (Drovandi and Pettitt, 2011a;
Del Moral et al., 2012)

Sequential Monte Carlo algorithms have been used for parameter inference in fields

51



such as epidemiology, bioinformatics, and cellular biology. Partial rejection control
algorithms have been used to estimate generation times and incubation time of measles
(Klinkenberg and Nishiura, 2011) and to infer a complex transmission and evolution model
of drug resistance in tuberculosis (Luciani et al., 2009). Population Monte Carlo
algorithms have been used to estimate population parameters and spatial dynamics in
species range expansion (Rasmussen and Hamilton, 2012), and in signal processing with
white and colored noise (Hong et al., 2010). ABC SMC algorithms have been used for
inference of multivariate quantile distributions (Drovandi and Pettitt, 2011b), models of
(bioinformatics) influenza dynamics and signalling pathways (Toni and Stumpf, 2010),
stochastic environmental models of wastewater micropollutant loads (Rieckermann et al.,
2011), microphage shock response (Toni et al., 2011), an SEIR model for Ebola
transmission (McKinley et al., 2009), and phosphorylation pathways (Toni et al., 2012).
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B Appendix: Summary statistics and distance

metrics

We evaluated 21 combinations of summary statistics and distance metrics based on the
literature and our knowledge of population dynamics (table 2). We define the observed data
set to which we fit our model as the true data set and each model simulation as a simulated
data set. We describe the summary statistics and distance metrics in detail below.

The main summary statistic we used was the untransformed data: the counts of
individuals at each time. We used the total number of individuals over the 5 observation
times, but we also separated the individuals into stage for 3 different summary statistics:
the counts of eggs, immatures, adults. Additionally we pooled this stage count data
together into another summary statistic with 15 data points: counts of 3 separate stages at
5 observation times. We also used the change in the number of eggs between observation
times.

Another summary statistic that was used extensively was the relative stage class
distributions. At each time we calculated the proportion of individuals in each stage: egg,
immature, and adult. These proportions summed to 1 across the 3 stages at each single
observation time. The summary statistic then yielded 15 data points: three proportions at
5 observation times. We also used the arcsin transform of the relative stage distributions.

The first distance metric we investigated was the X 2 differences between observed
(simulated data set) and expected (true data set). We took the sum of the chi square
differences across all data points in the summary statistic. We used the X 2 metric in
combination with two summary statistics: the number of individuals in each stage at each
time (15 data points) and the total number of individuals at each time (5 data points).

The second distance metric we included was the sum of squared differences between
the true data set and a simulated data set. We used the sum of squares metric in
combination with all 6 untransformed data summary statistics: the eggs at each time, the
new eggs at each time, immatures at each time, adults at each time, total individuals at
each time, and the individuals in each stage at each time. We also used the sum of squared
differences of relative stage distributions and arcsin transformed stage distributions.

We based another group of distance metrics on the comparison of distributions.
Statistics and probability theory contain many methods for quantifying the difference
between two distributions: a true distribution P and a second distribution Q. We applied
these methods to quantify the difference between the relative stage distributions of the true
data set (P ) and a simulated data set (Q) at each observation time. The first distance
metric in this group was the Kullback-Leibler divergence, which measures the difference
between distributions as

DKL(P,Q) =
∑
i

ln

(
P (i)

Q(i)

)
P (i) (19)

where i = 3 for the 3 stage classes. The sum of Kullbeck-Liebler divergence took the sum of
DKL(P,Q) over all observation times where the sum of squared Kullbeck-Liebler divergence
took the sum of squared values of DKL(P,Q) over all observation times. One issue with the
Kullback-Leibler divergence is that it is only defined if the P (i) is nonzero. Thus it
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provided no information when there are zero individuals in a stage in the true data set.
The next probability-based distance metric we used was the Bhattacharyya distance,

DB(P,Q) = −ln
(∑

i

√
P (i)Q(i)

)
(20)

where i=3 for the number of stages. The sum of the Bhattacharyya distance took the sum
of DB(P,Q) over the 5 observation times.

The Hellinger distance was also used, where

DH(P,Q) =
1√
2

√√√√∑
i

(√
P (i)−

√
Q(i)

)2

(21)

where i = 3 stages. The sum of Hellinger distances took the sum of DH(P,Q) over the 5
observation times. The squared Hellinger distance is often used in statistics, so we also
took the sum of (DH(P,Q))2 over the 5 observation times.

We also used the earth mover’s distance (EMD) or Wasserstein metric, a measure of
the distance between two probability distributions developed in computer science and
mathematics. Often analogies to piles of dirt are used to describe the EMD. It is the
minimum cost of turning one pile of dirt into another; the amount of dirt that needs to be
moved, weighted by the distance it needs to be moved. We wished to find the cost of
turning the relative stage distribution of a simulated data set into the relative stage
distribution of the true data set at any observation time. We “moved” the mass of the
simulated data set’s relative stage distribution until it matched that of the true data set,
keeping track of the mass. The distance between the egg and immature stages and between
the immature and adult stages was 1 and the distance between the egg and adult stages
was 2. The sum of the earth mover distance summed the EMD over the relative stage
distributions at each of 5 observation points.

We also used a more traditional population dynamics metric: the cross-correlation.
Using the untransformed data as a time series, we used the cross-correlation function with
zero time lag to find the cross-correlation between counts of individuals in the true data set
and in a simulated data set. We used this distance metric to find cross-correlations in the
number of eggs, the number of immatures, the number of adults, and the total number of
individuals. We take the distance as 1 - the cross-correlation value. One limitation of this
metric is that it does not distinguish between the absolute numbers of individuals in each
data set. For example, the cross-correlation function would find zero distance between a
cohort of 5 eggs that remain 5 eggs for the entire observation time, and 200 eggs that
remain at 200 eggs.

The final distance metric we evaluated was a heuristic use of Poisson log probability,
treating the observed count as the Poisson expected value and the simulated count as the
Poisson datum,

lnPr(xi|D) =
∑

y∈D,k∈xi
(−y + k/y) (22)

where k is a count of individuals in one stage at one time in xi, a simulated data set, and y
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is a count of individuals in the same stage at the same time in D, the true data set.
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