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A Hybrid Systems Approach to Trajectory Tracking Control
for Juggling Systems

Ricardo G. Sanfelice, Andrew R. Teel, and Rodolphe Sepelchr

Abstract— From a hybrid systems point of view, we provide the control algorithm and uses an extended time domain for
a modeling framework and a trajectory tracking control design  the system solutions (calleaybrid time domaily allow us
methodology for juggling systems. We present the main ideas 1, 5ccomplish trajectory tracking tasks as well. We propose

and concepts in a one degree-of-freedom juggler, which coisss .
of a ball bouncing on an actuated robot. We design a hybrid a hybrid control strategy for the one degree-of-freedom

control strategy that, with only information of the ball's state at juggler which, by relying only on measurements of the ball
impacts, controls the ball to track a reference rhythmic patern ~ state at impacts, tracks (well-posed) reference trajixstor

with arbitrary precision. We extend this hybrid control str ategy  with arbitrary precision. Additionally, the trajectoryattking
to the case of juggling multiple balls with different rhythmic ¢ ytr0| strategy is not limited to plants with a single juiggl
patterns. Simulation results for juggling of one and three lalls L i .
with a single actuated robot are presented. obje_ct, it also soIve_s the problem of stabilizing multipkdlb
to different rhythmic patterns.
l. INTRODUCTION To the best of our knowledge, there are no previous results
Mechanical systems with impacts are nonsmooth dynamiin the literature that solve the (multiple-object) trajmgt
cal systems with trajectories that have intervals of caiityn tracking problem for juggling systems. Additionally, the
(flow) and points of discontinuityjympg. Several frame- modeling and control design techniques we introduce in this
works for modeling these systems have been proposed piaper can be extended to more general mechanical systems
the literature, including Poincaré map modeling [3], [14]with impacts, including applications ranging from control
[15], [12], dynamical systems with unilateral constraifif  of walking and jumping robots to robotic manipulators and
[15], [2], and measure differential inclusions [7]. beyond.
Following the framework in [4] (see also [5], [10]), we
model mechanical systems with impacts hagrid dynam- Il. HYBRID MODELING OF JUGGLING SYSTEMS
ical systemswhere flows are given by a differential equa- )
tionfinclusion and jumps by a difference equation/inaasi A General model and solution concept

on specific subsets of the state space. In this paper, we focusye consider juggling systems witilant given by
our attention on a particular class of mechanical systems

with impacts:juggling systemsJuggling systems consist of 1 = f1(z1) , (1)
a plant, given by one or many objects, controlled at impacts )
by anactuated robof3], [6]. wherez; = [z], z{,]T € R™ is the state, ancctuated

The problem of stabilization of juggling systems to rhythJobot given by
mic patterns has received great attention from the engimger . 9
and neuroscience community because of its relevance in &2 = fa(wa,u) @
robotics and nature. A widely used benchmark jugglingvh o
: . erexy =
system for this type of task is thene degree-of-freedom

Jugigletr, (;/vh|chdcon5|stsf ?f adball boburj[cmgtvslmcallcly ON ANgtatesr; and =, correspond to the position state, while the
acfuated one degree-of-ireedom robot. iWotable re ermescomponentsc12 andz,y correspond to the velocity state of

this topic include the feedback c_ontr_ol strategies in [15]the plant and actuated robot, respectively.tet [z, )]
[12], [9] a_lr_ld the open-loop_strategles in [11], [8] for pha_seand flz,u) = [fi(z1)T fz(ff; u) )T Y
lock stabilization to rhythmic patterns. Our novel modglin The impact law between the plant and the actuated robot
framework for juggling systems, which permits the combi-

nation of both continuous-time and discrete-time featimes > 9'V¢"" by the difference equations

[, T95] € R™ is the state and: € R™
is the control input. The componenis; and xz,; of the
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We interpret the juggling system above as the hybridvherery := [x01 z22]" € R?, x5, is the heightao, is the

system velocity of the actuated robot, ande R is the control input.
i = f(z,u) h(z) >0, ®) The mass of the actuated robqt is denoted@ _
Impacts are modeled by an impact rule with conservation
=g(z) h(z) = 0 and(Vh(x), f(z,u)) <0,(6)  of momentum [1], [13]:

where f and the state constraint in (5) define tth@w map
and flow sef respectively, and; and the state constraints
in (6) define thejump mapand jump set respectively. We
follow the framework for hybrid systems in [4], [5] where where e € (0,1) is the
solutions are given ohybrid time domainsy hybrid arcs

—6(1712 - 5022) )

mixi2 + Mmaka2 ,

+ +
Lyg = Tog =

+ +
M1Tiy + M2Tyy =

restitution coefficient. Leh =
. Then, the update law at impacts velocities is

A set E is a hybrid time domainif for all (T,J) € E,

N ([0,T] x {0,1,....J}) is acompact hybrid time domajn [5512} _ [)\ —(1=XNe (1-N(1+ 6)] [112}
i.e. it can be written as Tog AM1+e) 1—X—=Xe Z99
J—1 T12
= I'(\
U (5. t544).) o [72]
Jj=0

for some finite sequence of timés= tg < t1... < t;.

while the update law for positions is given by

+ _ +
Ty = 11, L9 = T21 -

A hybrid arc = is a function defined on a hybrid time

domaindom x mapping to a state space such thét, j) is  The impacts between the ball and the actuated robot occur
locally absolutely continuous infor eachy, (¢,7) € doma.  \whenz,, = x4, andzyy < 9.

The notation used in (5)-(6) is suggestive of the meanlng Then, the one degree-of-freedom juggler system in Fig-

of solutions. Vaguely, for an input : domu — R™
hybrid arc =

z(t,7) = f(x(t, ), u(t,j)) andh(z(t, j)) > 0 for almost all
t in every nontrivial intervalt;,t;+1], (¢,5) € domz, and
(C2) a*(t,j) = a(t,j + 1) = g(x(t. j)), h(z(t,j)) =0,
and (Vh(x(t, j)), f(x(t,j),u(t,7))) < 0 for all (¢,5) such

that (¢,5), (t,7 + 1) € domz. For more details, see [4], [5].

B. One degree-of-freedom juggler

For the one degree-of-freedom juggler depicted in Fig- .+
ure 1, the dynamics of the ball (plant) are given by Newton 22

T12 <0
%J:gz >0
21 u

Fig. 1. One degree-of-freedom juggler: one ball (plant) actlated robot.

Their positions are denoted ki1, 21 and their velocities byrio, z22,
respectively.

laws
. T12
ho— {_ } —: fal) @)
Y
wherex; := [z1; 712]" € R?, 21, is the heightz;, is the

: domx — R™ is a solution to a hybr|d
system (5)-(6) ifdlom z = domu and (¢, j) satisfies: (C1)

ure 1 is given by the hybrid systefd with flows

T = T2, 12 = —7
. . r11 — 221 > 0
T21 = T22, X2 = U } M 2=
and jumps
o = an
+ L12
zy = [I 0JT(A\e) [mz} 211 — 221 =0
,T;l = X921 and:vlg — 99 <0 .
T12
= (0 1|T'(\e
o 1rone|12]

Note that for this system, the flow and jump sets, denoted
by C and D, respectively, can be defined as in (5)-(6) with
h(z) = x11 — x21 (the condition(Vh(z), f(z,u)) < 0
becomesr s — x92 < 0):

C = {1‘€R4|$11—1‘2120},
D = {SCER4 |$11—.’L‘21:0, $12—$22§0} .
Ill. TRAJECTORYTRACKING WITH HYBRID CONTROL

In this section, we introduce a trajectory tracking problem
for the one degree-of-freedom juggler in Section 11-B and
propose a hybrid control strategy that solves it. The main
ideas and concepts are applicable when solving trajectory
tracking problems for more general classes of mechanical
systems with impacts.

A. Reference trajectories for tracking

We generate rhythmic juggling patterns with the hybrid
systemH,. given by

velocity of the ball, andy is the gravity constant. The mass
of the plant is denoted by, . The actuated robot is assumed
to have double integrator dynamics given by

Ty = [IQQ} =: fa(wo,u) ,

u

Tl—TTZOa
ri—ri =0andr; <0,

rm ="rT2, T2=—=79

— + _
T =T, Ty = T2

wherer? is the reference height parameter. ket= [r; ro] .
Given an initial condition?, »¥ > r%, the solutionr to H,



defines a reference trajectory for tracking on a hybrid tim&tep 3) Compute the ball trajectory; at (¢1,1) (thus,
domaindomr. The reference has impacts at; = rj; assuming no impacts between timeandt,);

velocity after the impact given by minus the velocity beforeStep 4) Compute the value of the statg at (¢4, 1), denoted
the impact, where the velocity value after the impact defindsy «%, required for the value of, after the impact aft», 2),
the reference velocity parametey, and impact period given that is,z; (¢2, 3), to be equal to the reference trajectory
by T.. = 2r%/~. To guarantee that the reference trajectorieStep 5)Generate airtual reference trajectory that at time
are “well-posed” (in the sense that they can be tracked hy;, 1) is equal to the value af,, given byx,, computed in
H), the flow map ofH,. is given by (7). Figure 2 depicts a Step 4).

H H * *
reference trajectory with i, 73 > 0. Finally, the control law applied to the actuated robot is

B. Finite-timee-tracking designed so that, tracks the virtual reference trajectory

We are interested in practical tracking of the ball positiof®MPuted in Step 5).
given a reference signal generated by+,. Both z; andr .
are given on hybrid time domains which do not necessarily NOte that Steps 1)-5) can be computed by explicitly
need to be the same. Bsackingbetweenz; andr we mean Solving the dynamics oH. The virtual reference trajectory

that their graphs are close after a finite amount of time. 1N Step 5), denoted by, is a trajectory that satisfies the
dynamics of the actuated robot. At the impact time, it is

reset to a value that guarantees that, when tracked by the
actuated robot, the next impact occurs at the appropriate
time (at this time instantz. is equal toz)). Figure 2

Definition 3.1 (finite-time:-tracking): Given¢ > 0 and
hybrid arcsz; : domz; — R2, r : domr — R?, z; andr
aree-close afterl” > 0 if

(a) forall(t,j) € domzq with (¢, ) = (T, J) for someJ,

(T,J) € domx, there existst’, j') € domr, [t—t| < y i i i
e, and 27T ,
a1 (t,5) — (', §)| <<, ® [N o L e
: ‘\/I/, A \/’
(b) for all (¢,5) € domr with (t,5) = (T,J) for someJ, J ‘
T,J) € domr, there existgt’, j/) € domzq, [t—t| < i ,
J -
g, and 0 L‘oé tq to t
r(t, ) —a(t',j) < €. 9)

When this property holds for; and a given reference Fig. 2. Main control idea to track a reference trajecteryr; component
. . . .. . . . 2. T1
tr"."]eCtoryT’ we \_N[” C‘?‘” it finite-time 5'_traCk|ng’ and We plot in red, dashed). At the impact at= t¢o, the controller computes
will say that “z; finite-time e-tracksr”. With an appropriate the resulting ball position trajectory;; (blue, dashed) at time; and the
offset Ofxl andr, finite-time g-tracking corresponds to the required value of the states at ¢; such that the next desired impact time
] . . i to of the referenceg; equalsr. The virtual reference trajectory (black)
notion ofgraphical closenessf solutions to hybrid systems

: - resulting from this computation is tracked by the actuatedot (green,
introduced in [4] (see also [5]). dashed).

C. Problem statement and control strategy
We want to solve the following control problem:

(x) Given alevel of tracking accuraey> 0 and a reference
trajectory r generated by, the ball state component
21 of the solutions td finite-times-tracks the reference
trajectory r with only measurements af; at impact D. Hybrid controller

times. We implement the control algorithm above in a hybrid
To solve it, we propose the following control algorithm (se&ontroller, which we denote bi.. Its state is given by =
Figure 2): [21 22] T € R2, the virtual reference state. The controller

e Algorithm for Single-ball Juggling: At every impact performs three main tasks:

between the ball and the actuated robot (say, it occurs at, At every impact, perform computations in Step 1)-4).
hybrid time (¢9,0) and that after the jump, the hybrid time | a¢ every impact, reset: to a value such that the
is (to,1)): continuous dynamics of generate a virtual reference
Step 1) Compute the apex time of the trajectory describing  {rajectory that matches the impact constraint in Step 4).
the ball position £,,) resulting from the impact (denote this , |5 petween impacts, control the actuated robot to track

time byt,); the virtual reference trajectony.

Step 2) Solve for the time of the next two consecutive We define the continuous dynamics of the statéy a

!mpac:st_ aftertz;a/m t(;]t? referentge ls'glg,"’ﬁ; ?etrrwlote dtr}gse copy of the dynamics of the actuated robot. Then, the flows
impact times by; andt,, respectively. Ity = ¢, then define %, = given by

(t1,t2) to be either(t},t5) or (¢t} + T, th + T;.). Otherwise,
(tl,tg) = (tll,tlz). 21 = Z9, 22 =« (10)

depicts the computations in Steps 1)-5) that the control
algorithm performs at the impact &t,,0). For simplicity,

the trajectories are plotted projected to the ordinary tixis

t of their hybrid time domain.



where a < 0. This constant is chosen so that the of H, we mean any initial condition for which solutions to
components of the solution to (10) are described by cori{, never reachri; = z1, 212 = 2o.

cave parabolas (see [9] for a rigorous robustness analysi§ emma 3.2: For every feasible initial condition

regarding the selection of such parameter). The jump mapo ;0. .0 0T of 74, the next impact occurs at

for H. is given by time (¢1,0), wheret, is given by the nonnegative solution
7 + to
€ KelX1, 2,7 11
[22} (@ ) a1 22 = 7 ; at% + (2% — 2Dt +29, . (12)

. 2 2 2 2 3 i - .
wherer. : R® x R® x R* = R* is a set-valued mapping, noreover, the position and velocity of the ball after the
as it will become clear in the next section, that updates thﬁmact at(t;,0), denoted byr1; (t1,1) and z12(t1, 1), re-
statez for the generation of the virtual trajectory. The OUtputspectively a;e given by ’ ’

of the controller is given by

z11(t,1) = _zt% + 2yt + 2y, (13)
u=k(z2,2) , 2 .
Ty — "t
whereu is the control input to the actuated robot andR2 x z12(t1,1) = [1 0]T(\e) [altzl +VZ§} - (14)

R? — R2. As (11) suggests, the hybrid controllgf, uses
only the states:;, z and reference information at impacts forZ. In fact, (12) follows from solving the system backward

the update of. in time from the jump condition of,, (13) follows since

: Th_e closed-loop S_ystem resu_lting from controlling theat jumps, ther;; component of the solution is mapped to
juggling system’H with the hybrid controllerH. can be itself, and (14) is derived from the impact rule #,.

written as the following hybrid system, which we denote Let J : R2 x R? x R? = R? be the set-valued mapping
by H.;, with state spac® := R: '

Lemma 3.2 can be shown by solving explicitly for and

i - i _ J(Ila 2 T) =
fin = T2, iz = Y ratrs if aziatbz - r2try
Eo1 = X2, T2 = K(x2,2) p 11 —x21 >0, v v v
21 = 22, Z = « {Tﬁr; ’ TZ:T; + TT} i Mlzjbzz - @
ro+r) £ ario+bzo rotry
et g, if aziatbey 5, ratri
afi = on ! k T
+ Z12
T = |1 0|T'(\e 1 0
12 [1 0JT(Ae) [xzz] a=[1 0]T(\e) [ , b=1[1 0]T(\e) :
+ r11 — 221 =0 0 1
Tor = T

Our control algorithm first computes the time for the
next impact¢; in Step 1) and then computes Step 2)-5)
2 to generate a virtual trajectory. Regarding Step 1), the set
LJ € ke(z1,2,7) valued mapping/ defines the time(s) to the next impact,
given byt;, from the current state. If the apex time of the
trajectoryx; is smaller than the time for the next impact of

To design the update law, of the hybrid controllerH., the reference, then is given by the next impact time of the
we initially replace the dynamics of the actuated robotin reference. If, instead, the apex time of the trajectory is
by the dynamics of the statein H,.. That is, we consider larger than the time for the next impact of the reference) the

T12 — 22 <0 .

v = [0 1T(\e) [m] i,

€22

E. Control design and main results

the hybrid system the impact is postponed for one peridd. Whent; is equal
P = Tie, d1a = -7 to the apex time, bqth times are possible and, therefbis,
W = 2z ’ i = a }2011 —z2120, set valued. Regarding Step 2)-5), for eaghe J(z1, z,7),
’ the reset value* for z is computed by two applications of
i Lemma 3.2. We do this by setting; (¢2,3) = r*, t1 + T
o = Tu (see Figure 2). Then, the set-valued mappinds given for
o, = [1 0]T(\e) ["Zﬂ 11 _arzl(lj: 0 eachzy, z,r € R? by all pointsz* = [z} 23] satisfying
|:§;:| + . Hc(xh Zﬂﬂ) T10 — 22 <0 . ZT S _W‘TO‘P + (a~$12 + bzy — Z;)t:f— 11
% ’I’T + %TTQ + %tQ — (aIlg + bZQ)t — T11
We denote this system b${, meaningvirtual juggling Zg € T,
system The control design idea is to define the set-valued

(ay — ba)t — alaxz + bzo)
b
for eacht € J(x1,2,7) .

mapk. such that the control task)is accomplished fo, +
and then design the control lawy which acts on the actuated

robot, to accomplish asymptotic tracking betwegnand z

during flows. To that end, we first state the following result The control lawx is designed so that the trajectories of the
for the solutions tdH,. Below, byfeasible initial condition actuated robot system track the virtual reference trajexto




In a perfect tracking scenario, when the error between the 5
actuated robot state and the virtual trajectory is zero, the
control algorithm achieves finite-timé-tracking. This is
actually the case for the virtual juggling systétty,.

Theorem 3.3: For each reference trajectorygenerated
from H, and each feasible initial condition of{,, each
solution toH,, is bounded and the; component finite-time
0-tracks the reference trajectory Moreover, the trajectories
coincide after three impacts.

In general, there is an error betweepandz. Lete; :=
ZTo1 — 21, €2 := Xoo — zo. Then, the error system is 3 | + : T
t
Fig. 3. Simulation of closed-loop systefd.;. System parametersn; =
1Kg,me2 = 9Kg,e = 0.8,y = 9.8 m/s®. Controller parameters:
. . . a = —9.8,k1 = 2000, ke = 100. Initial condition: z11(0,0) = 5 m,
Givenk;, ks > 0, a particular choice of the control lawto  ;,,(0,0) = 1 m/s, 221(0,0) = —1 m, z22(0, 0) = 0 m/s. The trajectory

accomplish the tracking betwean andz is given by of the ball (blue) impacts with the actuated robot (trajecia green). Finite-
time e-tracking is achieved at the third bounce when the ball ¢tajy
approaches the reference trajectory (red, dashed). Thelieference: is
depicted with black, dashed line.

We now state the main result of this section. As defined
for H,, feasible initial conditions forH. correspond to :
initial conditions from which solutions tG{.; never reach
the COﬂditiOﬂIll = T921, 12 = T22. 10

Theorem 3.4: For each compact s&tC O, eache > 0, o
and each reference trajectory generated from,., there
exists ki, ks € R such that each solution té{. starting
from K that is feasible is bounded and the component af
finite-timee-tracks the reference trajectory Moreover, only o
three impacts are required fot; andr to bee-close. s

é1:€2, éQZU—OL.

K(IQ, Z) = — kl(I21 — Zl) — kQ(IQQ — 22) .

Remark 3.5:The proof of Theorem 3.3 follows from the
construction of the update law,, which is designed so K : i g ; 0 12
that the ball component of solutions #, converge to the ] ]
reference.trajectory in finite time. To show Theorem 3.45'%'9?;7152'milatéoag?fedfeg'_g(;p S:yStSZ“Cé%/ssz%'sg?ﬂf;{;‘:n;:gﬁlet:rsz
we establish that, on compact sets, the error between the= —9.8 k; = 2000,k = 100. Initial condition: z11(0,0) = 5 m,
nominal trajectories and the trajectories with perturbmed i 12(0,0) = —8m/s, £2:(0,0) = —1m, z2(0,0) = 0m/s. The
pact time (by a mismatch between, and =) vanishes [5COY of tie ball (e mpacts it sctated toimecry
with the mismatch betweem, and z. Then, the desired ball trajectory approaches the reference trajectory @ashed). The virtual
tracking precision given by can be obtained by choosing referencez is depicted with black, dashed line.
fast enough converging tracking lawso that at the impact
times, the state of the actuated robot is within appropriate . )
level of perturbation. This condition is satisfied by seitegt the_wrtgal reference. Thl_s level of closeness can be made
large enough parameteks, ko of the tracking lawx. Using arbltrarlly smal-l by.chO(.)smg 'afge enougip and k.
this same proof technique, we are also able to show that "€ Simulation in Figure 4 is for the same reference

the closed-loop system is robust to measurement noidkajectory but for different initial conditions of the ballt

computation errors, and observer-based output feedbazk. Ijlllﬁstrgtes the decigion that the cor_ltroller mak_es when the

to space constraints, we do not pursue this here. apex time of the trajectory after the first bounce is larganth
the next impact of the reference trajectory. As a difference

F. Simulations to the simulation in Figure 3, the second impact is planned

for t; = 4r} /~ rather than fort; = 273 /.

We simulate the closed-loop systefh,; with a reference
trajectory generated bjt,. with »; = 0 m, 5 = 10 m/s, and
initial condition7® = [0 m 10 m/gT.

Figure 3 shows a simulation of the closed-loop system. For In this section, we consider the multiple ball juggling
simplicity, we present the trajectories projected to thei-or problem. Suppose we are givenreference trajectories;
nary timet axis. The ball trajectory approaches the referendealls, and one actuated robot. Our goal is the following:
trajectory in the neighborhood of the time corresponding to (xx) Given a level of tracking accuracy > 0 and n
the third bounce. Note that the parameters of the control lagference trajectories generated By, with distinct impact
K steer the actuated robot to a very small neighborhood tifnes, thei-th ball state component’ of the solutions to

IV. THE MULTIPLE-BALLS JUGGLING CASE



the closed-loop system finite-tiradracks thei-th reference

Figure 5 shows simulations results for three-balls jugglin

trajectory r* with only measurements ef at impact times. The reference trajectories havelaodeg phase difference
between each other. The plots show that each dbaihcks
We propose a strategy that combines the control algoriththe corresponding reference trajectory after the thirdaiatp

introduced in Section Il to plan the impacts for each ball
individually and uses additional logic to select the ball to
control. Let@ := {1,2,...,n} andq be a logic stateg €

Q. Let 27 € R? be the virtual reference state of theth

ball. The reference trajectory far-th ball is generated by
the hybrid systent{?. We assume that for eaah H? is
defined agH,.. For problem(xx), we further assume that the
reference trajectories are such that the impact times do not
occur at the same time and that they have the above ordering
property: everyh impacts, each reference trajectory has only
one impact, and the order is preserved. The control logic for
multiple-ball juggling is as follows.

e Algorithm for Multiple-ball Juggling : At an impact
between the-th ball and the actuated robot:
Step 1) With reference trajectory?, compute Step 1)-5) of

e

Fig. 5. Simulation of the closed-loop systet for three balls. System
parametersmm}
9.8 m/s>. Controller parametersy = —9.8, k1 = 2000, k2 = 100. For the

= m% = 7)1:13 = 1Kg7m2 = 9Kg78 = 08,’)/ =

the Algorithm for Single-ball Jugglingo obtainz?*. Update given initial conditions, the trajectories approach thespective reference

the statez? with this value.
Step 2)Update the logic state by ¢™= mod (¢,n) + 1.
Step 3)Apply to the actuated robot a control law that tracks

the virtual reference?. (1]

We implement this logic in a hybrid controller and obtain [
the closed-loop systeri’/ given by
(3]

S S | .1 _
I%l = 5052, 517%2 = -7
11 = 12, T2 = 7 n
T = " i - _
‘11 12, 12 Y . 5]
Eo1 = Xz, T22 = K(x2,29) paf; —x21 >0,
o= 2, 4 = «
32 = 23, 3 = « [6]
. . (7]
2 = 2y, 2y = «
(8]
Jr
1 — () 3P el
- ( 76) q _ =0
Z22 Z22 Typ — T21 = (10]
q1+t
A1 € fKe(x, 29, r7) q and
23 R Ty —X22 <0,
gt = mod (q,2) + 1

where in the jump map and jump set, we have omitted tHe!!
states that remain constant during flows and jumps.

By construction, the closed-loop systei]/ inherits the [12]
same properties than the ones7ef; in Theorem 3.4. The
main difference in the multiple trajectory tracking prailés
that feasible initial conditions need to satisfy more iietitre
constraints: every: impacts, each ball has impacted only[14]
once, and the order is preserved.

We will just mention that the controller construction
for multiple (and consequently, for the single-ball case§15]
trajectory tracking is such that the conditions for nominal
robustness of hybrid systems in [4] and [5] hold.

[13]

trajectories (in red, dashed) at their third bounce.
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