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Feedback improves the generalized degrees of
freedom of the strong interference channel

Viveck R. Cadambe, Syed A. Jafar
Electrical Engineering and Computer Science

University of California Irvine,
Irvine, California, 92697, USA

Email: vcadambe@uci.edu, syed@uci.edu

Abstract— We provide inner and outer bounds on the
generalized degrees of freedom (GDOF) of the two user
symmetric interference channel. The bounds are tight in
the moderately weak and strong interference regimes.
Feedback is shown to provide unbounded improvements
to the GDOF of the two user interference channel in
the very strong interference regime. We also show that
feedback does not improve the GDOF of the channel if
the interference is moderately weak or moderately strong.
Finally, we extend the outer and inner bounds to the
symmetric MIMO interference channel with feedback.

I. I NTRODUCTION

Recent results [1]–[4] have reduced the gap between
lower and upper bounds on the capacity of the inter-
ference channel which has been a long standing open
problem in information theory. An approximation of
the capacity of the interference channel within one
bit was derived in [1]. An important contribution of
[1] was the identification of various operating regimes
of the interference channel usinggeneralized degrees
of freedom (GDOF). In the context of thesymmetric
Gaussian interference channel with unit variance noise
at both receivers, the number of generalized degrees of
freedomd(α) of the channel is defined as

d(α) = lim
SNR→∞

C(α, SNR)

log(SNR)

whereα
△
= log(INR)

log(SNR) , SNR represents the signal-to-noise
ratio of both the users, INR represents interference to
noise ratio,C(α, SNR) represents the sum-capacity of
the interference channel as a function ofα and SNR.
The conventional degrees of freedom1 (DOF) introduced
in [5] is d(α) evaluated atα = 1. Since GDOF is
a more general version of DOF, it is a more precise
approximation of the capacity of a channel. The various
operating interference regimes in thesymmetric interfer-
ence channel identified in [1] are listed below

1) Very weak interference (0 < α ≤ 2/3) : d(α) =
2 max(α, 1 − α)

1Also known as multiplexing gain
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Ŵ1

Ŵ2
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Fig. 1. The2 user interference channel with feedback

2) Moderately weak interference (2/3 < α ≤ 1) :
d(α) = 2 − α

3) Moderately strong interference (1 < α ≤ 2) :
d(α) = α

4) Very strong interference (2 < α) : d(α) = 2

Also, following standard terminology, we use ‘strong
interference channel’ to mean that INR> SNR or
equivalentlyα > 1. Similarly, by ‘weak interference
channel’, we meanα ≤ 1. Note that the interference
channel hasd(1) = 1 degree of freedom. While the
degrees of freedom of the interference channel may be
improved by increasing the number of antennas at each
node [6], the degrees of freedom approximation of ca-
pacity is too coarse to capture the benefits of techniques
such as feedback, noisy co-operation and relays [7]. In
this paper, we use thegeneralized degrees of freedom
(GDOF) metric to study the benefits of perfect feedback
on the interference channel. Note that the advantages
offered by multiple antennas have been characterized in
terms of GDOF in [8]

In this paper, we derive inner and outer bounds for
the symmetric interference channel with feedback (see
figure 2). Forα ≤ 2/3, we bound GDOF as

max(2α, 2 − 2α) ≤ d(α) ≤ 2 − α

For α > 2/3, the inner and outer bounds are tight and
we obtain a GDOF characterization of the interference
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Fig. 2. Generalized degrees of freedom of the interference channel -
the effect of feedback

channel with feedback as follows

d(α) =

{

2 − α 2/3 < α ≤ 1
α 1 < α

Note that if2/3 < α ≤ 2, the GDOF of the interference
channel does not improve with feedback. Therefore, the
GDOF optimal achievable scheme does not even require
feedback - the Han Kobayashi scheme presented in [1]
is sufficient. For the very strong interference regime i.e.
α > 2, we present a co-operative achievable scheme in
which each transmitter uses the feedback only from its
from its corresponding receiver i.e. transmitter1 needs
feedback only from receiver1 and transmitter2 from
receiver2. In the very strong interference regime, while
the GDOF of the interference channel saturates to2 in
absence of feedback, the GDOF grows linearly withα if
feedback is present (Figure 2). This implies that feedback
can provide unbounded GDOF improvement in this
regime. We also finally present, without proof, bounds
for the GDOF of the symmetric MIMO interference
channel with feedback. Proofs for the MIMO case may
be found in the extended paper [9]. We now proceed to
formally introduce the system model.

II. SYSTEM MODEL

We consider the2 user symmetric interference channel
(Figure 1)described by

Y1(τ) =
√

SNRH11X1(τ)+
√

INR H12X2(τ)+Z1(τ)

Y2(τ) =
√

INR H21X1(τ)+
√

SNR H22X2(τ)+Z2(τ)

where at theτ th channel use,Xi(τ) is the complex
symbol transmitted by transmitteri. Similarly, at receiver

i, Yi(τ) andZi(τ) represent the received symbol and the
additive noise term respectively corresponding to theτ th

use of the channel. The noise processZi ∼ N (0, 1) is
i.i.d and independent of other variables in the system.
Hij satisfies|Hij | = 1. In other words,Hij essentially
represents the argument of the complex channel gain
between transmitterj and receiveri. For a code spanning
T uses of the channel, the codeword transmitted by
transmitteri satisfies an average power constraint that
may be expressed as1

T
E
[

∑T

τ=1 |Xi(τ)|2
]

≤ 1, i =

1, 2. The power constraint assumption is made in this
manner since, SNR represents the actual signal-to-noise
ratio between transmitteri and receiveri. The transmit-
ters receive feedback from both receivers so that, the
encoding functionfi at transmitteri ∈ {1, 2} may be
expressed as

Xi(τ) = fi(Wi, Y
[τ−1]
1 , Y

[τ−1]
2 )

whereWi represents the message corresponding to user
i andY

[τ ]
i = (Yi(1), Yi(2) . . . Yi(τ)). In remaining parts

of this paper i.eA[τ ] is used to indicate the tuple
(A(1), A(2) . . . A(τ)). We will also use the following
quantities later in the paper.

S11(τ)
△
=

√
SNR H11X1(τ) + Z1(τ)

S12(τ)
△
=

√
INR H12X2(τ) + Z1(τ)

S21(τ)
△
=

√
INR H21X1(τ) + Z2(τ)

S22(τ)
△
=

√
SNR H22X2(τ) + Z2(τ)

A. Generalized Degrees of Freedom

Let CΣ(α) represent the sum-capacity of the interfer-
ence channel whose SNR and INR satisfy

α =
log(INR)

log(SNR)

Then, the generalized degrees of freedom (GDOF) of the
interference channeld(α) is defined as

d(α) = lim
SNR→∞

CΣ(α)

log(SNR)

III. G ENERALIZED DEGREES OF FREEDOM OF THE

INTERFERENCE CHANNEL WITH FEEDBACK

A. Outerbound

Consider any achievable coding scheme. SinceX1

represents the symbol transmitted by transmitter1, this
transmitter is aware ofX [τ−1]

1 before theτ th channel
use. It can therefore cancel the effect ofX

[τ−1]
1 from

the feedback received to obtainS[τ−1]
12 andS

[τ−1]
22 . This

leads us to the following observation :
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Fig. 3. The genie aided channel in the outerbound argument

Observation 1: The encoding function at transmitter1
can equivalently be written in the following forms

X1 = f1(W1, Y
[τ−1]
1 , Y

[τ−1]
2 )

X1 = f
′

1(W1, S
[τ−1]
12 , S

[τ−1]
22 )

X1 = f
′′

1 (W1, S
[τ−1]
12 , Y

[τ−1]
2 )

Now we convert the original channel to the channel in
Figure 3 by letting a genie provideW1, S

T
12 to receiver2.

Now, note that observation 1 implies that using informa-
tion of S

[T ]
12 , Y

[T ]
2 andW1, receiver2 can constructX [T ]

1

and therefore cancel the signal from transmitter1. The
genie can only enhance the capacity region and therefore
does not affect the outerbound argument. The genie aided
channel is shown in in Figure 3. In this channel, we can
use Fano’s inequality to bound rates.

TR2 − T ǫ (1)

≤ I(S
[T ]
12 , S

[T ]
22 , W1; W2) (2)

= I(S
[T ]
12 , S

[T ]
22 ; W2|W1) (3)

= h(S
[T ]
22 , S

[T ]
12 |W1) − h(S

[T ]
22 , S

[T ]
12 |W1, W2) (4)

≤
T
∑

τ=1

h(S22(τ), S12(τ)|W1, S
[τ−1]
22 , S

[τ−1]
12 )

−
T
∑

τ=1

h(S22(τ), S12(τ)|W1, W2, X1(τ), X2(τ))

(5)

≤
T
∑

τ=1

h(S12(τ)|W1, S
[τ−1]
22 , S

[τ−1]
12 )

+

T
∑

τ=1

h(S22(τ)|W1, S
[τ−1]
22 , S

[τ−1]
12 )

−
T
∑

τ=1

h(Z2(τ), Z1(τ)|W1, W2, X1(τ), X2(τ)) (6)

≤
T
∑

τ=1

h(S12(τ)|W1, S
[τ−1]
22 , S

[τ−1]
12 , X

[τ ]
1 )

+

T
∑

τ=1

h(S22(τ)|S12(τ)) − 2T log(πe) (7)

≤
T
∑

τ=1

h(Y1(τ)|W1, S
[τ−1]
22 , Y

[τ−1]
1 , X

[τ ]
1 )

+

T
∑

τ=1

h(S22(τ)|S12(τ)) − 2T log(πe) (8)

=

T
∑

τ=1

h(Y1(τ)|W1, Y
[τ−1]
1 )

+

T
∑

τ=1

h(S22(τ)|S12(τ)) − 2T log(πe) (9)

= h(Y
[τ ]
1 |W1) +

T
∑

τ=1

h(S22(τ)|S12(τ))

− 2T log(πe) (10)

where we have used the fact that conditioning reduces
entropy in (5) ,(7) and (9). In (7) we have also used
observation 1 in the first summand term. In the last sum-
mand of (7), we have used the fact that the instantaneous
noiseZi(τ) is independent ofXi(τ). Inequality (8) uses
the fact that

Y1(τ) = S12(τ) +
√

SNR H11X1(τ)

i.e. given X1(τ), uncertainty inY1(τ) is equal to the
uncertainty inS21(τ).

Now, we boundR1 using Fano’s inequality as well

TR1 − T ǫ ≤ I(Y
[T ]
1 ; W1)

= h(Y
[T ]
1 ) − h(Y

[T ]
1 |W1) (11)

Adding (10) and (11), we get

TR1 + TR2 − 2T ǫ ≤ h(Y
[T ]
1 ) +

T
∑

τ=1

h(S22(τ)|S12(τ))

−2T log(πe)

Using the fact that Gaussian variables maximize en-
tropy and conditional entropy, we can write

h(Y
[T ]
1 ) ≤ T log

(

πe
(

1 + SNR |H11|2 + INR |H12|2
))

h(Y
[T ]
1 ) ≤ T log (1 + SNR + INR ) + O(1)

where, above, we have used the fact that|Hij |2 =
1, i, j ∈ {1, 2}.

T
∑

τ=1

h (S22(τ)|S12(τ))

≤ T log

(

πe

(

E
[

|S22|2
]

− E [|S22S
∗
12|]2

E [|S12|2]

))

(12)



≤ log

(

1 + SNR |H22|2 − SNR INR
|H12H22|2

1 + INR|H12|2
)

+ O(1) (13)

= log (1 + INR + SNR)

− log (1 + INR ) + O(1)

(14)

Therefore, lettingT → ∞ in (11), we get

R1 + R2 ≤ Γ1 + Γ2 + O(1) (15)

where

Γ1
△
= log (1 + SNR+ INR) + O(1)

Γ2
△
= log (1 + INR + SNR)

− log (1 + INR)

It can be clearly seen that

lim
SNR→∞

Γ1

SNR
= max(α, 1)

lim
SNR→∞

Γ2

SNR
= max(α, 1) − α

Using the above equations in (15), the following
outerbound can be shown

Theorem 1: The generalized degrees of freedom of
the2 user interference channel with feedback is bounded
as

d(α) ≤
{

2 − α α ≤ 1
α α > 1

B. Inner Bound : Co-operative Achievable scheme

We provide an innerbound to the GDOF of thestrong
interference channel using through a simple two-stage
achievable scheme. The scheme achieves a GDOF of
d(α) = α. Combined with the outerbound of the previ-
ous section this achievable scheme is optimal. Note that
in contrast to the interference channel without feedback
whose GDOF performance is bounded by2 (Figure 2),
the of the interference channel in presence of feedback
grows linearly with increasingα in the strong interfer-
ence regime. We now describe our achievable scheme.

Stage 1 : In the first stage of the achievable scheme,
each transmitter learns the other user’s message using the
feedback channel. For example, note that the feedback
to transmitter1 from receiver1 is equivalent to

S12(τ) =
√

INR H12X2(τ) + Z1(τ)

In other words, feedback effectively provides an AWGN
channel from transmitter2 to transmitter1. Using this
effective AWGN channel transmitter1 decodes message
W2. Similarly transmitter2 learnsW1 using the feed-
back from receiver2. The first stage ends when both

transmitters are aware of both messages.
Stage 2 : In the second stage, the two transmitters co-
operate to broadcast the messagesW1 and W2 to their
respective destinations.

Let us assume a message ofB bits i.e. H(W1) =
B = H(W2). Now, note that, at high SNR, the first
stage lasts B

Cc
symbols, whereCc = α log(SNR) +

o(log(SNR)) represents the capacity of the point-to-point
channel described byS12 (or S21) . Also, note that the
capacity of the broadcast channel in the second stage is
Cb = 2 max(α, 1) log(SNR) + o(log(SNR)). Therefore
to transfer a total of2B bits i.e.B bits for each user, the
total time taken isB

Cc
+ 2B

Cb
symbols. Therefore, assuming

α > 1, the sum-rate may be written as

Rsum =
2B

B
Cc

+ 2B
Cb

The degrees of freedom achieved may be expressed as

d(α) = lim
SNR→∞

Rsum

log(SNR)

d(α) =
2

1
α

+ 2
2α

= α

We can now proceed to the following achievability
result

Theorem 2: The degrees of freedom of the2 user
interference channel with feedback maybe bounded as

d(α) ≥
{

α α > 1
min(max(2α, 2 − 2α), 2 − α) α ≤ 1

The achievable scheme forα > 1 is described earlier in
this section. Forα ≤ 1, the achievable scheme is simply
the Han Kobayashi scheme described in [1]. Note that
the achievable scheme for the above theorem does not
use feedback ifα ≤ 1. Combining Theorems 2 and 1
we obtain the GDOF characterization of the interference
channel with feedback ofα > 2/3.

Corollary 1: If α > 2/3, then the number of GDOF
of the interference channel with feedback is given by

d(α) = max(2 − α, α)
Note that feedback increases the GDOF performance if
α > 2, but does not improve the performance if2/3 <
α ≤ 2. The effect of feedback on the GDOF forα < 2/3
is an open problem.

IV. GENERALIZED DEGREES OF FREEDOM OF THE

SYMMETRIC MIMO INTERFERENCE CHANNEL WITH

FEEDBACK

Consider the2 user symmetric interference channel
with M antennas at each transmitter andN antennas at



each receiver. This channel is described by

Y1(τ) =
√

SNR H11X1(τ) +
√

INR H12X2(τ)

+Z1(τ)

Y2(τ) =
√

INR H12X1(τ) +
√

SNR H22X2(τ)

+Z2(τ)

where at theτ th channel use,Xi(τ) is a M × 1 column
vector representing the transmitted (vector) symbol at
transmitter i. Similarly Yi(τ) and Zi(τ) are N × 1
vectors which represent the received symbol and the
additive noise term respectively. The noise processZi ∼
N (0, IN ) is i.i.d and independent of other variables in
the system.TheN × M channel matrixHij satisfies
||Hij ||2F = 1, where ||A||2F represents the frobenius
norm of matrix A. Furthermore, we assume that the
channel matrixHij is full rank for all i, j ∈ {1, 2}.
The power constraint, rates and the generalized degrees
of freedom are defined in a manner similar to the single
antenna case.

Similar to [8], we can extend the ideas of the outer-
bound of Theorem 1 to the MIMO case. Furthermore, the
achievable scheme can also be extended to the MIMO
case and we can therefore bounds the GDOF of the
symmetric MIMO interference channel. We summarize
our result in the theorem below. The reader is referred
to the extended paper [9] for a proof of the theorem.

Theorem 3: If d(α) represents the generalized de-
grees of freedom of the MIMO interference channel with
feedback, then we can bound it as follows

d(α)

min(M, N)
≥
{

min(max(2α, 2 − 2α), 2 − α) α ≤ 1
α α > 1

d(α) ≤































M + M max(α, 1) N > 2M
M(α − 1) + N M < N ≤ 2M, α > 1

2M − 2Mα + Nα M < N ≤ 2M, α ≤ 1
N(α − 1) + M N < M ≤ 2N, α > 1

2N − 2Nα + Mα N < M ≤ 2N, α ≤ 1
N + N max(α, 1) M > 2N

V. CONCLUSION

We have derived bounds on the generalized degrees
of freedom of the symmetric interference channel with
feedback. The inner and outerbounds are tight for strong
interference and moderately weak interference channels
(i.e α ≥ 2/3 ). In the very strong interference regime,
we observe that the presence of feedback can cause
unbounded improvement on thegeneralized degrees
of freedom of the interference channel, We have also
provided bounds for the generalized degrees of freedom
for the symmetric MIMO interference channel. Future
work involves finding tighter bounds forα ≤ 2/3, the

MIMO case and extension of the results to general (i.e.
not symmetric) interference channels. Another important
extension of this work is the exploration of the benefits of
other techniques such as relays and noisy co-operation
on the generalized degrees of freedom of interference
and other wireless networks.
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