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Cells are capable of rapidly responding to changes in their environment, 

including the presence of pathogens or noxious conditions.  Molecular signaling 

pathways that regulate these responses show highly dynamic patterns of activity.  

Indeed, the controls of half-life and protein degradation are hallmarks of many 

signaling pathways.  In the case of the NFκB regulatory pathway, the key mediator of 

inflammatory responses, the inhibitor proteins IκBα, -β, and -ε are known to be 

regulated by signal-responsive mechanisms freeing NFκB.  Recent work also indicates 

that IκBα is synthesized in excess in resting cells to ensure that NFκB activity remains 
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effectively inhibited.  Rapid degradation of the excess IκB is critical so that NFκB 

activation can proceed rapidly when inflammatory responses are needed.  

Cellular protein degradation is catalyzed by the proteasome, a large molecular 

machine.  Proteins are usually targeted for degradation by a specific post-translational 

modification, the covalent attachment of the small molecule ubiquitin.  In this 

dissertation I report that IκBα does not require such modifications for its rapid 

degradation, but instead relies on a specific amino-acid sequence, termed a degron, 

that targets even heterologous proteins to the proteasome.  Interestingly these amino 

acids are buried within the IκBα-NFκB complex, thus stabilizing IκBα, and allowing 

it to effectively inhibit NFκB.  This work describes a novel determinant of protein 

half-life control and shows that it is amenable to regulation by a post-translational 

mechanism to stabilize the target protein. 

In examining the other IκB family members, I show that while IκBβ may 

undergo similar control, IκBε is in fact a stable protein that maybe less suited to 

ensure NFκB inhibition in resting cells. 



1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Chapter 1: 
Introduction 



2 

THE DYNAMICS OF SIGNALING 

Protein synthesis is not only required when cells are growing or reproducing: 

protein turnover, the process by which proteins are synthesized and degraded, is a 

constitutive cellular process.  As protein turnover is critical for cellular homeostasis 

and response to environmental changes, determining how and when a given protein 

should be degraded is a fundamental decision for a cell.  Different proteins have 

distinct degradation rates and mechanisms of degradation.  In some cases degradation 

is mediated by signaling events, whereby an initial signal orchestrates a chain of 

events resulting in protein turnover.  In other cases, proteins are constitutively 

degraded in order to maintain cellular equilibrium (Inobe and Matouschek, 2014). 

Several well-studied signaling networks involve the modulation of protein 

half-life as a key mechanism for mediating information flow.  Given that many human 

diseases, including the pathogenesis of cancer, have defects in protein turnover 

(Nakayama and Nakayama, 2006), understanding the activities and levels of signaling 

proteins is crucial as they are critical determinants of how a cell will respond to a 

particular signal or environmental change. 

The transcription factor NFκB is just one of the many proteins that requires 

constant regulation in order to maintain steady-state levels.  Sustaining proper protein 

abundance can be done primarily by two degradation mechanisms namely, through the 

lysosome or through the proteasome.  Lysosomal degradation is generally non-specific 

and the rate of degradation does not change upon stimulation (Ciechanover, 2005).  In 

contrast, proteasomal degradation is highly specific and degradation rates can range on 

the timescale of minutes (like the enzyme ornithine decarboxylase; Asher et al., 2005) 
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to days (like the muscle proteins actin and myosin; Antecol et al., 1986).  In the 

following section, we will focus on the turnover control by the proteasome. 

 

PROTEIN TURNOVER CONTROL BY THE PROTEASOME 

The proteasome is a large 700kDa protein complex that functions as a major 

piece of proteolytic machinery in higher eukaryotic cells.  It is responsible for basal 

turnover of proteins in the cell, as well as the elimination of proteins with abnormal 

age or excess levels.  However, the best-studied role of the proteasome is the spatial 

and temporal control of the destruction of many key cell regulators.  In this aspect the 

proteasome occupies a central role in the control of cell division, differentiation, 

apoptosis, adaptation to stresses and, more generally, in the integration of most 

environmental signals (Figure 1.1.) (Coux et al., 1996).  

 

The 20S core 

The proteasome consists of two main parts: the proteolytic 20S core and the 

regulatory caps.  The 20S core is made up of four heptameric rings stacked upon one 

another forming a central barrel.  The two central rings are identical and are formed by 

seven β subunits each; the outer rings are also identical and are made up of seven α 

subunits each (Coux et al., 1996).  The β rings contain three proteolytic sites on each 

ring: (1) a  “chymotrypsin-like” site, which cleaves after large hydrophobic residues; 

(2) a “trypsin-like” site, which cleaves after basic residues; and (3) a “postglutamyl” 

hydrolase, which cleaves after acidic residues (Orlowski, 1990).  The α rings on the 

other hand, have no proteolytic sites and instead seem to act as gatekeepers to the 
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opening of the proteolytic core.  The 20S core interacts with three known regulatory 

caps, which are required to open the 20S core and are thought to have a role in 

recruitment and unfolding of substrates for hydrolysis.   

 

The ubiquitin-proteasome system 

The two most documented regulatory complexes are the 19S and 11S caps 

(Figure 1.2.; Ciechanover, 2005).  The 19S regulatory particle is composed of nineteen 

subunits, which can be divided into two substructures; namely, the base and the lid 

(Lander et al., 2012).  The lid is thought to be necessary for recognition of 

ubiquitylated proteins.  Two 19S caps and a 20S core particle make up what is referred 

to as the 26S proteasome, which is perhaps the most-studied version of the 

proteasome.  Most proteins are targeted to the 26S proteasome by poly-ubiquitin 

chains.  Ubiquitin is a 76 amino acid protein that is typically covalently linked to 

lysine in a regulated multistep fashion but has also been shown to conjugate to 

cysteine, serine and threonine via thiodiester and hydroxyester linkages (Cadwell and 

Coscoy, 2005; Wang et al., 2007).  Ubiquitin generally marks proteins for degradation 

by the 26S proteasome; however, proteins can also be susceptible to ubiquitin-

independent degradation via the 20S core proteasome (Bercovich et al., 1989; Chen et 

al., 2007; Asher and Shaul, 2005). 
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Figure 1.1. The physiological role of the proteasome. 
The proteasome is responsible for basal turnover in the cell, as well as the elimination of 
abnormal, aged or in-excess proteins. Its most studied role is the spatial and temporal control 
of the destruction of many key cell regulators. The proteasome occupies a central role in the 
control of cell division, differentiation, apoptosis, adaptation to stresses and, more generally, 
in the integration of most environmental signals. 
  

aged/misfolded 
proteins 

cell-cycle  
regulators 

in-excess  
proteins  

signaling 
 proteins 



 

  

6 

Ubiquitin-independent degradation 

Although data remains inconclusive, it is thought that ubiquitin-independent 

degradation utilizes the other subset of regulator caps referred to as the 11S regulatory 

cap, which are also denoted as PA28 or REG complexes (Figure 1.2.).  There are two 

types of 11S activators, which are either made of heteroheptamers of α and β subunits 

or of homoheptamers of γ subunits (Mao et al., 2008).  The 11S regulators do not 

contain ATPase activity and can mediate proteasomal degradation independent of 

ATP and ubiquitin.  Since the 19S cap has also been implicated in the degradation of 

proteins in the absence of ubiquitin (Jariel-Encontre et al., 2008), it is not clear 

whether all ubiquitin-independent degradation is mediated via the 11S cap. 

 There are an increasing number of signaling proteins that have been shown to 

be degraded by the proteasome without the requirement of prior ubiquitination 

including the proto-oncogene c-fos (Acquaviva et al., 2002), the genotoxic response 

regulator p53 (Asher and Shaul, 2005), and the polyamine synthesis enzyme ornithine 

decarboxylase (Asher et al., 2005).  These proteins are regulated via modulation of 

their synthesis and degradation rates.  In these systems, it is the protein itself that 

undergoes a high turnover rate.  In contrast, the cellular abundance of the transcription 

factor NFκB does not change radically during signaling, but instead, the abundance of 

its inhibitor, IκBα, does (Hoffmann et al. 2002; O’Dea et al., 2007).  NFκB is a critical 

mediator for cellular responses to inflammatory cytokines, developmental signals, 

pathogens, and cellular stresses (Hoffmann and Baltimore, 2006).  While 

inflammatory signaling leads to short-lived NFκB activity that is carefully regulated  
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Figure 1.2. The components of the proteasome.  
The 20S core is a barrel shaped cylinder composed of two inner β-rings and two outer α-rings. 
The α-rings mediate entrance to the proteolytic β-rings. There are at least two activators of the 
proteasome, the 19S and 11S caps.  
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via feedback mechanisms, constitutive high levels of active NFκB are associated with 

inflammatory diseases and many types of cancer (Courtois and Gilmore, 2006). 

 

THE NFΚB SIGNALING PATHWAY 

The NFκB family of transcription factors are the effectors of a signaling 

system that is responsive to a large number of stimuli.  These factors are mediated by 

most members of the tumor necrosis receptor (TNFR), the toll like receptor (TLR) 

superfamilies, as well as metabolic or genotoxic stress inducers (Figure 1.3.).  As a 

critical regulator of immunity, NFκB signaling components can be found in almost all 

multi-cellular organisms, including mammals, insects, urchins, and mollusks but not 

C. elegans (Graef et al. 2001; Sullivan et al. 2007).  

In mammals, the genes rela, relb, crel, nfkb1, and nfkb2 respectively encode 

the five NFκB protein family members RelA (p65), RelB, c-Rel, p50, and p52.  Thus 

forming homo- and heterodimeric DNA binding complexes (Figure 1.4. and Figure 

1.5.).  All five family members have a characteristic Rel homology domain (RHD) 

responsible for DNA binding and dimerization.  However, while RelA, RelB, and c-

Rel each possess a transcriptional activation domain (TAD), p50 and p52 do not.  

Thus, of the fifteen theoretically possible NFκB dimers, some function as 

transcriptional activators (notably the omnipresent RelA: p50 heterodimer), but others 

(such as the p50:p50 homodimer) do not unless they recruit specific co-activator 

proteins.  Moreover, some dimers are not known to bind DNA at all (Figure 1.5.) 

(Hoffmann and Baltimore, 2006). 
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Figure 1.3. A schematic detailing NFκB activation and function in response to different 
types of signals.   
Many different types of signals cause the activation of the IKK complex, driving the 
degradation of IκB and allowing for free NFκB to accumulate in the nucleus for activation of 
target genes. NFκB is the transcription factor responsible for driving the expression of a 
myriad of genes involved in different cell fates and physiological responses. This schematic 
was adapted from (Hoffmann 2006). 
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Figure 1.4. The NFκB and IκB family members.  
Five mammalian NFκB genes give rise to five transcription factor proteins RelA, cRel, RelB, 
p50 and p52, that share the Rel-homology domain (RHD, blue banner), which is responsible 
for DNA-binding, dimerization, and association with IκB proteins.  The proteins p50 and p52 
are derived from a proteolytic processing event of the p105 and p100 precursor proteins, 
respectively.  Their C-terminal portions contain ankyrin repeat domains (ARD) that are the 
hallmark of the classical IκB inhibitor proteins IκBα, IκBβ, and IκBε . This schematic was 
adapted from Hoffmann and Baltimore 2006. 
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In the absence of stimuli, NFκB dimers are retained in the cytosol through 

association with an Inhibitor of κB activity termed IκB.  All IκB proteins contain a 

central ankyrin repeat domain (ARD), which is composed of six or seven copies of the 

consensus ankyrin repeat (Figure 1.4.).  Ankyrin repeats (AR) are typically a 33 amino 

acid sequence motif that forms a consecutive β-hairpin-helix-loop-helix fold 

(Michaely and Bennett, 1993; Binz et al., 2003).  The three classical or so-called 

‘canonical’ IκB proteins, IκBα, IκBβ, and IκBε, are respectively encoded by the 

nfkbia, nfkbib, and nfkbie genes, and contain six ankyrin repeats in their ARD.  Each 

IκB contains a signal responsive domain (SRD) that contains phosphorylation and 

ubiquitination sites for signal responsive degradation and IκBα and IκBβ also contain 

an acidic carboxy-terminal domain that is rich in the amino acids proline, glutamic 

acid, serine, and threonine (PEST).  A fourth IκB was characterized, IκBδ, and results 

from the multimeric association of the nfkb2-encoded p52 precursor protein p100 

(Basak et al., 2007).  Together, these four IkBs prevent DNA binding by NFκB dimers 

and shift their cellular localization to the cytoplasm.  A myriad of signals can cause 

the degradation of the IκBs, liberating NFκB from the canonical and non-canonical 

IκB proteins, and allowing translocation of NFκB and subsequent binding of κB site 

sequences (defined by a loose consensus of GGRNNN(N)YCC) in the promoters and 

enhancers of  numerous genes (Hoffmann et al. 2003). 

Other IκB-like proteins with different functions have also been identified.  The 

p50 and p52 proteins are respectively produced via protein processing of the precursor 

proteins p105 and p100, each of which contains a C-terminal ARD (Figure 1.4.).  

Dimerization via the RHD of p100 or p105 with other NFκB proteins may result in  
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Figure 1.5. The NFκB homo- and heterodimers.  
The five proteins can form 15 transcription factors via homo- or heterodimerization.  While in 
principle, every isoform of one molecule type can interact with every member of the adjacent 
family, differential affinities make some interactions much more likely than others.  In 
general, it is thought that the RelA:RelB, cRel:RelB and RelB:RelB dimers do not 
functionally bind DNA (denoted by transparent dimers).  These dimers recognize a consensus 
κB site, as shown above.  This schematic was adapted from Hoffmann et al., 2006 
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self-inhibited dimers.  In addition, the IκB protein family members Bcl-3, IκBζ/MAIL, 

and IκBNS, bind subsets of NFκB dimers, but do not inhibit DNA binding.  Instead 

these proteins may function as co-activators, like the TAD-deficient NFκB dimers 

p50:p50 and p52:p52 (Bundy and McKeithan 1997; Hirotani et al. 2005; Trinh et al. 

2008; Yamamoto and Takeda, 2008, Vallabhrpurapu and Karin, 2009).  

 

The canonical NFκB pathway 

The canonical or “classical” NFκB pathway can be activated by a large number 

of stimuli; including: proinflammatory cytokines, bacterial lipopolysaccharide (LPS), 

and viral infections.  Stimulation of cell surface receptors, such as the TNF receptor 

(TNFR), IL-1β receptor (IL-1βR), or toll-like receptors (TLRs), causes 

phosphorylation-dependent activation of the IκB kinase (IKK) complex.  This 

multimeric complex is composed of two catalytic subunits, IKKα (IKK1) and IKKβ 

(IKK2), and the scaffolding protein, IKKγ (NEMO-NFκB essential modulator).  Once 

activated, the canonical IKK complex phosphorylates IκBα, -β, or –ε at two specific 

serine residues.  IκBα is the predominant IκB in most cells and is typically bound to 

RelA: p50.  Phosphorylation of IκBα at ser32 and ser36 signals as a docking site for the 

E3 ubiquitin ligase β-TrCp, which catalyzes K48-linked ubiquitination at lysine 21 

and 22 of IκBα, and leads to its subsequent degradation by the 26S proteasome 

(Hoffmann and Baltimore, 2006).  Degradation of IκBα releases RelA: p50, allowing 

it to accumulate in the nucleus to bind DNA and activate gene expression (Figure 1.5).  

Several IκB proteins are among the large number of NFκB responsive genes, thus  
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Figure 1.6. Canonical NFκB signaling pathway. 
Canonical (inflammatory) signals activate IKK complexes (made of IKKα, IKKβ and 
NEMO), which target NFκB-bound IκBα (and β and ε)  for degradation. IκBα (or β and ε) that 
is not bound to NFκB is constitutively degraded through an IKK-independent mechanism that 
does not rely on typical ubiquitin acceptors.  Liberated NFκB (primarily RelA:p50 dimers) 
accumulates in the nucleus and activates gene expression, including the IκBα and IκBε genes. 
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regulating the rapid and transient NFκB-mediated response to cellular signals through 

NFκB induced negative feedback. 

 

Free IκBα  

 In addition to the stimulus responsive IKK-dependent degradation of NFκB 

bound IκBα, there are reports that have shown the importance of unbound IκBα 

protein turnover (O’Dea et al., 2007; O’Dea et al., 2008; Mathes et al., 2008; Mathes 

et al., 2010).  In resting cells approximately 85% of total cellular IκBα is bound to 

NFκB while 15% of IκBα is not in the IκB-NFκB complex (Rice and Ernst, 1993; 

Figure 1.7.).  Furthermore, the in vivo half-life of free IκBα is about fifteen minutes 

(O’Dea et al., 2007; Mathes et al., 2008).  Thus free IκBα is at least five-times more 

rapidly degraded in its basal state than when bound to NFκB (Pando and Verma, 

2000).  

 As evidenced by the NFκB-IκBα crystal structure (Huxford et al., 1998; Jacobs 

and Harrison, 1998), when IκBα is bound to NFκB all six AR contact NFκB.  In 

contrast, NMR spectroscopy has revealed that when free, the first four AR of IκBα are 

folded compactly whereas AR 5 and 6 are folded weakly and are highly flexible 

(Ferrerio et al., 2007; Truhlar et al., 2006; Croy et al., 2004).  AR 5 and 6 adopt their 

fully folded conformation when bound to NFκB structure (Huxford et al., 1998; 

Jacobs and Harrison, 1998). 

Synthesis and degradation of unbound IκBα is mostly constitutive and does not 

require IKK phosphorylation nor does it necessitate lysine-mediated ubiquitin 

conjugation (Mathes et al., 2008).  Deletions in IκBα show that neither the N-terminal  
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Figure 1.7. Free IκBα is 16X less abundant in nfkb-/- cells as compared to WT-1 cells. 
Immunoblot of IκBα in cells lacking RelA, c-Rel and p50, the canonical binding partners of 
IκBα. nfkb-/- cells and WT-1 cells. A serial dilution was done with nfkb-/- lysates to determine 
levels of free IκBα in the nfkb-/- cell line.  
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regions (Δ1-70) nor the C-terminal regions (Δ280-317) are required for free IκBα 

degradation in vitro by the 20S proteasome core (Krappmann et al., 1996; Alvarez- 

Castelaó and Castaño, 2005).  In addition, through a kinetic based mathematical 

model, it has been shown that when the rapid degradation rate of IκBα is altered, 

NFκB activation is severely inhibited (O’Dea et al., 2007; O’Dea et al., 2008).  These 

results indicate that the rapid protein turnover of IκBα is essential for buffering NFκB 

responsiveness to metabolic stresses. 

 

FOCUS OF STUDY 

It has been postulated that the degradation of free IκBα by the proteasome 

depends on the incompletely folded carboxy-terminal ankyrin repeat domains 

(Ferrerio et al., 2007; Truhlar et al., 2006; Croy et al., 2004).  These repeats are fully 

folded when bound to NFκB (Huxford et al., 1998; Jacobs and Harrison, 1998), thus 

rendering IκBα resistant to the ubiquitin-independent degradation pathway.  However, 

experimental evidence for this hypothesis has remained inconclusive.  This 

dissertation has made use of biochemical techniques to further probe the degradation 

pathway of free IκBα.  The work presented here has revealed that there is a specific 

amino-acid sequence, termed a degron, which targets IκBα (or heterologous proteins) 

to the proteasome.  Interestingly, these amino acids are buried within the IκBα-NFκB 

complex, thus stabilizing IκBα, and allowing it to effectively inhibit NFκB.  To 

supplement this new understanding of IκBα half-life control in the context of the other 

two canonical IκBs, we also investigated the half-life control of IκBβ and IκBε.  I 
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show that while IκBβ may undergo similar control as IκBα, IκBε is in fact a stable 

protein suggesting that it is less suited to ensure NFκB inhibition in resting cells.
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ABSTRACT 

 IκBα is the primary regulator of the immune and inflammatory response 

transcription factor NFκB.  Early work has established that IκBα inhibition is 

controlled through NFκB-dependent synthesis and signal-responsive degradation via 

the ubiquitin-proteasome system (UPS).  However, recent studies have shown that 

NFκB homeostasis and signaling also depend on unbound IκBα half-life control via 

IKK-independent proteasomal degradation.  Here, we show that IκBα contains a 

ubiquitin-independent degron that may target the heterologous protein GFP for 

degradation via a proteasome-dependent, non-lysosomal pathway.  We identify an 

eleven amino acid peptide residing within the non-standard ankyrin repeat 6 as the 

minimum sequence sufficient for conferring short half-life.  These sequences are 

indeed required for IκBα’s short half-life as a chimeric mutant containing analogous 

ankyrin repeat 3 sequences in place of the degron, is stable in cells. 
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INTRODUCTION 

Protein turnover is critical for cellular homeostasis and response to 

environmental changes.  Indeed, several well-studied signaling networks (e.g. p53, ß-

catenin, and NFκB) involve control of protein half-life as a key mechanism for 

mediating information flow.  Protein degradation is facilitated by either the lysosome, 

an organelle packed with enzymes for the breakdown of diverse biomolecules, or the 

proteasome, a 20S oligomeric molecular machine (Ciechanover et al,. 2005).  

Proteasomal protein degradation affords a high level of control of protein levels via a 

19S regulatory cap that ensures that only proteins conjugated with K48 linked 

ubiquitin chains are in fact degraded (Ciechanover et al., 2005).  The ubiquitin-

proteasome system (UPS) may thus provide not only for homeostatic turnover control 

but also for rapidly induced degradation of targeted protein via the control of a 

specific ubiquitin ligase.  The sequences within proteins that contain ubiquitin 

acceptors (e.g. lysines, threonines, serines), recruit ubiquitin ligases, and control half-

life of proteins, have been termed degrons (Dohmen et al., 1994).   

A number of proteins have been identified that undergo proteasomal 

degradation in the absence of ubiquitin (Jariel-Encontre et al., 2008; Orlowski et al., 

2003).  Such proteins are thought to contain degrons that target them to proteasomal 

degradation without the requirement of ubiquitin-ligase activity.  For example, 

characterization of the degron in the enzyme ornithine decarboxylase revealed that it 

functions as a ubiquitin mimic, interacting with the regulatory cap (Godderz et al., 

2011).  However, in other cases, such as thymidylate synthase (Forsthoefel et al., 

2004), Rpn4 (Ha et al., 2012), or IκBα (Mathes et al., 2008; Truhlar et al., 2008), 
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disordered regions of the protein have been implicated.  In some cases the biochemical 

evidence suggests that the regulatory cap is dispensable altogether (Alvarez-Castelao 

and Castaño, 2005) such that the degron may confer targeting to the 20S enzymatic 

core complex of the proteasome.  However, such degrons have not been characterized 

in detail and their existence remains controversial. 

 One of these intrinsically unstable proteins is IκBα, the key regulator of the 

transcription factor NFκB (Pando and Verma 2000).  In resting cells, IκBα binds 

NFκB, covering NFκB’s DNA binding surface, resulting in a predominantly 

cytoplasmic IκBα-NFκB complex (Baeuerle and Baltimore, 1996).  Inflammatory 

stimuli trigger activation of the IκB kinases (IKK), which phosphorylate IκBα serine 

32 and 36 within the signal responsive domain (SRD).  Phosphorylation leads to 

ubiquitination on K21/22 and subsequent proteasomal degradation of IκBα, allowing 

freed NFκB to accumulate in the nucleus and activate transcription of a large number 

of genes (Ghosh et al., 1998).  

However, unbound IκBα is degraded rapidly (Pando and Verma 2000; O’Dea 

et al., 2007; Mathes et al., 2008) and the stimulus-independent turnover of IκBα was 

shown to be important for NFκB homeostasis (O’Dea et al., 2007) and signal 

responsiveness (O’Dea et al., 2008, Loriaux et al., 2013).  The molecular basis for the 

short half-life IκBα half-life is not well understood.  The incompletely folded C-

terminus of free IκBα was shown to be necessary for turnover (Mathes et al., 2008, 

Ferreiro et al., 2007, Truhlar et al., 2006, Croy et al., 2004).  Also, mutations towards 

the ankyrin repeat consensus that increase its foldedness in vitro prolong IκBα half-

life in vivo (Truhlar et al., 2008, Mathes et al., 2010).  However, it remains unclear: (1) 
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whether the C-terminus contains a peptide sequence that is responsible for triggering 

degradation, confers a short half-life to heterologous proteins, and thus constitutes a 

degron; and (2) how such a “degron” relates to the folding mutants that appear to 

counteract its activity.   

 Here we report the identification of a degradation signal located in the C-

terminal region of IκBα, which may be transferred to either the N- or C-terminus of 

the heterologous globular protein GFP.  This degron mediates proteasomal-dependent 

but ubiquitin-independent degradation and is located in ankyrin repeat (AR) 6, 

encompassing an eleven amino acid sequence of this AR (IκBα 251-262).  

Furthermore, we show here that the degron of IκBα has a non-redundant function in 

the degradation pathway of the free protein.  

 

RESULTS 

IκBα  contains a degron  

Previous studies have established that IκBα has a short half-life in cells 

lacking NFκB proteins, whether IκBα is expressed from its endogenous gene or over-

expressed with a retroviral expression vector (O’Dea et al., 2007; Mathes et al., 2008).  

To test whether high turnover could be transferred to a heterologous protein, we fused 

IκBα with the green fluorescent protein (GFP) within the retroviral expression 

construct.  GFP was chosen as it is a long-lived, globular protein that is known to fold 

independently regardless of whether it is fused to other protein sequences (Zimmer et 

al., 2002).  Following transduction of the NFκB-deficient crel-/-nfkb1-/-rela-/- 3T3 cell 
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line (hereafter referred to as nfkb-/-) with the recombinant retrovirus encoding the 

fusion protein, we observed GFP fluorescence in the cytoplasm of a fraction of cells 

(Figure 2.1.).  After thrity minutes of treatment with the translation inhibitor 

cycloheximide (CHX) this fluorescence disappeared.  However, co-treatment with the 

proteasome inhibitor MG132 recovered the cytoplasmic fluorescence.  Appearance of 

nuclear fluorescence was deemed to be background, as even untransduced cells treated 

with MG132 acquired strong nuclear fluorescence.  These studies demonstrated that 

the short half-life control of IκBα could be transferred to the globular protein GFP and 

that proteolysis was sensitive to a proteasome inhibition.  

There are two well-known intracellular protein degradation pathways in 

mammalian cells: the lysosomal pathway, which is generally non-selective (Levine et 

al., 2011); and the ubiquitin/proteasome system, which is selective via ubiquitin E3 

ligases (Hershko and Ciechanover, 1998).  Since free IκBα degradation can be 

rescued via the proteasome inhibitor MG132 (Mathes et al., 2008; Figure 2.1.), it has 

been assumed that free IκBα degradation occurs by way of the proteasome; however, 

the lysosomal pathway may also be inhibited by MG132 (Lee and Goldberg, 1998).  

We examined whether the lysosomal pathway may be involved by pre-treating IκBα-

expressing nfkb-/- cells either with the lysosomal inhibitors, Bafilomycin-A (Baf-A) 

and Chloroquine (CQ) or with a proteasomal inhibitor MG132.  We then administered 

cycloheximide (CHX) in a time course (Figure 2.2.).  Only the MG132 pre-treatment 

condition leads to a rapid increase in protein levels, indicating that the degradation of 

free IκBα is mediated by the proteasome. 
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Figure 2.2. Lysosomal inhibitors do not extend free IκBα  half-life. 
Immunoblot for IκBα (C-terminal antibody) of whole cell extracts prepared from nfkb-/- cells 
stably expressing WT IκBα, pretreated for an hour with either DMSO, Bafilomycin-A, 
Chloroquine, or MG132 and then treated with CHX for indicated periods of time. The left 
panel shows quantification of 3 experiments, error bars indicate standard deviation 
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To identify the molecular determinants of IκBα’s short half-life, we 

engineered a number of recombinant proteins using fragments of the IκBα protein.  

Figure 2.4. panel “a” depicts a schematic of IκBα’s key structural elements and 

indicates the amino acid residue numbers that define the recombinant constructs 

designed.  We first prepared recombinant retroviruses expressing full length human 

IκBα and a variant truncated after ankyrin repeat 4 at residue 206 and used them to 

infect nfkb-/- cells.  The truncated form was expressed at a ten-fold higher level than 

the full-length form, and treatment with cycloheximide led to a rapid decrease of full-

length, but not truncated IκBα levels (Figure 2.3.).  Assuming an exponential decay 

relationship, we calculated a half-life estimate of around fifteen minutes for full length 

IκBα and of greater than 60 min for truncated IκBα.  These results confirm previous 

conclusions that the C-terminus of IκBα, harboring ankyrin repeats 5 and 6 and the 

so-called PEST region, is required for rapid IκBα turnover (Mathes et al., 2008).   

To determine whether this C-terminal portion of IκBα was a sufficient 

determinant for degradation, the C-terminal region, containing the 5th and 6th ankyrin 

repeat and PEST region, was fused to GFP and expressed in nfkb-/- cells.  To measure 

the approximate half-life of the resulting GFP-IκBα(210-317) fusion protein, 

immunoblots for IκBα were performed in cells treated with cycloheximide.  Whereas 

the GFP control construct was stable during the 60-minute time course, GFP-

IκBα(210-317) showed a half-life of less than fifteen minutes (Figure 2.4. panel b).  

This indicates that the C-terminal region of IκBα is not only required but is also  
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Figure 2.3. Deletion of IκBα  C-terminus extends its half-life. 
Immunoblots for IκBα (N-terminal antibody) of extracts prepared from nfkb-/- cells expressing 
WT IκBα or IκBα (1-206) treated with CHX. * Indicates nonspecific bands associated with 
this antibody. Lower panel shows same WT IκBα extracts probed with an antibody raised 
against the C-terminus of IκBα. 
  

* 

Transgene: 

CHX (minutes) 0 15
’ 

30
’ 

60
’ 

0 15
’ 

30
’ 

60
’ 

IB: IκBα 

nfkb-/- Genetic Background: 

IB: Actin 

WT IκBα  1-206 IκBα  

* 

Transgene: 
CHX (minutes) 0’ 15

’ 
30

’ 
60

’ 
WT IκBα  

IB: IκBα 

nfkb-/- Genetic Background: 
IB: Actin 



 

  

29 

 
Figure 2.4. The C-terminal region of IκBα contains a degron. 
Schematic of the IκBα protein. The signal response domain (SRD), the ankyrin repeat 
domains (ARD), and the PEST domain are indicated. IKK phosphorylation sites are indicated 
as well as the amino acid residues of the six ankyrin repeats (AR). (b) Immunoblot for IκBα 
of extracts prepared from CHX-treated nfkb-/- cells expressing GFP (GFP), GFP-IκBα (210-
317) or GFP- IκBα (281-317). Right panel shows quantification of 3 experiments, error bars 
indicate standard deviation. (c) Upper panel: schematic of IκBα indicating the amino acids in 
the 5th and 6th repeats, and atypical ubiquitin acceptors are highlighted. Lower left panel shows 
nfkb-/- cells expressing either non-mutated IκBα(210-317), IκBα(210-317) where all ubiquitin 
acceptors are mutated within AR5, within AR6, or within both AR5 and AR6 were treated 
with CHX and protein levels were detected by Western blot using an antibody directed against 
the C-terminus of IκBα. Lower right panel shows quantification of experiments, error bars 
indicate standard deviation. 
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sufficient to cause rapid protein turnover, suggesting that the C-terminal region of 

IκBα contains a degron.  Previously the PEST sequence had been reported to play a 

role in the high turnover of proteins (Rogers et al. 1986).  However, we found that the 

PEST domain of IκBα was not sufficient to grant degradation and in fact was stable 

during a 60-minute time course (Figure 2.4. panel b). 

It was previously shown that the lysine residues of free IκBα are not required 

for free IκBα degradation (Mathes et al., 2008).  However, ubiquitin conjugation on 

other amino acids such as cysteine, serine, and threonine via thiodiester and 

hydroxyester linkages has been reported to mediate proteasomal degradation (Cadwell 

et al., 2005, Wang et al., 2007).  To test whether these atypical ubiquitin acceptors 

might play a role in the degradation of IκBα, we mutated five residues in ankyrin 

repeat 5 and six residues in ankyrin repeat 6 to alanine, with the exception of lysine, 

which was mutated to arginine.  Following retroviral transduction into nfkb-/- cells, 

cycloheximide time courses revealed no change in the half-life of the mutants (Figure 

2.4. panel c).  These results indicate that the IκBα degron targets proteins for 

degradation by the proteasome via a ubiquitin-independent, non-UPS mechanism. 

Interestingly the constitutive and nuclear PA28γ, a proteasome activator that 

forms homomeric 20S proteasome caps, was shown to mediate ubiquitin-independent 

proteasomal degradation of the cell cycle regulators p21, p16, and p19, as well as the 

oncogene SRC-3 (Li et al. 2006; Chen et al. 2007; Li et al. 2007).  To establish 

whether the PA28 proteins had an effect on free IκBα degradation, we used 

immortalized 3T3, cells deficient in all three PA28 proteins (deficient in PA28α, -β, 

and –γ), and transduced GFP-IκBα(210-317).  Following CHX time courses, no 
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noticeable difference in the degradation rates of GFP-IκBα(210-317) in pa28-/- cells as 

compared to nfkb-/- cells was detected (Figure 2.5. panel a).  As PA28γ is largely 

nuclear, the cytoplasmic and nuclear fractions of the transduced nfkb-/- cells were 

analyzed in order to investigate whether there was an effect on degradation in either 

cellular location.  This approach revealed that no changes in protein levels could be 

detected, indicating that the PA28 proteins are not required in MEFs.  However, it is 

possible that over expression of the proteasome activator proteins could lead to 

degradation of IκBα in wild-type cells. 

 

The degron resides in the first half of ankyrin repeat 6 

To identify the peptide sequence conferring degradation, we prepared 

constructs of the isolated 5th and 6th ankyrin repeat (AR5 and AR6) using the GFP-

fusion expressing nfkb-/- cell system.  In cycloheximide time courses (Figure 2.6. panel 

a), GFP-IκBα (AR5: 210-241) showed very similar degradation kinetics to the stable 

GFP control and PEST domain of IκBα (Figure 2.4 panel b).  However, the GFP-IκBα 

(AR6: 243-280) construct showed rapid degradation analogous to the degradation of 

the complete C-terminus IκBα (281-317).  The quantitated data shows that the half-life 

of the GFP-IκBα (281-317) as well as the GFP-IκBα (210-241) have half lives greater 

than two hours while the 6th ankyrin repeat have a half-life of around fifteen minutes.  

These findings indicate that the degron of IκBα is in its 6th ankyrin repeat. 

Previous work established that the short half-life of thymidine synthase (TS) 

depends on a ubiquitin-independent degron, which must be located at the end of the N-  
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Figure 2.5. Deletions of the proteasome activators, PA28, have no effect on free IκBα 
degradation. 
Immunoblot for GFP in pa28-/- or nfkb-/- cells transduced with HA-GFP IκBα (210-317) after 
treatment with CHX. (b) Cytoplasmic and nuclear extracts of pa28-/- or nfkb-/- cells transduced 
with HA-GFP IκBα (210-317) were treated with either CHX or MG132 and then probed with 
GFP.  
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Figure 2.6. The degron resides in ankyrin repeat 6. 
Immunoblot for HA of whole cell extracts prepared from nfkb-/- cells expressing AR5 (IκBα 
(210-241)) or AR6 (IκBα (242-280)) treated with CHX. Right panel shows quantification of 
experiments, error bars indicate standard deviation and are representative of at least 3 
experiments. (B) Immunoblot for HA of whole cell extracts prepared from nfkb-/- cells 
expressing AR6 (IκBα (242-280)) with the HA-GFP tag at either the N- or C-terminus of the 
protein, treated with CHX. Right panel shows quantification of experiments, error bars 
indicate standard deviation and are representative of at least 3 experiments.  
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terminus; blocking the N-terminus with a His-tag caused protein stabilization (Peña et 

al., 2006).  To examine whether the IκBα degron depends on its C-terminal location, 

we engineered a construct in which the HA-GFP tag was fused to the carboxy rather 

than amino terminus of the 243-280 region (Figure 2.6. panel b).  Cycloheximide time 

course data show that the degron’s location does not affect its activity.  

The C-terminal region of IκBα has been shown to be incompletely folded when 

not bound to NFκB (Ferrerio et al., 2007; Truhlar et al., 2006; Croy et al., 2004).  It is 

possible that the internal ankyrin repeats AR2 and AR3 may also be harboring degrons 

as well, whose activities are hidden within the folded ARD of AR1-4.  As three ARs 

are required for stable folding of an ARD (Michaely and Bennett, 1993), we examined 

AR2 and AR3 in isolation to reveal any latent degron activity.  Strikingly, constructs 

containing the fragments of either AR2 or AR3 did not cause degradation of GFP after 

60-minute exposure to CHX (Figure 2.7).  These data indicate that there are specific 

degron sequences within AR6 that are not present in other ankyrin repeats of IκBα.  

To determine which segment of AR6 determines free IκBα degradation rate, 

we explored the functional differences between the structurally homologous AR3 and 

AR6 to design a series of chimeric constructs (Figure 2.7. panel a).  First, we fused the 

first half of ankyrin repeat 6 to the second half of ankyrin repeat 3 (mutant 6633), as 

well as its inverse (mutant 3366).  Within the nfkb-/- cell system the 3366 mutant 

showed a half-life greater than 60 minutes while the 6633 mutant had a half-life 

similar to the full ankyrin repeat 6 (Figure 2.7. panel b).  These observations lead us to 

conclude that the first half of ankyrin repeat 6 (IκBα 243-262) contains the IκBα 

degron.  
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Figure 2.7. Other ankyrin repeats do not contain degrons. 
Immunoblot for HA of whole cell extracts prepared from nfkb-/- cells expressing AR3 (IκBα 
(137-176)) or the AR2 (IκBα (104-136)) treated with CHX. Right panel shows quantification 
of experiments, error bars indicate standard deviation and are representative of at least 3 
experiments. 
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Figure 2.8. The first half of ankyrin repeat 6 contains the degron. 
(a)Schematic detailing the amino acids in AR3 (in grey) and AR6 (in pink). The 4 chimeras 
(3366, 6633, 3633, 6333) contain the indicated amino acids derived from the color-coded AR. 
(b) Immunoblot for HA of whole cell extracts prepared from nfkb-/- cells expressing the 4 
chimeras treated with CHX. Bottom panel shows quantification of experiments, error bars 
indicate standard deviation and are representative of at least 3 experiments. 
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In order to further probe the amino acid sequence responsible for IκBα 

degradation, we made two more chimeric proteins whereby either the first quarter of 

ankyrin repeat 6 was fused to ankyrin repeat 3 (mutant 6333) or the second quarter 

was fused into ankyrin repeat 3 (mutant 3633, Figure 2.8. panel a).  Within the nfkb-/- 

cell system we observed a relatively short half-life for the 3633 mutant (Figure 2.8. 

panel b) compared to the more stable 6333 mutant. T hese results indicate that the 

IκBα degron is located within the region of residues 251-262.  As the 3633 mutant 

does not show as short a half-life as the full length AR6, we conclude that additional 

residues within AR6 may contribute to the degron’s activity. 

Further inspection of AR6366 and AR6333 demonstrates that tyrosine 254 and 

threonine 257 were present in the region of AR6 that we had suspected to be 

responsible for degradation (Figure 2.9. panel a).  Mutations of these residues had 

previously been reported to increase IκBα’s foldedness in vitro, thus prolonging its 

half-life in vivo (Truhlar et al., 2008, Mathes et al., 2010).  We investigated whether 

the YLTA mutation (whereby Y254 was mutated to leucine and T257 was mutated to 

alanine) in IκBα (210-317) would render it more stable.  After careful investigation, 

we came to the conclusion that while mutations in these residues lead to increased 

foldedness and decreased activity in the context of the full protein, the degron’s 

activity does not rely on either Y254 or T257 (Figure 2.9. panel b). 

Our studies thus far established that the first half of ankyrin repeat is sufficient 

for triggering degradation of the heterologous reporter protein GFP.  Next, we sought  
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Figure 2.9. The degron does not rely on Y254 or T257. 
(a) Alignment of AR3366 with AR6633, alignment was done using ClustalW and Boxshade. 
Green indicates fully conserved residues and cyan indicates semi-conserved residues. The red 
line is indicative of the quarter constructs. (b) Immunoblot for IκBα of whole cell extracts 
from nfkb-/- cells transduced with either IκBα (210-317) YLTA (whereby Y254 was mutated 
to leucine and T257 was mutated to alanine) or IκBα (210-317) treated with CHX for 
indicated times.  
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to determine whether this sequence might also be required for IκBα degradation in the 

context of the full-length protein.  We engineered a mutant of IκBα that had its 6th 

ankyrin repeat replaced with the 3366 chimeric repeat (36M IκBα, Figure 2.10. panel 

a); stably transduced this construct, as well as wild-type IκBα and the long lived 

IκBα(1-206) into nfkb-/- cells, and performed cycloheximide time courses.  

Immunoblotting revealed a stabilization of IκBα in the 36M that was similar to the 

IκBα(1-206) control (Figure 2.10. panel b).  These results establish that the first half 

of the ankyrin repeat 6 contains a degron sequence that is both sufficient for degrading 

heterologous proteins and required for the degradation of free IκBα.  We conclude 

that the degron of IκBα has a non-redundant function in IκBα degradation. 

 

DISCUSSION 

This study has identified and characterized the ubiquitin-independent, 

proteasome-dependent degradation signal of IκBα.  We have shown that the degron is 

located in the 6th ankyrin repeat of IκBα and that it is sufficient to cause degradation of 

a heterologous protein, GFP.  Interestingly, we find that the PEST region of IκBα on 

its own is not a sufficient degradation signal for IκBα.  This negatively charged region 

of IκBα has long been thought to follow the PEST hypothesis, which posits that the 

PEST sequence is responsible for protein turnover (Rogers et al., 1986).  While it is 

possible that the serine and proline rich region of IκBα may be important for other 

functions, we have shown here that this region does not contain the signal for   
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constitutive degradation of IκBα.  We have shown that the degron is unique and does 

not appear to rely on the incompletely folded region of IκBα, but instead relies on 

specific amino acid residues within ankyrin repeat 6 that are hidden when properly 

folded. There have been reports of 20S proteasomal cores requiring a highly conserved 

tyrosine residue in their activation particles, which are required for gate opening 

(Dange et al., 2011; Yu et al., 2010; Rabl et al., 2008).  Based on these reports, we 

hypothesize that Y251, Y254, or W258 might have direct contact with the 20S 

proteasome core, which has been shown to be sufficient to cause degradation of free 

IκBα in vitro (Alvarez-Castelao and Castaño, 2005; Mathes et al., 2008). 

Our findings provide insight into the emerging field of ubiquitin-independent 

degradation.  The ubiquitin proteasome system has been well studied and the 

degradation signal for the proteasome has traditionally been classified as ubiquitin 

chains regulated by E3 ligases.  The current understanding of ubiquitin-independent 

protein degradation suggests that the lack of folding stability of a protein might be one 

pathway by which it can be targeted for degradation irrespective of ubiquitin 

conjugation (Jariel-Encontre et al., 2008).  IκBα, when not bound to NFκB, has an 

incompletely folded C-terminus (Ferrerio et al., 2007; Truhlar et al., 2006; Croy et al., 

2004), suggesting that its constitutive degradation may occur in such a fashion.  It is 

evident from the present work that lack of foldedness is not sufficient, but rather 

specific sequences must exist to target the protein to the proteasome.  However, IκBα 

degron activity appears to depend on being solvent exposed, and thus conditional on 

the protein being not bound to NFκB.  Interactions with NFκB and NFκB-triggered 

folding of the C-terminus dramatically diminish IκBα degron activity.  Indeed, the 
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eleven amino acid peptide sequence is situated in close proximity with the NFκB 

interaction surface in the crystal structure of the IκB-NFκB complex (Huxford et al., 

1998; Figure 2.11.).  The effect that an unregulated degron has on NFκB activity 

remains to be investigated.   
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Figure 2.11. Location of the degron in the IκBα-NFκB complex. 
A ribbon diagram representation of the crystal structure of IκBα (pink) bound to NFκB (p50, 
cyan; p65, green). Left panel shows the location of the 11 amino acid degron in black, 
depicted with ball-and-stick representation. Right panel shows the location of the 11 amino 
acid degron in space fill representation and colored in grey. The figure was prepared using the 
PyMOL Molecular Graphics System, Version 1.7 Schrödinger, LLC. 
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MATERIALS AND METHODS 

DNA constructs.   

IκBα constructs were cloned into the retrovirus vector pBabe-puro between the 

restriction sites EcoRI and SalI. HA-GFP was cloned between the sites BamHI and 

EcoRI.  Mutations were made using standard polymerase chain reaction-based 

methods.  

Cell Culture.   

Immortalized 3T3 cells were cultured in DMEM supplemented with 10% 

bovine calf serum, 1% L-glutamine, and 1% penicillin and streptomycin at 5% CO2, 

37oC. Cells treated with cycloheximide (Calbiochem) were used at 10 µg/mL in 100% 

EtOH. For proteasome inhibition, 10µM MG132 (Sigma) was used.  For virus 

production, Plat-e cells (Morita et al., 2002) were transiently transfected with PEI 

(Reed et al., 2006) with 10 µg of pBabe and allowed to grow for 48 hours.  Filtered 

virus was placed onto target cells along with 4µg/mL Polybrene (Sigma).  Infected 

cells were selected with 2.5-µg/mL puromycin (Sigma). 

Immunofluorescence.  

Mouse 3T3 cells were grown on glass coverslips (Fisher) and fixed in 4% PFA 

(EM Sciences) for 10 minutes at RT. Slides were blocked with 5% Normal Goat 

Serum, 0.2% Triton-X100 in PBS and stained with primary antibodies in blocking 

buffer: sc-996 mouse-anti-GFP at 1:200 dilution and sc-371 rabbit-anti-IκBα at 1:200 

dilution for overnight at 4°C.  Secondary antibodies used were goat-anti-mouse 

Alexafluor-488 (Life Technologies), 1:1000 and goat-anti-rabbit Alexafluor-568 (Life 

Technologies), 1:1000 at RT for 1hr.  Images were acquired on an Axio Observer Z1 
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inverted microscope (Carl Zeiss Microscopy GmbH, Germany) with a 40x, 1.3 NA oil 

immersion objective to an Orca Flash SCMOS camera (Hamamatsu, Japan) using 

ZEN imaging software (Carl Zeiss Microscopy GmbH, Germany). 

Biochemical Assays.   

After treatment with cycloheximide, cells were lysed in RIPA buffer.  Cell 

extract was separated on a 4-15% gradient SDS-PAGE and transferred to PVDF 

membrane.  IκBα was probed with either sc-371 (Santa Cruz Biotechnology) or sc-

203, GFP was probed with sc-996 and HA was probed with 16b12 (Covance) then 

followed by HRP conjugate.  Cycloheximide and MG132 was from Sigma. 

Quantification of immunoblots was performed with ImageJ.  Dilution series with 

knockout extracts assured that Western blot signals were in the linear range.   

Software. 

Alignments were performed using ClustalW and Boxshade via the San Diego 

Super Computer Biology Workbench.  Cartoon diagrams of IκBα were prepared using 

PyMOL Molecular Graphics System, Version 1.7 Schrödinger, LLC using PDB file 

1IKN 
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Chapter 3: 
Characterization of the Function of the IκB Degron in 

NFκB Signaling 
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ABSTRACT 

Whereas ubiquitin-dependent degrons have been well characterized, the notion 

of a ubiquitin-independent degron remains controversial.  In Chapter 2, we showed 

that IκBα contains a ubiquitin-independent degron that confers a short half-life control 

to the heterologous protein GFP.  Using a combined biochemical, synthetic-biology, 

and computational approach, we demonstrate that while the IκBα degron is required 

for constitutive free IκB turnover.  Furthermore, its activity must be regulated by 

protein-interaction-catalyzed folding, rendering IκBα more stable in cells when 

complexed with NFκB.  Thus, we provide evidence for the existence of ubiquitin-

independent degrons and reveal that their activity can be regulated not by enzyme-

mediated linkages of ubiquitin, but by protein-protein interactions. 
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 INTRODUCTION   

NFκB is a transcription factor that has major roles in the immune system.  It is 

a critical mediator of the development and maturation of immune organs and is 

involved in the rapid activation of the immune response, both which occur at very 

different timescales.  The canonical pathway (associated with inflammatory stimuli) of 

NFκB functions on a relatively short time scale, of minutes-to-hours, and is controlled 

by NEMO-dependent kinase activity (Hoffmann and Baltimore, 2006).  Conversely, 

the non-canonical pathway (associated with development of immune organs) operates 

on a long timescale, of hours-to-days, and is controlled by NEMO-independent kinase 

activity (Hoffmann and Baltimore, 2006).  In mammalian cells, the NFκB 

transcription factors can exist as homo- or heterodimers of the NFκB family members 

RelA (p65), c-Rel, RelB, NFκB1 (p50 and its precursor p105), and NFκB2 (p52 and 

its precursor p100) (Figure 1.4. and 1.5.).  The RelA: p50 complex is considered the 

principal dimer responsible for NFκB activity in most cell types (Vallabhapurapu and 

Karin, 2009).  

NFκB is held inactive in the cytoplasm through stoichiometric association with 

inhibitory proteins (IκBs) (Karin and Ben-Neriah, 2000; Hoffmann and Baltimore, 

2006).  IκBα, IκBβ, and IκBε form the classical IκB family.  In addition to the 

classical IκB family members there are atypical IκBs, which include IκBγ, IκBδ, and 

the additional NFκB interacting proteins: Bcl-3, IκBζ, and IκBNS (Vallabhrpurapu 

and Karin, 2009).  IκBs have characteristic ankyrin repeat domians (ARD) that 

interact with NFκB.  Although they are similar in structure, they have preferential  
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Figure 3.1. The Inhibitors of κB.  
Schematic diagram showing different IκB proteins that contain several ankyrin repeats (as 
indicated by colored boxes). The right panel shows preferential binding partners of the IκBs.  
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binding partners (Figure 3.1.) and are transcriptionally regulated by different 

mechanisms (Whiteside and Israel, 1997).  For example, the RelA: p50 heterodimer is 

primarily regulated by IκBα (Karin and Ben-Neriah, 2000) while IκBε controls 

RelA:RelA and RelA:cRel dimers (Whiteside et al., 1997).  The key mechanisms that 

control IκB degradation and subsequent NFκB activation were revealed nearly 20 

years ago.  In the case of IκBα, the most well studied IκB, inflammatory stimuli 

trigger activation of the IκB kinases (IKK), which phosphorylate IκBα serine 32 and 

36 within the signal responsive domain (SRD) (Brown et al., 1995; DiDonato et al., 

1996).  Phosphorylation leads to ubiquitination on lysine 21 and 22 (Scherer et al., 

1995) causing 26S proteasomal degradation of IκBα, allowing freed NFκB to 

accumulate in the nucleus and activate transcription of a large number of genes 

(Ghosh et al., 1998).  However, unbound IκBα is degraded rapidly (Pando and Verma 

2000; O’Dea et al., 2007; Mathes et al., 2008).  This stimulus-independent turnover of 

IκBα was shown to be important for NFκB homeostasis (O’Dea et al., 2007) and 

signal responsiveness (O’Dea et al., 2008, Loriaux et al., 2013).  The incompletely 

folded C-terminus of free IκBα was shown to be necessary for turnover (Mathes et al., 

2008, Ferreiro et al., 2007), and mutations towards the ankyrin repeat consensus that 

increase its foldedness in vitro, prolong IκBα half-life in vivo (Truhlar et al., 2008, 

Mathes et al., 2010). 

 In Chapter 2, we reported the identification of a degradation signal located in 

the C-terminus region of IκBα, that could be transferred to the either N- or C-terminus 

of the heterologous globular protein GFP.  This degron was shown to mediate 

proteasomal-dependent but ubiquitin-independent degradation, and was located in 
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ankyrin repeat (AR) 6 encompassing an eleven amino acid sequence of this AR (IκBα 

251-262).  Furthermore, we showed that the degron of IκBα has a non-redundant 

function in the degradation pathway of the free full-length protein.  However, we did 

not explore how our degron relates to the folding mutants, (Truhlar et al., 2008, 

Mathes et al., 2010) which appear to counteract its activity.  

To examine the function of the degron in stimulus-responsive NFκB signaling 

we used an established model of the IκB-NFκB signaling module (Kearns et al., 2006) 

to generate predictions and pursued a synthetic biology approach to test the model 

predictions.  By fusing the degron to stable IκB family member IκBδ, and 

reconstituting IκB-deficient cell lines, we found that the degron itself combined with 

the signal-responsive domain of IκBα does not recapitulate IκBα function.  

Interestingly, though the degron is required for constitutive degradation of free IκBα 

(O’Dea et al. 2007; O’Dea et al., 2008; Mathes et al., 2008), its activity must be 

regulated by NFκB to ensure proper IκBα-mediated control of NFκB activity.  Our 

work delineates the identity of a ubiquitin-independent degron and its mode of 

regulation through protein-protein-interaction catalyzed protein folding. 

 

RESULTS 

Degron makes IκBδ highly unstable even in the presence of NFκB  

Since the degron’s solvent exposure is obscured when IκBα is bound to NFκB 

(Huxford et al., 1998; Croy et al., 2004; Truhlar et al., 2006; Ferreiro et al., 2007), and 

free and bound IκBα are known to have vastly different half-lives in cells (Pando and 
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Verma, 2000; O’Dea et al., 2007; Mathes et al., 2008), we sought to determine 

whether regulation of the degron’s activity is in fact important for NFκB signaling 

dynamics.  To this end, we pursued a synthetic biology approach based on the IκB 

family member, IκBδ (Figure 3.2.).  Previous work on IκB proteins has shown that 

IκBδ, which can bind the same NFκB containing dimers (RelA: p50) as IκBα (Figure 

3.1), is fully folded in solution and has a long half-life (Basak et al., 2007; Shih et al., 

2009).  However, IκBδ has previously not been studied in an nfkb-/- cell system, 

therefore validation experiments were needed.  nfkb-/- cells expressing the ankyrin 

repeat domain of p100 (480-765), full-length IκBα, as well as SRD-δ-AR6, an IκBδ 

chimera that had the signal-responsive domain (SRD) of IκBα attached to its N-

terminus and the IκBα AR6 degron attached to its C-terminus, were designed and 

cultured.  Interestingly, while IκBδ was stable in both cell lines, the chimera was 

destabilized in cells not only deficient in NFκB but also – unlike IκBα - containing 

NFκB (cells deficient in IκBα and IκBε, hereafter referred to as α/ε-/-; Figure 3.3. panel 

a).  Since SRD-δ-AR6 was difficult to detect via immunoblot, we designed an 

experiment in which the stable IκBδ and the unstable SRD-δ-AR6 were treated with 

either MG132, CHX or pretreated with MG132 followed by CHX treatment in order 

to ensure that the chimera was indeed expressed in both cell lines.  When these cell 

lines were treated with MG132, the chimera could be detected (Figure 3.3. panel b), 

indicating that SRD-δ-AR6 was in fact expressed and was particularly unstable. 
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Figure 3.2. Overview of constructs used in Chapter 3. 
Three constructs were used in the following experiments. Full-length wild-type IκBα, the 
ankyrin repeat domain of p100 (480-765) which will be referred to as IκBδ and, the chimera 
SRD-δ-AR6, which is composed of IκBα (1-54)-p100(480-765)-IκBα(243-280). 
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Figure 3.3. The degron makes IκBδ highly unstable even in the presence of NFκB.  
(a) Immunoblots for hemagglutinin (HA) tag of whole cell extracts prepared from nfkb-/- or 
IκBα/IκBε-/-cells expressing IκBδ, SRD-δ-AR6 or IκBα, treated with cycloheximide (CHX). 
(b) Immunoblots for HA tag of whole cell extracts prepared from nfkb-/- or IκBα/IκBε-/- cells 
expressing IκBδ or SRD-δ-AR6: not treated (NT), treated with the proteasome inhibitor 
MG132, the ribosomal inhibitor CHX or co treated with MG132 and CHX 
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IκBδ is largely cytoplasmic and cannot activate NFκB without the SRD and AR6 

of IκBα  

As alterations in ARD of p100 have been shown to effect nuclear shuttling and 

certain mutations can enhance nuclear accumulation (Liao and Sun, 2003).  We set out 

to determine the cellular localization of the chimera, as well as the ARD of p100 

(IκBδ).  Cells were stimulated with tumor necrosis factor (TNFα), a cytokine that 

activates NFκB through the canonical pathway, and examined the cytoplasmic and 

nuclear fractions of the cells (Figure 3.4. panel a).  As expected, TNFα induced the 

degradation of IκBα in the cytoplasmic fraction.  IκBδ protein abundance did not 

noticeably change in response to the cytokine, but appeared to be largely cytoplasmic; 

in contrast, SRD-δ-AR6 proved to be difficult to detect in both NFκB containing (α/ε-/-

) and NFκB deficient cells (nfkb-/-), as expected from the results of our previous 

experiment (Figure 3.3. panel b).  Furthermore, we examined NFκB activity using the 

nuclear fractions from TNFα stimulated cells via electrophoretic mobility shift assay 

(EMSA) and determined that while IκBα and SRD-δ-AR6 seemed to induce NFκB 

activity, IκBδ did not (Figure 3.3. panel b). 

 

An unregulated degron impairs IκB’s ability to control basal NFκB activity 

Using an established kinetic model of the IκB-NFκB signaling module 

(Hoffmann et al., 2000; Kearns et al., 2006; O’Dea et al., 2007), computational 

simulations in wild type or IκB mutant conditions were performed for TNF 

simulation, with NFκB activity as the output, to determine whether free IκB has an  
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Figure 3.4. IκBδ is largely cytoplasmic and it cannot activate NFκB without the SRD and 
AR6 of IκBα. 
(a) Immunoblot of cytoplasmic and nuclear fractions of α/ε-/-or nfkb-/- cells expressing IκBα, 
IκBδ (p100(480-765)) or SRD-δ-AR6 (IκBα(1-54)-IκBδ-IκBα (243-280)) treated with 
1ng/mL TNFα for indicated times. (b) NFκB activity as measured by EMSA of nuclear 
extracts from α/ε-/-cells expressing IκBα, IκBδ, or SRD-δ-AR6 treated with 1ng/mL TNFα. 
nfkb-/- cells are shown as a control. 
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Figure 3.5. An unregulated degron impairs IκB’s ability to control basal NFκB activity. 
(a) Computational simulation of NFκB activation over a 180-minute time course. IκBα is 
depicted in pink, SRD-δ-AR6 is in orange and empty vector (EV) is shown in blue dotted line. 
(b) NFκB activity as measured by EMSA of nuclear extracts from α/ε-/-cells expressing IκBα, 
IκBδ, SRD-δ-AR6, or EV treated with 1ng/mL TNFα for indicated times. (c) Quantification of 
basal NFκB levels. Error bars indicate standard deviation calculated from 3 separate 
experiments. 
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effect on NFκB activation.  With long IκB half-lives, little NFκB activation was seen 

as the resulting IκB overexpression functioned as a transdominant inhibitor; with short 

IκB half-lives, signaling was recovered, albeit the basal NFκB activity was predicted 

to be elevated (Figure 3.4. panel a). 

Using the IκB variants, we further investigated the effect IκB half-life has on 

NFκB activation in vivo downstream of TNF signaling.  As expected, the fully stable 

IκB functioned as a transdominant inhibitor, suppressing NFκB activation, compared 

to the IκBα positive control (Figure 3.4. panel b).  In contrast, the destabilized 

chimera did allow for NFκB signaling, but we noted an elevated basal level of NFκB 

activity (Figure 3.4. panel c), as predicted by the kinetic model (Figure 3.4. panel a).  

These results support the notion that NFκB-mediated control of IκBα half-life is 

critical for proper regulation of NFκB activity in basal and stimulus-induced 

conditions. 

 

NFκB feedback provides further insight on the effect of an unregulated degron 

In cells, IκBα is expressed from promoters that are highly NFκB inducible, 

thus providing negative feedback that may terminate NFκB activity (Kearns et al., 

2006).  The retroviral transgentic system that we established in α/ε-/- cells did not 

allow for NFκB feedback and therefore, the kinetic model could only predict slight 

differences in basal levels.  Therefore, we sought to explore the effect of an 

unregulated degron on NFκB signaling dynamics that are largely shaped by the 

NFκB-IκBα negative feedback loop.  Kinetic model simulations predicted that while  
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Figure 3.6. Model predicts that even within a NFκB feedback system, the unregulated 
degron impairs IκBα’s function.  
(a) Schematic of a murine Moloney virus-based vector that was modified to express the IκB 
transgene under the control of five κB sites. (b) Computational simulation of NFκB activation 
(under NFκB feedback) over a 180-minute time course. IκBα is depicted in pink, SRD-δ-AR6 
is in orange and empty vector (EV) is shown in blue dotted line.  
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Figure 3.7. In vivo data confirms kinetic model’s prediction. 
(a) NFκB activity as measured by EMSA of nuclear extracts from α/ε-/-cells expressing IκBα, 
SRD-δ-AR6, or EV in 5xκB vector, treated with 10ng/mL TNFα for indicated times. (b) 
Quantification of NFκB levels. Error bars indicate standard deviation calculated from 3 
separate experiments. 
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a form of IκB harboring a de-regulated degron may provide some degree of post-

induction attenuation, the extent and timing of this attenuation is defective, such that 

oscillations normally seen with wild type IκBα cannot be sustained (Figure 3.6. panel 

b).  We tested these predictions in vivo using a retroviral construct system that 

expresses the IκB variants under the control of five κB sites (Figure 3.6. panel b).  

Indeed, even with NFκB feedback, the unregulated degron impaired IκB’s function 

(Figure 3.7. panel a).  The experiment provides data that is consistent with the kinetic 

model. (Figure 3.7. panel b).  These data suggest that that NFκB-mediated control of 

IκB half-life is essential for characteristic NFκB signaling dynamics. 

 

DISCUSSION  

The degron of IκBα must be regulated to provide efficient regulation of NFκB 

In Chapter Two, we revealed the molecular determinants of a ubiquitin-

independent degron.  Here, we have shown that this regulation is necessary for the 

proper control signaling and that de-regulating the degron leads to faulty timing and 

higher basal levels of NFκB.  Previous reports have shown that high degradation rates 

of free IκBα warrant low levels of excess IκBα (O’Dea et al., 2007), which helps tune 

the cellular responsiveness of NFκB (O’Dea et al., 2008).  We have demonstrated in 

our study that the degron is the signal responsible for high flux, and unless its activity 

is regulated, the fluxing IκB does not provide for efficient inhibition of NFκB. By 

regulating the degrons activity via folding that is triggered by the interaction with 

NFκB (Huxford et al., 1998; Croy et al., 2004; Truhlar et al., 2006; Ferreiro et al., 

2007), IκBα is an effective inhibitor of NFκB in a basal state and for post-induction 
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repression, while still allowing for IKK-responsiveness.  
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MATERIALS AND METHODS 

DNA constructs.   

IκBα constructs were cloned into the retrovirus vector pBabe-puro between the 

restriction sites EcoRI and SalI. IκBδ was cloned between the restriction sites EcoR. 

For signaling studies, a murine Moloney virus-based vector was modified to express 

the IκB transgene under the control of five κB sites. 

Cell Culture. 

Immortalized 3T3 cells were cultured as described in Chapter 5.  

Biochemical Assays and Reagents. 

Cells treated with cycloheximide (Calbiochem) were used at 10 µg/mL in 

100%EtOH. For signaling studies, 1 or 10 ng/mL recombinant murine TNFα (Roche) 

was used. After treatment with cycloheximide, cells were lysed in RIPA buffer and 

equivalent protein amount were subjected to immunoblot analysis using Clarity 

Western ECL substrate (BioRad). IκBα was probed with sc-371 (Santa Cruz 

Biotechnology), while IκBδ and SRD-δ-AR6 were probed using HA 16b12 

(Covance). Nuclear and cytoplasmic extracts were prepared as described in Chapter 6 

and used for immunoblot analysis or electrophoretic mobility shift assays (EMSA) as 

described in Chapter 5. EMSA signals were quantitated using ImageQuant software 

(GE Healthcare) 

Computational modeling. 

The web interface mathematical model of the IκB-NFκB signaling module 

(http://signalingsystems.ucsd.edu/models-and-code/) was used (version 1.2; Kearns et 

al., 2006) to generate Figure 3.5 and 3.6. Total IKK Time (simulation phase) was 
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changed to 40 µM and mRNA half-life and synthesis rates were halved to simulate 

IκBα, SRD-δ-AR6, and empty vector. To simulate SRD-δ-AR6 we set the NFκB 

bound degradation rate equal to the unbound degradation rate and to simulate EV we 

changed the initial concentration of nuclear NFκB to 85nM. 
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ABSTRACT 

The IκB proteins regulate NFκB activity.  Specifically, IκBα, -β, or –ε are 

responsible for the control of NFκB by associating with NFκB dimers.  Whereas both 

basal and stimulus induced degradation of IκBα has been studied in detail, little is 

known about the mechanisms governing IκBβ and IκBε.  Here we examine the basal 

turnover of IκBβ and IκBε using a retroviral transgenic system.  We stably expressed 

mouse IκBβ and IκBε in mouse embryonic fibroblasts deficient in the canonical NFκB 

proteins: p50, cRel, and RelA.  We found that when we introduced these wild-type 

proteins into nfkb-/- cells, IκBβ exhibits a short half-life similar to free IκBα, and, 

strikingly, IκBε is stable.  In addition, unlike free IκBα, no stable truncation of IκBβ 

could be made indicating that IκBβ does not have a degron, or that its degron is more 

complex than that of IκBα.  Furthermore, in the case of IκBε, when the proteasome 

activator PA28γ was overexpressed, destabilization of IκBε was observed suggesting a 

specialized function of IκBε in cells expressing the immunoproteasome.  
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INTRODUCTION 

The activation of pro-inflammatory gene expression by NFκB is regulated by 

the association of NFκB with its inhibitor proteins: IκBα, IκBβ, or IκBε.  These IκBs 

are deemed the “classical” or canonical IκBs and are responsible for controlling the 

activity of NFκB in response to inflammatory signals.  Their synthesis and 

degradation rates are carefully regulated in order to maintain proper NFκB activity.  

IκBα and IκBβ were discovered using a biochemical activity test whereby chromatic 

fractions were tested for their ability to inhibit the DNA binding activity of NFκB.  

The fractions that showed an effect on NFκB were then purified via chromatography 

and single polypeptides were isolated (Baeuerle and Baltimore, 1988; Thompson et 

al., 1995; Zabel and Baeuerle, 1990).  IκBε was discovered sometime later using 

sequence homology and was characterized using similar biochemical analysis 

(Whiteside et al., 1997). 

IκBα, IκBβ and IκBε proteins all contain six copies of a motif, the ankyrin 

repeat, which interacts with the RHD of the rel/NFκB proteins.  Ankyrin repeats are 

typically a 33 amino acid consensus sequence consisting of two alpha helices 

separated by loops that appear in a large number of proteins.  The amino-terminal 

regions of the IκBs contain a signal response domain (SRD) that is mostly conserved 

in the classical IκBs. In the SRD there are two serine residues and two lysine residues 

that are critical for IκB responsiveness.  The serine residues are the sites of 

phosphorylation by the IκB kinase, IKK, and the lysine residues are required for 

ubiquitin conjugation.  Similar to IκBα, IκBβ contains a proline (P), glutamic acid (E), 

serine (S), and threonine (T) rich region at its C-terminus, which has been deemed the 
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PEST region. Previous studies have associated this region with rapid turnover in cells 

(Rogers et al., 1986).  However, as we saw in Chapter Two, the precise role of this 

region remains inconclusive. 

The stimulus-induced degradation of IκBα has been well studied.  Serine 

residues 32 and 36 are phosphorylated (Brown et al., 1995), which causes the 

ubiquitination of lysine 21 and 22 by the E3 ligase β-TRCP, triggering proteasomal 

degradation by the 26S proteasome (Scherer et al., 1995).  Similar stimulus induced 

degradation occurs for IκBβ and IκBε whereby serine 19 and 23 (DiDonato et al., 

1996) or serine 18 and 22 (Whiteside et al., 1997) are respectively phosphorylated 

(Figure 4.1.). 

Interestingly, whereas IκBα is rapidly synthesized upon NFκB activation, 

NFκB-induced transcription of IκBε is delayed (Kearns et al., 2006).  As a result, IκBε 

plays a role in dampening IκBα-mediated oscillations during persistent NFκB activity.  

Additionally, IκBβ has shown to not have a negative feedback effect on NFκB, but 

instead has been shown to act as a chaperone in the formation of RelA homodimers 

(Tsui, unpublished).  The IκBα and IκBβ crystal structures show various similarities 

between the two proteins (Huxford et al., 1998; Jacobs et al., 1998; Malek et al., 2003) 

and although there is no crystal structure of IκBε, it is assumed (based on likenesses of 

sequence) to adopt an analogous structure.  Given the lack of data on free IκBβ and 

IκBε, we used the previously established nfkb-/- cell system to investigate the half-life 

control of free IκBβ and IκBε half-life.  Here, using biochemical analysis, we show 

that while IκBβ may have degradation kinetics akin to IκBα, free IκBε is in fact a 
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stable protein.  These data suggest that IκBε is less suited to ensure NFκB inhibition in 

resting cells. 

 

RESULTS 

In MEFs unbound IκBβ shows parallel degradation kinetics to IκBα 

To characterize the degradation mechanism of unbound IκBβ, we used a 

retroviral transgenic system to introduce murine IκBβ into immortalized mouse 

embryonic fibroblasts deficient in the NFκB proteins known to associate with the 

canonical IκBs.  This nfkb1-/-rela-/-crel-/- cell line will be referred to hereafter as nfkb-/-. 

By treating the cells with cycloheximide (CHX), an inhibitor of translation, the 

approximate half-life of free IκBβ was determined.  This revealed that when wild-type 

IκBβ is expressed in theses cells, it is rapidly degraded.  As decay can occur in either a 

linear or in an exponential fashion, we quantified our data and used statistical analysis 

to determine which type of degradation IκBβ undergoes.  Figure 4.2. panel “b” 

illustrates that the coefficient of determination (R2) is closer to 1 in the exponential 

decay scenario, indicating that IκBβ decreases at a rate proportional to its current 

value.  One characteristic of exponential decay is protein half-life, which is the time 

required for the decaying quantity to fall to one half its initial value. This can be 

written mathematically as 𝑡!/! =
!" !
!

 where λ is the exponential decay constant 

extracted from the equation  𝑁   𝑡 = 𝑁!𝑒!!" which was fit in Microsoft Excel (Figure 

4.2.).  
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Figure 4.2. Unbound IκBβ experiences exponential decay. 
(a) Immunoblots for IκBβ of extracts prepared from nfkb-/- cells expressing wild-type murine 
IκBβ treated with CHX. * Indicates nonspecific bands associated with this antibody. (b) 
Quantitation 3 different experiments, error bars indicate standard deviation. Top panel: 
exponential regression fit, R-squared value indicated in red. Bottom panel: linear regression 
fit, R-squared value indicated in red. 
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Figure 4.3. Free IκBβ is degraded in a proteasome-dependent manner. 
(a) Immunoblots for IκBβ of extracts prepared from nfkb-/- cells expressing wild-type murine 
IκBβ treated with MG132 for the indicated times. β/ε knockout cells as well at WT cells 
shown as a control. (b) Immunoblot for IκBβ of protein extracts from nfkb-/- cells expressing 
IκBβ pretreated with MG132 for an hour then treated with CHX for the indicated times. (c) 
Quantification of 3 CHX experiments used to calculate half-life, error bars indicate standard 
deviation. Approximate half-life of IκBβ is indicated.   
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Since free IκBα is degraded in a proteasome dependent manner (Alvarez-

Castelao and Castaño, 2005; Mathes et al., 2008; O’Dea et al., 2008; Figure 2.1. and  

Figure 2.2.), we next sought to determine whether this was the case for unbound IκBβ. 

Treatment of nfkb-/-cells with the proteasome inhibitor MG132 led to the accumulation 

of free IκBβ (Figure 4.3. panel a), and prevented its degradation when cells were co-

treated with CHX (Figure 4.3. panel b).  Based on our biochemical data, we calculated 

the half-life of IκBβ to be 15-20 minutes (Figure 4.3. panel b).  

 

Unlike IκBα, truncations of IκBβ do not render it more stable  

IκBα and IκBβ show similar domain architecture (Malek et al, 2003).  Both 

proteins contain a centrally located ankyrin repeat domain (ARD) consisting of six 

ankyrin repeats.  The ARD is flanked by a signal response domain (SRD) on its 

amino-terminus and on its carboxy-terminus it contains an acidic region rich in 

proline, glutamic acid, serine, and threonine residues.  However, IκBβ contains a 

nonconserved 47 amino acid linker region between ankyrin repeat 3 and 4.  Despite 

this, the crystal structure of IκBβ/RelA homodimer complex shows many similarities 

with that of the previously determined IκBα/RelA:p50 heterodimer complex (Malek et 

al., 2003; Huxford et al., 1998; Figure 4.4. panels a and b).  As IκBα and IκBβ show 

structural similarities, we used our knowledge of the IκBα degron to determine 

whether a degron was present in IκBβ rendering it unstable when not in complex with 

NFκB. 
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Figure 4.4. The crystal structure of IκBα and IκBβ give insight into IκBβ truncations. 
(a) A ribbon diagram representation of the crystal structure of IκBα (pink) bound to NFκB 
(p50, cyan; p65, green) (b) A ribbon diagram representation IκBβ (pink) bound to NFκB 
(RelA, cyan; RelA, green) not shown is disordered linker region between AR3 and 4. (c) 
Domain organization of the various truncations of IκBβ used in this study. AR, ankyrin repeat. 
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Figure 4.5. Truncations in IκBβ do not render it more stable. 
(a) Immunoblots for hemagglutinin (HA) tag of extracts prepared from nfkb-/- cells expressing 
IκBβ Δ298, IκBβ Δ265, IκBβ Δ231, or IκBβ Δ158 treated with CHX. (b) Quantification of 3 
experiments, error bars indicate standard deviation. 
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Previous work on free IκBα revealed that when the 5th and 6th ankyrin repeat domains 

of IκBα were removed entirely, unbound IκBα is dramatically stabilized (Mathes et 

al., 2010; Figure 2.3.).  To test whether similar truncations could stabilize unbound 

IκBβ, we created four constructs, Δ158, Δ231, Δ265, and Δ298 (Figure 4.4. panel c). 

Δ158 removes the entire 4th, 5th, and 6th repeats of IκBβ as well as half of the unfolded 

linker region. Δ231 was truncated after AR 4; Δ265 was truncated after AR 5 and 

Δ298 removed the PEST region of IκBβ but kept the ARD intact.  Surprisingly, unlike 

unbound IκBα, no stable truncation of IκBβ could be made (Figure 4.5.). 

 

Free IκBε degradation rate is much slower when compared to IκBα or IκBβ  

 Next, we explored the degradation mechanism of unbound IκBε.  Using NFκB 

deficient cells we expressed murine full-length wild-type IκBε.  Unexpectedly, 

following a 60-minute CHX time course, it was determined that free IκBε was in fact 

stable (Figure 4.6.).  After experimental replication, we came to the conclusion that 

free IκBε must have a different mechanism of degradation than unbound IκBα and 

IκBβ.  

 In immune cells, knockouts of the proteasome activator PA28γ show elevated 

levels of the NFκB inhibitor IκBε (He et al., 2012; Yu et al., 2010). PA28γ knockouts 

also show immunological defects as brought out by experimental autoimmune 

encephalomyelitis (EAE) (Preckel et al. 1999; Murata et al. 2001; Yamano et al. 

2008).  This suggests that PA28γ might have an effect on the degradation mechanism 

of free IκBε.  To investigate this hypothesis further we used nfkb-/- cells and stably 

transduced both PA28γ, and IκBε, then treated the cells with either the proteasome  
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Figure 4.6. Free IκBε is stable in a 60-minute time course. 
(a) Immunoblots for IκBε  of extracts prepared from nfkb-/- cells expressing wild-type murine 
IκBε  treated with CHX. (b) Quantification of 3 CHX experiments used to calculate half-life, 
error bars indicate standard deviation. 
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Figure 4.7 Free IκBε can be destabilized in the presence of the proteasome activator 
PA28γ or when expressing the degron of IκBα (AR6). 
Immunoblots for IκBε of extracts prepared from nfkb-/- cells expressing wild-type murine IκBε 
Left panel: Cells treated with MG132 or CHX for the indicated times. Middle panel: PA28γ is 
coexpressed with WT-IκBε then treated with MG132 or CHX for the indicated times. Right 
panel: The degron of IκBα (AR6) is linked to the C-terminus of WT-IκBε then treated with 
MG132 or CHX for the indicated times. 
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inhibitor MG132 or the inhibitor of translation CHX. Interestingly, when PA28γ was 

overexpressed we observed a destabilization of free IκBε (Figure 4.6.).  In addition to 

this, when we tagged IκBε with the degron containing ankyrin repeat of IκBα (AR 6; 

Figure 2.5. panel a), we observed disruption of IκBε stability (Figure 4.6.).  These 

results are consistent with the findings in Chapter 2 that showed the high turnover of 

the degron could be transferred to a heterologous protein. 

 

DISCUSSION 

The inhibitor of NFκB (IκB) family of proteins is known to regulate NFκB 

activity by cytoplasmic sequestration.  The “classical” IκB proteins, IκBα, -β, and –ε 

are inducibly degraded by inflammatory signals which engage the TNF receptor and 

toll-like receptor family members to activate canonical, NEMO-dependent IKK 

activity (Baeuerle and Baltimore, 1996).  IκBα is the most responsive of the 

“classical” IκB proteins followed by IκBε and then IκBβ, which has about half to a 

quarter of IκBα’s responsiveness (Hoffmann et al., 2002).  Detailed understanding of 

stimulus-responsive NFκB activation has been reported; however, the steady state 

regulation of NFκB by IκBs has yet to be fully understood.  

 

IκBβ degradation is rapid, regulation remains to be discovered 

 Here we show that unbound IκBβ has similar degradation kinetics to IκBα, and 

has a half-life of 15-20 minutes.  Given that IκBα and IκBβ have structural 

similarities, we used our knowledge of IκBα’s degron (Chapter 2) to investigate the 

possibility that IκBβ also contains a degron.  Our results showed that no truncated 
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form of IκBβ could be engineered to gain stability.  Although this is an interesting 

result, it can be explained by one of two possible scenarios. T he first scenario is 

justified by the fact that while IκBα is in its free form, the first four ARs are folded 

compactly whereas AR 5 and 6 are highly flexible (Ferrerio et al., 2007; Truhlar et al., 

2006; Croy et al., 2004).  However, no NMR spectroscopy has been performed on free 

IκBβ due to the fact that it aggregates in vitro and therefore the whole IκBβ protein 

might in fact be incompletely folded when not bound to NFκB.  The hypothesis that 

misfolded proteins are degraded by the proteasome is not novel (Ding and Yin, 2008; 

Verma and Deshaies, 2000;Benaroudj et al., 2001;Baugh et al., 2009; Asher et al., 

2006).  However, as we showed in Chapter 2, there has been an increase in the number 

of proteins that have been found to contain an intrinsic degradation signal, or a 

“degron” (Ravid and Hochstrasser 2008; Rao et al., 2012; Singh Gautam et al., 2012).  

This leads us to our second explanation; it is possible that every ankyrin repeat in 

IκBβ contains a degron.  While both rationalizations of IκBβ are thought provoking, 

no irrefutable conclusions can be made without further examination. 

 

IκBε is stable but can be destabilized in the presence of IκBα’s degron or with the 

over expression of PA28γ 

When investigating the half-life control of IκBε, we were surprised to find that 

it was in fact, stable.  However, the overexpression of the proteasome activator PA28γ 

in nfkb-/- cells along with IκBε allowed for degradation of IκBε protein levels.  

Intriguingly, the cytokine Interferon-γ (IFNγ) transcriptionally induces the proteasome 

activators PA28α and PA28β, while PA28γ appears to be rapidly proteolyzed 
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following IFNγ stimulation (Tanahashi et al., 1997).  It would be of interest to 

determine the effect that IFNγ treatment has on the nfkb-/-+ IκBε + PA28γ cells, in 

order to further comprehend this pathway.  Since PA28γ knockout mice have 

immunological defects (He et al., 2012; Yu et al., 2010), a subsequent question arises 

what happens if PA28γ knock out mice are crossed with IκBε knock out mice?  It is 

possible that the combined loss of PA28γ and IκBε would rescue the defects seen in 

the PA28γ knockout.  In addition, we could broaden our understanding of the function 

of this pathway by using an immunological model.  IκBε reduces B-cell proliferation, 

therefore one could co-stimulate with IFNγ (and LPS) and measure IκBε accumulation 

and B-cell proliferation.  If enhanced proliferation was correlated with a loss of IκBε 

we could further probe the pathway by using an IκBε knockout B-cell system. 
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MATERIALS AND METHODS 

DNA constructs.   

IκBβ and IκBε were PCR amplified from mouse cDNA using the primers 

5’- CCGCGGATCCGCCACCATGGCCGGGGTCGCGTGCTTGGG-3’ and 5’- 

CCCGGAATTCTCAGGCAGGGTTGGGGTCATCAGG -3’and 5’- 

CCACGCGTCGACGCCACCATGTCGGATGCGCGGAAGGGGCCGGACG-3’ and 

5’- CCACGCGTCGACTCAGTCAGTACATAGCAGTGGTTTGCC-3’ for IκBε.  

Amplified IκBβ and IκBε were then cloned into pBABEpuro, using BamHI and EcoRI 

and SalI and SalI, respectively.  

Cell Culture.   

Immortalized 3T3 cells were cultured in DMEM supplemented with 10% 

bovine calf serum, 1% L-glutamine, and 1% penicillin and streptomycin at 5% CO2, 

37oC.  Cells treated with cycloheximide (Calbiochem) were used at 10 µg/mL in 100% 

EtOH.  For proteasome inhibition, 10µM MG132 (Sigma) was used.  For virus 

production, Plat-e cells (Morita et al., 2002) were transiently transfected with PEI 

(Reed et al., 2006) with 10 µg of pBABE and allowed to grow for 48 hours.  Filtered 

virus was placed onto target cells along with 4µg/mL Polybrene (Sigma).  Infected 

cells were selected with 2.5 µg/mL puromycin (Sigma). 

Biochemical Assays.   

After treatment with cycloheximide, cells were lysed in RIPA buffer.  Cell 

extract was separated on a 4-15% gradient SDS-PAGE and transferred to PVDF 

membrane.  IκBβ was probed with sc-945 (Santa Cruz Biotechnology) and truncations 

of IκBβ were probed with HA 16b12 (Covance) then followed by HRP conjugate 



 

 

83 

(Santa Cruz Biotechnology). IκBε was probed with sc-7155 or with 9249S (Cell 

Signaling).  Quantification of immunoblots was performed with ImageJ.  Dilution 

series with knockout extracts assured that Western blot signals were in the linear 

range.   
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Cells are capable of rapidly responding to changes in their environment, 

including the presence of pathogens or noxious conditions.  Molecular signaling 

pathways that regulate these responses show highly dynamic patterns of activity.  

Indeed, dynamic control of protein degradation rate and protein half-life is a dynamic 

hallmark of many signaling pathways.  In the case of the NFκB pathway, the key 

regulator of inflammatory responses, the inhibitor proteins IκBα, -β, and -ε are known 

to be regulated by signal-responsive mechanisms freeing NFκB.  Recent work 

indicates that IκBα is synthesized in excess in resting cells to ensure that NFκB activity 

remains effectively inhibited (Hoffmann and Baltimore, 2006; Vallabhapurapu and 

Karin, 2009).  Rapid degradation of the excess IκB is critical so that NFκB activation 

can proceed when inflammatory responses are needed (O’Dea et al., 2007; Mathes et 

al., 2008; O’Dea et al., 2007).   

Cellular protein degradation is catalyzed by the proteasome, a large molecular 

machine.  Most proteins are targeted for degradation by a specific post-translational 

modification, the covalent attachment of the small molecule ubiquitin (Ciechanover, 

2005).  However, there is an increasing amount of work that has demonstrated that 

proteins can undergo degradation without prior linkage of ubiquitin molecules 

(Orlowski and Wilk, 2003; Jariel-Encontre, 2008).  Abnormalities the degradation 

underlie the pathogenesis of numerous human diseases, therefore the proteasome has 

been an important target for drug discovery (Ostrowska, 2007; Crawford et al., 2011).  

However, many inhibitors of the proteasome have limited therapeutic worth due to 

their high levels of cytotoxicity against normal cells and their lack of selectivity (Chen 

et al., 2011; Rajkumar et al., 2005).  Therefore, the understanding of different 
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degradation signals that the proteasome utilizes is essential for the evolution of 

therapeutics as targeted proteasome inhibitors might ease side effects. 

In this dissertation, I have investigated the mechanism of degradation that free 

IκBα, the quintessential inhibitor of NFκB, undergoes.  I used these findings to 

discover the functional relevance of the degradation mechanism and furthermore 

delved into the method by which other IκBs, namely IκBβ and IκBε, are regulated in 

their free forms. 

In Chapter 2 we identify the degradation signal of IκBα, by employing 

fundamental biochemical techniques.  We identified and characterized the ubiquitin-

independent, proteasome-dependent degradation signal of IκBα.  We showed that the 

degron is located in the 6th ankyrin repeat of IκBα and that it is sufficient to cause 

degradation of a heterologous protein, GFP.  Furthermore, we showed that the degron 

is unique and does not appear to rely on the incompletely folded region of IκBα, but 

instead relies on specific amino acid residues within ankyrin repeat 6 that are hidden 

when properly folded.  Future work will look to explore the mechanism by which the 

proteasome recognizes the degron, and additionally how the degradation takes place. 

In Chapter 3 we investigated the effect that an unregulated degron had on 

NFκB activity.  Using a combined system of biochemistry, systems biology, and 

synthetic biology we showed that regulation of the degron is necessary for the proper 

control signaling and that de-regulating the degron leads to faulty timing and higher 

basal levels of NFκB.  Previous reports have shown that high degradation rates of free 

IκBα warrant low levels of excess IκBα (O’Dea et al., 2007), which helps tune the 

cellular responsiveness of NFκB (O’Dea et al., 2008).  We demonstrated in our study 
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that the degron is the signal responsible for high flux, and unless its activity is 

regulated, the fluxing IκB does not provide for efficient inhibition of NFκB.  By 

regulating the degron’s activity via folding that is triggered by the interaction with 

NFκB (Huxford et al., 1998; Croy et al., 2004; Truhlar et al., 2006; Ferreiro et al., 

2007), IκBα is an effective inhibitor of NFκB in a basal state and for post-induction 

repression, while still allowing for IKK-responsiveness.  

In Chapter 4 we investigated whether other canonical IκB proteins in their free 

form, namely IκBβ and IκBε, underwent similar half-life control as IκBα.  We 

discovered that while IκBβ may undergo similar control as IκBα, IκBε is in fact a 

stable protein.  These results indicated that IκBε maybe less suited to ensure NFκB 

inhibition in resting cells.  Interesting, we found that the overexpression of the 

immunoproteasome component, PA28γ, destabilized free IκBε.  More biochemical 

and biological work is currently needed to understand the mechanistic detail by which 

PA28γ mediates free IκBε degradation.  These findings provide insight on the 

mechanisms governing IκBβ and IκBε as well as provide kindling for future projects 

to come. 

Together, these data indicate that every IκB seems to have different 

degradation control. IκBα contains a degron for 20S mediated proteasomal 

degradation, which can function regardless of ubiquitin conjugation.  It seems as if 

IκBε contains a degron that targets it to the immunoproteasome, however more work 

needs to be done to understand the biological implications.  Additionally, while IκBβ 

is unstable, it  is unclear what degron, if any, it contains. 
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This dissertation emphasizes the importance in comprehending the steady-state 

mechanisms by which proteins are regulated in order to understand how a cell will 

behave in response to environmental signals.  Pharmacologic inhibitors of the 

proteasome have shown to have an imperative effect on malignant cancers, however 

many lack selectivity.  The work presented here could be important in designing new 

therapeutics with greater selective activity. 
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Chapter 6: 
Materials and Methods 
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The following materials and methods were used throughout the work described 

here.  Materials and methods specific to each study are described at the end of each 

chapter. 

 
Cell Culture and Reagents. 

Immortalized mouse embryonic fibroblasts (MEFs) were cultures in DMEM 

supplemented with 10% bovine calf serum, 1% penicillin and streptomycin, and 1% 

L-glutamine at 5% CO2, 37°C. Cells were culture in 37 °C incubator with 5% CO2. 

Cells treated with cycloheximide (Calbiochem) were used at 10 µg/mL in 100% 

EtOH. For proteasome inhibition, 10µM MG132 (Sigma) was used. Plat-e cells were 

grown in DMEM supplemented with 10% fetal bovine serum, 10µg Blasticidin , 1µg 

Puromycin when cultured during virus production were grown in DMEM 

supplemented with 10% fetal bovine serum % penicillin and streptomycin, and 1% L-

glutamine. 

Production of Virus 

Plat-e cells (Morita et al., 2002) were transiently transfected with PEI (Reed et 

al., 2006) with 10 µg of pBabe and allowed to grow for 48 hours. Filtered virus was 

placed onto target cells along with 4µg/mL Polybrene (Sigma). Infected cells were 

selected with 2.5-µg/mL puromycin (Sigma). 

SDS-PAGE. 

 After treatment with cycloheximide, cells were lysed in RIPA buffer [50mM 

Tris (pH 7.5), 150mM NaCl, 1%TritonX100, 1%NaDOC,.1%SDS, 1mM EDTA]. 

Whole cell extracts were prepared in lysis buffer and total protein concentrations were 
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normalized to each other using Lowry assay (BioRad) before immunoblot analysis. 

Cell extract was separated on a 4-15% gradient SDS-PAGE and transferred to PVDF 

membrane. IκBα was probed with either sc-371 (Santa Cruz Biotechnology) or sc-203, 

GFP was probed with sc-996, HA was probed with 16b12 (Covance), IκBε was 

probed with sc-7155, IκBβ – sc-945, β-actin – sc-1615. Quantification of immunoblots 

was performed with ImageJ and data analysis was performed with Kalidagraph 

(Synergy) or Excel (Microsoft). Dilution series with knockout extracts assured that 

Western blot signals were in the linear range. 

Electrophoretic Mobility Shift Assay (EMSA) 

After stimulation, cells were washed with ice cold Phosphate Buffered Saline 

(PBS) + 1mM EDTA, and were scraped and collected into a microcentrifuge tube and 

pelleted at 2000xg.  Cells (about 106) were resuspended in 100ml CE Buffer [10mM 

HEPES-KOH (pH 7.9), 60mM KCl, 1mM EDTA, 0.5% NP-40, 1mM DTT, 1mM 

PMSF], and vortexed for lysis.  Nuclei were pelleted at 4000xg, resuspended in 30ml 

NE Buffer [250mM Tris (pH 7.8), 60mM KCl, 1mM EDTA, 1mM DTT, 1mM 

PMSF], and lysed by 3 freeze-thaw cycles.  Nuclear lysates were cleared by 14000xg 

centrifugation and protein concentrations were normalized via Bradford assay.  2.5ml 

total nuclear protein was reacted at room temperature for 15 minutes with 0.01 pmol 

of P32-labeled 38bp double-stranded oligonucleotide containing two consensus kappaB 

sites: (GCTACAAGGGACTTTCCGCTGGGGACTTTCCAGGGAGG) in binding 

buffer [10mM Tris-Cl (pH 7.5), 50mM NaCl, 10% glycerol, 1% NP-40, 1mM EDTA, 

0.1mg/ml polydI:dC], for a total reaction volume of 6ml.  Complexes were resolved 

on a non-denaturing 5% acrylamide (30:0.8) gel containing 5% glycerol and 1X TGE 
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[24.8mM Tris, 190mM glycine, 1mM EDTA], and were visualized/quantitated using a 

PhosphorImager (Molecular Dynamics), in which the unbound probe (>20 fold 

excess) was used to normalized for loading variability. 

Computational Simulations 

 The web interface mathematical model of the IκB-NFκB signaling module 

(http://signalingsystems.ucsd.edu/models-and-code/) was used (version 1.2; Kearns et 

al., 2006) for all simulations. Specific parameter changes are noted in Chapter 3. 
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