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Using 116:1 fb�1 of data collected by the BABAR detector, we present an analysis of �0
c production in

B decays and from the c �c continuum, with the �0
c decaying into ��K� and ���� final states. We

measure the ratio of branching fractions B��0
c ! ��K��=B��0

c ! ����� to be 0:294� 0:018�
0:016, where the first uncertainty is statistical and the second is systematic. The �0

c momentum spectrum
is measured on and 40 MeV below the ��4S� resonance. From these spectra the branching fraction
product B�B! �0

cX� �B��0
c ! ����� is measured to be �2:11� 0:19� 0:25� � 10�4, and the cross-

section product ��e�e� ! �0
cX� �B��0

c ! ����� from the continuum is measured to be �388� 39�
41� fb at a center-of-mass energy of 10.58 GeV.

DOI: 10.1103/PhysRevLett.95.142003 PACS numbers: 13.25.Hw, 13.30.Eg, 14.20.Lq
In this Letter we present a study of the �0
c�csd� [1]

charmed baryon through two decay modes: �0
c ! ��K�

and �0
c ! ���� [2], the former of which is expected to

proceed almost entirely via internal W exchange. We de-
termine the ratio of branching fractions of these decay
modes, which has been measured previously to be 0:50�
0:21� 0:05 [3,4]. It was predicted to be 0.32 with a quark
model calculation in which no spin information is ex-
changed between quarks other than through a single W
boson [5].

We also study �0
c production by measuring the spectrum

of the �0
c momentum in the e�e� center-of-mass frame

(p�). A number of theoretical predictions for �c produc-
tion in B decays have been made [6–9]. There are several
possible production mechanisms, principally b! c �cs
weak decays, b! c �ud weak decays in which an s�s pair
is produced during fragmentation, and Cabibbo-suppressed
b! c �us weak decays. At this point there is insufficient
experimental evidence to determine which of these is the
dominant mechanism, and no clear theoretical consensus.
Insight into the contributing processes can be gained by
studying the shape of the p� spectrum. Evidence for �c
production in B decays was presented previously by the
CLEO collaboration, with a statistical significance of�3�
in the �0

c ! ���� decay mode and �4� in the ��c !
������ decay mode [10].

The data for this analysis were collected with the
BABAR detector at the SLAC PEP-II asymmetric energy
e�e� collider; the detector is described in detail elsewhere
[11]. A total integrated luminosity of 116:1 fb�1 is used, of
which 105:4 fb�1 was collected at the ��4S� resonance [1]
(corresponding to 116� 106 B �B pairs) and 10:7 fb�1 was
collected at a center-of-mass energy of 10.54 GeV, which is
below the B �B production threshold. These are referred to
as the on-resonance and off-resonance data samples,
respectively.

The reconstruction of �0
c candidates takes place as

follows. A � candidate is reconstructed by identifying a
proton and combining it with an oppositely charged track
interpreted as a ��, fitting the tracks to a common vertex.
The � candidate is then combined with a negatively
charged track interpreted as a �� (K�) to form a ��

(��) candidate. For each intermediate hyperon, the invari-
ant mass is required to be within 3� of the central value,
14200
where � is the fitted mass resolution. The invariant mass is
then constrained to the nominal value [1]. Each resulting
�� (��) candidate passing the selection criteria is then
combined with a positively charged track interpreted as a
�� (K�) to form a �0

c candidate. For the ��K� final state,
the two K� tracks must be identified as kaons. Particle
identification is performed with dE=dx and Cherenkov
angle measurements [11].

Additional selection criteria, described below, are used
to improve the signal-to-background ratio. As a precaution
against selection bias, these are optimized with subsamples
of the data: 20 and 40 fb�1 for the ���� and ��K� final
states, respectively. A minimum decay distance of 2.5 mm
(1.5 mm) between the event primary vertex and the ��

(��) decay vertex in the plane perpendicular to the beam
direction is required. The distance between the �� and �
decay vertices is required to be at least 3 mm. In addition,
the relative positioning of vertices is required to be caus-
ally connected: we reject candidates in which the ��

decays further from the primary vertex than its daughter
� does, or where the displacement vector from the ��

decay point to the � decay point is antiparallel to the �
momentum vector [12]. The invariant mass distributions
for the �0

c candidates in the full data set satisfying these
criteria are shown in Figs. 1(a) and 1(b) for ���� and
��K� combinations, with signal yields of approximately
8100 and 1000 events, respectively.

Simulated events with the �0
c decaying into the two

desired final states are generated for the processes e�e� !
c �c! �0

cX and e�e� ! ��4S� ! B �B! �0
cX, where X

represents the rest of the event. The PYTHIA simulation
package [13], tuned to the global BABAR data, is used for
the c �c fragmentation and for B decays to �0

c, and GEANT4

[14] is used to simulate the detector response. For c �c
production, samples of 90 000 events for the ���� final
state and 60 000 for the ��K� final state are generated.
For B �B production, samples of 255 000 and 120 000 events
are used, respectively.

Additional generic Monte Carlo events are used to in-
vestigate possible background contributions. The sample
sizes are equivalent to 245, 64, and 33 fb�1 for e�e� !
B �B, c �c, and q �q, respectively, where q 	 u; d; s. Excluding
signal contributions, the mass distribution varies smoothly
throughout the region near the �0

c mass.
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FIG. 1. Invariant mass distributions for �0
c candidates in

116:1 fb�1 of data, for (a) ����, and (b) ��K�.
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To measure the ratio of branching fractions, a further
requirement that p� > 1:8 GeV=c is imposed on the �0

c
candidates in order to suppress combinatoric background
and improve the signal purity. Additionally, the candidates
are required to be within the region of high �0

c reconstruc-
tion efficiency �0:8 
 cos�� 
 0:6, where �� is the polar
angle of the �0

c candidate with respect to the collision axis
in the center-of-mass frame. After these criteria, the signal
yields for the ���� and ��K� modes are approximately
3650 and 650, respectively. The efficiency is calculated
from signal Monte Carlo events as a function of p� and
cos�� for each of the decay modes. For each mode, a 15-
parameter fit gives a smooth parameterization of the effi-
ciency with small statistical uncertainty. The efficiency is
then corrected by weighting each candidate by the inverse
of its efficiency, and the efficiency-corrected mass spec-
trum is fitted with a double Gaussian with a common mean
for signal plus a linear background function. Including
efficiency loss due to the �� and � branching fractions,
we obtain 25 889� 516 weighted events in the ����

mode and 7615� 443 weighted events in the ��K�

mode. The �2 fit probabilities are 65% and 5%, respec-
tively. In each case, the wider Gaussian contributes ap-
proximately one quarter of the yield.

We evaluate several sources of systematic uncertainty in
the ratio of branching fractions: the fits to the mass spectra
(3.4%), the efficiency parameterization (3.1%), particle
identification (2.0%), finite Monte Carlo statistics (1.4%),
multiple candidates in the same event (1.0%), charge
asymmetries in detection efficiency (1.0%), the cos�� dis-
tribution (1.0%), and the �� branching fraction (1.0%).
No baryon polarization is considered and any systematic
14200
uncertainty due to this is neglected. Adding all of the
uncertainties in quadrature, we obtain

B��0
c ! ��K��

B��0
c ! �����

	 0:294� 0:018� 0:016:

After obtaining the ratio of branching fractions, we next
measure the p� spectrum of the �0

c baryons in order to
study the production mechanisms in both c �c and B �B
events. The same selection criteria and data samples de-
scribed above are used, except that no requirement on p� or
cos�� is made. Instead, the �0

c candidates are divided into
intervals of p�. The yield is then measured in each interval
with two different methods: first with a fitting method,
where the mass spectrum is fitted with a single Gaussian
for signal plus a linear background function and the inte-
gral of the Gaussian is taken as the yield; second with a
counting method, where the background is estimated from
mass sidebands and the signal yield is then taken as the
statistical excess above this background in a mass window
around the peak. The use of two different methods serves
as a cross-check.

The efficiency in each p� interval is estimated with
signal Monte Carlo events from that p� range. For both
methods, the simulated events are reconstructed and the
yield is measured, then divided by the number of events
generated to obtain the efficiency. Because of the different
angular distributions, the efficiencies for �0

c produced
from c �c �"c �c� and from B �B �"B �B� differ slightly. In the
region 1:2<p� < 2:0 GeV=c where both production
mechanisms are significant and the difference is approxi-
mately 8% (relative), the efficiency is taken to be �"c �c �
"B �B�=2. The systematic uncertainty on the efficiency is
then j"c �c � "B �Bj=

������

12
p

. The angular distributions produced
in PYTHIA fragmentation are assumed to be correct when
calculating the efficiency; the data are fully consistent with
these distributions within available statistics. The
efficiency-corrected yield in each p� interval is then calcu-
lated, including loss of efficiency due to the � and ��

branching fractions. The spectra obtained with the two
methods are in good agreement; we use the counting
method for the quoted results since it is more stable for
low statistics.

A number of systematic uncertainties are considered, the
most important of which are the uncertainties associated
with the track-finding and particle identification efficien-
cies (5.8% and 3.5%, respectively). Uncertainties from the
simulated �0

c mass resolution (1%), the mass resolutions of
the intermediate hyperon states (0.5%), the p� resolution
[O�1%�], the effect of finite interval width [O�2%�], mul-
tiple candidates (0%), nonlinearity of the background
[O�1%�], the signal measurement method used (2%), the
finite Monte Carlo statistics available [O�3%�], and un-
certainties in the � and �� branching fractions (0.8%,
1.0%) are all considered individually; the notation O�x%�
indicates the typical value when the exact uncertainty
3-5
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varies among p� intervals. The total systematic uncertainty
for each p� interval is obtained by adding the individual
contributions in quadrature. In addition, a systematic cor-
rection of 1.0% is applied to account for a known data–
Monte Carlo discrepancy in the track-finding efficiency,
and small corrections are applied to each interval to ac-
count for the broadening effect of the p� experimental
resolution on the spectrum. The final p� spectrum for the
on-resonance data set, obtained with the counting method
in the ���� mode, is shown in Fig. 2(a). Table I shows the
corresponding values.

A further check is performed by comparing the two
decay modes. The ��K� yields are scaled by a factor of
�1=0:294�, the ratio of branching fractions previously pre-
sented in this Letter. Because the ��K� signal has fewer
events, wider p� intervals are used. The spectra of the two
modes show good agreement in both shape and normaliza-
tion and have a �2 probability of 80% for consistency. This
serves as a cross-check both of the p� spectrum measure-
ment and of the ratio of branching fractions.

The double-peak structure seen in the p� spectrum is due
to two production mechanisms: the peak at lower p� is due
to �0

c production in Bmeson decays and the peak at higher
p� is due to �0

c production from the c �c continuum. This is
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FIG. 2. The p� spectrum measurements. In (a) the p� spec-
trum of �0

c decaying via ���� is shown for the on-resonance
data sample. In (b) the on-resonance and off-resonance data
samples are shown together, with the off-resonance normaliza-
tion scaled to account for the difference in integrated luminosity
and cross section. In each plot, the inner error bars give the
statistical uncertainty and the outer error bars give the sum in
quadrature of the statistical and systematic uncertainties. The
vertical line at 2:15 GeV=c in (b) shows the kinematic cutoff for
�0
c produced in B decays at BABAR. Note that the vertical axes

show events per unit p�, not events in each p� bin as given in
Table I.
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evident from Fig. 2(b), where the p� spectra for the on-
resonance and off-resonance data are shown separately
(with the off-resonance spectrum scaled to the on-
resonance integrated luminosity and corrected for the
change in c �c cross section). Table II shows the correspond-
ing values. The c �c peak is present in both samples, but the
B �B peak is only present in the on-resonance sample.
Assuming baryon number conservation, the kinematic
limit for �0

c produced in the decays of B mesons at
BABAR is p� 	 2:135 GeV=c. We compare the on-
resonance and scaled off-resonance samples for p� 

2:15 GeV=c to obtain the yield of �0

c produced in B
decays. This is scaled by the number of B mesons in the
data sample (introducing a further 1.1% systematic uncer-
tainty) to obtain

B �B! �0
cX� �B��0

c ! �����

	 �2:11� 0:19� 0:25� � 10�4: (1)

The yield of �0
c produced in c �c events at an energy of

10.58 GeV is calculated from the scaled off-resonance data
set (for p� 
 2:15 GeV=c) and the on-resonance data set
(for p� > 2:15 GeV=c). The yield is then divided by the
integrated luminosity (introducing a further 1.5% system-
atic uncertainty) to obtain the cross section from the con-
TABLE I. Efficiency-corrected yield and cross-section product
including B production ��e�e� ! �0

cX� �B��0
c ! �����,

for the on-resonance data.

p� range (GeV=c) Corrected yield Cross-section product (fb)

0.0–0.2 1046� 201� 128 10� 2� 1
0.2–0.4 5889� 446� 483 56� 4� 5
0.4–0.6 10681� 631� 801 101� 6� 8
0.6–0.8 10709� 660� 817 102� 6� 8
0.8–1.0 8811� 647� 679 84� 6� 7
1.0–1.2 6834� 573� 530 65� 5� 5
1.2–1.4 2954� 501� 252 28� 5� 2
1.4–1.6 2429� 470� 212 23� 4� 2
1.6–1.8 2252� 424� 202 21� 4� 2
1.8–2.0 2159� 350� 217 20� 3� 2
2.0–2.2 2375� 347� 205 23� 3� 2
2.2–2.4 2743� 340� 227 26� 3� 2
2.4–2.6 3537� 315� 285 34� 3� 3
2.6–2.8 3920� 282� 306 37� 3� 3
2.8–3.0 4595� 294� 359 44� 3� 3
3.0–3.2 4873� 263� 401 46� 2� 4
3.2–3.4 4442� 244� 348 42� 2� 3
3.4–3.6 4084� 223� 355 39� 2� 3
3.6–3.8 2282� 171� 189 22� 2� 2
3.8–4.0 2095� 155� 166 20� 1� 2
4.0–4.2 1168� 123� 177 11� 1� 2
4.2–4.4 233� 53� 32 2:2� 0:5� 0:3
4.4–4.6 88� 37� 21 0:8� 0:3� 0:2
4.6–4.8 5� 13� 7 0:0� 0:1� 0:1
4.8–5.0 24� 17� 16 0:2� 0:2� 0:1
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TABLE II. Cross-section product including B production
��e�e� ! �0

cX� �B��0
c ! �����, for the on- and off-

resonance data. The off-resonance cross sections are scaled to
a center-of-mass energy of 10.58 GeV.

p� range (GeV=c) Cross-section product (fb)
On resonance Off resonance

0.00–0.45 88� 5� 7 10� 12� 1
0.45–0.90 218� 9� 17 16� 21� 2
0.90–1.35 128� 8� 10 �7� 20� 2
1.35–1.80 51� 6� 4 16� 18� 2
1.80–2.15 37� 4� 3 23� 13� 2
2.15–2.70 83� 5� 6 91� 16� 7
2.70–3.30 133� 4� 10 168� 15� 13
3.30–4.00 99� 3� 8 89� 10� 7
4.00–4.70 14� 1� 1 17� 4� 2
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tinuum

��e�e� ! �0
cX� �B��0

c ! �����

	 �388� 39� 41� fb; (2)

where both �0
c and ��0

c are included in the cross section.
The effect of initial state radiation is not isolated.

In summary, we have studied the �0
c charmed baryon at

BABAR through its decays to the ��K� and ���� final
states using 116:1 fb�1 of data. The ratio of branching
fractions of these decay modes was measured to be
0:294� 0:018� 0:016. This represents a substantial im-
provement on the previous measurement [3] and is con-
sistent with a quark model prediction [5]. We have also
measured the p� spectrum for �0

c produced at the ��4S�
resonance. The high rate of �0

c production at low p� in B
decays (below 1:2 GeV=c) is particularly intriguing, im-
plying that the invariant mass of the recoiling antibaryon
system is typically above 2:0 GeV=c2. This can be ex-
plained naturally by a substantial rate of charmed baryon
pair production through the b! c �cs weak decay process
[6–9] which was observed indirectly in a previous BABAR
analysis [15]. In this Letter we measured the branching
fraction product B�B! �0

cX� �B��0
c ! ����� to be

�2:11� 0:19� 0:25� � 10�4; the precision is significantly
improved over the previous measurement [10]. We have
also measured the cross-section product ��e�e� !
�0
cX� �B��0

c ! ����� from the continuum to be
�388� 39� 41� fb.
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