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Adolescence is the time of onset of many psychiatric disorders. Half of pediatric

patients present with comorbid psychiatric disorders that complicate both their medical

and psychiatric care. Currently, diagnosis and treatment decisions are based on

symptoms. The field urgently needs brain-based diagnosis and personalized care.

Neuroimaging can shed light on how aberrations in brain circuits might underlie

psychiatric disorders and their development in adolescents. In this perspective article, we

summarize recent MRI literature that provides insights into development of psychiatric

disorders in adolescents. We specifically focus on studies of brain structural and

functional connectivity. Ninety-six included studies demonstrate the potential of MRI to

assess psychiatrically relevant constructs, diagnose psychiatric disorders, predict their

development or predict response to treatment. Limitations of the included studies are

discussed, and recommendations for future research are offered.We also present a vision

for the role that neuroimaging may play in pediatrics and primary care in the future: a

routine neuropsychological and neuropsychiatric imaging (NPPI) protocol for adolescent

patients, which would include a 30-min brain scan, a quality control and safety read of

the scan, followed by computer-based calculation of the structural and functional brain

network metrics that can be compared to the normative data by the pediatrician. We

also perform a cost-benefit analysis to support this vision and provide a roadmap of the

steps required for this vision to be implemented.

Keywords: MRI, adolescence, brain connectivity, psychiatric disorders, depression

INTRODUCTION

Adolescence is the time of onset of many psychiatric disorders. Half of pediatric patients present
with comorbid psychiatric disorders that complicate both their medical and psychiatric care.
Currently, diagnosis and treatment decisions are based on symptoms. The field urgently needs
brain-based diagnosis and personalized care.

Neuroimaging can shed light on how aberrations in brain circuits might underlie psychiatric
disorders and their development in adolescents. MRI has become the leadingmodality for mapping
the human brain non-invasively. Apart from mapping individual brain regions, the importance of
connections between these regions and their role within the brain network as a whole are becoming
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increasingly recognized and studied within the framework of
connectomics (Sporns et al., 2005). Different MRI techniques
can be applied to map the connections of the network and to
quantify the connectivity strength. Most commonly, connections
are derived from diffusion-weighted images (with tractography
used to model white matter pathways) or from the functional
MRI (fMRI) signal (using temporal correlation of the signal as
a proxy for connectivity). Connections can be compared between
subjects individually. However, one can also utilize graph theory,
which offers new ways to perform network characterization
and comparison. Graph theory operates with an abstracted
notion of a graph, which is defined as a set of nodes (in
our case, brain regions), connected by a set of edges (e.g.,
white matter tracts). Important network characteristics can
be extracted, such as node degree, characteristic path length,
average clustering coefficient and other quantifiable measures
of network connectivity (Rubinov and Sporns, 2010). Studying
the human connectome using graph theory offers a unique
opportunity to better understand inter-individual differences in
the neural circuitry.

MRI connectomics has been applied to both the adult and
developing brain (Hagmann et al., 2010), including extensive
work by our group (Tymofiyeva et al., 2012, 2013, 2014; Ziv et al.,
2013). This framework also has been applied to study the neural
signature of psychiatric disorders, for example, adult depression
(Bai et al., 2012; Korgaonkar et al., 2014; Qin et al., 2014;
Gong and He, 2015; Sacchet et al., 2016), as well as adolescent
depression (Ellis et al., 2017; Tymofiyeva et al., 2017) and anxiety
(Sharp and Telzer, 2017). In the next section, we systematically
review both the structural and functional connectivity literature
on psychiatric disorders and related symptoms in adolescents.

REVIEW OF CONNECTIVITY STUDIES IN
ADOLESCENTS

To perform a review of MRI literature over the last 5-years that
provides insights into development of psychiatric disorders in
adolescents, the electronic database PubMed was searched using
the following Boolean search term, applied to titles and abstracts:

(MRI OR fMRI OR DTI) AND (adolescent OR youth) AND
(psychiatric OR neurologic OR mental OR depression OR autism
OR anxiety OR PTSD OR psychosis OR ADHD OR attention
OR bipolar OR schizophrenia OR OCD) AND (connectivity OR
connectome OR network OR circuit).

We thus focused on eight disorders: major depressive
disorder (MDD), autism, anxiety, bipolar disorder, attention-
deficit/hyperactivity disorder (ADHD), post-traumatic stress
disorder (PTSD), schizophrenia, and obsessive-compulsive
disorder (OCD) or their relevant clinical and non-clinical
symptoms in youth. We defined the age of adolescence as age
between 10 and 19, whereas studies could also include older
subjects in addition to those between 10 and 19.

The initial search resulted in 177 entries. After excluding
articles that: (a) are not in English (1 article), (b) animal
studies (5); (c) review articles (8), (d) focus on non-general

populations such as Down syndrome (37), (e) do not include
any pathology focus (11), (f) do not analyze brain connectivity
(21), the resulting set comprised 94 articles. Two additional
articles meeting the eligibility criteria were identified through
other sources. The total number of articles included in qualitative
synthesis was 96. The search results and main finding of the
included articles are summarized in Table 1.

Of the 96 included articles (Table 1), 77 studied clinical
populations (MDD, autism, anxiety, bipolar disorder,
schizophrenia, ADHD, PTSD, OCD), whereas 19 assessed
psychiatrically relevant constructs in non-clinical populations.
For example, multiple studies demonstrated disruption in
structural and functional connectivity in adolescents with MDD
compared to controls in fronto-striatal, fronto-limbic, anterior
cingulate cortical (ACC), insular, and amygdalar networks (Ho
et al., 2014; LeWinn et al., 2014, 2018; Pannekoek et al., 2014;
Davey et al., 2015; Henje Blom et al., 2015; Kim et al., 2016;
Morgan et al., 2016; Chattopadhyay et al., 2017; Ellis et al.,
2017; Straub et al., 2017; Tymofiyeva et al., 2017). Four studies
identified circuitry predictive of treatment response in depressed
teens (Jacobs et al., 2016; Straub et al., 2017; Klimes-Dougan
et al., 2018; Tymofiyeva et al., 2019). These data suggest that
MR imaging biomarkers based on connectivity between key
brain regions may offer guidance for treatment selection for
depressed adolescents.

Of the 96 included articles, 19 investigated constructs
associated with mental illness such as increased rumination,
decreased resilience, sensitivity to loss, increased MDD symptom
expression, social anxiety, decreased mindfulness, hyperactivity,
inattention, anhedonia, etc., without explicitly studying DSM-
diagnoses in adolescents. We find the contribution of these
studies relevant to the topic because of the limitation of the
current diagnostic system and potential of alternative approaches
such as the National Institute of Mental Health (NIMH)
Research Domain Criteria (RDoC), as will be discussed in the
following section. Arguably the most important implication
of these neuroimaging findings is that they provide both
the motivation and the rationale to pursue a much more
explicitly preventative psychiatry approach in helping at-
risk children before they present with a manifest psychiatric
disorder (McCrory et al., 2017). Developing a neurocognitively
informed screening tool capable of accurately indexing latent
vulnerability is essential if we are to identify those children
who are not yet overtly symptomatic but who are at most
risk for the development of a future psychiatric disorder. More
broadly, by establishing a better understanding of the specific
neurocognitive mechanisms implicated in the pathogenesis of
psychiatric disorders, we will be in a much better position to
develop effective preventative interventions that increase the
likelihood of resilient outcomes in children and adolescents
(McCrory et al., 2017).

To graphically synthesize the findings of the reviewed
literature, we have mapped the circuitry implicated in eight
psychiatric disorders (MDD, autism, anxiety, bipolar disorder,
schizophrenia, ADHD, PTSD, OCD) or their relevant non-
clinical symptoms in youth onto a single brain model (Figure 1).
Figure 1 illustrates both increased and decreased structural and
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TABLE 1 | Summary of the brain connectivity studies that provide insights into development of psychiatric disorders in adolescents published the last 5-years.

References # of

subjects

Subject age

in Years (±std.

dev)

Disorder/Trait MRI method(s) Diagnosis/

Future risk/

Predicting

treatment

response/

Treatment

effects

Group

difference vs.

Single subject

Main MRI findings

Adluru et al.

(2017)

100 13–18 Anxiety DTI Diagnosis Group difference Within monozygotic twin pairs, the more anxious twin exhibited decreased significantly

decreased FA and axial diffusivity in the left uncinate fasciculus, compared to the less

anxious twin

Alarcón et al.

(2018)

40 15–18 Non-clinical:

rumination

(relating to

depression)

Task-based fMRI

(conflict between

self-referential

processing and

cognitive control)

Future risk Group difference Girls displayed stronger fc of frontoparietal network (FPN) and DMN during

self-referential processing (SRP) relative to boys. Co-rumination, which was the only

self-reported measure that differentiated boys and girls, mediated cognitive control

performance during SRP Incongruent conditions

Balevich et al.

(2015)

99 15.9±1.7 (adol-S)

17.1±2.1 (adol-C)

43.7 ± 10.2

(adult-S)

42.2±11.5 (adult-

C)

Schizophrenia DTI Diagnosis Group difference Compared to healthy controls, both adult and adolescent patients with schizophrenia

showed reduced anisotropy of the corpus callosum; however, adolescent patients

showed reductions primarily in anterior regions, whereas adult patients showed more

prominent reductions in posterior regions

Bebko et al.

(2015)

60 8–17 Bipolar disorder

ADHD

Anxiety

Resting state fMRI Diagnosis Group difference This study examined relationships among symptom dimensions, diagnostic categories,

and rsFC in behaviorally and emotionally dysregulated youth. Two dimensional

measures showed significant inverse relationships with rsFC regardless of diagnosis: 1)

PGBI-10M (mania, depression, and anxiety severity) with amygdala-left posterior

insula/bilateral putamen, and 2) depressive symptoms with amygdala-right posterior

insula connectivity. Diagnostic categories showed no significant relationships with rsFC.

rsFC between the amygdala and posterior insula decreased with increasing severity of

behavioral and emotional dysregulation and depression

Bédard et al.

(2014)

45 9–15 ADHD Task-based fMRI

(N-back test of

working memory

for spatial position)

Diagnosis Group difference Compared to healthy controls, youth with ADHD showed greater functional connectivity

between the left dorsolateral PFC and left intraparietal sulcus and reduced left

dorsolateral PFC connectivity with left mid-cingulate cortex and PCC for the high load

contrast. Reanalysis with a more conservative statistical approach showed group

differences in dorsolateral PFC-mid-cingulate connectivity

Boets et al.

(2018)

34 11–18 Autism DTI

Global probabilistic

tractography

Diagnosis Group difference Compared to the control group, the ASD group showed reduced FA in the right and left

inferior longitudinal fasciculus (ILF) and increased radial diffusivity in the right ILF

Lower FA in the right ILF showed a slight association with the presence of more

self-reported ASD characteristics

Chang et al.

(2017)

79 9–18 Non-clinical:

high risk for

bipolar disorder

Task-based fMRI

(implicit emotion

perception task)

Future risk Group difference High-risk youth showed greater fc between the right amygdala and ventrolateral PFC,

and the visual cortical regions, compared to healthy controls

Chattopadhyay

et al. (2017)

116

(cross-

sectional)

47

(longitudinal)

11–17 Depression Resting state fMRI Diagnosis

Treatment effects

Group difference Compared to controls, depressed adolescents showed significantly greater rsFC to the

left amygdala and bilateral supragenual ACC, but no difference in connectivity to the

PFC. Treatment effects were observed in the right insula connected to the left

supragenual ACC, with baseline case-control differences reduced and no concomitant

differences in areas of cognitive control neural systems. rsFC changes were significantly

correlated with changes in depression severity

(Continued)
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TABLE 1 | Continued

References # of

subjects

Subject age

in Years (±std.

dev)

Disorder/Trait MRI method(s) Diagnosis/

Future risk/

Predicting

treatment

response/

Treatment

effects

Group

difference vs.

Single subject

Main MRI findings

Chen et al.

(2017)

109 15.6 ± 1.8 (S)

15.4 ± 1.6 (S-C)

13.1 ± 3.1 (A)

12.9 ± 2.9 (A-C)

Schizophrenia

Autism

Resting state fMRI Diagnosis Single subject

Group difference

Classification between individuals with disorders and healthy controls was achieved

with high accuracy. Shared atypical brain connections contributing to classification were

mostly present in the DMN and SN. These functional connections were significantly

associated with severity of social deficits in ASD. Distinct atypical connections were also

more related to the DMN and SN, but showed different atypical connectivity patterns

between the two disorders

Chuang et al.

(2017)

140 11–18 Depression Task-based fMRI

(affective go/no-go

task)

Diagnosis Group difference Compared to healthy male adolescents, depressed male adolescents showed

decreased activation in the cerebellum with significant group-by-age interaction in

connectivity

Cisler et al.

(2018)

88 11–17 Non-clinical:

early life trauma

exposure

(relating to

PTSD)

Task-based fMRI

(facial emotion

processing task)

Future risk Group difference In healthy adolescent females, self-reported early life trauma was significantly

associated with greater modularity, greater assortativity, and lesser global efficiency

during facial emotion processing—even when controlling for PTSD symptom severity.

Beyond the effect of early life trauma, PTSD diagnoses were associated with greater

modularity. Individual differences in large-scale network modularity were predictive of

both the degree of bilateral amygdala functional activation during the task, as well as

degree of functional connectivity between the amygdala and medial PFC

Cisler et al.

(2016)

20 11–16 PTSD Task-based fMRI

(facial emotion

processing task)

Predicting

treatment

response

Treatment effects

Group difference Pre-treatment (trauma-focused CBT) individual differences in modularity, assortativity,

and global efficiency during covert fear vs. neutral task blocks predicted PTSD

symptom reduction. PTSD patients with greater treatment response showed greater

network modularity and assortativity but lesser efficiency. At the group level, greater

symptom reduction was associated with greater pre-to-post-treatment increases in

network assortativity and modularity, and this was more pronounced among

participants with less symptom improvement

Cisler et al.

(2013)

30 12–16 PTSD

Non-clinical:

assaultive

violence

exposure

Task-based fMRI

(presentation of

fearful vs. neutral

facial expression

images)

Diagnosis

Future risk

Group difference Within the frontocingulate network, PTSD severity was associated with weakened

functional connectivity between the left amygdala and the perigenual anterior cingulate.

Within the frontoparietal network, assaulted girls demonstrated weakened connectivity

of the premotor cortex with the right middle frontal gyrus. Within the DMN, assault

exposure and PTSD severity were associated with strengthened functional connectivity

of the parahippocampus with the medial and lateral prefrontal cortex, respectively.

Individual differences in functional connections within the frontocingulate network and

frontoparietal network among the assaulted group were strongly associated with

caregiver-rated family disengagement

Clasen et al.

(2014)

24 13–15 Non-clinical:

familial risk for

depression

Resting state fMRI Future risk Group difference High-risk adolescents with a parental history of depression showed lower levels of

functional connectivity between a right inferior prefrontal region and other critical nodes

of the attention control network, including the right middle frontal gyrus and right

supramarginal gyrus. Among high-risk adolescents, increased severity of parents’ worst

episode of depression was associated with altered cognitive control network

connectivity in adolescents

Cullen et al.

(2016)

13 12–19 Depression Resting state fMRI Treatment effects Group difference Analysis of change in amygdala rsFC showed that treatment response was associated

with increased amygdala rsFC with right frontal cortex, but decreased amygdala rsFC

with right precuneus and right PCC

(Continued)
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TABLE 1 | Continued

References # of

subjects

Subject age

in Years (±std.

dev)

Disorder/Trait MRI method(s) Diagnosis/

Future risk/

Predicting

treatment

response/

Treatment

effects

Group

difference vs.

Single subject

Main MRI findings

Das et al.

(2013)

58 15.1 ± 0.34 Non-clinical:

sub-clinical

emotional

syndromes

Task-based fMRI

(image-based

emotion

processing task)

Future risk Group difference Between groups, the hippocampus showed a pattern of reverse coupling with the

amygdala and insula that significantly correlated with trait anxiety

Davey et al.

(2015)

56 16.5 ± 0.5

(baseline)

18.8 ±

0.5 (follow-up)

Depression Resting state fMRI Future risk Group difference Adolescents with no history of mental illness received an fMRI scan at baseline and a

follow-up scan 2-years later. Magnitude of amygdala connectivity with sgACC showed

significant positive correlation with negative affectivity at both time points. Change in

amygdala-sgACC connectivity between assessments was correlated with change in

negative affectivity. Of the 56 participants in the study, eight developed a first episode of

depression between the baseline and follow-up assessments; they showed increased

amygdala-subgenual connectivity at follow-up

Diwadkar et al.

(2014)

46 14.1 ± 3.1 (R)

15.4 ± 2.7 (C)

Non-clinical:

familial risk for

schizophrenia

or bipolar

disorder

Task-based fMRI

(attention and

visual control

tasks)

Future risk Group difference Compared to healthy controls, higher-risk adolescents were characterized by significant

reductions in coupling across both frontal-striatal and frontal-parietal pathways

Dorfman et al.

(2016)

71 13.2 ± 2.7 (A)

13.0 ± 2.7 (C)

Anxiety Resting state fMRI Diagnosis Group difference Compared to healthy controls, anxious adolescents showed abnormally low intrinsic

functional connectivity within the striatum (between the nucleus accumbens and

caudate nucleus) and between the striatum and prefrontal regions (including the

sgACC, posterior insula, and supplementary motor area)

Ellis et al.

(2017)

243 17–19 Non-clinical:

depressive

symptoms

DTI and

tractography

Future risk Group difference Adolescents that experienced increasing depression symptoms in early adolescence

showed differences in several frontal and temporal brain regions, compared to

adolescents with stable low levels of depression. Affected tracts corresponded to areas

of white matter that are still maturing during adolescent, particularly frontolimbic regions

Fitzgerald et al.

(2014)

63 8–19 OCD DTI Diagnosis Group difference Compared to healthy controls, patients with OCD showed more pronounced

age-related increases in FA in the anterior corpus callosum, anterior cingulum bundle,

and anterior limb of the internal capsule, as well as several other white matter tracts.

Among OCD patients, greater FA in the anterior cingulum bundle correlated with more

severe symptoms after controlling for age

Fowler et al.

(2017)

41 15.42 ± 0.33 Non-clinical:

stress-reactive

rumination

(relating to

depression)

Task-based fMRI

(emotion regulation

task and social

stress task)

Future risk Group difference Positive functional connectivity between the amygdala and ventrolateral PFC during the

emotion regulation task mediated the association between stress-reactive rumination

and depressive symptoms

Friedman et al.

(2017)

54 9–21 (O)

12–21 (C)

OCD Task-based fMRI

(uni-manual motor

task)

Diagnosis Group difference OCD subjects were characterized by hyper-modulation by the dorsal ACC.

Dynamically-driven task demands during simple uni-manual motor control induced

compensatory network interactions in cortical-thalamic regions in OCD

(Continued)
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TABLE 1 | Continued

References # of

subjects

Subject age

in Years (±std.

dev)

Disorder/Trait MRI method(s) Diagnosis/

Future risk/

Predicting

treatment

response/

Treatment

effects

Group

difference vs.

Single subject

Main MRI findings

Fryer et al.

(2019)

125 11–29 Schizophrenia

Psychosis

Task-based fMRI

(go/no-go task)

Diagnosis

Future risk

Group difference Compared to the healthy control group, the early schizophrenia and clinical high risk

(CHR) groups showed significantly less coupling during NoGo trials relative to Go trials

between the ACC and the bilateral medial PFC, PCC, and precuneus

Gao et al.

(2014)

35 10–18 Bipolar disorder Resting state fMRI Diagnosis Group difference Compared to healthy controls, depressed adolescents with bipolar disorder showed

decreased regional homogeneity in the medial frontal gyrus, bilateral middle frontal

gyrus and middle temporal gyrus, and right putamen. Depressed adolescents with

bipolar disorder had significant negative correlations of mood and feelings questionnaire

scores with mean regional homogeneity values in the medial frontal gyrus and right

middle frontal gyrus

Geng et al.

(2016)

57 13–17 Depression Resting state fMRI

DTI

Diagnosis Group difference Compared to healthy controls, adolescents with depression showed significantly lower

FA values in the fornix and decreased functional connectivity in four PFC regions.

Among healthy controls, significant negative correlations were observed between fornix

FA values and hippocampus-PFC functional connectivity. Among adolescents with

depression, no significant correlation was found between the fornix FA and the strength

of functional connectivity

Gold et al.

(2016)

82 Youth:

14.76 ± 2.82 (A)

14.42 ± 2.62 (C)

Adults:

32.90 ± 6.97 (A)

29.1 ± 7.50 (C)

Anxiety Task-based fMRI

(extinction recall

task)

Diagnosis Group difference Whole-brain analyses showed significant interactions of anxiety, age, and attention task

(threat appraisal, explicit threat memory, physical discrimination) on left amygdala

functional connectivity with the ventral medial PFC and ventral ACC. During threat

appraisal and explicit threat memory, anxious youth showed more negative

amygdala-PFC coupling, whereas anxious adults showed more positive coupling

Green et al.

(2017)

38 9–17 Autism Exposure-based

fMRI (mildly

aversive auditory

and tactile stimuli)

Diagnosis Group difference Compared to healthy controls, ASD subjects showed aberrant modulation of fc

between pulvinar and cortex (including sensory-motor and prefrontal regions) during

sensory stimulation. Among ASD subjects, pulvinar-amygdala connectivity was

correlated with severity of sensory over-responsivity symptoms

Green et al.

(2016)

61 8–17 Autism Resting state fMRI

Exposure-based

fMRI (mildly

aversive tactile and

auditory stimuli)

Diagnosis Group difference Sensory over-responsivity in youth with ASD was related to increased rsFC between SN

nodes and brain regions implicated in primary sensory processing and attention. The

strength of this connectivity at rest was related to the extent of brain activity in response

to auditory and tactile stimuli

Gruner et al.

(2014)

46 9–17 OCD Resting state fMRI Diagnosis Single subject Independent component analysis identified three components that maximally separated

healthy controls from OCD adolescents: a middle frontal/dorsal anterior cingulate

network, an anterior/posterior cingulate network, and a visual network—yielding an

overall group classification of 76.1%. Compared to healthy controls, OCD patients

showed significantly higher independent component expression scores in the middle

frontal/dorsal anterior cingulate and anterior/posterior cingulate networks, but lower

within the visual network. Among OCD patients, higher scores in the anterior/posterior

cingulate network correlated with greater severity of compulsions among patients

Guo et al.

(2016)

65 12–18 Autism Resting state fMRI Diagnosis Group difference Compared to healthy controls, adolescents with ASD showed decreased fc between

the amygdala and subcortical regions, including the bilateral thalamus and right

putamen

(Continued)
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TABLE 1 | Continued

References # of

subjects

Subject age

in Years (±std.

dev)

Disorder/Trait MRI method(s) Diagnosis/

Future risk/

Predicting

treatment

response/

Treatment

effects

Group

difference vs.

Single subject

Main MRI findings

Hafeman et al.

(2017)

78 8–16 Bipolar disorder

ADHD

Task-based fMRI

(implicit emotion

processing task)

Diagnosis Group difference Fc between amygdala and left ventrolateral PFC in response to emotions vs. shapes

significantly differed by group. Bipolar subjects showed positive functional connectivity

(emotions > shapes), healthy controls showed inverse functional connectivity (emotions

< shapes), and ADHD subjects showed intermediate functional connectivity. A

significant group × emotion interaction was found in amygdala-subgenual cingulate fc,

explained by differences in fc in response to negative emotions. Amygdala-subgenual fc

was also positively associated with depressive symptoms and stimulant medication

Hamm et al.

(2014)

56 13.9 ± 3.1 (A)

14.6 ± 3.9 (C)

Anxiety Resting state fMRI Diagnosis Group difference Compared to healthy controls, youth with anxiety disorders showed hyperconnectivity

between the right amygdala and insula, and hypoconnectivity between the left

amygdala and the ventromedial PFC and PCC. Among youth with anxiety disorders,

connectivity was not correlated with anxiety severity

Harlalka et al.

(2018)

9–12

(children)

13–

16 (adolescents)

Autism Resting state fMRI Diagnosis Group difference Compared to healthy controls, children and adolescents with ASD showed increased

functional integration at the expense of decreased functional segregation. Adolescents

with ASD showed significant decrease in modularity and increase in participation

coefficient, and significant hypoconnectivity in the DMN. In contrast, children with ASD

showed both hyper- and hypoconnectivity

Henje Blom

et al. (2015)

67 13–18 Depression Task-based fMRI

(facial emotion

processing task)

Diagnosis Group difference Compared to healthy controls, adolescents with depression showed greater fc between

the anterior/middle insular cortex and the right fusiform gyrus, left middle frontal gyrus,

and right amygdala/parahippocampal gyrus

Ho et al. (2017) 95 13–18 Depression Resting state fMRI

Task-based fMRI

(response

inhibition task)

Diagnosis Group difference Compared to controls, adolescents with depression showed inflexibility in local

efficiency of the right dorsal ACC/medial frontal gyrus (MFG). Individual differences in

flexibility (limited task-evoked vs. resting-state connectivity) of local right dorsal

ACC/MFG significantly predicted inhibition performance, and reduced local efficiency of

the dorsal ACC/MFG during a response inhibition task was significantly associated with

an earlier age of depression onset

Ho et al. (2014) 38 15.8 ± 1.4 (D)

16.1 ± 1.2 (C)

Depression Task-based fMRI

(implicit fear facial

affect recognition

task)

Diagnosis Group difference Compared to healthy controls, adolescents with depression showed significantly

increased sgACC-amygdala functional connectivity and decreased sgACC-fusiform

gyrus, sgACC-precuneus, sgACC-insula, and sgACC-middle frontal gyrus functional

connectivity. Among depressed adolescents, sgACC-precuneus fc was significantly

negatively correlated with depression severity. Compared to healthy controls, depressed

adolescents showed poorer perceptual sensitivity in the task, and individual differences

in perceptual sensitivity significantly correlated with sgACC fc and depression scores

Hong et al.

(2017)

184 Children: 8.60 ±

0.75 (ADHD)

8.68 ± 0.65 (C)

Teens: 13.17 ±

1.94 (ADHD)

12.21 ± 2.12 (C)

Adults: 26.77 ±

2.54 (ADHD)

24.94 ± 1.41 (C)

ADHD Resting state fMRI Diagnosis Group difference The degree centrality of the left middle temporal gyrus showed significant interaction

effects between disease status (ADHD or healthy control) and age (child, adolescent, or

adult). Other regions with significant interaction effects included the left superior frontal

gyrus, left inferior frontal gyrus, right inferior frontal gyrus, right precentral gyrus, left

superior temporal gyrus, left middle temporal gyrus, right postcentral gyrus, left insular

gyrus, left medioventral occipital cortex, right medioventral occipital cortex, left

amygdala, and left basal ganglia

(Continued)
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TABLE 1 | Continued

References # of

subjects

Subject age

in Years (±std.

dev)

Disorder/Trait MRI method(s) Diagnosis/

Future risk/

Predicting

treatment

response/

Treatment

effects

Group

difference vs.

Single subject

Main MRI findings

Hulvershorn

et al. (2014)

63 6–13 ADHD Resting state fMRI Diagnosis Group difference Among youth with ADHD, higher emotional lability ratings were associated with greater

positive intrinsic fc between the amygdala and rostral ACC, and negatively associated

with intrinsic fc between bilateral amygdala and posterior insula/superior temporal

gyrus. Patterns of amygdala-cortical intrinsic fc in ADHD youth with low emotional

lability did not differ from the comparison group, and the effect sizes for these

comparisons were smaller than those for the trend-level differences observed between

the high emotional lability group and the healthy control group

Hwang et al.

(2015)

61 14.53 ± 2.00 (A)

13.91 ± 2.13 (C)

ADHD Task-based fMRI

(affective Stroop

paradigm)

Diagnosis Group difference Compared to healthy controls, ADHD patients showed reduced fc between the

dorsomedial frontal cortex and lateral frontal cortex during congruent and incongruent

task trials relative to view trials. Among ADHD patients, decreased connectivity between

the amygdala and lentiform nucleus was found in the presence of emotional stimuli

Iadipaolo et al.

(2018)

55 6–17 Non-clinical:

resilience

(relating to

depression)

Resting state fMRI Future risk Group difference Children and adolescents with higher trait resilience spent a significantly lower fraction

of total time in a dynamic rsFC state characterized by increased rsFC between the

anterior DMN and right CEN. Within this state, resilience was significantly associated

with reduced SN rsFC with the anterior DMN and right CEN. More resilient youth

reported lower depressive symptoms, but the effects of resilience on rsFC were

independent of depressive symptoms and adversity exposure

Jack and

Morris (2014)

30 14.20 ± 1.61 (A)

13.80 ± 1.70 (C)

Autism fMRI imitation

paradigm

Diagnosis Group difference Among adolescents with ASD, stronger psychophysiological interactions between Crus

I of neocerebellum and right posterior superior temporal sulcus were associated with

greater mentalizing abilities

Jacobs et al.

(2016)

22 15.41 ± 1.97

(RFCBT)

15.69 ± 1.89

(control)

Depression Resting state fMRI Treatment effects Group difference This study was a pilot randomized control trial investigating the effects of

rumination-focused cognitive behavior therapy (RFCBT) on reducing rumination and

residual depressive symptoms in adolescents with a history of depression and risk of

relapse. Over the course of 8 weeks, adolescents who received RFCBT showed

significantly reduced rumination and self-reported depression, as well as significant

decreases in connectivity between the left PCC and right inferior frontal gyrus and

bilateral inferior temporal gyri. Degree of change in connectivity was correlated with

changes in self-reported depression and rumination

Jacobs et al.

(2014)

53 18–23 Depression Task-based fMRI

(go/no-go task)

Diagnosis Group difference Compared to healthy controls, unmedicated adolescents with remitted depression

showed hyperconnectivities from both PCC and sgACC seeds with lateral, parietal, and

frontal regions of the CEN, extending to the dorsal medial wall. A factor analysis

reduced extracted data and a PCC factor was inversely correlated with rumination

among depressed adolescents. Two factors from the sgACC hyperconnectivity clusters

were related to performance in cognitive control on a Go/No-Go task, one positively

and one inversely

Jacobson

McEwen et al.

(2014)

25 11–13 Psychosis Resting state fMRI Diagnosis Group difference Compared to healthy controls, adolescents with psychotic symptoms showed reduced

intrinsic fc between the right inferior frontal gyrus and the cingulate, between the right

inferior frontal gyrus and the striatum, between the anterior cingulate and claustrum,

and between the precuneus and supramarginal gyrus. Compared to healthy controls,

adolescents with psychotic symptoms showed stronger intrinsic fc between the

superior frontal gyrus and claustrum, and between the inferior frontal gyrus and the

lingual gyrus

(Continued)
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TABLE 1 | Continued

References # of

subjects

Subject age

in Years (±std.

dev)

Disorder/Trait MRI method(s) Diagnosis/

Future risk/

Predicting

treatment

response/

Treatment

effects

Group

difference vs.

Single subject

Main MRI findings

James et al.

(2016)

61 13–18 Schizophrenia DTI and

tractography

Diagnosis Group difference Compared to healthy controls, patients with adolescent-onset schizophrenia showed

generalized cognitive impairment with specific deficits in verbal learning and memory,

and in processing speed. These measures correlated positively with dorsolateral PFC

connectivity with the striatum, and with IQ. DTI voxel-wise comparisons showed lower

connectivity between striatum and the motor and lateral orbitofrontal cortices bilaterally,

the left amygdala-hippocampal complex, right ACC, left medial orbitofrontal cortex, and

right dorsolateral PFC in adolescent-onset schizophrenia patients relative to healthy

controls

Jann et al.

(2015)

39 13.8 ± 2.0 (A)

12.8 ± 3.6 (C)

Autism Resting state fMRI Diagnosis Group difference Increased local fc in the anterior module of the DMN was accompanied by decreased

cerebral blood flow in the same area. Both alterations were associated with greater

social impairments. While fc was correlated with cerebral blood flow in healthy controls,

this association was disrupted in ASD youth. Reduced long-range fc between the

anterior and posterior modules of the DMN was also found in ASD youth

Jarcho et al.

(2015)

90 8–17 (adolescents)

18–49 (adults)

Non-clinical:

social anxiety

Task-based fMRI

(prediction and

social feedback

task)

Future risk Group difference For socially anxious adolescents, but not anxious adults or healthy controls of either age

groups, social evaluation prediction errors elicited heightened negative fronto-striatal fc

Jin et al. (2017) 229 15 ± 0.583 Non-clinical:

sensitivity to

loss (relating to

depression)

Task-based fMRI

(monetary

gambling task with

win and loss

feedback)

Future risk Group difference Increased OFC-posterior insula connectivity during loss was marginally associated with

higher concurrent depressive symptoms and significantly associated future depressive

symptoms, but this relationship was not moderated by parental history of depression. In

contrast, OFC connectivity changes in response to win did not predict concurrent or

future depression symptoms

Johnston et al.

(2017)

68 14–25 Bipolar disorder

(suicide

attempts)

DTI

Task-based fMRI

(emotion

processing task)

Future risk Group difference Compared to bipolar adolescents and young adults without a history of suicide

attempts, patients with prior suicide attempts showed significant reductions in: white

matter integrity in the uncinate fasciculus, ventral frontal, and right cerebellum regions;

and amygdala fc to the left ventral and right rostral PFC. Among attempters, significant

negative associations were found between right rostral prefrontal connectivity and

suicidal ideation, and between left ventral prefrontal connectivity and attempt lethality

Joshi et al.

(2017)

31 15–29 Autism Resting state fMRI Diagnosis Group difference Compared to healthy controls, the ASD group showed a weaker pattern of positive

intra-DMN and negative extra-DMN rsFC correlations. The strength of intra-DMN

coupling was significantly reduced with the medial PFC and the bilateral angular gyrus

regions, and the polarity of the extra-DMN correlation with the right hemispheric

task-positive regions of fusiform gyrus and supramarginal gyrus was reversed from

typically negative to positive

Kaczkurkin

et al. (2018)

120 11–23 Psychosis

(overall

psychopathology)

Resting state fMRI Future risk Group difference Overall psychopathology was associated with decreased fc between the dorsal ACC

and bilateral caudate

Keding and

Herringa

(2016)

53 8–18 PTSD Task-based fMRI

(facial emotion

processing task)

Diagnosis Group difference Connectivity analyses revealed paradoxical coupling in prefrontal–amygdala circuits,

including dACC–dorsomedial (dm)PFC, amygdala–dmPFC, and amygdala–ventrolateral

(vl)PFC. PTSD youth showed reduced connectivity in response to angry faces, but

increased connectivity in response to happy faces, the reverse of healthy youth

(Continued)
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TABLE 1 | Continued

References # of

subjects

Subject age

in Years (±std.

dev)

Disorder/Trait MRI method(s) Diagnosis/

Future risk/

Predicting

treatment

response/

Treatment

effects

Group

difference vs.

Single subject

Main MRI findings

Kim et al.

(2016)

42 13–18 Depression Resting state fMRI Diagnosis Group difference Compared to healthy controls, depressed adolescents with disruptive behaviors

showed lower rsFC from the amygdala to the orbitofrontal cortex and parahippocampal

gyrus, as well as higher PCC rsFC in a cluster that included the left precentral gyrus, left

insula, and left parietal lobe. Among depressed adolescents with disruptive behaviors,

depression scores were negatively correlated with rsFC from the amygdala to the right

orbitofrontal cortex, while disruptive behavior scores were positively correlated with

rsFC from the PCC to the left insular cortex

Klimes-

Dougan et al.

(2018)

11 12–19 Depression Resting state fMRI Predicting

treatment

response

Group difference This study assessed improvement in depression symptoms after 8 weeks of SSRI

treatment. Higher levels of pre-treatment amygdala rsFC with the right central parietal

opercular cortex and Heschl’s gyrus predicted better treatment response. Higher levels

of pre-treatment amygdala rsFC with the right precentral gyrus and with left SMA

predicted a worse treatment response

Kujawa et al.

(2016)

118 7–25 Anxiety Task-based fMRI

(facial emotion

processing task)

Diagnosis Group difference Anxiety interacted with age to predict amygdala-ACC connectivity across emotional

faces. Age was negatively correlated with connectivity among healthy controls, but was

positively correlated among anxious subjects. Group effects were observed on

amygdala connectivity with mid-cingulate and middle frontal gyri. Effects of anxiety and

age on amygdala activation were not significant

LeWinn et al.

(2018)

75 13–17 Depression Task-based fMRI

(cognitive

reappraisal task)

Diagnosis Group difference Among adolescents with depression, reduced connectivity was found between the left

dorsomedial PFC and the anterior insula/inferior frontal gyri bilaterally, and between the

left dorsolateral PFC and left anterior insula/inferior frontal gyri

LeWinn et al.

(2014)

94 13–17 Depression DTI Diagnosis Group difference Compared to healthy controls, adolescents with depression showed significantly lower

FA and higher radial diffusivity in the bilateral uncinate fasciculus. No significant

differences were observed in the cingulum. Tract-based spatial statistics showed lower

FA values in the white matter associated with the limbic-cortical-striatal-thalamic circuit,

corpus callosum, and anterior and superior corona radiata

Li et al. (2019) 65 12–18 Schizophrenia Functional MRI Diagnosis Group difference Compared to healthy controls, adolescent-onset schizophrenia (AOS) patients showed

significantly decreased global efficiency of the brain functional network and reduced

nodal efficiency and strength in the bilateral posterior parahippocampus, bilateral

precuneus, and left hippocampus. In the left hippocampus of healthy controls, there

were significant negative associations between nodal efficiency and age as well as

between nodal strength and age, both of which were reversed in AOS patients.

Reduced efficiency identified in the right posterior parahippocampus showed a negative

correlation with illness duration within AOS patients

Manelis et al.

(2015)

81 7–17 Non-clinical:

familial risk for

bipolar disorder

Task-based fMRI

(facial emotion

processing task)

Future risk Group difference Offspring of bipolar parents showed significantly more negative right amygdala-ACC fc

in response to emotional faces vs. shapes, but significantly more positive right

amygdala-left ventrolateral PFC fc in response to happy faces, in comparison to healthy

controls and to offspring of parents with other psychopathology

Marusak et al.

(2018)

42 6–17 Non-clinical:

mindfulness

(relating to

anxiety)

Resting state fMRI Future risk Group difference Trait mindfulness in adolescents relates to dynamic but not static rsFC. More mindful

youth transitioned more between brain states over the course of the scan, spent overall

less time in a certain connectivity state, and showed a state-specific reduction in

connectivity between the SN and CEN. The number of state transitions mediated the

link between higher mindfulness and lower anxiety

(Continued)
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TABLE 1 | Continued

References # of

subjects

Subject age

in Years (±std.

dev)

Disorder/Trait MRI method(s) Diagnosis/

Future risk/

Predicting

treatment

response/

Treatment

effects

Group

difference vs.

Single subject

Main MRI findings

Marusak et al.

(2017)

86 7–17 Non-clinical:

early exposure

to violence

and/or abuse

Resting state fMRI Future risk Group difference Trauma-exposed youth showed lower functional connectivity between the ventral

tegmental area (VTA) and the hippocampus, compared to unexposed youth. No group

differences in substantia nigra connectivity were observed. Increased anxiety symptoms

were associated with reduced substantia nigra-nucleus accumbens connectivity

Morgan et al.

(2016)

166 20 Depression Task-based fMRI

(monetary reward

paradigm)

Diagnosis Group difference Compared to boys with no psychiatric history, boys with a history of depression showed

heightened positive connectivity between the nucleus accumbens and the medial PFC

when winning rewards relative to losing rewards. This altered fronto-striatal connectivity

pattern was associated with a greater number of lifetime depressive episodes

O’Halloran

et al. (2018)

818 14.55 ± 0.45

(normative)

14 ± 0.38 (ADHD)

14 ± 0.41 (C)

ADHD Task-based fMRI

(Stop Signal Task

(SST))

Diagnosis Group difference In the normative dataset, good sustained attention was characterized by stronger

negative fc between cerebellum and motor networks, while stronger positive fc within

the motor network was a signature of poorer sustained attention. In separate samples,

relative to controls, adolescents with ADHD symptoms had significantly higher

intra-individual response variability (IRV) and stronger positive connectivity within low

sustained attention networks associated with high IRV, as well as stronger positive

connectivity within good sustained attention networks associated with low IRV. There

were no differences between the groups for anti-correlated connections in networks

associated with either high or low IRV

Ordaz et al.

(2018)

40 14–17 Depression

(suicidal

ideation)

Resting state fMRI Future risk Group difference Coherence of the lateral CEN, anterior DMN, and SN were significantly associated with

lifetime severity of suicidal ideation. Only lateral CEN coherence was a significant

predictor of lifetime suicidal ideation severity, was associated with current suicidal

ideation, and was associated with a previously initiated suicide attempt

Osuch et al.

(2014)

28 16–24 Non-clinical:

repetitive

non-suicidal

self-injury

Exposure-based

fMRI (painfully cold

and comparison

cool stimuli)

Future risk Group difference Reduced fc between the right orbitofrontal cortex and ACC was found in non-suicidal

self-injury (NSSI) adolescents

Pan et al.

(2017)

637 6–12 Depression Resting state fMRI Future risk Group difference Increased left ventral striatum node strength predicted increased risk for future

depressive disorder. Among 11 reward network nodes examined, only the left ventral

striatum significantly predicted depression. Striatal node strength did not predict

anxiety, ADHD, or substance use

Pannekoek

et al. (2014)

52 15.4 ± 1.5 (D)

14.7 ± 1.5 (C)

Depression Resting state fMRI Diagnosis Group difference Compared to healthy controls, adolescents with depression showed increased rsFC of

the left amygdala with right parietal cortical areas, and decreased right amygdala rsFC

with left frontal cortical areas and with right occipito-parietal areas. In depressed

adolescents, the bilateral dorsal ACC showed decreased rsFC with the right middle

frontal gyrus, frontal pole, and inferior frontal gyrus. No abnormalities in DMN rsFC were

found, and differences in rsFC did not correlate with clinical measures

Paquola et al.

(2017)

64 14–26 Non-clinical:

childhood

abuse,

adulthood

stress

Resting state fMRI Future risk Group difference Worse psychiatric symptoms were significantly associated with higher levels of lifetime

stress. Subjects with mismatched childhood and recent stress levels had reduced

ACC-ventrolateral PFC rsFC, and greater ACC-hippocampus rsFC, compared to

subjects with matched childhood and recent stress levels

(Continued)
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TABLE 1 | Continued

References # of

subjects

Subject age

in Years (±std.

dev)

Disorder/Trait MRI method(s) Diagnosis/

Future risk/

Predicting

treatment

response/

Treatment

effects

Group

difference vs.

Single subject

Main MRI findings

Park et al.

(2016)

52 <10 (child)

10–19 (teen)

ADHD Resting state fMRI Diagnosis Group difference In comparing brain connectivity patterns between child and adolescent ADHD patients,

the DMN and frontoparietal networks showed significant group-wise connectivity

pattern differences between child and adolescent ADHD patients

Patriat et al.

(2016)

59 14.6 ± 2.6 (P)

14.0 ± 2.3 (C)

PTSD Resting state fMRI Diagnosis Group difference Compared to healthy controls, PTSD youth showed increased connectivity within the

DMN (including increased PCC-inferior parietal gyrus connectivity) and age-related

increases in PCC-ventromedial PFC connectivity. PTSD youth also showed greater

anti-correlation between the PCC and multiple nodes within SN and attention control

networks of the task-positive network. Among PTSD youth, DMN and task-positive

network connectivity strength were positively and negatively associated, respectively,

with re-experiencing symptoms of PTSD

Pitskel et al.

(2014)

31 9–17 Autism Task-based fMRI

(cognitive

reappraisal and

emotional

responses to

disgusting images)

Diagnosis Group difference Compared to ASD youth, controls showed increased fc between the amygdala and

ventrolateral PFC, as well as decreased functional connectivity between the amygdala

and OFC, when down-regulating disgust

Platt et al.

(2015)

30 15–17 Depression Task-based fMRI

(reappraisal

paradigm)

Diagnosis Group difference During fMRI, subjects attended to and implemented reappraisal techniques in response

to rejection. Reappraisal reduced negative mood and belief in negative thoughts in both

depressed adolescents and healthy controls; however, during reappraisal trials

depressed adolescents showed greater connectivity between the right frontal pole and

numerous subcortical and cortical regions

Price et al.

(2016)

78 9–14 Anxiety Task-based fMRI

(dot-probe task)

Diagnosis Group difference Among clinically anxious adolescents completing a dot-probe ask to assess vigilance to

threat, vigilance toward threat was positively associated with self-reported distraction

and suppression. Fc between a right amygdala seed region and dorsomedial and right

dorsolateral PFC regions was inversely related to self-reported suppression and

distraction, and dorsolateral PFC-amygdalar connectivity mediated the relationship

between attentional vigilance and real-world distraction

Price et al.

(2014)

121 9–13 Anxiety Task-based fMRI

(dot-probe task)

Diagnosis Group difference Among adolescents with anxiety, reduced fc between the rostrodorsal ACC and left

parahippocampus/hippocampus was associated with greater anxiety

Quinlan et al.

(2017)

1288 13–15 Non-clinical:

symptoms of

hyperactivity,

inattention,

and/or conduct

problems

(relating to

ADHD)

Task-based fMRI

(viewing of

dynamic angry and

neutral facial

expressions)

Diagnosis Group difference Amygdala-precuneus connectivity was associated with hyperactivity/inattention

symptoms

(Continued)
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TABLE 1 | Continued

References # of

subjects

Subject age

in Years (±std.

dev)

Disorder/Trait MRI method(s) Diagnosis/

Future risk/

Predicting

treatment

response/

Treatment

effects

Group

difference vs.

Single subject

Main MRI findings

Rosso et al.

(2014)

36 10–19 OCD DTI Diagnosis Group difference Compared to healthy controls, patients with OCD had significantly lower FA in 7 white

matter clusters, with over 80% of significant voxels in the bilateral frontal cortex and

corpus callosum. No regions were found of significantly higher FA in patients relative to

controls. OCD patients also had significantly higher radial diffusivity in the right frontal

cortex and right body of the corpus callosum. Among patients, earlier age at onset of

OCD correlated significantly with lower FA in the right thalamus and with higher radial

diffusivity in the right corpus callosum. FA and radial diffusivity were not significantly

associated with symptom severity

Rzepa and

McCabe

(2016)

35 13–18 Non-clinical:

high risk for

depression

Resting state fMRI Future risk Group difference Compared to adolescents at low risk for depression, adolescents at high risk were

found to have decreased rsFC between the amygdala and the pregenual ACC,

hippocampus, and precuneus; between the pregenual ACC and the putamen; and

between the dorsal medial PFC and the precuneus. High risk adolescents were also

found to have increased rsFC between the pregenual ACC and the PFC, and between

the amygdala and the temporal pole

Sacchet et al.

(2016)

111 13–18 Depression Resting state fMRI Diagnosis Group difference Compared to healthy controls, depressed adolescents showed hypoconnectivity

between large-scale brain networks. Depressed adolescents showed significantly

reduced connectivity between a specific set of resting-state networks, including

components of the attention network, CEN, SN, and DMN. Among depressed

adolescents, longer duration of depression was significantly correlated with reduced

connectivity in this set of network interactions, specifically with reduced connectivity

between components of the dorsal attention network, and the dorsal attention network

was also characterized by reduced intra-network connectivity

Sadeghi et al.

(2017)

60 14–42 (A)

10–39 (C)

Autism Resting state fMRI Diagnosis Single subject

Group difference

In this study, screening for ASD was developed based on characteristics of functional

networks. Local and global parameters of the brain functional network were first

calculated using graph theory, and network parameters of ASD subjects were

statistically compared to those of healthy controls. Significantly altered parameters were

used as input features of the screening system, and performance of the system was

verified using multiple classification techniques. The support vector machine showed an

accuracy of 92%

Scheuer et al.

(2017)

37 12–16 Non-clinical:

escalating

depression

symptom

expression

Resting state fMRI Future risk Group difference Compared to controls, adolescents with ≥ 10 point increase in depression scale

t-scores (as assessed by the Childhood Depression Inventory) over time (range: 6–54

months) had decreased rsFC between the right amygdala and left inferior frontal

supramarginal gyrus and right mid-cingulate cortex, and increased rsFC between the

left amygdala and cerebellum

Singh et al.

(2014)

49 8–17 Non-clinical:

high risk for

bipolar disorder

Resting state fMRI Future risk Group difference Compared to low-risk youth (no personal or family psychopathology), high-risk youth

(offspring of a parent with bipolar disorder) showed increased connectivity in the

ventrolateral PFC subregion of the left CEN, which includes frontoparietal regions critical

for emotion regulation. Compared to low-risk youth, high-risk youth also showed

decreased connectivities between the left amygdala and pregenual cingulate, between

the subgenual cingulate and supplementary motor cortex, and between the left

ventrolateral PFC and left caudate. High-risk youth showed stronger connections in the

ventrolateral PFC with age and higher functioning, and weaker connections between

the left ventrolateral PFC and caudate with more family chaos

(Continued)
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TABLE 1 | Continued

References # of

subjects

Subject age

in Years (±std.

dev)

Disorder/Trait MRI method(s) Diagnosis/

Future risk/

Predicting

treatment

response/

Treatment

effects

Group

difference vs.

Single subject

Main MRI findings

Stoddard et al.

(2016)

117 10–50 Bipolar disorder Resting state fMRI Diagnosis Group difference Compared to healthy controls, bipolar adolescents and adults showed areas of

dysconnectivity across the brain, comprising two networks—temporal and parietal

areas involved in late stages of visual processing, and corticostrial areas involved in

attention, cognitive control, and response generation. No significant age-group by

diagnosis interactions were found

Straub et al.

(2017)

38 13–18 Depression Resting state fMRI Diagnosis

Treatment effects

Predicting

treatment response

Group difference In comparing healthy controls and adolescents with depression prior to group CBT,

patients with depression showed stronger amygdala and sgACC connectivity with

regions of the DMN, whereas healthy controls showed stronger seed-based

connectivity with affective regions and regions processing cognition and salient stimuli.

Relative to pre-CBT in depressed adolescents, post-CBT functional connectivity

significantly increased between the amygdala and the left dorsolateral PFC, bilateral

dorsal ACC, and the left anterior insula. Changes in connectivity correlated with

significant pre-to-post CBT symptom improvement, and pre-treatment amygdala

connectivity predicted treatment response in depressed adolescents

Traynor et al.

(2018)

62 10–21 Autism Resting state fMRI Diagnosis Group difference Compared to controls, ASD adolescents showed negative connectivity of the PCC with

the angular gyrus, positive connectivity of the PCC with the superior temporal gyrus,

over-connectivity of the hippocampus with the associative visual cortex,

over-connectivity of the thalamus with multiple sensory processing areas of the cortex,

over-connectivity of basal ganglia structures (putamen and globus pallidus) with

somatosensory and motor cortices and with the fusiform gyrus, and under-connectivity

of the left hippocampus with the right peri-rhinal cortex. Within the ASD group, a

significant positive association was found between total RBS-R (Repetitive Behavior

Score—Revised) score and connectivity between the left primary visual cortex and right

inferior frontal gyrus, pars orbitalis

Tymofiyeva

et al. (2019)

30 13.2–17.8 Depression DTI and

tractography

Predicting

treatment

response

Single subject Machine learning classification applied to DTI-based structural connectome resulted in

an 83% accuracy of predicting depressive symptom reduction with CBT

Tymofiyeva

et al. (2017)

98 13–17 Depression DTI and

tractography

Diagnosis Group difference Compared to healthy controls, depressed subjects showed significantly lower

FA-weighted node strength of the right caudate. FA-weighted node strength was

correlated positively with age across both groups. Network-Based Statistic analysis

showed a cluster of lower FA-based connectivity in depressed subjects centered on the

right caudate, including connections to the frontal gyri, insula, and anterior cingulate.

Within this cluster, the strongest difference between controls and depressed subjects

was the connection between the right caudate and middle frontal gyrus, which showed

a significant diagnosis by stress interaction and a negative correlation with total stress in

depressed subjects

Velasquez

et al. (2017)

108 8–19 Autism Task-based fMRI

(face processing

task)

Diagnosis Group difference During face processing tasks, ASD youth with low-expressing 5-HTTLPR (serotonin

transporter-linked polymorphic region) genotypes showed significantly greater

amygdala-sgACC connectivity compared to healthy controls and to ASD youth with

higher-expressing genotypes. ASD youth with higher-expressing genotypes also

showed a negative relationship between amygdala-sgACC connectivity and social

dysfunction

(Continued)
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TABLE 1 | Continued

References # of

subjects

Subject age

in Years (±std.

dev)

Disorder/Trait MRI method(s) Diagnosis/

Future risk/

Predicting

treatment

response/

Treatment

effects

Group

difference vs.

Single subject

Main MRI findings

Wang et al.

(2018)

136 21.5 ± 4.2

(control)

21.7 ± 3.6

(ARMS-NT)

19.7 ±

3.1 (ARMS-T)

Psychosis Resting state fMRI Future risk Group difference Subjects with At Risk Mental State (ARMS) that transitioned to psychosis (ARMS-T)

during follow-up showed significant reductions in functional connectivity at baseline,

primarily involving the limbic system, in comparison to healthy controls and to ARMS

subjects that did not transition (ARMS-NT). ARMS-T subjects also exhibited reduced

global efficiency at baseline in comparison to ARMS-NT subjects. In the salience

network, the mean nodal efficiency computed over regions that were reduced in the

ARMS-T group was associated with baseline positive and negative syndrome scale

(PANSS) general scores. At the whole brain level, the ARMS-T group network

community structure displayed a distinct pattern from that of the ARMS-NT group and

of healthy controls

Wang et al.

(2018a)

79 13–18 Schizophrenia Resting state fMRI Diagnosis Group difference Compared to healthy controls, patients with adolescent-onset schizophrenia had

increased long-range and short-range positive fc in the right middle frontal gyrus and

right superior medial PFC within the anterior DMN, decreased long-range and

short-range positive fc in several regions of the posterior DMN, and decreased

long-range positive functional connectivity within the SN. Decreased long-range positive

fc in the left superior temporal gyrus was positively correlated with cognitive impairment

Wang et al.

(2018b)

79 13–18 Schizophrenia Resting state fMRI Diagnosis Single subject

Group difference

Patients with adolescent-onset schizophrenia showed significantly increased regional

homogeneity (local fc) values in the bilateral superior medial PFC and significantly

decreased values in the left superior temporal gyrus, right precentral lobule, right inferior

parietal lobule (IPL), and left paracentral lobule when compared to controls. A

combination of the regional homogeneity values in the bilateral superior medial PFC, left

superior temporal gyrus, and right IPL was used to discriminate patients from healthy

controls

Wang et al.

(2017)

79 13–18 Schizophrenia Resting state fMRI Diagnosis Group difference Compared to healthy controls, patients with adolescent-onset schizophrenia showed

significantly increased functional connectivity strength in the left cerebellum VI and right

inferior frontal gyrus/insula. Functional connectivity strength values in the right inferior

frontal gyrus/insula positively correlated with general psychopathology scores of

positive and negative syndrome scale

Wolf and

Herringa

(2016)

48 8–18 PTSD Task-based fMRI

(facial emotion

processing task)

Diagnosis Group difference Among youth with PTSD, dorsomedial PFC activation and amygdala-medial PFC

connectivity were inversely related to PTSD severity

Yao et al.

(2017)

52 16.85 ± 0.60 (A)

16.56 ± 0.96

(control)

Anxiety Resting state fMRI Diagnosis Single subject

Group difference

This study used temporal features derived from dynamic fc to identify generalized

anxiety disorder in adolescents. Instantaneous synchronization of pairwise signals was

estimated as dynamic fc, and the Hurst exponent (regularity of a time series) and

variance (variable degree of a time series) were calculated as temporal features of

dynamic fc. By leave-one-out cross-validation (LOOCV), an accuracy of 88.46% was

achieved when Hurst exponent and variance of dynamic fc were combined as features.

Disease-related regions were also identified, including regions belonging to the DMN

and cerebellar network

(Continued)
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functional connectivities as well as network properties that
differentiate symptomatic subjects from controls. Similar to the
model proposed by Williams (2017), connectivity aberrations
associated with the disorders can be broadly classified as
aberrations in six large-scale brain networks: default mode
network (DMN), salience network (SN), threat network, reward
network, attention network, and cognitive control network
(CCN). Notably, this was observed not only for the mood
disorders as proposed by Williams but also for other disorders,
such as schizophrenia and autism (specifically associated with
aberrations in DMN and SN) (Chen et al., 2017; Joshi et al., 2017;
Wang et al., 2018a).

LIMITATIONS OF THE INCLUDED STUDIES

Small Sample Sizes
The evidence from the reviewed literature requires further
investigation of the predictive and diagnostic potential of MRI
connectivity measurements as the number of studies and sample
sizes are very small. For example, seven of the reviewed studies
included under 30 subjects per group. While small studies may
be instrumental in finding new candidate biomarkers, replication
of the results is the key. Additional well-planned imaging studies
with large sample sizes are required. Yet, the field is developing
rapidly. Large-scale collaborative efforts by consortia such as
ABCD (Casey et al., 2018), ENIGMA (Thompson et al., 2014,
2017), and IMAGEN (O’Halloran et al., 2018) will help identify
robust brain connectivity signatures of psychopathologies in
adolescents. Among the included study, one study (Kaczkurkin
et al., 2018) reports functional connectivity analyses using
resting-state functional MRI in 833 participants who received
both arterial spin labeling (ASL) and resting-state imaging
as part of the Philadelphia Neurodevelopmental Cohort. The
results revealed that overall psychopathology was associated
with decreased connectivity between the dorsal ACC and
bilateral caudate.

Group Differences vs. Single-Subject
Prediction
Another limitation of the psychiatric imaging literature in
general is a profusion of statistically significant, but minimally
differentiating biological findings (Kapur et al., 2012). In other
words, thousands of studies are published on different aspects of
brain disorders to show aberrations of some features (structural
or functional) in a patient group usually in comparison with
a healthy cohort. While these studies are valuable in terms
of finding relevant disease biomarkers, they are not sufficient
for direct clinical diagnostic/predictive adoption (Arbabshirani
et al., 2017). The main reason is that many of these findings
are statistically significant at the group level, but the individual
discrimination ability of the proposed biomarkers is not typically
evaluated. Group analysis aims to estimate the probability of
a certain biomarker given the group (e.g., healthy controls
or a patient group): P[brain biomarker|group], and it is
typically performed using general linear modeling (e.g., t-test or
ANOVA). Single-subject prediction, on the other hand, predicts
belonging to the group given the brain biomarker: P[group|brain
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FIGURE 1 | Schematic synthesis of the findings of the reviewed literature: a map of the brain circuitry implicated in eight psychiatric disorders (MDD, autism, anxiety,

bipolar disorder, schizophrenia, ADHD, PTSD, OCD) or their relevant non-clinical symptoms in youth. Both increased and decreased structural and functional

connectivities differentiate symptomatic subjects from controls. The cerebellum is not displayed. No differentiation between hemispheres is displayed. ADHD,

attention-deficit/hyperactivity disorder; OCD, obsessive-compulsive disorder; PTSD, post-traumatic stress disorder; ACC, anterior cingulate cortex; OFC, orbitofrontal

cortex; PCC, posterior cingulate cortex.

biomarker], and it is typically performed using generalized
linear model such as logistic regression or artificial intelligence
(AI) approaches such as machine learning. As mentioned
previously, only group analysis is commonly performed in
neuroimaging studies. In such cases, effect size can serve as an
important indicator of the individual discrimination ability of
the biomarker, but it is often not reported—as it is with the
majority of the studies reviewed in Table 1. For continuous data
analysis, the correlation coefficient points at high or rather low
discrimination ability, as in the example of the large study by
Kaczkurkin and colleagues discussed above (Kaczkurkin et al.,
2018), where Pearson r =−0.18 and r =−0.15. The effect size is
low if the value of r varies around 0.1, medium if r varies around
0.3, and large if r varies more than 0.5 (Rosenthal and Rosnow,
1984; Cohen, 1988). Since classification provides information
for each individual subject, it is considered a much harder task
than reporting group differences. Nevertheless, recent extensive
evidence shows the great potential of neuroimaging data for

single subject prediction of various brain disorders in adults
(Arbabshirani et al., 2017). Several of the studies in adolescents
also performed single-subject prediction analysis. For example,
functional brain connectivity developmental patterns were found
to be a reliable biomarker of severe attention impairment in
youth, with a peak receiver operating characteristic curve of
79.3%, measured by area under the curve (Kessler et al., 2016).
In another example, machine learning was applied to structural
connectivity data to predict symptom improvement in depressed
adolescents in response to cognitive behavioral therapy (CBT),
resulting in an accuracy of 83% (Tymofiyeva et al., 2019).

Use of the DSM Classification as Ground
Truth
One fundamental challenge is that the reviewed clinical studies
used the DSM-based diagnosis as the ground truth. The reliance
on the categorical system of diagnosis has clear utility; however,
its validity has been questioned and dimensional views of
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illness that incorporate continua of neurobiology and observable
behavior have been proposed—i.e., NIMH RDoC (Insel et al.,
2010). If one takes seriously the possibility of 1 day developing
a neurobiologically-based diagnostic system that would replace
the symptom-based DSM nosology, then one biases the results
by using DSM diagnosis as the ground truth in research studies.
Thus, the advancement of psychiatry appears to be hindered
by circuitous reasoning (i.e., a “Catch-22”), and this circularity
impedes the development of a clinically viable alternative
system (Kapur et al., 2012). Importantly, a recent paper by
Drysdale et al. reported promising results showing that adult
depression can be subdivided into biological types (Drysdale
et al., 2017). Specifically, functional MRI scans of more than
1,100 patients with clinical depression and healthy individuals
enabled researchers to demonstrate that patients with depression
can be divided into four subtypes based on distinct patterns of
functional connectivity in limbic and fronto-striatal networks
and different clinical symptoms (Drysdale et al., 2017). Notably,
these four subtypes of depression were also associated with
differences in clinical treatment outcome. While the study by
Drysdale and colleagues demonstrated subtypes within one DSM
category (adult MDD; Drysdale et al., 2017) neurobiologically-
based diagnostic categories may easily span outside of the
established DSM categories. Unsupervised clustering analyses
in large datasets of community samples may help solve this
problem and establish a classification system of connectome-
based psychiatric disorders. In a study by Van Dam et al.,
data-driven approaches for identifying homogenous subgroups,
spanning typical function to dysfunction, not only yielded
clinically meaningful groups, but also captured behavioral and
neurobiological variation among healthy individuals (Van Dam
et al., 2017).

VISION: THE ROLE OF NEUROIMAGING IN
PEDIATRICS

Here, we would like to present a vision of the role that
neuroimaging may play in pediatrics and primary care in the
future. We would like to start by presenting a case example of
a clinical presentation of an adolescent patient to a primary care
outpatient clinic.

A concerned parent brings to the primary care clinic a 15-year-
old adolescent male with a recent history of increased mood
lability, irritability and changes in his personality that has led to
significant difficulties with the patient’s relationship with his parents
and siblings at home and the patient’s teachers and classmates at
school. The parent states that the patient’s personal hygiene has
declined at home and that he has started to withdraw from his
relationships with his family and friends. The parent also reports
that the patient at times loses his temper and has been oppositional
with his family, teachers and friends. During the interview by
the primary care provider, the adolescent patient complains of
problems with feeling easily irritated by others, difficulties with
sleep and concentration, and headaches. There are times that the
patient also reports feeling “on top of the world” and that he can
accomplish many great things. The parent informs the primary care
provider that there is a history of mood disorders in the family

including a parent with depression and a relative with possible
bipolar disorder. The parent also states that there is a relative who
has had significant problems with truancy and breaking rules whose
behavioral problems started during adolescence. Finally, the parent
reports that a great grandparent was hospitalized with a diagnosis
of schizophrenia. The parent is concerned about the patient and has
brought him to the primary care clinic for help with the son that the
parent loves and cares for very deeply.

At present, psychiatric diagnoses are based on symptoms and
classified as per the DSM criteria. One significant complicating
factor is that most of the DSM diagnoses have been developed
for adults, but these same DSM criteria are being applied to
make diagnoses in children and adolescents. Based on the
presenting symptoms and DSM criteria, the adolescent patient’s
differential diagnosis is broad. The patient’s presenting symptoms
of mood lability, irritability, sleep, and concentration problems,
and relationship difficulties with family, friends and teachers
could be due to a diagnosis of depression or bipolar disorder.
The patient’s loss of temper and oppositional behavior could
be due to a mood disorder such as depression or oppositional
defiant disorder that may be the beginning of a possible conduct
disorder. The patient’s report of feeling at times “on top of the
world” and that he can accomplish many great things could
be reflective of normative adolescent development or due to
bipolar disorder. The patient’s decrease in personal hygiene
and withdrawal from his family and friends may be due to a
mood disorder such as depression or the beginning of another
possible psychiatric disorder such as schizoaffective disorder or
schizophrenia. Finally, the patient’s changes in personality such
as his mood lability and complaints of headaches may be due to
a mood disorder such as depression or a brain mass such as a
tumor. Each of these possible diagnoses has a different clinical
prognosis and treatment. Proper diagnosis is essential to ensure
that the optimal clinical treatment is selected and to prevent the
further worsening of the patient’s condition due to either the
incorrect diagnosis and treatment or the potential side effects
of the use of the inappropriate treatment due to the incorrect
diagnosis. For example, if the patient’s symptoms lead the
clinician to incorrectly make a diagnosis of bipolar disorder based
on DSM criteria, then the patient will often be started on a mood
stabilizer (e.g., lithium) or atypical antipsychoticmedication (e.g.,
olanzapine) that have several potentially negative side effects
including significant weight gain and increased risk for the
development of type 2 diabetes. In addition to the potential
negative consequences of an incorrect diagnosis to the patient,
an incorrect diagnosis can also lead to great costs to the
patient, patient’s family, and society. For example, missing the
diagnosis of depression can lead to significant present and future
consequences since adolescent depression confers a strong risk
for adult major depressive disorder, increased cardiovascular
risk, medical illnesses, disability, premature death, academic and
work problems, relationship problems with family and friends,
substance abuse, and suicide (Rao et al., 1993, 1995, 1999;
Lewinsohn et al., 1998; Pine et al., 1998; Armstrong and Costello,
2002; Lehrer et al., 2006; Copeland et al., 2007; Crum et al., 2008;
Audrain-McGovern et al., 2009; Rao and Chen, 2009; Maughan
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FIGURE 2 | A schematic of our vision for a routine neuropsychological and neuropsychiatric imaging (NPPI) protocol for adolescent patients. The standardized MRI

protocol could consist, for example, of a 30min brain scan at a 3T MRI scanner that would include a localizer scan, a T1-weighted sequence, a 55-direction

diffusion-weighted sequence and an eyes-closed resting-state fMRI sequence. The MRI scan will be followed by a quality control and safety read of the scan by a

radiologist. Next, connectivity matrices will be derived, and structural and functional brain network metrics will be calculated. Platforms like BRIDGE (https://bridge.

ucsf.edu) can be used to integrate the obtained data and provide the output to the clinician (pediatrician) by means of organized dashboards.
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et al., 2013; Liu et al., 2017). Depression is a highly prevalent,
devastating, costly and frequently re-occurring chronic illness
that the World Health Organization (WHO) ranks as the #1
leading cause of disability worldwide, affecting over 300 million
people (WHO, 2017) at an estimated cost of over $210.5 billion
per year in the U.S. alone (Greenberg et al., 2015).

Our vision for preventing many of the drastic consequences
described in the case example is the introduction of a routine
neuropsychological and neuropsychiatric imaging (NPPI) protocol
for adolescent patients (Figure 2). The rationale for the presented
vision is rooted in the research successes described above, with
the expectation that the outlined limitations can be overcome
with dedicated work of researchers around the world. The
standardized protocol could consist of the following:

- A 30min brain scan at a 3T MRI scanner that would include
a localizer scan, a T1-weighted sequence, a 55-direction
diffusion-weighted sequence and an eyes-closed resting-state
fMRI sequence.

- A quality control and safety read of the scan by a radiologist.
- Network construction and a computer-based calculation of the
structural and functional brain network metrics (e.g., using the
Brain Connectivity Toolbox brain-connectivity-toolbox.net)
(Rubinov and Sporns, 2010) that can be compared to the
normative data by the pediatrician (e.g., using a platform like
BRIDGE https://bridge.ucsf.edu).

The chosen MRI sequences are an example of an easily
standardizable set of sequences that in a short time could provide
structural and functional connectivity data of sufficient quality.
The choice of the 55-direction diffusion-weighted sequence is
based on its suitability for high angular resolution diffusion
imaging (HARDI) analyses that can help resolve crossing fibers
(Tuch et al., 2002). The resting-state fMRI sequence can
realistically be performed at any imaging center, and it can
potentially allow for derivation of task-based information (Tavor
et al., 2016).

The protocol can be offered to all adolescent patients without
MRI contraindications (e.g., cardiac pacemakers, braces, etc.) to
meet two goals:

a) To help generate the differential diagnosis for an individual
patient or assess risk.

b) To personalize treatment (predict treatment outcome) for an
individual patient.

For improved diagnostic/predictive accuracy, the scan can be
potentially conducted at two different times or even once per
year during the adolescent years: 14y.o., 15y.o., 16y.o., 17y.o.
(Kessler et al., 2016), especially since the age of onset of different
psychiatric disorders can vary. Normative modeling can provide
a way to map deviations from an expected pattern at the
individual level (Kessler et al., 2016; Marquand et al., 2019).
Whereas identifying MRI-based “biotypes” as an alternative
to DSM categories is one approach to make diagnosis using
NPPI in the future, another approach would be to measure
network aberration along several continuous NIMH RDoC
dimensions and creating profiles that would inform risks similar
to high blood pressure in cardiology, and inform clinical care by

suggesting the optimal treatment choice for an individual patient
(Williams, 2017).

While there are multiple steps necessary to implement this
vision, the common concern that is raised when considering
imaging is the cost of the MRI procedure, which we will address
in the following section.

COST-BENEFIT ANALYSIS: MDD AS AN
EXAMPLE

Here, we present a cost-benefit analysis of conducting routine
NPPI in adolescents using only a single DSM diagnosis, MDD,
as an example (Supplementary Figure 1).

Adolescent depression can be a significant economic burden
to patients, families, and society. A cost-of-illness study on
adolescent depression in the U.S. estimates direct costs of $1,120
and indirect costs of $310 per year, when accounting for the
effects of school absences and parental lost days at work (Domino
et al., 2009; Beecham, 2014). Furthermore, adolescents with
depression are likely to have higher healthcare costs in other
domains, due to more contacts with other healthcare providers
(Lynch and Clarke, 2006). These ramifications often continue
into adulthood as individuals who had depression in adolescence
continue to be associated with higher healthcare utilization and
increased work impairment in young adulthood (Keenan-Miller
et al., 2007). Costs of adult depression in the U.S. are over
$210.5 billion annually (Greenberg et al., 2015). This suggests
an economic argument for timely identification and treatment
of adolescent depression and for considering the costs of adult
depression when weighing costs of MR imaging against benefits.

We estimate the costs of a NPPI scan at $400 per patient. This
estimate is based on the University of California San Francisco
(UCSF) 3T MRI external recharge rates: $350/30min (https://
radiology.ucsf.edu/research/core-services/7T-3T-MB) + $50–75
for reading for incidental findings (estimate provided by Research
Radiology, San Francisco, USA). While scheduling short 30min
time slots at an MRI scanner may currently not be possible
everywhere, streamlined procedures and even cost-reducing
solutions such as dedicated head-only scanners (Foo et al., 2018)
can be leveraged to increase throughput in the future. In contrast
to a conventional MRI, the scan will not need to be read
diagnostically by a neuroradiologist; instead a neuroradiologist
will need to perform image quality control and a “safety read” for
incidental findings. The brain network metrics will be calculated
using a computer algorithm. In case of incidental findings,
such as an indication of a tumor, further examination and/or
treatment may be indicated. The effectiveness of the NPPI will
depend on the sensitivity and specificity of the biomarkers. An
accuracy of 80% (both sensitivity and specificity) is generally
considered to characterize a clinically useful biomarker (Savitz
et al., 2013). The adolescent brain connectivity papers reviewed
above where single-subject prediction analysis was performed
displayed biomarker accuracy in this range (80–83%) (Kessler
et al., 2016; Tymofiyeva et al., 2019). Importantly, several
single-subject prediction studies in adults that demonstrated
MRI’s potential to predict treatment response also studied for
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comparison the predictive value of demographic and clinical
variables—as these variables are more readily available and would
be a cheaper solution (Månsson et al., 2015; Thompson et al.,
2015; Drysdale et al., 2017). These studies found that these
demographic and clinical variables failed as predictors of clinical
improvement after treatment (Månsson et al., 2015; Thompson
et al., 2015; Drysdale et al., 2017).

Based on U.S. Census Bureau estimates, there were 4.1 million
14-year-olds in the U.S. in 2017 (US Census Bureau, 2017). If we
performed a routine NPPI scan on every 14-year-old in the U.S.
annually, we estimate a cost of $1.6 billion per year, based on an
estimated cost of $400 per MRI scan. The estimated cost of adult
MDD in the U.S. is over $210.5 billion annually (Greenberg et al.,
2015). This means that NPPI would only have to help prevent
(through early detection and personalized treatment) ∼0.8% of
adult MDD cases to completely cover its costs. Adolescence is the
optimal time to intervene because it is when MDD often begins,
and it increases the risk of adult depression by a factor of 2- to
3-fold (Pine et al., 1998).

In the calculation above we assumed that we would routinely
scan every 14-year-old. This is an extreme scenario, whereas a
more plausible scenario would be to scan only at-risk youth and
youth presenting with clinically significant problems. This more
targeted approach would reduce the estimated total cost of NPPI
that we presented above. Given the significant costs of teen MDD
to the patient, family and society, the cost of an MRI scan is well
worth the benefit in terms of decreased prolonged emotional pain
and suffering, lower risk of adult MDD and healthcare costs, and
improved health and productivity of the patient. As discussed
above, among many other problems, MDD elevates the risk for
cardiovascular disease in both adolescents (Goldstein et al., 2015)
and adults (Penninx, 2017), andMDD increases themedical costs
of treating and managing primary care illnesses such as diabetes
in adolescents (Stewart et al., 2005). Additionally, MRI scans
are routinely done for medical conditions (e.g., lower back pain
and knee injuries) that do not have the potentially devastating
consequences of MDD (e.g., suicide). Another example is routine
prenatal ultrasound imaging visits that are done with all, not
just at-risk, pregnant women. Thus, once valid and reliable MRI
biomarkers have been developed and tested for teen MDD, the
cost of an MRI scan should not be a justifiable impediment
since MRI scans are frequently performed for much less costly
and devastating medical conditions. Medical insurance groups or
Health Maintenance Organizations (HMOs) may consider this
approach as a means of reducing overall healthcare costs, since
early prevention could reduce the incidence of adultMDD, which
is very costly to both the patient and healthcare system. We also
wish to emphasize that our conservative estimate only focuses
on MDD; however, many other psychiatric conditions can be
potentially assessed using the same MRI scan.

THE ROADMAP

What is needed for this vision to be implemented? We briefly
present below a roadmap of the steps required for this vision to
be implemented.

a) A large normative database. As discussed above, the field
is moving toward collecting big data (that often include a
replication sample). The ABCD study has already started to
release MRI neuroimaging datasets for 10,000 youth who
will be followed longitudinally and scanned every 2-years
over a total duration of 10-years. As mentioned above, other
initiatives such as ENIGMA and IMAGEN can also provide
important big datasets.

b) A set of NPPI-derived metrics, their sensitivity/specificity,
and guidelines on how to combine them with symptom-
based information.

c) Consensus guidelines for when NPPI is indicated (expert
consensus panel).

d) Required qualifications and pipeline for NPPI + data
quality and safety read + metrics calculation. There is
currently a high heterogeneity of analysis pipelines used
by researchers to derive brain connectivity matrices, which
can lead to large discrepancies between the resulting
structural (Qi et al., 2015) and functional (Carp, 2012)
network metrics. In addition, choice of brain parcellation
and edge weights will also affect test-retest reliability
of the resulting metrics (Cammoun et al., 2012; Yuan
et al., 2019). Development of a standardized, objective, and
publicly available pipeline is a necessary step. Once the
connectivity matrices are derived, network metrics can be
calculated, e.g., using the Brain Connectivity Toolbox (brain-
connectivity-toolbox.net) (Rubinov and Sporns, 2010). The
Brain Connectivity Toolbox is a MATLAB toolbox for
complex-network analysis of structural and functional brain
connectivity datasets, which is widely used by brain-imaging
researchers and has been incorporated in many projects,
including the Human Connectome Project. Platforms like
BRIDGE (https://bridge.ucsf.edu) can be used to integrate
the obtained data and provide the output to the clinician by
means of organized dashboards. Required qualifications for
data quality assessment and safety reads need to be specified.

e) CPT code. The Current Procedural Terminology (CPT) code
set is a medical code set maintained by the American Medical
Association through the CPT Editorial Panel. This step is
required to enable insurance companies to pay for adolescent
NPPI (e.g., similar to ultrasound for neonates).

DISCUSSION

At present, utilization of neuroimaging biomarkers for clinical
practice is restricted to neurological conditions such as pre-
surgical evaluation of epilepsy, differential diagnosis of coma,
and brain-computer interfaces for locked-in patients (Arslan,
2018). For psychiatric conditions, this is yet to be established
for routine clinical applications. Because adolescence is an
especially vulnerable time for the development of many
important psychiatric disorders, this period presents an especially
important opportunity to clinically intervene. In this perspective
article, we assess the MRI-based brain connectivity literature
over the last 5-years that provides insights into development
of psychiatric disorders in adolescents. While the subject
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numbers are still small and the focus on group differences
as opposed to individual subject-based predictions prevails,
the reviewed literature demonstrates the potential of MRI
to diagnose psychiatric disorders, predict their development,
and predict response to clinical treatment. We believe that
the continuous progress in neuroimaging techniques together
with the ongoing well-coordinated large-scale neuroimaging
studies of adolescent brain development will help identify
robust biomarkers for personalized/stratified medicine (Kapur
et al., 2012) with a key focus on prevention. Inspired by
this significant potential, we offer a vision for the role that
neuroimaging may play in pediatrics and primary care in the
future: a routine NPPI protocol for adolescent patients that
could save significant costs to the patients, their families, and
society, and significantly reduce suffering that often results
from undiagnosed and misdiagnosed adolescent psychiatric
disorders. The proposed vision can also help offer preventative
measures to at-risk youth in a targeted manner—e.g., by
recommending the Training for Awareness, Resilience and
Action (TARA) (Henje Blom et al., 2014, 2017) to youth
at risk for developing depression. Insurance companies are
more likely to reimburse such preventative measures when
numerical cut-offs are used, as will be provided by our proposed
NPPI. The roadmap we provide in paper can help accomplish
this endeavor.
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