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Simple Summary: A permanent link between biological samples and the associated data is essential
for their effective and long-term utilization. In order to enable clear identification and referencing of
biosamples and to ensure comparability in research, explicit naming of such material by assigning
unique and permanent identifiers is therefore necessary. This can be achieved by using explicit
naming structures with a predefined pattern. These nomenclature structures have been developed
for diverse biological materials but are lacking for animal cellular material, such as tissues and cell
lines. Here, we present a first, standardized, human-readable nomenclature design, which generates
clear and stable identifier names for such material with a focus on cellular material from wildlife
species. Consistent application and central distribution and storage of these identifiers are required
to ensure explicit identification and traceability of animal biosamples. This novel and globally
applicable identification system adds standardization to the long-term storage of animal cell material
in cryobanks and supports species conservation and research.

Abstract: The documentation, preservation and rescue of biological diversity increasingly uses living
biological samples. Persistent associations between species, biosamples, such as tissues and cell
lines, and the accompanying data are indispensable for using, exchanging and benefiting from
these valuable materials. Explicit authentication of such biosamples by assigning unique and robust
identifiers is therefore required to allow for unambiguous referencing, avoid identification conflicts
and maintain reproducibility in research. A predefined nomenclature based on uniform rules would
facilitate this process. However, such a nomenclature is currently lacking for animal biological
material. We here present a first, standardized, human-readable nomenclature design, which is
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sufficient to generate unique and stable identifying names for animal cellular material with a focus on
wildlife species. A species-specific human- and machine-readable syntax is included in the proposed
standard naming scheme, allowing for the traceability of donated material and cultured cells, as well
as data FAIRification. Only when it is consistently applied in the public domain, as publications
and inter-institutional samples and data are exchanged, distributed and stored centrally, can the
risks of misidentification and loss of traceability be mitigated. This innovative globally applicable
identification system provides a standard for a sustainable structure for the long-term storage of
animal bio-samples in cryobanks and hence facilitates current as well as future species conservation
and biomedical research.

Keywords: viable cell material; wildlife; biosample nomenclature; cryobanking; standardization;
unambiguous identifier; FAIR data; biodiversity; species conservation

1. Introduction
1.1. Background

As biodiversity is increasingly threatened, studying it, with aims to its conservation
and restoration, is needed. Besides nature conservation efforts, the collection and active
preservation of living biological samples usable for research (e.g., for the generation of
germ cells) also plays an increasingly crucial role in species conservation [1]. The global
exchange of such rare and valuable biosamples for research and species conservation
requires traceability [2]. Standardized naming tools for generating unique identifiers (UIs)
support such mandatory tracing, enable clear referencing and have been broadly discussed
for human cells [3,4], human genomic data [5] and human gene products [6,7]. A widely
used naming tool for human pluripotent stem cells was proposed by Luong et al. (2011) [3],
further developed by Kurtz et al. (2018) [4] and implemented in the Human Pluripotent
Stem Cell Registry (hPSCreg) [8]. This is the only available nomenclature specific to human
pluripotent stem cells suitable for generating human-readable, i.e., interpretable UIs [9,10].

For referencing of a specific entity, identifiers serve as a link with which metadata
are associated. Multiple identifiers may co-exist to complement their particular features
and utility, such as information content, coding length and global uniqueness. However, if
different identifiers exist for one entity, they should be unambiguously linked and reference
one another, e.g., to connect data repositories [11]. The Resource Identification Initiative
(RII) [12] introduced the concept of Research Resource Identifiers (RRIDs) [13] to enable
reproducible research through the use of RRIDs, unique alphanumerical identifiers for
referencing published research materials, such as reagents, tools, organisms and biological
materials. For vertebrate and invertebrate cell lines cited in the scientific literature, Cel-
losaurus’ knowledge resource [14] assigns a short, persistent, unique stable identifier, which
is recognized as the RRID of these cell lines [15]. Furthermore, the BioSamples database at
the European Bioinformatics Institute as part of the European Molecular Biology Labora-
tory (EMBL-EBI) [16] assigns unique accession numbers to registered research biosamples,
including living cells and tissues of all kinds of human and non-human organisms used for
sequencing [17,18]. However, without disclosure of the linked metadata, the mutually inde-
pendent RRIDs and BioSamples identifiers are not directly informative or human-readable.
Nor do they allow for the assessment of kinships or complex relationships between origin,
donor species, biosample type and derivative, which are needed for many application cases
of animal cells. Consequently, any newly established biosample identifier should fulfill
the specific stakeholder need for human readability but also establish and maintain stable
links to a respective RRID to enable traceability. A central platform is required to issue
and register human-readable names directly attributed to the relevant data and recorded
with the RRID authorities so that research resources can continue to be resolved by their
RRIDs. In conclusion, no uniform, human-readable, informative nomenclature exists for
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animal living biosamples such as tissues, derived cell lines, gametes or embryos to enable
traceability to its origins and legal provenance.

Research with living animal biosamples, especially cell lines, is the focus of various
scientific fields, such as species conservation, basic research and comparative biological
research, as well as veterinary and biomedical research [19], and the derivation and estab-
lishment of new animal cell lines are expanding [20]. Further, the publication of animal cell
lines in general and derived pluripotent animal stem cell lines in particular (i.e., embryonic
stem cells (ESCs) and induced pluripotent stem cells (iPSCs)) is constantly increasing. This
applies to wildlife species threatened with extinction [21–26], as well as domesticated and
livestock species [27–33] and model species, including non-human primates, mice, naked
mole rats and others [34–39]. Also, the establishment of stem-cell-derived multicellular
models such as organoids, assembloids and blastoids [40,41] is progressing for animal
species, and they have been published both for model species, e.g., for mouse blastoids [42],
and wildlife species, e.g., for rhinoceros cerebral organoids [26]. Research on the cellular
material of domesticated model species has been conducted intensively in the last decades,
with the result being more than 174,000 mouse (Mus musculus) ES cell lines having been
established, registered by the RII and assigned an RRID so far [43] and more than 2 mil-
lion mouse biosamples having been registered in the BioSamples database. In contrast,
living cellular biosamples of wildlife, i.e., non-domesticated species [44], have been less
strongly researched yet are steadily growing in number. As a result, animal biosamples
are increasingly exchanged and processed by different research institutions worldwide [2].
This demands unambiguous identification to assure access to and the traceability and easy
authentication of samples and cells.

1.2. Need for a Standardized Nomenclature Design for Animal Biosamples
1.2.1. Free-Text Names Have Little or No Interpretability

The absence of a standardized naming system at present has led to a wide range of
inconsistent naming structures for animal cellular material (see Table 1). These irregular
name schemes range from purely descriptive, alphabetical styles to short alphabetical and
alphanumerical names and further to long alphanumerical names with or without addi-
tional structuring characters (see examples 1–5 in Table 1). The inconsistency in the naming
of animal cellular material and the subsequent irregular interpretability can be illustrated
by examples for fibroblast cell lines such as “ENL-2” and “KCB 96008”, both from Asian
elephants (Elephas maximus); “KDF” and “SR-fibroblasts”, both from Sumatran rhinoceroses
(Dicerorhinus sumatrensis) and “Fish 80” and “pA03_wD06”, both describing tissue sam-
ples of rainbow trout (Oncorhynchus mykiss). Moreover, allocated cell line names such as
“UCLAi090-A” mimic and can be confused with published naming structures intended
for human cell lines (see examples 6–12 in Table 1). If publicly accessible, most of these
biosamples are assigned an RRID (“CVCL_xxxx”) or BioSample ID (“SAMxxxxxxxxx”)
characterized by unique alphanumerical coding (“xxxxxx”). Thus, the identifier is not
informative about any features of the biosample. These examples show existing ambi-
guities in the naming of biosamples and clearly demonstrate the necessity for a uniform
nomenclature and informative identifier system in research with animal cells.

Table 1. Examples of assigned names for animal biosamples in absence of a standardized naming system.

Biosample Name Publication Characterization

1 Snow leopard iPS [45] Snow leopard (Panthera uncia) iPSC line

2 J9F2 [46] Japanese macaque (Macaca fuscata fuscata) iPSC line

3 RNA-iPSC #1 [47]
Common marmoset (Callithrix jacchus) iPSC lines

4 CM421F B-0-12 iPSC [31]

5 BWHGLi001 [48] Naked mole rat (Heterocephalus glaber) iPSC line
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Table 1. Cont.

Biosample Name Publication Characterization

6 ENL-2 [49]
Asian elephant (Elephas maximus) fibroblast lines

7 KCB 96008 [50]

8 KDF [51] Sumatran rhinoceros (Dicerorhinus sumatrensis)
fibroblast lines9 SR-fibroblasts [26]

10 Fish 80 [52]
Rainbow trout (Oncorhynchus mykiss) tissues

11 pA03_wD06 [53]

12 UCLAi090-A [54] Rhesus macaque (Macaca mulatta) iPSC line

1.2.2. Scientific Exchange and Cryobanking

The distribution of animal biosamples, such as tissues, cells and gametes, between
research labs and other resources, for example, cryobanks, without a persistent standard
identification system impedes explicit referencing and traceability, particularly when cells
are modified, such as, for example, by reprogramming them into iPSCs. Induced pluripo-
tent stem cell lines are immortal, making them valuable tools for differentiation and further
genetic modification [34]. Data related to the cell material, such as information on its
derivation, cultivation and characterization, as well as ethical and legal provenance, are
at risk of being disassociated from the cells over time and their ease of global distribution
hindered [3,4]. In addition, inconsistent naming complicates conducting literature searches
for existing cell lines, hampers the findability, accessibility, interoperability and reuse (FAIR)
principles [11,55] and increases the chances of gross misidentification of cell material and
the subsequent irreproducibility of published results [56].

The international exchange and utilization of non-human genetic resources (i.e., “to
conduct research and development on the genetic and/or biochemical composition of
genetic resources, including through the application of biotechnology” [57]) are in many
cases subject to regulations and control mechanisms on ethical and legal provenance
based on international treaties. These include, for example, the “Washington Convention
on International Trade in Endangered Species of Wild Fauna and Flora” [58] and the
“Nagoya Protocol on Access to Genetic Resources and the Fair and Equitable Sharing of
Benefits Arising from their Utilization (ABS) to the Convention on Biological Diversity” [59].
Compliance with these regulations includes strict administrative obligations and requires
transparent traceability of the biological material.

A regulated, clear, robust and accepted designation of animal cell material provides
for traceability and is therefore indispensable for consistent scientific work and credi-
ble research results [3,9]. This necessity becomes particularly evident in the context of
the long-term storage of living animal biosamples in wildlife cryobanks. Such contin-
uously evolving archives aim to preserve valuable cellular and genetic material to pre-
serve biodiversity [20,60–63] in the context of accelerated anthropogenic species extinction
rates [64]. They further target promoting its broad application in different research fields
and conservation efforts [65], comparative cell and development biology research [66], (ad-
vanced) assisted reproduction technologies ((a)ART) and stem-cell-associated techniques
(SCAT) [1,24,67–69]. These biorepositories are in need of joint data and process standardiza-
tion [2,19]. Informative unique identifiers will ease compliance tracing within the relevant
legal frameworks of animal biosamples stored in cryobanks and exchanged internationally.

2. Methods
2.1. Requirements of a Standardized Nomenclature

The developed standardized nomenclature was designed in consideration of the rec-
ommendations of the International Cell Line Authentication Committee (ICLAC) [9]. A
standardized nomenclature must follow a formal pattern, i.e., a structured design character-
ized by predetermined rules, and be documented in a repository [11]. These nomenclatures
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should ideally generate human-readable names for easy recognition of the features of the
material to be informative to human users.

2.2. Nomenclature Components

To establish a standardized and human-readable nomenclature for biological speci-
mens which includes a wide range of species, it is imperative to take into account species
name coding to contextualize the identifiers of the respective biosamples. Moreover, it
is reasonable to include information on the biosample type, such as tissue or cell line.
However, when including human-readable information on the species and the biosample,
the number of characters in the identifier is likely to rapidly increase and even exceed
a reasonable, intuitive and useful nomenclature length. Thus, a nomenclature design
naturally faces a trade-off between information and length [3,4,11].

3. Results
3.1. Proposed Standardized Nomenclature—Defined Formal Pattern

The present nomenclature design aims to provide a unique, stable and human-readable
17-digit alphanumerical identifier for viable animal biosamples at the species level. It fol-
lows a simple, predefined structure, which links two components: a unique and novel
10-digit alphabetical species code (component I), followed by a 1-digit prefix for biosample
classification and a 5-digit ascending identification number for every new cellular biosam-
ple (component II) (see Table 2). The clarity and readability of the two components are
strengthened by hyphens (see Figure 1). This design allows for 105 possible standardized
identifiers for each of the considered biosample types, tissue (T), cells (C), gametes (G) and
embryos (E), within one species. It could be expanded for additional biosample types, such
as multicellular models (M) (organoids, assembloids, blastoids, etc.).

Table 2. Summary and explanation of the nomenclature components and elements.

Part Structure Explanation Position

C
O

M
PO

N
EN

T
I

Sp
ec

ie
s

In
fo

rm
at

io
n

Element 1 AAA

A 3-digit acronym for taxonomic classification
of the respective species formed by the first
letter of class, order and family, all in upper
case letters, e.g., MPC for all species within the
family of Cercopithecidae (Old world
monkeys): class: Mammalia, order: Primates,
family: Cercopithecidae

1–3

Element 2 AaaAaa

A 6-digit acronym of the binominal zoological
nomenclature for the respective species as a
sequence of the first three letters of its generic
name, followed by the first three letters of its
specific name in upper case and lower case
letters, with each upper case letter indicating
the first letter of the abbreviated words, e.g.,
MacMul for “Macaca mulatta”
(Rhesus macaque)

5–10

C
O

M
PO

N
EN

T
II

B
io

sa
m

pl
e

In
fo

rm
at

io
n

Element 3
5 options
for fixed

letter

A 1-digit prefix of an upper case letter to
specify the type of biosample as either tissue
(T), cell line (C), gametes (G), embryo (E) or
in vitro-generated multicellular model (M),
(organoids, assembloids,
blastoids/embryoids, etc.).

12

Element 4 12345

A 5-digit ascending identification number
between 00001 and 99,999, allowing for the
distribution of 99,999 unique identifiers for the
respective biosample type within one species

13–17
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Figure 2. Alteration of biosample information coding (component II) according to downstream 
processing of biosamples. Example for White rhino (Ceratotherium simum) primary material. Left 
example: Skin tissue material of a White rhino, registered as, e.g., MPR-CerSim-T00020, is 
hypothetically processed into a somatic cell line (e.g., fibroblasts) and subsequently assigned a new 
UI, such as, e.g., MPR-CerSim-C00015. Aliquots of the latter are then reprogrammed into an iPSC 

Figure 1. Schematic presentation of the nomenclature design with its components and elements. The
17-digit unique identifiers (UIs) are composed of four descriptive elements in a predefined formal
pattern with distinct order 1–4, providing information on the species (component I) and the biosample
(component II). The combination of elements 1 and 2 results in a robust species identifier. Each of
the 17 positions is assigned a characteristic feature of upper case letter (positions 1, 2, 3, 5, 8 and
12), lower case letter (positions 6, 7, 9 and 10), hyphen (positions 4 and 11) or five 1-digit numbers
between 0 and 9 (positions 13–17). Upper case letters indicate the first letter of a new word.

3.2. Nomenclature Adaptation to Transformation Processes

Not integrated into such a nomenclature pattern is information such as derivation pro-
cesses or hierarchy. Any transformation of a cellular biosample (e.g., genetic modifications)
will therefore result in an individual, newly distributed identifier through the assignment
of a new identification number and—if necessary—a new prefix (see Figure 2). A precise
feature definition for every single position within the nomenclature (see Figure 1) prevents
the possible confusion caused by ambiguous characters such as an upper case “O” and
“I” or lower case “I” and the numbers 0 and 1. Examples of the nomenclature design are
summarized in Table 3.
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Figure 2. Alteration of biosample information coding (component II) according to downstream
processing of biosamples. Example for White rhino (Ceratotherium simum) primary material. Left
example: Skin tissue material of a White rhino, registered as, e.g., MPR-CerSim-T00020, is hypotheti-
cally processed into a somatic cell line (e.g., fibroblasts) and subsequently assigned a new UI, such as,
e.g., MPR-CerSim-C00015. Aliquots of the latter are then reprogrammed into an iPSC line, and this
new cell line is registered as, e.g., MPR-CerSim-C00032. Right example: Gametes of a White rhino,
which are, e.g., assigned the UIs MPR-CerSim-G00001 and MPR-CerSim-G00321, are used for in-vitro
fertilization, and one of the resulting embryos is assigned the UI MPR-CerSim-E00064. An ESC line,
which would be derived from this embryo, is subsequently assigned a UI, e.g., MPR-CerSim-C00123.
If stem-cell-derived biosamples such as somatic and germ cells, multicellular models or gametes
are further developed, the prefix and subsequent number are then adjusted accordingly, e.g., to “M”
or “G”.
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Table 3. Examples of the full nomenclature design. Summarized are combinations of diverse examples
for component I (species information) and component II (biosample information).

Full Nomenclature Design
COMPONENTS I + II

Examples Explanation

C
O

M
PO

N
EN

T
II

—
B

io
sa

m
pl

e
In

fo
rm

at
io

n

pr
im

ar
y

m
at

er
ia

la
nd

bi
os

am
pl

es
di

re
ct

ly
de

ri
ve

d
th

er
eo

f

Tissue
—e.g., skin, blood T ACC-AndDiv-T00001

tissue biosample number 1 from a Chinese giant
salamander (Andrias davidianus) with taxonomic
assignment to Amphibia (class), Caudata (order),
Cryptobranchidae (family)

cell lines
—e.g., somatic, stem, germ cells C APP-CyaSpi-C00125

cell biosample number 125 from a Spix’s macaw
(Cyanopsitta spixii) with taxonomic assignment to Aves
(class), Psittaciformes (order), Psittacidae (family)

Gametes
—i.e., spermatozoa and oocytes G MPR-DicSum-G00015

gamete biosample number 15 from the species Sumatran
rhinoceros (Dicerorhinus sumatrensis) with taxonomic
assignment to Mammalia (class), Perissodactyla (order),
Rhinocerotidae (family)

Embryos
—in vivo- and in vitro-derived E MPR-CerSim-E00029

embryo number 29 of a White rhinoceros (Ceratotherium
simum) with taxonomic assignment to Mammalia (class),
Perissodactyla (order), Rhinocerotidae (family)

st
em

-c
el

l-
de

ri
ve

d

multicellular models—e.g.,
organoids, assembloids,
blastoids

M MPH-GorGor-M00012
multicellular model number 12 from the species Western
gorilla (Gorilla gorilla) with taxonomic assignment to
Mammalia (class), Primates (order), Hominidae (family)

The naming scheme has been designed and is proposed in particular for the designa-
tion of the viable cellular material of non-domesticated species in order to set a standard
for systematic referencing in expanding research on and with wildlife cells. Its applicability
to the cell material of highly researched model species, such as mice, while maintaining
human readability would require an extension of or change in the coding to cover high
numbers of biosamples.

4. Discussion
4.1. Scheme for a Species Identifier

A universally valid coding structure that cyphers scientific species names does not exist
to date. Species identifier codes are usually generated by different taxonomic databases at
the subspecies level as either numerical or alphanumerical codes. Whereas, for example, the
Catalogue of Life (COL) [70] generates an alphanumerical code (COL Identifier), different
numerical codes are generated by the Integrated Taxonomic Information System (ITIS) [71]
(Taxonomic Serial Number, TSN) and the NCBI taxonomy database [72] (Taxonomy ID,
txid). As an example, for the species African elephant (Loxodonta africana), this results in
the different codes “3W9KV” (COL Identifier), “584939” (ITIS TNS) and “9785” (NCBI
txid). Including one of these predefined species codes in the biosample nomenclature
would exclude other taxonomy databases. Moreover, the resulting nomenclature would
ultimately be dependent on a unique species identifier, whose durability and stability
are difficult to predict. We furthermore argue that the human readability of the species
component in the nomenclature increases its acceptance and overall utility. Hence, the
species coding we propose here for wildlife species refers to the International Code of
Zoological Nomenclature. This binominal nomenclature is issued to provide a public
and permanent scientific record and is defined as a combination of one generic name
followed by one specific name, both containing two or more letters [73]. These official
species names are globally applied by the scientific community to unambiguously describe
animal species and, because of their human readability, are expected to be more stable
than the aforementioned coding. The herein presented design for a universal, stable
and human-readable alphabetical species identifier includes two interlinked elements: a
3-digit taxonomic classification (element 1), followed by a 6-digit acronym of the scientific
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binominal species name (element 2). The former serves as a prefix to the species name
acronym and increases the unambiguity and strength of the species identifier. Cyphering
remains at the species level, as sub-species are not considered.

4.2. Adaptations and Limitations of the Nomenclature Design

The utility of a nomenclature to establish an identifier is measured by its ability to
be adapted to new developments. For example, biosamples of reproductive, naturally
occurring “inter-species hybrids”, as well as species with an exceptionally short binominal
zoological name (see Supplementary Material Table S1), may not fit the proposed nomen-
clature pattern. However, such short scientific species names are extremely rare and only
apply to one mammal species (Great evening bat (Ia io)), two fish species (Weedy cardi-
nalfish (Foa fo) and Betta pi) and six invertebrate species [74]. Our proposed nomenclature
design is flexible and well adjustable to these special cases (see Supplementary Material
Table S1). Moreover, in the unlikely, although not impossible, event of any duplication of
the 10-digit species code (component I), adjustments to the generic and specific acronyms
can be made (element 2) (Table S1). Lastly, if a species is taxonomically not clearly assigned
to a class, order and/or family but to a subdivision of these ranks, the closest assigned
subdivision of the respective rank should be used (e.g., suborder instead of order) to create
the taxonomic classification (element 1).

In the infrequent event that a scientific species name is changed due to new scientific
findings, the species identifier would need to be updated accordingly. Any resulting newly
distributed identifiers for already named biosamples would have to be permanently linked
to the outdated identifiers to maintain traceability.

5. Conclusions

We herein propose a first, uniform, human-readable 17-digit alphanumerical nomencla-
ture design that assigns standardized identifiers to animal-derived living cellular material
such as tissues, cells, gametes, embryos and stem-cell-generated multicellular models. The
predefined naming scheme is especially suggested for the designation of biosamples of
wildlife species. It includes acronymized species and biosample information and allows
simple adaptation according to the respective biosample type. Linking of the nomenclature-
based name to a body of data which (i) uniformly characterizes the cellular material and its
derivation, (ii) demonstrates the genealogy, sex and ID of the donor animal and (iii) evi-
dences the legal and ethical provenance is indispensable to ensure clear reference to and
the unambiguous traceability of the biomaterial, especially when it is published and trans-
ferred worldwide for research. A centralized repository of stable biosample names could
provide such a resource and also allow for machine-based linking to other central registries,
specifically RRIDs. Such a platform is thus required to make these persistent and the
associated data publicly accessible (FAIR). Ideally, these unique identifiers will be automat-
ically generated using an API by the centralized repository. We therefore emphasize the
need for a centralized repository to associate the standardized biosample name with its
metadata. Such collection, standardization and FAIRification of data are powerful tools
to support the visibility and international exchange of valuable wildlife-derived bioma-
terial, thereby facilitating globally consistent scientific work in wildlife conservation and
biomedical research.

Supplementary Materials: The following supporting information can be downloaded at
https://www.mdpi.com/article/10.3390/ani14111541/s1. Table S1: Summary of species acronym
adjustments.
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