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3 Rationality of Partial Zeta Functions

Daqing Wan∗

January 10, 2014

Abstract

We prove that the partial zeta function introduced in [9] is a rational
function, generalizing Dwork’s rationality theorem.

1 Introduction

Let Fq be the finite field of q elements of characteristic p. Let F̄q be a fixed
algebraic closure of Fq. Let X be an affine algebraic variety over Fq, embedded
in some affine space An. That is, X is defined by a system of polynomial
equations

F1(x1, · · · , xn) = · · · = Fm(x1, · · · , xn) = 0,

where each Fi is a polynomial defined over Fq. Let d1, · · · , dn be positive inte-
gers. For each positive integer k, let

Xd1,···,dn
(k) = {x ∈ X(F̄q)|x1 ∈ Fqd1k , · · · , xn ∈ Fqdnk}.

The number #Xd1,···,dn
(k) counts the points of X whose coordinates are in

different subfields of F̄q. We would like to understand this sequence of integers
#Xd1,···,dn

(k) indexed by k. As usual, it is sufficient to understand the following
generating function.

Definition 1.1 Given X and the n positive integers d1, · · · , dn, the associated
partial zeta function Zd1,···,dn

(X, T ) of X is defined to be the following formal
power series

Zd1,···,dn
(X, T ) = exp

(

∞
∑

k=1

#Xd1,···,dn
(k)

k
T k

)

∈ 1 + TQ[[T ]].

Replacing q by a power of q, without loss of generality, we may assume
that the integer di’s are relatively prime. In the special case that d1 = · · · =
dn = 1, the number #X1,···,1(k) is just the number of Fqk -rational points on X .
The partial zeta function Z1,···,1(X, T ) then becomes the classical zeta function
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Z(X, T ) of the variety X . Dwork’s rationality theorem [2] says that Z(X, T ) is
a rational function. Deligne’s theorem [1] on the Weil conjectures says that the
reciprocal zeros and the reciprocal poles of Z(X, T ) are Weil q-integers. Recall
that a Weil q-integer α is an algebraic integer such that α and each of its Galois
conjugates have the same complex absolute value qw/2 for some non-negative
integer w. The integer w is called the weight of α.

One of our motivations to introduce the above more general partial zeta
function comes from potential applications in number theory, combinatorics
and coding theory. From a theoretic point of view, a special case of the partial
zeta function reduces to the geometric moment zeta function [10] attached to a
family of algebraic varieties over Fq, which was in turn motivated by our work
on Dwork’s unit root conjecture [7][8]. Intuitively, the partial zeta function
gives many new ways, parametrized by the integers di’s, to count the geometric
points on X and thus it contains critical information about the distribution of
the geometric points of X . The partial zeta function also provides a simple
diophantine reformulation of many much more technical problems. In [9], the
following two results were proven concerning the possible rationality of the par-
tial zeta function. Recall that for a complex number α and a complex power
series R(T ) with constant term 1, we can define the complex power R(T )α in

terms of the binomial series (1 + T R(T )−1
T )α.

Proposition 1.2 (Faltings [9]) Let d = [d1, · · · , dn] be the least common mul-
tiple of the di. Let ζd be a primitive d-th root of unity. There are d rational
functions Rj(T ) (1 ≤ j ≤ d) with Rj(0) = 1 and with algebraic integer coeffi-
cients such that

Zd1,···,dn
(X, T ) =

d
∏

j=1

Rj(T )ζj

d .

Furthermore, the reciprocal zeros and reciprocal poles of the Rj(T )’s are Weil
q-integers.

This result shows that the partial zeta function is nearly rational. It is
proved by using a geometric construction of Faltings and the general fixed point
theorem in ℓ-adic cohomology.

Proposition 1.3 ([9]) If the integers {d1, d2, · · · , dn} can be rearranged such
that d1|d2| · · · |dn, then the partial zeta function Zd1,···,dn

(X, T ) is a rational
function in T , who reciprocal zeros and reciprocal poles are Weil q-integers.

This result shows that the partial zeta function has the stronger property
of being a rational function in some non-trivial special cases. It is proved by
viewing X as a sequence of fibered varieties and inductively using the Adams
operation of the relative ℓ-adic cohomology. Although it was felt that the partial
zeta function may not be always rational in general, no counter-examples were
found. The aim of this note is to prove the following result.
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Theorem 1.4 For any variety X as above and any positive integers {d1, · · · , dn},
the partial zeta function Zd1,···,dn

(X, T ) is a rational function in T , who recip-
rocal zeros and reciprocal poles are Weil q-integers.

The idea of the proof is to exploit the geometric construction of Faltings
and its relation to Galois action. Once the rationality is proved, one main new
problem about the partial zeta function is to understand its dependence and
variation on the arithmetic parameters di’s. This would raise many interesting
new questions to be explored, as already illustrated in the special case of moment
zeta functions [10]. The first question one could ask for is about the number of
zeros and poles of the partial zeta function. In Fu-Wan [3], using Katz’s bound
[5] on the ℓ-adic Betti numbers, an explicit total degree bound for Zd1,···,dn

(X, T )
is given, which grows exponentially in d. We conjecture that the true size of the
total degree is much smaller and bounded by a polynomial in d.

Conjecture 1.5 There are two positive constants c1(X) and c2(X) depending
only on X such that the total degree of the partial zeta function Zd1,···,dn

(X, T )
is uniformly bounded by c1(X)dc2(X) for all positive integers {d1, · · · , dn}.

This conjecture has been proved to be true in Fu-Wan [4] in the special case
that d1 = · · · = dr = 1 and dr+1 = · · · = dn = d, corresponding to the so-called
moment zeta function case which has been studied more extensively in connec-
tion to Dwork’s unit root conjecture. We believe that the above conjecture (if
true) together with a deeper analysis of the weights of the zeros and poles of the
partial zeta function would have many important applications. Under suitable
conditions, we would like to have optimal estimates of the form

|#Xd1,···,dn
(k) − qk(d1+···+dn−dm)| ≤ c1d

c2qk(d1+···+dn−dm)/2,

see section 4 for some results in the case of Artin-Schreier hypersurfaces (m = 1).
Acknowledgements. Some results of this paper were obtained during the

2001 Lorentz center workshop “L-functions from algebraic geometry” at Leiden
University and the 2003 AIM workshop “Future directions in algorithmic num-
ber theory”. The author thanks both institutes for their hospitality. The author
would also like to thank H. W. Lenstra Jr. for his interests and discussions on
this paper.

2 Rationality of partial zeta functions

We slightly generalize the setup in the introduction. Let fi : X → Xi (1 ≤
i ≤ n) be morphisms of schemes of finite type over Fq. Assume that the map
f : X → X1 × · · · × Xn defined by

f(x) = (f1(x), · · · , fn(x))

is an embedding. For each positive integer k, let

fd1,···,dn
(k) = {x ∈ X(F̄q)|f1(x) ∈ X1(Fqd1k), · · · , fn(x) ∈ Xn(Fqdnk)}.

This is a finite set since f is an embedding.
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Definition 2.1 Given the morphism f and the n positive integers {d1, · · · , dn},
the associated partial zeta function Zd1,···,dn

(f, T ) of the morphism f is defined
to be the following formal power series

Zd1,···,dn
(f, T ) = exp

(

∞
∑

k=1

#fd1,···,dn
(k)

k
T k

)

∈ 1 + TQ[[T ]].

It is clear that the special case in the introduction corresponds to the case
that X is affine in An and fi is the projection of x to the i-th coordinate xi ∈ A1.

Theorem 2.2 For any morphism f and any positive integers {d1, · · · , dn}, the
partial zeta function Zd1,···,dn

(f, T ) is a rational function in T , whose reciprocal
zeros and reciprocal poles are Weil q-integers.

To prove this theorem, we begin with the geometric construction of Faltings.
Let d = [d1, · · · , dn] be the least common multiple. The set of geometric points
on the d-fold product Xd of X has two commuting actions. One is the q−1-th
power geometric Frobenius action denoted by Frob. Another is the automor-
phism σ on Xd defined by the cyclic shift

σ(y1, · · · , yd) = (yd, y1, · · · , yd−1),

where yj denotes the j-th component (1 ≤ j ≤ d) of a point y = (y1, · · · , yd)
on the d-fold product Xd. Thus, each component yj is a point on X . Let
Y = Y (d1, · · · , dn, f) be the subvariety of Xd defined by the equations

fi ◦ σdi = fi, 1 ≤ i ≤ n,

where fi : Xd → Xd
i denotes the map fi(y1, · · · , yd) = (fi(y1), · · · , fi(yd)).

Thus, a point y = (y1, · · · , yd) ∈ Xd is on the subvariety Y if and only if

fi(yj) = fi(yj+di
), 1 ≤ i ≤ n, 1 ≤ j ≤ d, (2.1)

where j + di is taken to be the smallest positive residue of j + di modulo d. It
is clear that Y is stable under the action of σ which commutes with Frob.

Now, let a be a fixed positive integer relatively prime to d. Let y =
(y1, · · · , yd) be a geometric point of Y . One checks that

σa ◦ Frobk(y) = y ⇐⇒ Frobk(yj) = yj+a, 1 ≤ j ≤ d. (2.2)

The latter is true if and only if

Frobk(fi(yj)) = fi(yj+a), 1 ≤ i ≤ n, 1 ≤ j ≤ d (2.3)

as f is an embedding. Iterating equation (2.3) di times, we get

Frobdik(fi(yj)) = fi(yj+adi
).
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Since y is on Y , by (2.1), we deduce that

Frobdik(fi(yj)) = fi(yj).

Taking j = 1, we see that every fixed point y ∈ Y (F̄q) of σa ◦ Frobk uniquely
determines a point y1 ∈ X(F̄q) satisfying fi(y1) ∈ Xi(Fqdik) for all 1 ≤ i ≤ n.

Conversely, given y1 ∈ X(F̄q) such that fi(y1) ∈ Xi(Fqdik) for all 1 ≤ i ≤ n,
we define

yj = Frobkhj (y1), 1 ≤ j ≤ d,

where hj is the unique integer between 0 and d−1 such that ahj +1 ≡ j( mod d).
The integer hj is clearly well defined since a and d are relatively prime. If
j ≡ j′( mod di), then hj ≡ hj′( mod di). Since fi(y1) ∈ Xi(Fqdik), we deduce
that

fi(yj) = Frobkhj (fi(y1)) = Frobkhj′ (fi(y1)) = fi(yj′ ).

This shows that the point y = (y1, · · · , yd) is on Y . Since f is an embedding and
fi(y1) ∈ Xi(Fqdik) for all i, we deduce that y1 ∈ X(Fqdk). Using the congruence
a(hj + 1) + 1 ≡ j + a( mod d), we derive that

Frobk(yj) = Frobk(hj+1)(y1) = yj+a.

This proves that σa ◦ Frobk(y) = y. In summary, we have proved the following
result.

Lemma 2.3 Let a be a positive integer relatively prime to d. Then, for each
positive integer k ≥ 1, we have the following equality

#fd1,···,dn
(k) = #Fix(σa ◦ Frobk|Y (F̄q)). (2.4)

This lemma was proved in the case a = 1 in [9]. It together with the general
ℓ-adic fixed point theorem gives

#fd1,···,dn
(k) =

∑

j≥0

(−1)jTr(σ ◦ Frobk|Hj
c (Y ⊗ F̄q,Qℓ)),

where ℓ is a prime number different from p and Hj
c denotes the ℓ-adic cohomol-

ogy with compact support. This formula is likely explicitly stated somewhere in
SGA. We have not found it. The quasi-projective case is explained in [3]. The
general finite type case follows by excision.

Since σ and Frob commute, σd = 1, we can decompose the cohomology space
into the eigenspaces of σ. The eigenvalues of σ are d-th roots of unity. The
eigenvalues of Frob are algebraic integers (in fact, Weil q-integers by Deligne’s
theorem). It follows that there are finitely many d-th roots of unity αi and
finitely many algebraic integers λi such that for all integers k ≥ 1, we have

#fd1,···,dn
(k) =

∑

i

±αiλ
k
i .
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We collect similar terms in terms of λi and rewrite the above expression as

#fd1,···,dn
(k) =

∑

j

Ajλ
k
j ,

where the λj ’s are distinct and Aj ∈ Z[ζd]. Replacing σ by σa with (a, d) = 1
and using Lemma 2.3, we deduce that for all τ ∈ Gal(Q(ζd)/Q),

#fd1,···,dn
(k) =

∑

j

τ(Aj)λ
k
j .

This sequence of expression is unique since the λj ’s are distinct. It follows that
τ(Aj) = Aj for all j and all τ . Thus, Aj ∈ Z and

Zd1,···,dn
(f, T ) =

∏

j

(1 − λjT )Aj

is indeed a rational function. Theorem 2.2 is proved.

3 A graph theoretic generalization

In this section, we give Lenstra’s generalization of the partial zeta function and
its rationality in a graph theory setup. Let G = (V, E) be a finite directed
graph, where V is the set of vertices of G and E is the set of directed edges
of G. For each edge e ∈ E, let s(e) (resp. t(e)) denote the starting (resp. the
terminal) vertex of the edge e. Suppose that for each v ∈ V , we are given a
scheme Xv of finite type over Fq. Suppose that for each edge e ∈ E, we are
given a morphism fe : Xs(e) → Xt(e) of finite type over Fq. Let dv (v ∈ V ) be
positive integers. For each positive integer k, we define

N(k) = #{x = (xv)v∈V ∈
∏

v∈V

X(Fqdvk)|∀e ∈ E, fe(xs(e)) = xt(e)}.

Define the graph zeta function to be

Zd1,···,dn
(G, X, T ) = exp

(

∞
∑

k=1

N(k)

k
T k

)

∈ 1 + TQ[[T ]].

One can ask if this power series is a rational function in T .

Theorem 3.1 (Lenstra) For any graph G, any schemes Xv and any mor-
phisms fe as above, the graph zeta function Zd1,···,dn

(G, X, T ) is a rational func-
tion in T , whose reciprocal zeros and reciprocal poles are Weil q-integers.

To prove this theorem, it suffices to reduce the above graph zeta function to
the case of partial zeta functions. For this purpose, let X be the fibred product
of the schemes Xv (v ∈ V ) over all morphisms fe (e ∈ E). That is,

X = {x ∈
∏

v∈V

Xv|∀e ∈ E, fe(xs(e)) = xt(e)}.
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The scheme X is a closed subscheme of the Cartesian product
∏

v∈V Xv. For
each v ∈ V , let fv be the composed map

fv : X →֒
∏

v∈V

Xv → Xv,

where the last map is the projection to Xv. With these definitions, it is clear
that the graph zeta function Zd1,···,dn

(G, X, T ) is simply the partial zeta function
Zd1,···,dn

(f, T ) attached to the morphisms fv : X → Xv. The theorem is proved.
It may be of interest to explore possible graph theoretic applications of this

zeta function.

4 Artin-Schreier hypersurfaces

To give an example, we consider the case of Artin-Schreier hypersurfaces. Let

f(x1, . . . , xn, y1, . . . , yn′) ∈ Fq[x1, . . . , xn, y1, . . . , yn′ ],

where n, n′ ≥ 1. For each d ≥ 1, let

Nd(f) = #{(x0, . . . , xn, y1, . . . , yn′) : xp
0 − x0 = f(x1, . . . , xn, y1, . . . , yn′)},

where xi ∈ Fqd (0 ≤ i ≤ n) and yj ∈ Fq (1 ≤ j ≤ n′). Heuristically (for suitable
f), we expect

Nd(f) = qdn+n′

+ O(q(dn+n′)/2)

where the constant depends on p, f , and d. Deligne’s estimate [1] on exponential
sums implies the following result.

Theorem 4.1 (Deligne) Given f as above, we write f = fr + fr−1 + . . .+ f0,
where fi is homogeneous of degree i. Assume that the leading form fr defines

a smooth projective hypersurface in Pn+n′−1
Fq

, and assume that p 6 |r. Then for
d = 1, we have the following inequality

|N1(f) − qn+n′

| ≤ (p − 1)(r − 1)n+n′

q(n+n′)/2.

What can be said about d > 1? To answer this question, we introduce the
following terminology.

Definition 4.2 Let d be a positive integer and let f be a polynomial as above.
We define the dth fibred sum of f to be the following new polynomial

⊕d
yf = f(x11, . . . , x1n, y1, . . . , yn′) + . . . + f(xd1, . . . , xdn, y1, . . . , yn′).

The following estimate on Nd(f) is proved in [4].

Theorem 4.3 (Fu-Wan) Given f as above, we write f = fr + fr−1 + . . .+ f0,

where fi is homogeneous of degree i. Assume that
⊕d

y fr is smooth in Pdn+n′−1
Fq

and assume that p 6 |r. Then, we have the following inequality

|Nd(f) − qdn+n′

| ≤ (p − 1)(r − 1)dn+n′

q(dn+n′)/2.
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Example 4.4 Consider the case that

f(x, y) = f1,r(x1, . . . , xn) + f2,r(y1, . . . , yn′) + f≤r−1(x, y),

where f1,r is smooth in Pn−1
Fq

, f2,r is smooth in Pn′−1
Fq

and f≤r−1 is a polynomial

of degree at most r−1. It is then straightforward to check that
⊕d

y fr is smooth

in Pdn+n′−1
Fq

if and only if d is not divisible by p. Since the condition that the
fibred sum be smooth is Zariski open, there exist many more examples of such
f to which the theorem applies if d is not divisible by p.

It would be interesting to prove similar results for the Kummer hypersurface
xD

0 = f(x1, . . . , xn, y1, . . . , yn′); see Katz [6] for some related weaker results in
this direction.
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