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Joint physics-based and data-driven time-lapse seismic inversion:
Mitigating data scarcity

Yanhua Liu1, Shihang Feng2, Ilya Tsvankin3, David Alumbaugh4, and Youzuo Lin2

ABSTRACT

In carbon capture and sequestration, developing rapid and ef-
fective imaging techniques is crucial for real-time monitoring of
the spatial and temporal dynamics of CO2 propagation during
and after injection. With continuing improvements in computa-
tional power and data storage, data-driven techniques based on
machine learning (ML) have been effectively applied to seismic
inverse problems. In particular, ML helps alleviate the ill-posed-
ness and high computational cost of full-waveform inversion
(FWI). However, such data-driven inversion techniques require
massive high-quality training data sets to ensure prediction ac-
curacy, which hinders their application to time-lapse monitoring

of CO2 sequestration. We develop an efficient “hybrid” time-
lapse workflow that combines physics-based FWI and data-
driven ML inversion. The scarcity of the available training data
is addressed by developing a new data-generation technique
with physics constraints. The method is validated using a syn-
thetic CO2-sequestration model based on the Kimberlina storage
reservoir in California. Our approach is shown to synthesize a
large volume of high-quality, physically realistic training data,
which is critically important in accurately characterizing the
CO2 movement in the reservoir. The developed hybrid method-
ology can also simultaneously predict the variations in velocity
and saturation and achieve high spatial resolution in the pres-
ence of realistic noise in the data.

INTRODUCTION

The importance of CO2 sequestration has increased in the past
decade due to the global warming caused by greenhouse gases.
Rapidly imaging and monitoring the spatial and temporal dynamics
ofCO2 migration ensures that the supercritical CO2 is injected at the
correct location and does not leak out of the reservoir (e.g., Lumley,
2010; Pevzner et al., 2017). Time-lapse seismic can represent an
effective tool for monitoring CO2 injected into an aquifer (Zhang
et al., 2012; Ajo-Franklin et al., 2013; Raknes et al., 2015; Furre
et al., 2017; Pevzner et al., 2017).
Full-waveform inversion (FWI) of seismic data has been widely

utilized for velocity analysis and, under favorable circumstances, res-
ervoir characterization (Vigh et al., 2014; Asnaashari et al., 2015;
Fabien-Ouellet et al., 2017; Singh et al., 2018). FWI can potentially
provide estimates of the time-lapse parameter variations with high

spatial resolution. Time-lapse FWI (TLFWI) strategies proposed for
monitoring hydrocarbon production and CO2 injection (Queißer and
Singh, 2013; Asnaashari et al., 2015; Liu and Tsvankin, 2021) include
the parallel-difference, sequential-difference, and double-difference
techniques. The parallel-difference method (Plessix et al., 2010) uses
the same initial model for the baseline andmonitor inversions, whereas
the sequential-difference method (Asnaashari et al., 2012) inverts the
baseline data to build the initial model for the monitor inversion. The
double-difference technique (Watanabe et al., 2004; Denli and Huang,
2009; Lin and Huang, 2015) estimates the time-lapse parameter var-
iations by inverting the difference between the monitor and baseline
data sets. Liu and Tsvankin (2021, 2022) extend these TLFWI tech-
niques to realistic elastic anisotropic media. Huang and Zhu (2020)
incorporate uncertainty estimation into the acoustic TLFWI results.
However, FWI suffers from ill-posedness, cycle-skipping, and

high computational cost because of the nonlinearity of the inverse
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problem (Virieux and Operto, 2009; Feng and Schuster, 2019; Wu
and Lin, 2019; Zhang and Alkhalifah, 2020; Feng et al., 2021;
Zhang and Gao, 2021). In addition, FWI cannot directly estimate
CO2 saturation, although empirical and statistical petrophysics re-
lationships can be employed as a postinversion step to reconstruct
the saturation distribution from the inverted velocity field (Grana
and Rossa, 2010; Ali and Al-Shuhail, 2018).
Recently, with the increased computational power and the revi-

talization of deep neural networks, significant research and develop-
ment efforts have been put into data-driven machine learning (ML)
seismic methods (Hale, 2013; Dahlke et al., 2016; Araya-Polo et al.,
2017; Cao and Roy, 2017; Yuan et al., 2019; Li et al., 2021). For
example, Um et al. (2022) propose a network (U-net) to reconstruct
CO2 saturation and compare the results of the uncertainty analysis
with the Monte Carlo dropout and bagging methods. Such methods
aim to approximate the inversion operator by neural networks based
on the universal approximation theorem (Zhang and Lin, 2020).
Data-driven techniques can potentially produce a more accurate
reconstruction of subsurface structure than physics-based FWI in
a significantly shorter time, which is essential for real-time moni-
toring.
However, the accuracy of data-driven inversion depends on the

generalization ability of the employed networks and the quality and
volume of the available training data (Zhang and Alkhalifah, 2020;
Yang et al., 2021; Zhang and Gao, 2021). The generalization ability
refers to the performance of a network on testing data sets that are
significantly different from the training data. Considering that the
medium outside the reservoir does not substantially change during
injection, the distribution shift between the testing monitor data and
the training data should not be a significant issue in time-lapse mon-
itoring.
However, obtaining high-quality training data can be challenging

for typical CO2 sequestration projects. To address this data scarcity
problem, Renán et al. (2022) develop an active learning strategy by
incorporating the wave equation to expand the training data set.
Yang et al. (2021) present a convolutional neural network (CNN)
to augment training data using such physics information as the wave
equation and time-lapse variations of P-wave velocity. Despite some
encouraging results, these two methods still require extensive train-
ing data in advance, which limits their applicability. Yuan et al.
(2019) randomly perturb the inverted baseline model of the reser-
voir produced by physics-based FWI to generate training data that
can be used to predict the time-lapse velocity changes. However,
because the data generation is random, the training data set can
be physically unrealistic and result in incorrect predictions.
We begin by discussing the methodology of physics-based and

data-driven inversions and then outline their application to time-lapse
seismic data. To overcome the aforementioned issues related to data
scarcity, we propose a hybrid time-lapse strategy that combines phys-
ics-based FWI with data-driven inversion (called “InvNet-VelSat”).
The developed data-generation algorithm simulates high-quality
velocity and saturation training models utilizing the available physics
information and prior knowledge (i.e., the inverted baseline model
and well logs). The data-generation method and the proposed hybrid
approach are tested on the Kimberlina reservoir model, assuming that
only the baseline and one monitor data set are available. The recon-
structed time-lapse variations are compared with those produced by
the pure physics-based and data-driven techniques. The generaliza-
tion ability and robustness of our algorithm are validated by applying

it to other monitor surveys and noisy seismic data. Finally, we discuss
the impact of the prior information and the quality of the simulated
training data on the reconstructed time-lapse variations.

REVIEW OF PHYSICS-BASED AND DATA-DRIVEN
INVERSIONS

Physics-based FWI

FWI iteratively minimizes the difference between the observed
and simulated data in the process of updating the subsurface model.
Acoustic models may represent a suitable first-order approximation
for CO2 monitoring because shear-wave velocity is not expected to
be influenced by supercritical CO2 (Mavko and Mukerji, 1998; Car-
cione et al., 2006; Queißer and Singh, 2010). For acoustic isotropic
media, FWI operates with shot gathers of the observed (pobs) and
simulated (psim) pressure field.
The L2-norm FWI objective function SðmÞ is then defined as

(e.g., Tarantola, 1984):

SðmÞ ¼ 1

2
kpsimðmÞ − pobsk2; (1)

where m includes the gridded P-wave velocity and density models.
Due to the high nonlinearity of FWI, the model-updating pro-

cedure can be trapped in local minima. Therefore, the initial model
needs to be in the basin of convergence near the global minimum.
The acoustic wave equation used here to simulate seismic data

has the form:

1

V2
PðxÞ

∂2pðx; t; xsÞ
∂t2

− ∇2pðx; t; xsÞ ¼ δðx − xsÞfðtÞ; (2)

where VP is the P-wave velocity, p is pressure wavefield, fðtÞ is the
source signal, “∇2” denotes the Laplacian operator, and xs and x are
the source and receiver locations, respectively. The gradient of the
objective function with respect to the model parameters is computed
from the adjoint-state method. A nonlinear conjugate-gradient algo-
rithm is employed for updating the velocity:

Vkþ1
P ¼ Vk

P − αk∇SðVk
PÞ; (3)

where αk is the step length at the kth iteration.

Data-driven InvNet-VelSat

In contrast to physics-based FWI methods, data-driven inversion
aims to form a pseudoinverse operator F, which performs the map-
ping from the input to the model (target) domain (i.e., from the shot
gathers p to the medium parameters m):

m ≈ FðpÞ: (4)

The universal approximation theorem (Hornik et al., 1990) allows
the neural network to approximate most complex functions given suf-
ficient training data. In particular, InversionNet is an end-to-end CNN
developed by Wu and Lin (2019) and based on the above-mentioned
theorem. The input is the recorded pressure and the output is the P-
wave velocity model. The CNN consists of an encoder and a decoder.
The encoder contains five convolution blocks followed by maximum

K2 Liu et al.
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pooling to extract high-level features (representing the input) from the
pressure data and significantly reduce the data dimension. Each con-
volution block includes a convolution layer, batch normalization, and
a leaky rectified linear unit activation function. The decoder, which
comprises five deconvolution blocks, translates these features into the
velocity model.
Because saturation is closely related to CO2 diffusion in the sub-

surface, we propose a modified network (InvNet-VelSat, Figure 1)
to simultaneously predict both velocity and CO2 saturation. The
structures of the encoder and decoder for the velocity prediction
in InversionNet are incorporated into InvNet-VelSat. The decoder
added for predicting the saturation is parallel to that for the velocity
prediction. The mean absolute error (MAE) is employed to measure
the training and testing loss and to preserve sharp boundaries in the
predicted models.

METHODOLOGY OF TIME-LAPSE PROCESSING

The difference between the medium parameters reconstructed
from the monitor and baseline surveys reflects the temporal changes
in the subsurface properties caused by the injected CO2. Next, we
discuss three different time-lapse strategies involving physics-based
FWI and data-driven InvNet-VelSat.

Strategy 1: Physics-based time-lapse FWI

In TLFWI based on the parallel-difference method (Plessix et al.,
2010), the baseline seismic data are inverted starting from a certain
initial model. The same initial model is then used in the monitor
inversion. The parameter changes are calculated by subtracting
the inverted baseline parameters from those of the monitor model.

Strategy 2: Data-driven time-lapse inversion

The data-driven algorithm uses the InvNet-VelSat for the monitor
inversion. The network is first trained on an extensive preexisting
training data set including the baseline survey.
Once fully trained, InvNet-VelSat predicts both
velocity and saturation from the observed monitor
data. Because the baseline models are assumed to
be known in advance, the time-lapse variations re-
present the difference between the predicted mon-
itor and the actual baseline parameters.
InvNet-VelSat has several advantages over FWI.

First, FWI suffers from cycle-skipping (conver-
gence) problems caused by local minima of the ob-
jective function (e.g., Virieux and Operto, 2009).
Mitigating cycle skipping requires a sufficiently ac-
curate initial model that is not always available.
Second, FWI is computationally expensive (Vir-
ieux and Operto, 2009; Wu and Lin, 2019), while
well-trained InvNet-VelSat can predict the subsur-
face properties with sufficient resolution in sec-
onds. The high efficiency of InvNet-VelSat is
especially important in real-time monitoring during
oil/gas production and CO2 sequestration.
Furthermore, InvNet-VelSat can simultaneously

predict velocity and saturation, while FWI has to
convert the reconstructed velocity field into satu-
ration via empirical petrophysics equations (Xue

et al., 2009). In addition, the background model stays almost
unchanged outside the reservoir, which mitigates the generalization
issue in applying InvNet-VelSat to time-lapse processing. Although
the velocity model can be dramatically altered in the near-surface be-
cause of seasonal changes and precipitation, it is outside the scope of
this work and needs additional investigation. However, all data-driven
inversions, including InvNet-VelSat, assume that a large amount of
high-quality data, which are sufficiently similar to the testing data,
are available for training purposes.

Strategy 3: Hybrid approach

The proposed hybrid approach (Figure 2), which combines the
physics-based and data-driven methods, does not require preexisting
training data. First, we apply FWI to the baseline survey to reconstruct
the baseline velocity model. For real-time monitoring of CO2 seques-
tration, we process the monitor survey with InvNet-VelSat. To gen-
erate a sufficient volume of high-quality training data, the inverted
baseline velocity is perturbed in the CO2 reservoir (see below),
whereas the rest of the velocity model remains unchanged. Hence,
the prediction capability of InvNet-VelSat largely depends on the ac-
curacy of the inverted baseline model, which is used to generate the
training data.
To ensure sufficient accuracy of the baseline FWI for field data,

preprocessing should include careful application of the statics cor-
rection, robust estimation of the source wavelet, building of an ap-
propriate initial model for FWI, etc. (Liu et al., 2013). For example,
time shifts should be added to each trace as part of the statics cor-
rection to compensate for the weather changes and/or the difference
in the depth of the sources and receivers. Our method is described in
more detail below.

Velocity-generation method

We employ the following prior knowledge when generating
synthetic velocity models (Figure 3).

Figure 1. The network architecture of InvNet-VelSat. The encoder, built with five con-
volution layers and maximum pooling, extracts high-level features from the input seis-
mic data to the latent space and reduces the dimensions of the feature map. Each of the
two decoders consists of five deconvolution layers and translates the latent variable to
the velocity (output 1) and saturation (output 2) models.

Hybrid method for 4D seismic monitoring K3
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1) The subsurface structure before the injection is obtained from
physics-based FWI, which is assumed to provide sufficient spa-
tial resolution. The reconstructed baseline velocity is changed
only inside the reservoir to obtain the training velocity models
for the model prediction from the monitor data.

2) CO2 migration in the reservoir obeys certain laws of physics.
Because supercritical CO2 is less dense than water, the in-
jected CO2 should first accumulate near the top of the reser-
voir and then diffuse along the reservoir boundary.

3) Well logs (i.e., sonic, saturation, density, and electrical resis-
tivity) from the injection and monitor wells are used to provide
geologic and geophysical information, and thus constrain the
inversion process.

The physics-related information used in our data-generation
method typically can be obtained in practice. Therefore, the proposed

hybrid approach and data-generation algorithm should be applicable
to time-lapse field data.

Synthetic CO2-saturation models

Although the relationship between P-wave velocity and CO2 sat-
uration can be inferred from empirical equations based on labora-
tory and field experiments (Gassmann, 1951; Mavko and Mukerji,
1995), this approach relies on the geologic similarity between the
field of interest and those used to derive the equations. Here, we
obtain the relationship between velocity and saturation from the
available well logs using linear fitting equations (Figure 3).
Because the saturation level in the vicinity of the injection well is

higher than that near the monitor wells, we separate the reservoir
into two parts — the injection zone and the monitor zone. The
velocity-saturation plots from the Kimberlina well logs indicate a

linear relationship between these two parameters,
but the slope changes between the low- and high-
saturation parts of the model. Therefore, we
approximate the saturation-velocity relationship
with two linear functions based on the saturation
level.

SYNTHETIC EXAMPLES

Kimberlina data set

The physics-based, data-driven, and hybrid
strategies are applied to monitor and predict
CO2 migration using a synthetic data set. (To
date, we have been unable to find publicly avail-
able field data suitable for our purposes.) The test
is performed on the 4D Kimberlina reservoir data
generated by several institutions (Alumbaugh
et al., 2021) as part of the U.S. Department of
Energy “SMART Initiative” (U.S. Department
of Energy, 2019). This data set is obtained using
multiple CO2 injection reservoir simulations for
a model similar to the geologic structure of a
commercial-scale carbon-sequestration reservoir
at the Kimberlina site in the southern San Joa-
quin Basin (Wagoner, 2009). The Kimberlina
time-lapse data can be used to evaluate the effec-
tiveness and robustness of different geophysical
techniques for monitoring CO2 migration.
The data include 29 3D P-wave velocity and

CO2-saturation models simulated for over 200
years with a grid size of 10 m × 10 m × 10 m

(601 × 601 × 351 points; Figure 4). We slice each
3Dmodel along the y-axis with a spatial interval of
100 m starting from x ¼ 0 to obtain 53 2D sam-
ples, which yields 1537 velocity and saturation
models (referred to as the “actual data”). In addi-
tion, time-lapse multiphysics well logs have been
synthesized for four hypothetical well locations
(Figure 5). These CO2-saturation, density, sonic
velocity, and resistivity logs are available for 0,
1, 2, 5, 10, 15, and 20 years after the start of the
CO2 injection. Note that these four wells are not
confined to the same vertical plane.

Figure 2. Workflow of the hybrid time-lapse strategy that combines physics-based FWI
and data-driven InvNet-VelSat. FWI is employed to invert the baseline data and obtain
the background velocity distribution for generating synthetic training samples. The
trained InvNet-VelSat is applied to the monitor survey to predict both the velocity
and saturation models. The temporal velocity changes are computed by subtracting
the inverted baseline velocity model from the predicted monitor model.

Figure 3. Workflow of the velocity- and saturation-simulation algorithms. The dashed
orange oval marks the prior information and the empirical relationship between the
velocity and saturation obtained from well logs. The solid green oval marks the inverted
baseline velocity field used for generating training velocity models and the sonic and
saturation logs used for obtaining saturation. The solid blue oval marks the synthetic
velocity and saturation models generated for training.

K4 Liu et al.
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The 2D slice containing the injection well in
year 0 (i.e., before the injection) is treated as the
baseline model. The monitor data are acquired in
the same 2D vertical plane to map the movement
of the injected CO2 and compute the time-lapse
parameter variations. The temporal velocity
changes in the reservoir (Figure 5) are hetero-
geneous and vary between x ¼ −0.5 km and
x ¼ 0. The saturation changes are also hetero-
geneous and vary between zero and unity. Both
velocity and saturation models have a grid size of
10 m × 10 m.
There are three important geologic structures in

the velocity model (Figure 5): the low-velocity
layer immediately above the reservoir region (zone 1), the three res-
ervoirs themselves (zone 2), and the high-velocity dipping layer be-
neath the reservoirs (zone 3). Note that the shallow low-velocity
horizon is not a water layer.

Physics-based TLFWI

The synthetic acoustic wavefield is excited by 37 shots (point
explosions) placed with a constant increment (80 m) along a hori-
zontal line at a depth of 10 m. The source signal is the Ricker wave-
let with a central frequency of 10 Hz. We employ 294 receivers
evenly distributed with an increment of 20 m along the horizontal
line 20 m deep. We smooth the actual baseline velocity field (Fig-
ure 6a) with a standard deviation of 15 to compute the initial veloc-
ity model for the baseline (Figure 7a) and monitor (Figure 7b)
inversions. Note that the CO2 plumes are not present in the initial
model. FWI is applied to the simulated pressure recordings using a
multiscale approach with four frequency bands starting from 2 Hz
(2–5, 2–8, 2–13, and 2–20 Hz; see Singh et al., 2020; Liu and
Tsvankin, 2021).
Figure 7c and 7d shows that FWI reconstructs the baseline and

monitor velocity distribution with sufficient accuracy. In particular,
the “bump” in zone 3 and the low-velocity region in zone 1 are well
resolved in both the baseline and monitor models. There are inversion
errors (Figure 7e) at depth, especially near the CO2 plumes because
the monitor inversion, which starts from the initial baseline model,
could not adequately resolve the reservoirs. In ad-
dition, there are errors at the reservoir boundaries
(i.e., in the thin nonpermeable layers) caused pri-
marily by edge (smoothing) artifacts in the L2-
norm objective function (Schmidt, 2005; Zhang
and Zhang, 2012).

Data-driven time-lapse inversion

The data-driven strategy assumes that the entire
Kimberlina data set (1537 velocity and saturation
samples) is available. The seismic data are simu-
lated using the same survey configuration as in the
previous physics-based FWI test. The monitor
survey in year 20 provides the testing data. The
remaining actual data for over 200 years are ran-
domly divided into the training (1436 samples)
and validation (100 samples) sets. The loss of
the training test converges at approximately

Figure 4. Visualization of the actual 4D velocity model. The baseline and monitor sur-
veys are simulated for the same 2D vertical profiles before and during (or after) CO2
injection. The time-lapse changes are encircled in red.

Figure 5. 3D geometry of the Kimberlina data set. The injection well
and three monitor wells are denoted by the red and orange dots, re-
spectively, in the [x; y]-plane. The red line in the [x; y]-plane shows
the projection of the baseline and monitor surveys. The two bottom
plots show the vertical cross-sections of the velocity model. The red
arrows in the [y; z]-plane point to three structures used for evaluating
the effectiveness of time-lapse strategies: the low-velocity layer above
the reservoirs (zone 1), the three CO2 reservoirs (zone 2), and the
high-velocity dipping layer below the reservoirs (zone 3).

Figure 6. P-wave velocity of the (a) baseline Kimberlina model and (b) monitor model
in year 20 with a grid size of 10 m × 10 m. CO2 saturation for the (d) baseline and
(e) monitor model in year 20. The actual time-lapse changes of the (c) P-wave velocity
and (f) saturation.
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0.05 after 2212 epochs. Then the testing monitor data are inverted by
the trained network.
Figure 8 shows that both the velocity and saturation for the mon-

itor survey are generally predicted with acceptable accuracy. How-
ever, the shallow low-velocity layer, the low-velocity anomaly in
zone 1, and the small bump in zone 3 are not well reconstructed
due to the limitations of the training data set. Specifically, the
3D Kimberlina model is laterally heterogeneous, and the 2D veloc-
ity distribution varies for different vertical profiles. Only a relatively
small fraction of the velocity models contains such geologic fea-
tures as the bump. Thus, it is challenging for InvNet-VelSat to cap-
ture those features in the training data and predict them from the
monitor samples.
Those limitations of the training data lead to errors in the back-

ground saturation model (Figure 8e and 8f), which deviates from the
actual saturation changes (Figure 6f). In addition, the saturation
near the injection well is underestimated, which can be explained
by the insensitivity of P-wave velocity to high CO2 saturation (Xue
et al., 2009; Kim et al., 2010) and, again, the incompleteness of the
training data.

Hybrid strategy

According to the proposed hybrid strategy, FWI is first employed
to reconstruct the baseline model (Figure 7c). To obtain synthetic
velocity models, we first identify three aquifer layers and their top
and bottom boundaries from the recovered baseline velocity (Fig-
ure 7c) and well logs. We then keep the velocity outside these layers
unchanged because the temporal and spatial velocity variations are
assumed to be confined to the reservoirs. Well logs provide the
velocity profiles in the wells. We identify the maximum and mini-
mum velocity values in the reservoirs for all years from sonic well
logs. The velocity in the reservoirs is perturbed within that range for
generating a large number of velocity models. After obtaining the
training velocity models, linear fitting equations are employed to
build the relationship between the velocity and saturation at the in-
jection well using the available well logs. The velocity-saturation
relationship away from the injection well is found from linear fitting
equations using the monitor-well logs. Note that these relationships
may not be applicable to other data sets.
Reservoir simulation, required to accurately model the shape of

CO2 plumes, involves such parameters as permeability and viscosity,
which are not available to us. Therefore, we
approximate CO2 movement in the aquifer layers
by defining a transportation velocity function. Ac-
cording to this function, CO2 moves parallel to the
upper reservoir boundary with a speed that expo-
nentially decreases with depth. Hence, the buoy-
ancy-driven CO2 moves faster in the upper
reservoir (Sigfusson et al., 2015):

Vd
c ¼ Vd0

c e−cðd−d0Þ; (5)

where Vd
c is the velocity of CO2 migration at

depth d, d0 is the depth of the top reservoir boun-
dary, and c is a constant that controls the rate of
decrease of Vd

c . Note that the transportation func-
tion is based on the structure of the Kimberlina
reservoir and, therefore, may need to be modified
for other data sets.
The well logs show that the P-wave velocity in

the plumes varies between 1.9 and 2.5 km/s. To
simplify the velocity distribution, we ignore its lat-
eral variation between the wells. A total of 28,000
training data samples are generated for different
velocities ranging from 2.0 to 2.3 km/s with an
increment of 0.1 km/s.
Comparison with the actual velocity models

(Figure 9a–9d) demonstrates that the synthetic
velocity samples (Figure 9e–9h) are physically
realistic and capture the spatial and temporal dy-
namics of CO2 migration inside the reservoirs.
However, the contours of the CO2 plumes may
not be accurately simulated over long periods
of time (i.e., after year 20) because the physics
knowledge becomes more limited with time.
Using the generated velocity models, we obtain

synthetic CO2 saturation samples (Figure 9m–9p)
via empirical relationships between saturation and
velocity obtained from the well logs (Figure 10c).
This procedure is illustrated for the injection well

Figure 8. Actual baseline (a) velocity and (d) saturation models. The monitor (b) veloc-
ity and (e) saturation models predicted by the data-driven time-lapse inversion. The
time-lapse variations of (c) velocity and (f) saturation.

Figure 7. Initial P-wave velocity for the inversion of the (a) baseline and (b) monitor
data. P-wave velocity obtained by the physics-based FWI: (c) baseline velocity, (d) mon-
itor velocity, and (e) time-lapse velocity variations. The dashed red lines on plot (c) mark
the reservoir boundaries.
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in year 20 in Figure 10a and 10b. Comparison with the actual values
(Figure 9i–9l) proves that the synthetic saturation models obtained
using the proposed method reflect the movement of the injected
CO2 with sufficient accuracy.
Predictably, the results become less accurate with time (especially,

after year 20) for the following reasons. (1) The CO2 plumes have
similar contours in velocity and saturation. Hence, the synthetic sat-
uration samples could not properly capture the plumes after year 20
because the corresponding velocity contours are inaccurate. (2) The
high-saturation anomaly near the injection well is somewhat distorted
because the velocity and CO2 saturation profiles from the well logs
are not adequately represented by the linear fitting equations. (3) The
simulated velocity distribution inside the CO2 plumes is homo-
geneous (i.e., it does not account for spatial variations), which re-
duces the accuracy of the synthetic saturation model.
Then the 28,000 synthetic data samples are randomly divided into

the training (27,500) and validation (500) sets. After 140 epochs, the
training loss flattens out at approximately 0.0013. Next, we test the

trained neural network on the actual Kimberlina data that have the
same acquisition geometry as the baseline survey. Note that the net-
work employed in the hybrid strategy converges faster and produces a
smaller loss than the pure data-driven method because of the higher
quality of the training data. Both the velocity and saturation for the
monitor survey in year 20 are well predicted by the trained neural
network.

Hybrid strategy versus physics-based method

InvNet-VelSat can reconstruct the velocity (Figure 11c) and sat-
uration (Figure 11f) from the monitor seismic data simultaneously
and with sufficient resolution, which is not possible for the physics-
based strategy. In general, our method outperforms the physics-
based FWI (Figure 7e), which is confirmed by comparing the MAE
values for the estimated velocity and by visually inspecting the re-
sults. The MAE for the velocity field reconstructed by our approach
is 0.0084, whereas that of the physics-based method is 0.056. The

Figure 9. Actual P-wave velocity model (first row) in (a) year 1 (b) year 5, (c) year 20, and (d) year 130, and (e–h) the corresponding generated
velocity samples, respectively. The actual saturation model in (i) year 1, (j) year 5, (k) year 20, and (l) year 130, and (m–p) the corresponding
generated saturation samples.
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CO2 plumes and the high-velocity zone underneath are recon-
structed with a higher resolution using the hybrid method (Fig-
ure 11c). However, the boundaries are positioned less accurately
due to the limited physics information and simulation errors in
the velocity-generation algorithm.

Because the baseline inversion for both strategies is conducted by
the physics-based FWI, we compare the computational efficiency
only for the monitor survey (Table 1). Although the training time
of the hybrid approach (approximately 25.3 h) is significantly
longer than the running time of the physics-based method (approx-
imately 8.5 h), the testing (inversion) for one survey using the hy-
brid strategy takes only 14 s. Hence, the hybrid strategy is much
more efficient than the physics-based method when processing
multiple seismic surveys in real-time monitoring.

Hybrid strategy versus data-driven strategy

Compared to the velocity model predicted by the pure data-driven
method (Figure 8b and 8c), the hybrid approach better captures the
small bump and the low-velocity anomaly (Figure 11b and 11c). In
addition, the hybrid algorithm (Figure 11c) succeeds in reconstruct-
ing the nonpermeable thin layers between the reservoirs without the
false anomalies produced by the data-driven method (Figure 8c).
These improvements are due to the more representative synthetic
training data set generated using our method. Specifically, by lev-
eraging a well-constrained background velocity distribution (the re-
gion outside the reservoir), the network can better capture essential
geologic features from the training set and estimate the background
velocity using the monitor surveys.
On the other hand, the hybrid strategy produces larger errors at

the boundaries of the CO2 plumes because of the inaccurate boun-
dary delineation in the synthetic models (see previous discussion).
Primarily due to the distortions at the boundaries, the overall MAE
for the time-lapse velocity variations produced by our approach
(0.0084) is larger than that of the data-driven method (0.0062).
Because the injected CO2 is confined to the reservoir region, sat-

uration outside the reservoir is supposed to vanish (Figure 6f), as
correctly predicted by the hybrid method (Figure 11f). In contrast,
the data-driven strategy yields nonzero saturation values (ranging
between 0.02 and 0.06) in that area (Figure 8f). Although the con-
tours of the plumes and the high-saturation zone near the injection
well are not accurately estimated by the hybrid approach, its MAE
for the entire saturation model (0.0075) is much smaller compared
to that of the data-driven method (0.039).
Next, we simulate the inverted/predicted baseline and monitor

data and compute the time-lapse seismograms (Figure 12) by sub-
tracting these two data sets. Compared to the ac-
tual record (Figure 12a), all three methods
(Figure 12b–12d) produce artifacts near the first
arrival due to the errors in the inverted time-lapse
variations (Figures 7e, 8c, and 11c). In addition,
because of the inaccurate parameter estimation
outside the reservoirs, both the physics-based
FWI (Figure 12b) and data-driven method (Fig-
ure 12c) yield more intensive false reflection
events after the first arrival than the hybrid ap-
proach. Hence, the proposed hybrid strategy out-
performs the other two methods in the data
domain.

Generalization and robustness: Hybrid
versus data-driven strategy

Generalizability and robustness of a neural
network indicate whether it is actually learning

Figure 10. Well logs and empirical relationship between the veloc-
ity and CO2 saturation for the injection well in year 20. The red and
blue lines on plot (c) are two linear fitting equations separated ac-
cording to the CO2 saturation level.

Figure 11. Baseline (a) velocity and (d) saturation models inverted by physics-based
FWI. The monitor (b) velocity and (e) saturation models predicted by the hybrid
time-lapse inversion. The time-lapse variations of (c) velocity and (f) saturation.
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rather than simply memorizing the input-output
relationship.

Additional monitoring tests

To find out if the proposed hybrid approach is
generalizable, we apply it to the remaining mon-
itor surveys (not used in the training or validation).
The three testing 2D monitor surveys (for years 1,
5, and 130) are acquired along the same line as the
baseline survey. The testing is performed using
InvNet-VelSat without any further fine-tuning.
The velocity and saturation both inside and out-
side the three CO2 plumes are reconstructed with
sufficient accuracy (Figure 13). The differences
between the actual and inverted temporal changes
in all predicted monitor models are observed
mostly at the boundaries. As expected, however,
the prediction error increases with time.

Influence of noise

Next, the testing monitor data for year 20 are
contaminated with Gaussian noise that has a
signal-to-noise ratio (S/N) equal to 10. The noise
is added only to the testing data, whereas InvNet-
VelSat is still trained on noise-free samples.
Predictably, both the data-driven and hybrid

strategies produce more errors in the velocity
and saturation changes estimated from the
noise-contaminated data (Figure 14). For the
velocity model obtained by the data-driven
method, distortions are observed in the low-veloc-
ity layer above the CO2 plumes (zone 1), in the

Figure 12. (a) Actual time-lapse seismogram (the difference between the monitor data in year 21 and baseline data in year 0). Time-lapse
seismogram produced by (b) the physics-based FWI, (c) the data-driven method, and (d) the hybrid strategy. Artifacts after the first arrivals are
either encircled in purple or marked by red arrows.

Figure 13. Actual time-lapse velocity variations for (a) year 1, (b) year 5, and (c) year
130, and (d–f) the corresponding predicted time-lapse velocity variations. The actual
time-lapse saturation variations for (g) year 1, (h) year 5, and (i) year 130, and
(j–l) the corresponding predicted time-lapse saturation variations.

Table 1. Computational cost of the monitor inversion using the physics-based and hybrid strategies.

CPU/GPU Number of (#) nodes # Processors # Training seismic surveys

Physics-based method CPU 3 50 1

Hybrid GPU 2 64 27,500

#Iterations Running time Training time Testing time per survey

Physics-based method 300 8.5 h N/A 8.5 h

Hybrid 140 N/A 25.3 h 14 s

Hybrid method for 4D seismic monitoring K9
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plumes themselves (zone 2), and near the boundary between the res-
ervoir and the deep high-velocity horizons (zone 3). As a result, the
corresponding MAE increases to 0.054, which is much larger than
that for the noise-free data (0.0062).
In contrast, the hybrid strategy reconstructs zones 1 and 3 with

sufficient resolution, with the errors (MAE = 0.013) mostly concen-
trated near the boundaries of the CO2 plumes in zone 2. Evidently,
our method is more robust for noisy data than the data-driven ap-
proach. Likewise, the hybrid strategy predicts the saturation from
the noisy pressure recordings with higher accuracy (MAE = 0.0085)
than the data-driven method (MAE = 0.043) by taking advantage of
the large volume of high-quality training data.

CONCLUSIONS

We developed a time-lapse inversion workflow that does not re-
quire preexisting training data by combining physics-based FWI
and data-driven neural networks. First, FWI is applied to the baseline
survey to estimate the background velocity model. Then, data-driven
inversion (InvNet-VelSat) is employed to predict the velocity and
CO2 saturation from the monitor data set. The training data for In-
vNet-VelSat are simulated with a data-generation method based on
the reconstructed background velocity model and physics informa-
tion (i.e., well logs), which is expected to be available for typical
CO2-sequestration projects. Because these training models are simu-
lated using the inverted baseline data, the proposed workflow relies
on the accuracy of the employed FWI algorithm.
The hybrid strategy is tested on realistic synthetic data from the

Kimberlina reservoir. The training samples (i.e., the velocity and sat-
uration models) simulated by our data-generation method adequately
capture the spatial and temporal dynamics of CO2 movement. The
accuracy of the time-lapse variations predicted by the hybrid method
is comparable to or even higher than that of the much more time-con-
suming physics-based FWI. Testing on noisy data for different time
intervals illustrates the robustness and generalization capability of the
hybrid strategy, whose performance is superior to that of the data-
driven method. It should be emphasized that the hybrid strategy does

not require a large volume of training data, which should facilitate its
application in CO2 sequestration projects.
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