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ABSTRACT 

 
This paper proves that kinematic wave (KW) problems with concave (or convex) equations of 

state can be formulated as calculus of variations problems. Every well-posed problem of this type, no 

matter how complicated, is reduced to the determination of a shortest tree in a relevant region of space-

time where “cost” is predefined. A duality between KW theory and “least cost networks” is thus 

unveiled.  

In the new formulation space-time curves that constrain flow, such as sets of moving 

bottlenecks, become space-time shortcuts. These shortcuts become part of the network and affect the 

nature of the solution but not the speed with which it can be obtained. Complex boundary conditions are 

naturally handled in the new formulation as constraints/shortcuts of this type.  
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1. INTRODUCTION 

This paper is concerned with problems, e.g., traffic flow, that are described by the following first 

order partial differential equation for an unknown function N of two arguments (t, x), usually associated 

with time and space:  

Nt = Q(−Nx , t, x).                (1) 
 

The subscripts t and x denote partial derivatives, and Q is a piecewise differentiable and concave function 

in its first argument.  

In applications, N is often interpreted as a cumulative count of objects: cars, fluid units, etc. The 

rate at which the item count changes with time is the flow, q = Nt, and the rate at which it changes with 

distance the negative of the density, k = −Nx. Thus, Eq. (1) is often written in terms of q and k as: 
 

q = Q(k , t, x)               (2a) 
 

where q and k  are linked by a “conservation equation” which merely expresses the equality Nxt = Ntx : 
 

kt +qx = 0.              (2b) 
 

A third way of writing (1) in terms of the density alone is obtained by substituting (2a) for q in (2b): 
 

kt + Qkkx + Qx =  0.               (3) 
 

Equations (1), (2) and (3) are equivalent. Formulation (1) is natural for certain geophysics problems (see 

e.g., Luke, 1973) and formulations (2) and (3) for fluids (see e.g., Lighthill and Whitham, 1955, and 

Richards, 1956). Formulations (2) and (3), called “conservation laws,” have been extensively studied; see 

Lax (1973) and LeVeque (1992) for background.  

 Newell (1993) has shown the considerable practical advantage of using (1) for solving traffic flow 

problems.  Independently, he and Luke proposed that if N has been defined on a boundary D, then the 

value of N at a point P is given by the rule: 
 

NP = min {B(P ) + ∆(P ) :  ∀ P  ∈  W∩PP}             (4) 
 

In this expression and elsewhere in this paper P  is a space-time path, x(t), PP is the set of all paths from D 

to P and W is the set of all wave paths. The functionals B(P ) and ∆(P ) respectively give the N-value at 

the beginning of the path (a data point) and the predicted change in N along the wave path.  The formula 

for the latter is: 

∆(P )  =     if P  ∈  W              (5) ∫
P

B

t

t

dtxtxR ),,'(
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where a prime denotes differentiation, tB and tP are the times at the two ends of P , and  R is a known 

function that can be derived from Q. [In traffic flow, this function gives the rate at which vehicles pass an 

observer traveling with the wave, at speed x’.]  

Recall from the theory of conservation laws that a wave path is defined by the property x’(t) = Qk 

and that if a problem is physically well-posed (no contradicting data) a wave path can be drawn from at 

least one boundary point to P. Thus, the set W∩PP is not empty. There can be more than one wave 

reaching point P, however. Luke (1973) and Newell (1993) proposed the minimum operation as a way of 

selecting the correct wave but provided no mathematical proof.  

While (4) represents a significant advance over previous methods to solve (1)-(3) it is still 

cumbersome for general problems because identifying the relevant set of paths W∩PP is not easy, except 

in special cases.  [Both Luke and Newell successfully applied the minimum principle to homogeneous, 

time-independent problems where Q(k , t, x) = Q(k), because in these instances waves are straight lines 

and the passing rate R is constant along each wave. But application of the principle to general problems is 

tedious, as illustrated by the solutions of Lighthill and Whitham’s bottleneck problem in Newell (1999).] 

This paper will present a mathematical proof that (4) holds, putting the L-N minimum principle 

on a firm foundation.  But more importantly, it will prove that (4) can be replaced by: 
 

NP = min {B(P ) + ∆(P ) :  ∀ P  ∈  V∩PP}             (6) 
  

where V is the set of all “valid” paths. A path is valid if it is continuous, piecewise differentiable and such 

that x’ is everywhere in the range of possible wave speeds. Note that V⊃ W. The significance of enlarging 

the set of paths is that, although V∩PP is large it is convex. Convexity opens the door to variational 

methods, which cannot be used with (4). In essence, the new formulation reduces even the most 

complicated KW problems to simple shortest path problems. Section 2, below, proves (6) and Sec. 3 

discusses its implications. 

 

2.  THE “LEAST ACTION” PRINCIPLE FOR KINEMATIC WAVES 

 The solution of (2) at a given point (t, x) is characterized by two values of k and q that satisfy 

(2a). Associated with these are two derived quantities: the wave speed, 
 

u = Qk(k , t, x),                  (7) 
 

which is a monotonic function of k, and the (passing) rate at which items overtake an observer moving 

with the wave,  
 

r = q – ku.                  (8) 
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We see from (2a) and (7) that r is a function of k: 
 

r = Q(k , t, x) −  kQk(k , t, x),           (9a) 
 

and from (7) that the latter is also an implicit function of u: 
 

r = R(u , t, x).              (9b) 
 

We can write the change in item number along a wave path from B to P, NP – NB, by integrating (9b) over 

time. The result is (5), as expected. If P ∉ W, however, NP – NB may differ from ∆(P ). The formula is 

obtained by integrating the passing rate, q − kx’, along the path: 

NP – NB =             (10) ∫ −
P

B

t

t

dtkxxtkQ ]'),,([

We now show that the difference between the change in item number (10) and ∆(P ) can never be 

positive. 

Lemma:  If P  ∈  V goes from B to P then, ∆(P ) ≥ NP – NB .■ 
 

Proof:  We first show that for any given speed x’, the relative flow Q(k, t, x) − kx’ in the argument 

of (10) is maximized for a density with wave speed, u = x’.  This is true because the relative flow is a 

concave function of k and therefore a sufficient condition for a global maximum is Qk = x’.  Note next that 

if we now substitute Qk for x’ in the relative flow expression we find that the result (the maximum 

possible passing rate) is the right side of (9a).  Since (7) holds this is equal to the right side of (9b). Since 

the optimum wave speed is u = x’, we can write the maximum as R(x’, t, x). Thus, for any k and any x’, 

R(x’, t, x) ≥ Q(k, t, x) − kx’. Since the integral of the left side of this inequality is ∆(P ) and the integral of 

the right side is  NP – NB , it follows that ∆(P ) ≥ NP – NB.■  

It is well known that if the boundary data are well posed then there is a wave that reaches every 

point in the solution domain; see e.g., Lax (1973). The main result of this paper can now be presented. 
 

Theorem:  Equations (6) and (4) hold for well-posed problems.■ 
 

Proof: The lemma states that NP ≤ B(P )+ ∆(P ) for all P ∈ V∩PP . Thus, to prove (6) it suffices 

to show that there is a critical path P ∈ V∩PP for which NP =B(P ) + ∆(P ).  Since the problem is well 

posed, there is at least one path P* in W∩PP.  For any such path, NP = B(P *) + ∆(P* ); see (5).  Since 

W∩PP ⊂  V∩PP, P* is a critical path in V∩PP and (6) must hold. Since the critical path is also in W∩PP, 

(4) must obviously hold as well.■ 

Note that the lemma and the theorem do not apply to problems with non-concave Q.  
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3.  DISCUSSION 

Uniqueness and stability:  If we use ∆BP to denote the minimum of ∆(P ) across all valid paths 

from B to P (which are fixed quantities that can be interpreted as “costs”) then (6) becomes: 
 

NP = min { NB + ∆BP :  ∀ B ∈  D }.            (11) 

This expression is useful in cases where the ∆BP can be easily calculated. Then the calculus of variations 

problem becomes an ordinary optimization problem. More importantly, however, (11) implies that if {NB} 

and {N’B} are two data sets, then the two solutions must satisfy: 
 

|NP − N’P |  ≤  max { |NB − N’B | ; ∀ B ∈  D }.             (12) 

This inequality shows that two solutions can never deviate from each other at any point any more than 

they deviate somewhere on the boundary. This means that perturbations to the data cannot grow into the 

solution and that the solution to (6) must be unique and stable. This proof of uniqueness and stability is 

considerably more concise than the conventional one; see Lax (1973). 
 

“Least action”:  If we think of R(x’, t, x) as a Lagrangian and (2) as the “action” we see that 

kinematic waves are least action paths that can be found with calculus of variations. We then find after 

some manipulation of (6) and (5) that the Euler equation for the problem is indeed (2). Since the solution 

to the calculus of variations problem is stable and unique, (6) can be taken as the fundamental statement 

of the kinematic wave problem. Unlike (2) and (3), which have to be augmented with an auxiliary 

“entropy condition,” (6) automatically rules out unstable solutions.  
 

Networks, duality and boundary constraints: The above results show that KW problems can be 

solved approximately by first overlaying a dense but discrete network in the solution region, with a cost 

∆PP’ for each arc PP’, then connecting a fictitious origin to all points B on the boundary with a cost NB for 

each arc, and finally finding the “shortest” tree from this origin to all nodes. The network solution will be 

exact if the network can be guaranteed to contain one of the shortest paths in the continuum. A sequel to 

this paper will show how this can be done for an important class of problems. In other cases we can 

ensure that the network contains a near-optimum path by ensuring that it is dense and that the set of links 

PP’ incident on every node P contains a full complement of slopes, x’, within the range of validity. Since 

networks of this type contain no cycles, the full tree for a network with L links can be found in time O(L); 

e.g., with dynamic programming. 

The tree of shortest paths from the origin to all the nodes gives the waves. Its branches end either 

at the boundary of the solution region or at a “shock.” Shocks are those points in solution space that can 

be reached by more than one path. The equi-cost contours of our network are lines with the same item 

number—they are the item trajectories.  
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Formulation (6) has a further advantage over the conventional KW formulations because it 

provides a natural framework for the treatment of discrete constraints (e.g., due to point bottlenecks in 

traffic flow) without the nuisance of having to check for stability during the solution process. To clarify, 

suppose we are given a set of paths {Ci(t)} along which there is a maximum possible passing rate {Ri(t)}. 

(Think of a snowplow passing through a traffic signal.) To solve this problem we simply add short links 

to the underlying network matching the {Ci(t)} as well as possible and then assign to them unit costs (per 

unit time) close to Ri(t). The problem (with constraints) is then solved by finding the shortest tree for the 

expanded network. The new low-cost links act as shortcuts through space-time. These shortcuts obviously 

change the solution but do not materially alter the solution effort. Note that the inclusion of shortcuts can 

only lower the cost of reaching a node. This is expected, since in KW theory, the inclusion of a bottleneck 

can only lower the item number reaching a node. Boundary conditions can be naturally modeled in this 

theory as constraints of this type. For example, constraints of the form {Cf(t) = xf ; Rf(t)} can be used to 

model a road that meets a junction at location xf.  

We may ask if this solution with constraints is stable, unique, etc… but we need not worry.  Since 

the solution continues to be the minimum of a shortest path problem it is unique and stable; it is the 

correct solution and no entropy conditions need to be checked. In practical applications once can allow 

the passing rates to depend on endogenous data (e.g., from other roads sharing a junction) according to 

some meaningful rule. In this case, the rules should be tested for stability. But if they are stable boundary 

data will remain bounded, and the solution to the continuum problem will still exist, be unique and stable.  

A sequel to this paper will present a number of examples and will discuss further simplifications, 

with emphasis on cases where exact solutions can be obtained in time O(M), where M is the number of 

points at which the solution is sought.  
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