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Programming mRNA decay to modulate synthetic
circuit resource allocation
Ophelia S. Venturelli1,2, Mika Tei1,2, Stefan Bauer3, Leanne Jade G. Chan4, Christopher J. Petzold4

& Adam P. Arkin1,2,3,5

Synthetic circuits embedded in host cells compete with cellular processes for limited

intracellular resources. Here we show how funnelling of cellular resources, after global

transcriptome degradation by the sequence-dependent endoribonuclease MazF, to a

synthetic circuit can increase production. Target genes are protected from MazF activity by

recoding the gene sequence to eliminate recognition sites, while preserving the amino acid

sequence. The expression of a protected fluorescent reporter and flux of a high-value

metabolite are significantly enhanced using this genome-scale control strategy. Proteomics

measurements discover a host factor in need of protection to improve resource redistribution

activity. A computational model demonstrates that the MazF mRNA-decay feedback loop

enables proportional control of MazF in an optimal operating regime. Transcriptional profiling

of MazF-induced cells elucidates the dynamic shifts in transcript abundance and discovers

regulatory design elements. Altogether, our results suggest that manipulation of cellular

resource allocation is a key control parameter for synthetic circuit design.

DOI: 10.1038/ncomms15128 OPEN

1 California Institute for Quantitative Biosciences, University of California Berkeley, Berkeley, California 94158, USA. 2 Department of Bioengineering, University
of California Berkeley, Berkeley, California 94720, USA. 3 Energy Biosciences Institute, University of California Berkeley, Berkeley, California 94704, USA.
4 Joint BioEnergy Institute and Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
5 Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA. Correspondence and requests for
materials should be addressed to O.S.V. (email: venturelli@wisc.edu) or to A.P.A. (email: aparkin@lbl.gov).

NATURE COMMUNICATIONS | 8:15128 | DOI: 10.1038/ncomms15128 | www.nature.com/naturecommunications 1

mailto:venturelli@wisc.edu
mailto:aparkin@lbl.gov
http://www.nature.com/naturecommunications


E
ngineered biological systems have diverse applications
in medicine, bioenergy and agriculture1. Novel cellular
behaviours can be programmed by interacting networks of

biomolecules to process information from the environment and
execute target functions. These synthetic biomolecular circuits
interact with endogenous cellular processes through competition
over shared resources that include ribosomes, transfer RNAs
(tRNAs), RNA polymerases, amino acids and nucleotides2,3.
Resource utilization influences the predictability, function and
evolutionary stability of engineered networks and constrains the
achievable parameter space for synthetic circuit design4.

Cells operate with a limited resource quota, which manifests as
a trade-off in the partitioning of energy between cellular processes
and synthetic circuit functions1,3,5,6. A core challenge is to rewire
cellular regulation to optimally distribute resources between
the host-cell and synthetic circuit processes. While there
are numerous mechanisms to control target gene expression
including engineered promoters7, protein degradation8 or
CRISPRi9–11, limited technologies exist to globally redistribute
resources and reprogramme cellular state. Novel strategies should
be developed to manipulate genome-wide gene expression
patterns to optimize a target function.

RNA degradation more rapidly and efficiently redistributes
ribosomes, a crucial limiting resource in Escherichia coli 6,12,
compared to transcriptional control. Viruses capitalize on
messenger RNA (mRNA) decay to reduce competition for the
host cell translational machinery during developmental
transitions and implement temporal gene expression
programmes13,14. To exploit RNA decay for synthetic circuit
resource redistribution in E. coli, we repurposed a sequence-
specific ribonuclease MazF15 whose recognition site ‘ACA’ is
present in 96% of E. coli coding sequences. The MazF recognition
site can be eliminated from the synthetic circuit while preserving
the amino acid content, allowing cellular resources to be
reallocated towards synthetic gene expression by eliminating
competing processes.

Here we show that MazF activity induces a global cellular
physiological shift that can be exploited to enhance synthetic
circuit expression. These results suggest that the MazF resource
allocator controllably redistributed core cellular subsystems to
support a synthetic circuit and an engineered metabolic pathway.
The former is further enhanced by protection of specific host-cell
factors and use of the orthogonal RNA polymerase from T7
bacteriophage (T7 RNA polymerase) to transcribe genes in the
synthetic circuit. Shotgun proteomics is used to identify a host
factor in need of protection to prevent loss of translational
efficiency following MazF induction. Our results demonstrate that
the activity of the mRNA-decay feedback loop is a critical
parameter for the resource allocator. A dynamic computational
model of the circuit is constructed to interrogate the role of
feedback on growth and circuit properties. Transcriptional
profiling of MazF-induced cells is used to evaluate the correlation
between the number of MazF sites and the impact of MazF
expression on network activity. To pinpoint major parameters
that influence MazF-induced decay rates, we examine the number
and positioning of MazF recognition sites on the expression of a
fluorescent reporter gene. In sum, these results suggest a platform
for global manipulation of resource pools as a key parameter for
modulating synthetic circuit behaviour.

Results
Characterization of MazF for resource allocator design.
To explore whether manipulation of resource allocation could
predictably modulate circuit behaviour, we needed to develop a
comprehensive reallocation mechanism that preserved core
processes required for a target function, while downregulating

competing pathways. MazF is a sequence-dependent and
ribosome-independent endoribonuclease that cleaves the recog-
nition site ‘ACA’ in single-stranded RNA15,16. Approximately
96% of E. coli coding sequences contain at least one MazF
recognition site (Supplementary Fig. 1a). Thus, induction of
MazF should inhibit cellular processes other than those protected
from its action.

We characterized the impact of MazF on expression of a target
gene mCherry that contained nine recognition sites in the coding
sequence (mCherry-U) or was recorded to not contain any sites
using alternative codons (mCherry-P). mazF was introduced into
an intergenic genomic site under control of an aTc-inducible
promoter (PTET) in an E. coli strain deleted for mazF (strain S2 in
Supplementary Table I). The total fluorescence of mCherry-P and
mCherry-U were similar in the absence of MazF, indicating that
recoding the transcript did not modify expression (Fig. 1b). The
MazF induction ratio is a metric used to quantify resource
redistribution activity, and is defined as the ratio of total
mCherry-P fluorescence in the presence to absence of MazF.
Following 10 h of induction with 0 or 5 ng ml� 1 aTc, the MazF
induction ratio was o1 for mCherry-U and 5 for mCherry-P
(Fig. 1c). The sequence protection ratio of total fluorescence,
defined as the ratio of mCherry-P to mCherry-U, was B1 or 19
in the absence or presence of MazF (Fig. 1d). Altogether, these
data show that MazF significantly enhanced protected and
inhibited unprotected gene expression.

To map the relationship between MazF expression and
resource redistribution activity, growth and mCherry-X
(X denotes U or P) expression were measured across a broad
range of aTc concentrations. The total fluorescence of mCherry-U
driven by an arabinose-inducible promoter (PBAD) was reduced
up to 4-fold in response to aTc (Supplementary Fig. 2). In the
presence of aTc, the MazF induction ratio of total fluorescence
was enhanced (Fig. 1e), whereas the total biomass was
lower (Supplementary Fig. 3a). The MazF induction ratio of
fluorescence divided by OD600 increased with aTc and arabinose
(Supplementary Fig. 3b). While the biomass normalization factor
altered the quantitative value of the induction ratio, the
qualitative relationship between MazF activity and protected
gene expression was unmodified (Fig. 1e and Supplementary
Figs 2 and 3b). These data highlight that mCherry-P expression
and biomass synthesis were inversely correlated in response to
MazF. In sum, our results suggest that the enhancement of the
protected gene mCherry-P in MazF-induced cells is due to
augmented synthesis.

To interrogate the temporal variation in expression in
MazF-induced cells, cell populations were induced with
mCherry-P at three time points following exposure to MazF.
To account for variability in biomass across conditions, we
evaluated fluorescence divided by OD600 since the qualitative
relationships were not altered by the biomass normalization
factor (Fig. 1b,e; Supplementary Figs 2 and 3b). To compare
expression across conditions, fluorescence divided by OD600 was
normalized to the maximum expression level across all conditions
following 12 h of induction with 5 ng ml� 1 aTc. In the absence of
MazF, delayed induction by 2 h reduced mCherry-P expression
by 85% (Supplementary Fig. 4a), whereas cells induced
with MazF displayed a 34% decrease in mCherry-P expression
(Supplementary Fig. 4b). These data indicate that heterologous
expression was significantly attenuated by delayed induction
in the absence of MazF, presumably by the transition from
exponential to stationary phase. By contrast, delays in
the induction of mCherry-P reduced expression by a smaller
magnitude in the presence of MazF, indicating that
MazF-induced cells preserved high-metabolic activity for a period
of time.
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To distinguish whether transcriptional or translation activity
dominated the enhancement of mCherry-P in response to MazF,
mCherry-P mRNA was measured using quantitative real-time PCR
(qPCR). The mCherry-P mRNA fold change following 56 min of
induction with 0 or 5 ng ml� 1 aTc relative to mCherry-P mRNA
abundance at the beginning of the experiment (t¼ 0) was similar in
the presence or absence of MazF (Supplementary Fig. 5). These data
show that MazF did not significantly alter the mCherry-P transcrip-
tion rate over this period of time. Therefore, these results suggest that
MazF activity augmented the translation rate of mCherry-P.

Enhancement of gluconate activity using MazF circuit. The
gluconate pathway competes directly with biomass synthesis by
redirecting glucose into gluconate via glucose dehydrogenase
(Gdh, Fig. 2a). To determine the impact of MazF on metabolic
flux, biomass and gluconate were measured as a function of time
(see Methods) in cells expressing protected Gdh (gdh-P) or
unprotected Gdh containing 10 MazF recognition sites (gdh-U)
controlled by a PLAC promoter. These experiments were con-
ducted in a strain background that contained genetic modifica-
tions to inhibit gluconate metabolism and decouple glucose
phosphorylation and transport to efficiently utilize glucose as a
substrate for target metabolic pathways (strain S1 in
Supplementary Table I)17.

As expected, cell growth was inhibited by MazF induction
whereas the uninduced population continued to grow as a
function of time (Fig. 2b). Cells bearing gdh-P driven by a PLAC

promoter displayed up to a three-fold higher gluconate
concentration and five-fold higher gluconate per unit time in
the presence of MazF compared to cells that were not induced
with aTc (Fig. 2c; Supplementary Fig. 6a). The gluconate titre was
85% higher for cells induced with MazF compared to cells that
were not induced following 18.25 h (Fig. 2d). A protected
fluorescent reporter sfGFP (sfGFP-P) N-terminally fused to
Gdh-U or Gdh-P increased up to 3.3 and five-fold as a function of
aTc (Supplementary Fig. 6b). These data demonstrated that the
MazF resource allocator could enhance metabolic flux by
protecting genes in a target metabolic pathway.

Protection of host-factors to enhance resource allocation.
Synthetic circuits depend on a dense network of host-genes
including the transcriptional and translational machinery.
Therefore, MazF-mediated decay of host factors could impact
circuit functions. To investigate whether protection of support
genes could improve the performance of the resource allocator,
we tested whether protection of an orthogonal RNA polymerase
T7 could enhance the circuit output. A protected (T7-P) or
unprotected T7 RNA polymerase (T7-U containing 50 MazF
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Figure 1 | Redistributing resources in E. coli by programming mRNA decay. (a) Schematic diagram of the MazF resource allocator. Host-cell transcripts

containing MazF recognition sites (‘ACA’) are targeted for cleavage. The MazF site can be removed from target genes while preserving the amino acid

sequence. As such, MazF down-regulates transcripts that compete with the protected synthetic circuit for limiting resources, yielding an increase in

protected gene expression. (b) MazF and protected mCherry (mCherry-P) were controlled by an aTc and arabinose-inducible promoter (top), respectively.

Time-series measurements of total fluorescence normalized to the maximum steady-state value (t¼ 10 h) across conditions for cells expressing

unprotected mCherry (mCherry-U) or mCherry-P in the presence (5 ng ml� 1 aTc) or absence (0 ng ml� 1 aTc) of MazF. Cells were induced with 0.05%

arabinose. Bar plot showing the steady-state normalized mCherry fluorescence (inset). (c) MazF induction ratio, defined as the total fluorescence of

mCherry-X in the presence (5 ng ml� 1 aTc) to absence (0 ng ml� 1 aTc) of MazF. Cells were induced for 10 h with 0.05% arabinose. (d) Sequence

protection ratio, defined as the total fluorescence ratio of mCherry-P to mCherry-U in the presence (5 ng ml� 1 aTc) or absence (0 ng ml� 1 aTc) of MazF.

Cells were induced for 10 h with 0.05% arabinose. (e) Heat-map of MazF induction ratio of total fluorescence following 10 h of induction across a range of

arabinose and aTc concentrations. Error bars represent 1 s.d. (n¼ 3).
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sites) controlled by an IPTG-inducible promoter (PLAC) was used
to drive the expression of mCherry (Fig. 3a). The combination of
T7-P and mCherry-P yielded a 21 or 7.6-fold higher expression
level of mCherry compared T7-P, mCherry-U or T7-U, mCherry-
P in the presence of MazF (5 ng ml� 1 aTc) and 1 mM IPTG. T7-
P regulating an N-terminal fluorescent protein fusion of
mCherry-P to Gdh-P (mCherry-P-Gdh-P) exhibited a 1.4 and 15-
fold higher expression compared to T7-P, mCherry-P-Gdh-U or
T7-U, mCherry-P-Gdh-P (Supplementary Fig. 7). The mCherry
expression level of the T7-X, mCherry-X (Fig. 3a) and
T7-X, mCherry-X-Gdh-X (Supplementary Fig. 7) circuits were
differentially enhanced by protection of T7 RNA polymerase or
the reporter gene (mCherry-X or mCherry-X-gdh-X) in the pre-
sence of MazF. Thus, the quantitative value of the enhancement
by protection of specific genes in a circuit depended on the circuit
composition.

Defining translation factors in need of protection is challenging
since the basic translation machinery consists of 78 factors
including ribosomal proteins and aminoacyl-tRNA synthases18.
To identify candidates, the proteome of MazF-induced cells
was measured as a function of time. The majority of the
proteome (216 measured proteins) and 91% of 35 detectable
ribosomal proteins varied by o10% following 5 h of induction,
demonstrating that highly abundant proteins were stable for
hours following exposure to MazF (Supplementary Fig. 8a).
Ribosomal protein subunits S9, S20 and L17 decreased by B20%
and an essential elongation factor EF-Ts decreased by
approximately 80% following 5 h of induction with MazF
(Supplementary Fig. 8b). In the presence of MazF, a protected

version of EF-Ts (EF-Ts-P) driven by an IPTG-dependent
promoter (PLAC) significantly enhanced the expression of
mCherry-P compared to cells that were not induced with
EF-Ts-P (Fig. 3b). These results indicated that genome-wide
measurements could be used to discover support genes in need of
protection to augment resource redistribution activity.

Global mRNA decay could generate imbalances in the
expression levels of genes in a regulatory network. For example,
high concentrations of truncated mRNA fragments could
saturate exonucleases that process these fragments into mono-
nucleotides19. Further, mRNA cleavage generates ribosome
stalling at the 30 end of the mRNA, referred to as non-stop
complexes, which require the action of ribosome recycling factors
to rescue the ribosomes20. RNase R is a multifunctional protein
that exhibits ribonuclease and ribosome recycling factor
activities21. Co-expression of MazF and protected version of
RNase R (RNase R-P) significantly enhanced the expression of
mCherry-P compared to cells expressing only MazF (Fig. 3b).
However, co-expression of EF-Ts-P and RNase R-P did not yield
an additional enhancement in the level of mCherry-P in the
presence of MazF compared to cells expressing either of the
single support genes, RNase R or EF-Ts-P (Supplementary Fig. 9).
These results suggested that epistasis among support genes
could potentially limit incremental improvement of resource
redistribution activity.

Dissecting the role of the MazF mRNA-decay feedback loop.
The mazF transcript is enriched for recognition sites

0 2 4 6
0

0.4

0.8

1.2

1.6  

Time (h)

O
D

60
0

G
lu

co
na

te
 (

g 
l–1

)

G
lu

co
na

te
 (

g 
l–1

)

a b

c d

gdh−U, 5 ng ml–1 aTc
gdh−P, 5 ng ml–1 aTc
gdh−P, 0 ng ml–1 aTc

Glucose

Gdh

Growth
biomass Product

(gluconate)

MazF

mazF
PTET

aTc

gdh-X

IPTG

PLAC

0

0.2

0.4

0.6

2 4 60 gdh-U
gdh-P

gdh-P, 0 aTc

0

0.5

1

1.5

2

Time (h)

Figure 2 | The MazF resource allocator enhanced gluconate production. (a) Schematic diagram of the circuit design (top) and gluconate metabolic

pathway (bottom). Glucose dehydrogenase (Gdh) transforms glucose into gluconate and competes directly with biomass synthesis. MazF and glucose

dehydrogenase (gdh) were controlled by an aTc (PTET) and IPTG-inducible (PLAC) promoter, respectively. (b) OD600 as a function of time for cells

expressing Gdh that contained 11 (Gdh-U) or 0 recognition sites (Gdh-P) in response to 5 or 0 ng ml� 1 aTc (below). All cultures were induced with 1 mM

IPTG and supplemented with 1.5% glucose. (c) Gluconate titre as a function of time. (d) Gluconate titre following 18.25 h of induction. Error bars represent 1

s.d. from the mean of technical replicates (n¼ 3).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms15128

4 NATURE COMMUNICATIONS | 8:15128 | DOI: 10.1038/ncomms15128 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


(Supplementary Fig. 1b), establishing an mRNA-decay negative
feedback loop. We suspected that protection of MazF could
enhance circuit performance. However, the feedback loop
may modulate the regulatory dynamics of MazF and therefore
influence resource redistribution activity. To investigate this
possibility, we probed the role of the mRNA-decay feedback in
the MazF resource allocator.

Cells (strain S3 in Supplementary Table I) bearing mazF-U on
a low copy plasmid (plasmid P1 in Supplementary Table I)
controlled by an aTc-inducible promoter (PTET) and induced with
5 ng ml� 1 aTc exhibited a lower steady-state mazF mRNA level
compared to cells expressing mazF-P (Supplementary Fig. 10a),
demonstrating that the feedback loop was actively regulating the
abundance of the mazF transcript. Corroborating this result,
a 35% lower threshold of aTc was required to inhibit growth in a
strain expressing MazF-P compared to MazF-U (Supplementary
Fig. 10b), suggesting that protection of mazF mRNA yielded a
higher MazF protein level. The Hill coefficients of OD600 as a
function of aTc following 11.2 h of induction were 2.6 and 5.9 for
cells induced with MazF-U or MazF-P, revealing an ultrasensitive
relationship between MazF activity and biomass synthesis that
was significantly increased in the absence of the MazF mRNA-
decay feedback loop.

Contrary to expectation, cells expressing MazF-U displayed
significantly higher mCherry-P expression compared to cells
expressing MazF-P across a broad range of aTc concentrations,
highlighting that the negative feedback loop was a
critical regulatory feature for the MazF resource allocator
(Supplementary Fig. 10c). To further investigate the quantitative
relationship between feedback loop strength and resource
redistribution activity, we examined growth and protected
reporter gene expression in cells (strain S3 in Supplementary
Table I) bearing mazF sequences that varied in the number of
recognition sites (Fig. 3c; Supplementary Fig. 11). The MazF
induction ratio of fluorescence divided by OD600 increased with
the number of sites and the wild-type mazF sequence (nine sites)
generated nearly the highest output expression level (Fig. 3c). In
sum, these results indicated that the activity of the mRNA-decay
feedback loop was a tunable knob that could be used to modulate
circuit performance.

A mechanistic computational model of cellular resource
allocation was constructed to provide insight into the role of
the mRNA-decay negative feedback loop on circuit behaviour
(Supplementary Note). The dynamic model represented the
mRNA and protein levels of key species involved in the MazF
resource allocator (Supplementary Fig. 12), which compete for
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limiting ribosome pools including ribosomes (r), unprotected
proteome (p), MazF (mazFp) and a protected reporter gene (FP).
The growth rate (l) function was based on a previous coarse-
grained mechanistic model of gene expression and growth22.
A detailed description of the model and parameters are in
Supplementary Note and Supplementary Tables II and III.

The relationship between the mazF transcription rate af and
the FP translation rate (ktransFP¼ ktrans[rFP]) is non-monotonic
(Supplementary Fig. 13a), indicating that there is an optimal
expression level of MazF to maximize resource redistribution
activity. The model shows that the strength of the feedback loop,
represented by the dissociation constant of MazF dimer (mazFpd)
to the mazF transcript mf (KDf¼ krff kf

� 1), is inversely correlated
with the dose-response ultrasensitivity of total steady-state MazF
concentration (mazFT¼ 2� [pf]ssþ 2� [rf]ssþ 2� [ff]ssþ 2�
[fe]ssþ 2� [mazFpd]ssþ [mazFp]ss, where ss denotes steady-
state) as a function of af (Fig. 4a,b). Molecular mechanisms that
realize ultrasensitivity include MazF dimerization23, molecular
sequestration24,25 of mRNAs by ribosomes26 or positive
feedback27. In addition, thresholded control of l by mazFT,
which was observed in our experimental and modelling data
(Fig. 4d; Supplementary Fig. 10b), could contribute to
ultrasensitivity in the network. For high KDf corresponding to
the open loop system, the model exhibits bistability manifesting
as two stable steady states across a range of af values
(Supplementary Fig. 13b). Since mp and mr compete for
limiting ribosome pools (Supplementary Fig. 13c), bistability
could arise via positive feedback25 established by an increase in

the synthesis rate of r as a consequence of MazF-dependent mp

decay. The MazF mRNA-decay negative feedback loop enables
proportional adjustment of the mazFT

28 and reduces the potential
for bistability by abolishing ultrasensitivity25,29 (Fig. 4b). As such,
mazFT concentration could be tuned to operate in the regime that
maximized resource redistribution activity.

For a fixed value of af, ktransFP is inversely related to KDf

(Fig. 4c), qualitatively recapitulating the increase in mCherry-P
with the number of binding sites in the mazF transcript (Fig. 3c).
l and the total concentration of the unprotected gene p decrease
as a function of af, mirroring the experimental data that showed
lower OD600 and mCherry-U in the presence of aTc
(Supplementary Figs 2,3a and 10b; Fig. 4d,e). The increase in
ultrasensitivity of the dose response of mazFT versus l as a
function of KDf (Fig. 4d) qualitatively reflected the enhanced
ultrasensitivity of the steady-state dose response of aTc versus
biomass (OD600) for cells expressing MazF-P compared to
MazF-U (Supplementary Fig. 10b). The negative feedback loop
strength is inversely related to the range of af values that enhance
total steady-state r concentration (rT, Fig. 4f). Above a threshold
value of KDf, rT decreases monotonically with af. The mRNA-
decay negative feedback has important implications for resource
allocator design by enabling precise tuning of the MazF operating
point by establishing a proportional relationship between af

and mazFT. Indeed, this negative feedback may provide an
evolutionary advantage for cells by preventing the deleterious
effects of MazF overexpression that accelerated cell death
(Supplementary Fig. 14).
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Figure 4 | Probing the role of the MazF negative feedback loop in a dynamic computational model of resource allocation. This model demonstrates that

the MazF mRNA-decay feedback loop established proportional control of MazF in the absence of MazE (ae¼0). (a) Total MazF concentration at steady-

state (mazFT, t¼ 278 h) as a function of the transcription rate of mazF (af) across a range of dissociation constants (KDf) in units of nM of MazF to mazF

mRNA (mf). Here, mazFT¼ 2� [pf]ssþ 2� [rf]ssþ 2� [ff]ssþ 2� [fe]ssþ 2� [mazFpd]ssþ [mazFp]ss, where ss denotes steady-state. (b) Maximum

logarithmic sensitivity (ultrasensitivity) of the dose response of af versus mazFT across a range of KDf values. (c) Steady-state translation rate of a protected

gene FP (ktransFP¼ ktrans[rFP]ss) as a function of KDf in the presence (af¼ 2.8 nM min� 1) or absence (af¼0 nM min� 1) of MazF. (d) Steady-state growth

rate (l) as a function of af for different values of KDf. (e) Steady-state total unprotected proteome (pT) concentration as a function of af for different values

of KDf. (f) Steady-state total ribosome concentration (rT) as a function of af for different values of KDf.
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MazE feedback loop impacts growth and circuit properties.
Transcriptional profiling and proteomics measurements of
MazF-induced cells (strain S2 in Supplementary Table I) revealed
that the mazE transcript (Supplementary Fig. 15a) and MazE
protein (Supplementary Fig. 15b) were up-regulated by aTc
administration. MazE is a stoichiometric inhibitor of MazF
activity by sequestering MazF into an inactive complex30.
Stimulation of MazE synthesis in response to MazF activity
establishes a molecular sequestration negative feedback loop. The
protein abundance of MazF significantly exceeded MazE,
explaining the lack of MazF inhibition in these conditions
(Supplementary Fig. 15b). Since MazE could be used to control
the activity of the MazF resource allocator, we examined the
impact of MazE activity on growth and circuit properties in the
model.

The transcription rate of mazE was a function of active MazF
(mazFpd) in the model to capture the coupling between MazF
induction and MazE synthesis (Supplementary Note). Increasing
the maximum mazE transcription rate ae reduced the total active
MazF concentration (total active MazF concentration was defined
as [pf]ssþ [rf]ssþ [ff]ssþ [fe]ssþ [mazFpd]ss, where ss denotes
steady-state; Supplementary Fig. 16a). As a result, a higher af was
required to fully inhibit cell growth in the presence of MazE
(Supplementary Fig. 16b). Increasing ae shifted the regime of
maximum resource redistribution activity towards higher af

values (Supplementary Fig. 16c). Ultrasensitivity in the steady-
state dose response of af versus total MazF (mazFT¼ 2�
[pf]ssþ 2� [rf]ssþ 2� [ff]ssþ 2� [fe]ssþ 2� [mazFpd]ssþ 2�
[cef]ssþ [mazFp]ss) was moderately enhanced by up to B23% in
a narrow parameter regime corresponding to high KDf and
intermediate ae values, presumably via molecular sequestration
(Supplementary Fig. 16d)24. However, ultrasensitivity was
significantly reduced across a broad range of ae values. The
range of af that mapped to high resource distribution activity
could be adjusted by modulating both the MazE and MazF
mRNA-decay feedback loops. However, in contrast to the
mRNA-decay feedback, increasing the strength of the MazE
feedback moderately reduced the parameter range that mapped to
optimal circuit performance (Supplementary Fig. 16c). In sum,
MazE is a key control parameter for the MazF resource allocator
that can be used to rapidly modulate growth and resource
redistribution activity31.

Transcriptional profiling of MazF-induced cells. To evaluate the
genome-wide variation in transcript abundance following MazF
exposure, RNA-seq measurements of MazF-induced cells were
collected every 2 min for a total of 8 min using strain S2 induced
with 5 ng ml� 1 aTc (Supplementary Table I). The majority of the
192 endogenous protected genes increased or remained constant
following induction with MazF for 8 min (Fig. 5a). A balance
between synthesis and decay catalysed by RNases and MazF
determines transcript abundance. Therefore, it is challenging to
directly decipher the MazF-dependent transcript decay rates.
Nevertheless, the number of MazF sites was negatively correlated
with the mean log2 fold change of transcript abundance following
8 min of induction with aTc, indicating that on average the
number of MazF sites predicted the fold change across the
transcriptome (Fig. 5b, Supplementary Fig. 17).

Partitioning the transcriptome fold change dynamics into three
clusters (see Methods) revealed three temporal patterns in
transcript abundance in response to MazF induction: down-
regulation (K1, 460 genes), pulsatile response characterized by an
increase in transcript abundance at early times and decrease
following a delay (K2, 148 genes) or up-regulation (K3, 331 genes,
Fig. 5c). We evaluated functional or regulatory enrichments
(Po0.05 using the Fisher’s exact test) in each cluster to provide

insights into the physiological impact of MazF exposure
(Supplementary Table V). Cell envelope and genes regulated by
Fur, MraZ and LexA were enriched in the K1 cluster (Fig. 5c;
Supplementary Fig. 18). MraZ is a transcriptional repressor that
controls many genes involved in cell division and cell wall
biosynthesis32. In addition, the cell division regulator minE
mRNA decreased significantly in the RNA-seq data (Fig. 5a),
corroborating a link between MazF activity and inhibition of cell
division33,34. The K2 cluster was enriched for genes regulated by
NikR, GlpR, GcvA, IHF, IscR and RstA and amino acid and
anaerobic metabolism (Supplementary Fig. 18). K2 contained
numerous regulatory categories (Supplementary Table V),
suggesting that the pulsatile transcript dynamics could be
established by an early increase in synthesis rates and delayed
down-regulation due to mRNA-decay at a threshold
concentration of MazF. Genes regulated by ArgR were enriched
in the up-regulated cluster K3. In addition, 11 TCA cycle enzymes
were up-regulated in the RNA-seq data (P¼ 0.051 enrichment in
K3), suggesting that MazF-induced cells exhibited high metabolic
activity (Supplementary Fig. 19; Supplementary Table V).
Previous work has demonstrated that fumarate production
increased the frequency of persister cells following antibiotic
exposure35. A closer examination of the catabolic pathway
revealed that fumarate producing enzymes were significantly
induced, illustrating a connection between MazF activity
and persistence via enhancement of fumarate flux36,37

(Supplementary Fig. 19).
Cold-shock genes are selectively expressed in response to cold

stress and perform diverse functions including unwinding
of RNA secondary structures, modulation of ribosome and
DNA/RNA chaperone activity38. The transcriptional profiling
data revealed significant shifts in cold-shock cspBCEFG and
associated rbfA, rhlB, rhlE and deaD transcript abundance as a
function of time (Supplementary Fig. 20). IF-3, one of the major
translation factors in E. coli, has been shown to mediate cold
shock translational bias in response to cold stress39,40. IF-3
increased over four-fold in the proteomics data (Supplementary
Fig. 8b) following 5 h of MazF induction, whereas the abundance
of infC mRNA did not change significantly in response to MazF
activity (Fig. 5a). Future work should interrogate the molecular
mechanisms and functional connection among MazF activity,
up-regulation of IF-3, and significant shifts in cold-shock
transcript abundance.

As cold-shock transcripts were up-regulated in response to
MazF activity, these sequences were promising candidates for
engineering MazF-responsive promoters. To test the modularity
of cold-shock induction by MazF, we constructed a tandem
promoter composed of PLAC upstream of the cspB or cspG
promoter, UTR and the first 14 amino acids of CspG or CspB
N-terminally fused to sfGFP-P (Supplementary Fig. 21). MazF
induction increased sfGFP-P by a maximum of 20 or 80-fold,
demonstrating that the cspB and cspG regulatory sequences are
modular control elements that directly respond to MazF activity
as an input.

Interrogation of parameters that impact MazF activity.
A quantitative understanding of the mapping between MazF site
placement and cleavage efficiency could enable tuning of the
timing and degrees of protection to inform resource allocator
design. Previous work demonstrated that MazF activity was
inhibited by strong secondary structures and ribosomes enhanced
cleavage efficiency by unwinding mRNA secondary structures
during translation41. To explore the dominant parameters that
influence MazF cleavage efficiency, we varied the number and
position of MazF recognition sites in the mCherry transcript
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(plasmids P21-36) in the S2 background strain (Supplementary
Table I).

To map the relationship between position and cleavage
efficiency, a single MazF site was inserted at 14 positions in
mCherry-P (Supplementary Fig. 22). These mCherry sequences
exhibited a broad range of expression levels in response to MazF
(Supplementary Fig. 22a). The output was correlated with the
predicted secondary structure Gibbs free energy (DG) 38–47 bp
upstream of the recognition site (r ranged between � 0.7 to
� 0.5, Po0.05 using the Student’s t-test) computed using
NUPACK (Supplementary Fig. 22b,c). For sequences spanning
upstream and downstream of the MazF site, mCherry expression
was correlated (r¼ � 0.6, Po0.05 using the Student’s t-test)
with DG (39–40 bp, Supplementary Fig. 22d). However, the DG of
the sequence downstream of the recognition site was not
correlated with the expression level of mCherry across a broad
range of window sizes (Supplementary Fig. 22e). Therefore, MazF
cleavage efficiency could be predicted using the folding energy of
the local mRNA secondary structure upstream or across the
recognition site.

To provide insight into the programmability of MazF cleavage
efficiency, we interrogated whether measurements of mCherry
variants containing a single MazF site (Supplementary Fig. 22a)
could predict the expression of mCherry sequences containing
combinations of sites. mCherry expression decreased as a

function of the number of recognition sites in the presence of
MazF (Supplementary Fig. 22f). The product of the single site
mCherry expression levels could predict the expression of the
multi-site variants (Po4e–6 using the Student’s t-test), suggesting
that combinations of MazF recognition sites could be used to
modulate the degree of transcript protection.

Discussion
A major goal of synthetic biology and metabolic engineering
is to develop strategies to control the resource economy of
cells for switching between modes of growth and production42.
During a production phase, cellular energy and resources are
focused on specific pathways, while minimizing resource
expenditure towards nonessential cellular operations. Towards
these objectives, previous work leveraged tunable enzymatic
degradation of a metabolic hub that determines the direction of
metabolic flux to augment the yield and titre of a metabolic
pathway two-fold43. While this strategy provided localized
control of metabolic flux, it does not modulate the global
allocation of subsystems such as transcription and translation.
On a larger scale, inducible regulation of RNA polymerase
subunits was recently used to control E. coli growth35. However,
this mechanism cannot be generally applied to redirect resources
towards engineered networks.
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Here, we showed that synthetic circuits could exploit shifts in
cellular physiological state due to MazF activity, suggesting that
intracellular resources could be diverted via programmable
mRNA decay. This approach could be harnessed for diverse
applications by protecting genes in an engineered network and
systematically discovering key support factors beyond the
engineered pathway in need of protection. Recent advancements
in DNA synthesis technologies will facilitate large-scale recoding
of support genes to protect from MazF activity. A utility of this
approach is to enhance target functions that compete directly
with biomass synthesis, such as exploiting microbes as ‘cell
factories’ to synthesize chemicals or biomolecules of interest.
Further, MazF activity could potentially minimize unintended
environmental impact due to cell proliferation, while allowing
engineered cells to carry out a desired function in a complex
environment. Coupling this strategy to dynamic regulation of
MazE would enable periodic resuscitation of cellular sub-systems
and maintain metabolic activity over longer time scales.

MazF regulates orders of magnitude more genes simulta-
neously compared to other technologies such as CRISPRi45,46.
Homologues of MazF that recognize 3, 5 and 7-bp recognition
sites have been identified in diverse bacterial species47–49. Active
site mutations have been shown to modify the MazF sequence
specificity, suggesting that protein engineering could be used to
expand the diversity of MazF recognition site sequences50. The
variation in recognition sequence specificity could be used to tune
the number of genes targeted by MazF.

In addition to the unknown myriad effects of MazF-induction
on network activities, there are several limitations to optimizing
the MazF resource allocator. MazF activity increased the
abundance of a set of host-cell transcripts (cluster K3 in
Fig. 5c), which sequesters resources away from engineered
circuits. However, this activation programme could be exploited
by repurposing regulatory elements that respond to MazF activity
to expand the resource allocator design. In addition, MazF
activity has been shown to yield a heterogeneous ribosome pool
by targeting a specific site of the 16S rRNA51, which could
manifest as translation bias for selected transcripts52. Decay of the
unprotected proteome occurs on the time scale of hours, thus
limiting the time scale required to shift metabolic flux. To rapidly
manipulate metabolic flux, induction of MazF could be coupled
with proteases8 for targeted control of protein abundance. As
the proteome decays, stoichiometric relationships required for
protein activity must be maintained31. Further, MazF has been
shown to establish a futile cycle of continuous RNA synthesis and
decay, resulting in energy dissipation36. To minimize an energy
deficit, orthogonal T7-P could be used to drive the engineered
pathway, while at the same time inactivating native RNA
polymerases.

Cells have evolved numerous feedback mechanisms to optimize
ribosome concentrations to match changes in environmental
conditions, including nutrient quality and abundance53,54. These
growth-rate dependent couplings to cellular processes including
transcription, translation and replication can influence the
behaviour of synthetic circuits. In MazF-induced cells, the
consequences of growth rate inhibition on cellular sub-systems
remain unresolved. The stringent response is not activated in
MazF-induced cells, which allows cells to maintain ribosome
synthesis and cellular maintainence55. A detailed understanding
of network activities and resource partitioning in MazF-induced
cells will allow for exploitation of this unique physiological state
for diverse biotechnological applications.

Top-down approaches such as MazF could be used to discover
host factors that preserve high metabolic activity in the absence of
growth. Genome engineering could be used to protect these
pathways from MazF activity56. Optimal regulatory strategies

should be designed to balance enhancement of resource
redistribution activity and degradation of cellular support
subsystems over long time scales. For example, MazF could be
transiently induced until energy degrades to a threshold that
triggers rapid inhibition of MazF activity via MazE and allows
rebalancing of the proteome57. Altogether, advances in regulatory
control strategies and large-scale recoding may enable the design
of protected and unprotected orthogonal sub-genomes that
dynamically switch between cellular operations.

Methods
Cloning and strain construction. mazF was deleted from the E. coli BW25113
strain using lambda-red recombination and verified by colony PCR. MazF was
introduced into an intergenic region referred to as SafeSite 1 (chromosomal
position 34715) under control of an aTc-inducible promoter (PTET). PCR ampli-
fications were performed using Phusion High-Fidelity DNA Polymerase (NEB) and
oligonucleotides for cloning and strain construction were obtained from Integrated
DNA Technologies. Standard cloning methods were used to construct plasmids.
Plasmids were derived from previously generated construct library58. A list of
plasmids and strains used in this study can be found in Supplementary Table I.

Growth conditions and plate reader experiments. For plate reader experiments,
cells were grown at 37 �C for B6–8 h, and then diluted to OD600 of 0.01 in a
96-well plate (Corning) in LB Lennox media (Sigma). In 96-well plates, cells were
grown in 200 ml volumes at 37 �C covered by a gas-permeable seal (Fisher
Scientific) in a M1000 (Tecan) or Synergy 2 (BioTek) plate reader. Cells were
cultured for 1–2 h in the plate reader before inducer administration. The method
measured cell density (OD600) and fluorescence every 10 min for 15 h. The M1000
excitation and emission wavelengths were 485, 510 nm for GFP and 587, 610 nm
for RFP (5 nm bandwidth). The BioTek excitation and emission wavelengths were
485, 528 nm for GFP and 560, 620 for RFP (20 nm bandwidth). The M1000 and
Synergy 2 measured absorbance at 600 nm (OD600) to quantify total biomass. For
each experiment, the minimum value of fluorescence or OD600 across all condi-
tions was subtracted from fluorescence or OD600 measurements. Normalized
fluorescence was computed by dividing by the maximum value across conditions.
Normalized fluorescence divided by total biomass (OD600) was computed by
dividing total fluorescence by OD600 and then normalizing to the maximum value
across conditions. For plate reader experiments, biological replicates consisted of
cells inoculated into different wells in a 96-well plate that were exposed to
equivalent inducer concentrations.

qPCR measurements. Oligonucleotides for quantitative real-time PCR (sequences
are listed in Supplementary Table IV) were designed using Integrated DNA
Technologies. Total RNA of 500 ng was reverse transcribed using the iScript
complementary DNA (cDNA) synthesis kit (Bio-Rad). The reaction mix contained
5 ml of SsoAdvanced Universal Probes Supermix (Bio-Rad), 0.5 ml primer and probe
corresponding to 250 nM primers and 125 nM probe (20� stock) and 0.5 ml of
cDNA. qPCR measurements were performed using a CFX96 real-time PCR
machine (Bio-Rad). The relative expression levels were determined by a 2�DDG

method. Each sample was normalized by the cycle threshold geometric mean using
reference genes rrsA and cysG59. Biological replicates consisted of three E. coli
cultures exposed to equivalent inducer concentrations (0 or 5 ng ml� 1). Three
qPCR technical replicates were performed and averaged for each sample.

Gluconate measurements. KTS022IG mazF::D (strain S1 in Supplementary
Table I) strains bearing pBbA6c-gdh-X (plasmid P8-9 in Supplementary Table I)
and pBbS2k-mazF-U (plasmid P1) were grown in LB medium at 37 �C overnight
and used to inoculate a 10 ml culture the next morning at an OD600 of 0.05. At
OD600 of 0.3, 1.5% glucose, 1 mM IPTG and 5 or 0 ng ml� 1 were administered to
the cultures. 1 ml samples were collected at the specified times and centrifuged at
5,000g for 5 min to isolate the supernatant. The supernatant samples were analysed
for gluconic acid using a 1,200 Series liquid chromatography system (Agilent
Technologies) coupled to an LTQ-XL ion trap mass spectrometer (Thermo
Scientific) equipped with an electrospray ionization source. Aliquots of the
diluted samples were injected onto a Rezex ROA-Organic Acid Hþ (8%)
(150 mm� 4.6 mm) column (Phenomenex) equipped with a Carbo-Hþ
(4� 3 mm2) guard column (Phenomenex). Gluconic acid was eluted at 55 �C at
B3.5 min with an isocratic flow rate of 0.3 ml min� 1 of 0.5% (v/v) formic acid in
water. Precursor ion m/z 195.1 was selected in negative ion mode using an isolation
window of m/z 2 and was fragmented with a normalized collision energy of 35.
Fragment ions were analysed in the range of m/z 50–200. m/z 128.5–129.5 was
selected as pseudo-MRM transition for compound quantification. Resulting
peak areas were compared to an external standard calibration in the range of
0.2–200 uM. The source parameters were ion spray voltage: 4 kV; capillary
temperature: 350 �C; capillary voltage: � 2 V; tube lense voltage: � 40 V; sheath gas
flow: 60; auxiliary gas flow: 5; and sweep gas flow: 10 (all arbitrary units). Technical
replicates were performed by measuring the sample three independent times.
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The experiment was repeated three independent times. These experiments showed
that the MazF-induced cells expressing Gdh-P yielded the highest gluconate
concentrations compared to uninduced cells and MazF-induced cells expressing
Gdh-U.

Proteomics. BW25113 mazF::D, SafeSite1::tetR-PTET-mazF (strain S2 in
Supplementary Table I) was grown overnight in LB at 37 �C and then diluted to an
OD600 of 0.05 in a 500 ml LB culture. At OD600 of 0.5, cell populations were
induced with 5 ng ml� 1 aTc and 40 ml of the cultures were collected approximately
every hour and centrifuged for 5 min at 4,300g. Proteomic samples were prepared
for analysis by lysing the cell pellets and extracting the proteins using the
chloroform/methanol precipitation method60. The proteins were resuspended in
100 mM AMBIC with 20% methanol and reduced with tris(2-carboxyethyl)
phosphine for 30 min, followed by addition of iodoacetamide (IAA; final conc.
10 mM) for 30 min in the dark, and then digested overnight with MS-grade trypsin
(1:50 w/w trypsin: protein) at 37 �C. Peptides were stored at � 20 �C until analysis.

Samples were analysed on an Agilent 1290 UHPLC—6550 QTOF liquid
chromatography mass spectrometer (LC–MS/MS; Agilent Technologies) system
and the operating parameters for the LC–MS/MS system were described
previously60. Peptides were separated on a Sigma-Aldrich Ascentis Express Peptide
ES-C18 column (2.1� 100 mm2, 2.7 mm particle size, operated at 60 �C) and a flow
rate of 0.4 ml min� 1. The chromatography gradient conditions were as follows:
from the initial starting condition (98% buffer A containing 100% water, 0.1%
formic acid and 2% buffer B composed of 100% acetonitrile, 0.1% formic acid) the
buffer B composition was held for 2 min then increased to 10% over 3 min; then
buffer B was increased to 40% over 117 min, then increased to 90% B over 3 min
and held for 8 min, followed by a ramp back down to 2% B over 1 min, where it was
held for 6 min to re-equilibrate the column to the original conditions. The data
were analysed with the Mascot search engine version 2.3.02 (Matrix Science)
and filtered and validated using Scaffold v4.3.0 (Proteome Software Inc.)60.
Replicates consisted of four aliquots of an E. coli culture exposed to 5 ng ml� 1 aTc
for different lengths of time. Shotgun proteomics was performed independently on
each sample.

RNA-seq library construction and sequencing. BW25113 mazF::D, Safe-
Site1::tetR-PTET-mazF (strain S2 in Supplementary Table I) was grown overnight in
LB at 37 �C and then diluted to an OD600 of 0.05 in a 10 ml LB culture. At an
OD600 of 0.5, cells were induced with 5 ng ml� 1 aTc. Samples were collected as
follows: 200ml of the cell cultures were added to 400 ml of RNAprotect (Qiagen) to
stabilize the RNA, incubated for 5 min at room temperature and then spun down
for 10 min at 5,000g. Total RNA was isolated using RNeasy purification kit and
treated with DNAase I (Qiagen). The Functional Genomics Lab (FGL),
a QB3-Berkeley Core Research Facility at UC Berkeley, constructed the sequencing
libraries. At the FGL, Ribo-Zero rRNA Removal Kits (Illumina) were used to
remove ribosomal RNA and ERCC RNA Spike-In Control Mixes (Ambion by Life
Technologies) were added to the samples. The library preparation was performed
on an Apollo 324 with PrepX RNAseq Library Prep Kits (WaferGen Biosystems,
Fremont, CA), and 18 cycles of PCR amplification was used for index addition and
library fragment enrichment. Biological replicates consisting of two E. coli culture
aliquots exposed to 5 ng ml� 1 aTc were collected at the specified times. RNA-seq
libraries were constructed independently from each sample.

RNA-seq data analysis. The read counts were mapped onto the MG1655 genome
using Bowtie 1 (ref. 61) on the galaxy webserver62. Reads per kilobase of transcript
per million (RPKM) was computed by multiplying the number of mapped reads by
109 and then dividing by the gene length and median number of total reads for
each condition. For clustering analysis, the correlation coefficient (r¼ 0.9) between
two biological replicates as a function of time was used as a threshold to remove
genes that exhibited variability between replicates. The log2 fold change was
partitioned into clusters using the K-means algorithm (MATLAB). To determine
an optimal number of clusters, the sum of squared errors was computed for each
data point from the corresponding cluster centroid across a range of K-values
(1–10). The Elbow method was used as a heuristic to select the optimal number of
partitions that minimizes the sum of squared errors. The Fisher’s exact test
(Po0.05) was used to evaluate enrichment of genes based on TIGRFAM
annotation (MicrobesOnline) or transcription factor network (RegulonDB).
Supplementary Table V contains a list of genes in the enriched categories.

Computational modelling. We used custom code for computational modelling
and data analysis in MATLAB (Mathworks) and Python. Details about the model
construction are provided in Supplementary Note. Model species and parameters
are described in Supplementary Tables II and III. Supplementary Software contains
MATLAB code for the MazF resource allocation model.

Characterization of cell viability. A BW25113 mazF::D strain (strain S3 in
Supplementary Table I) transformed with pBbS2k-mazF-U or pBbS2k-mazF-P
(plasmid P1-2 in Supplementary Table I) was grown overnight at 37 �C in LB
media and then diluted to an OD600 of 0.01 in 5 ml LB media. At an OD600 of 0.3,

5 ng ml� 1 aTc dissolved in 100% ethanol was used to induce the cells and an
equivalent volume of 100% ethanol was administered to the uninduced cell
populations. Following 0 and 7 h, cells were prepared for fluorescent microscopy
using the LIVE/DEAD Baclight Bacteria Viability Kit (Thermo Fisher) to
characterize the fraction of viable cells across the population. Microscope images
were collected using a Zeiss Axio Observer D1 and Plan-Apochromat 63/1.4 Oil
Ph3 M27 objective (Zeiss). Cells were imaged using excitation BP 470/40 and
emission BP 525/50 (Filter Set 38 High Efficiency) or excitation 560/40 and
emission BP 630/75 (Filter Set 45). Images were captured with a Hamamatsu
ORCA-Flash4.0 using the ZEN Software (Zeiss). Cell Counter (Fiji)63 was used to
analyse the images and quantify the number of viable and dead cells. Technical
replicates consisted of aliquots of E. coli cultures that were independently prepared
for microscopy using the LIVE/DEAD protocol.

Statistics. Statistical analyses and sample sizes for each experiment are described
in the figure legends and Methods subsections. Data represent the mean±1 s.d.,
unless noted otherwise. Pr0.05 was considered significant.

Code availability. The authors declare that all computer code supporting the
findings of this study is available on request.

Data availability. The RNA-seq data in this study have been deposited in the
National Center for Biotechnology Information (NCBI) Gene Expression Omnibus
(GEO) with accession code GSE94998. All other data supporting the findings of
this study are available on request.
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