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ABSTRACT: DNA-encoded libraries (DELs) provide the means to make and screen millions of diverse compounds against a target
of interest in a single experiment. However, despite producing large volumes of binding data at a relatively low cost, the DEL
selection process is susceptible to noise, necessitating computational follow-up to increase signal-to-noise ratios. In this work, we
present a set of informatics tools to employ data from prior DEL screen(s) to gain information about which building blocks are most
likely to be productive when designing new DELs for the same target. We demonstrate that similar building blocks have similar
probabilities of forming compounds that bind. We then build a model from the inference that the combined behavior of individual
building blocks is predictive of whether an overall compound binds. We illustrate our approach on a set of three-cycle OpenDEL
libraries screened against soluble epoxide hydrolase (sEH) and report performance of more than an order of magnitude greater than
random guessing on a holdout set, demonstrating that our model can serve as a baseline for comparison against other machine
learning models on DEL data. Lastly, we provide a discussion on how we believe this informatics workflow could be applied to
benefit researchers in their specific DEL campaigns.

■ INTRODUCTION
Drug discovery campaigns have increasingly adopted DNA-
encoded libraries (DELs) in recent years because they allow for
relatively cheap and rapid exploration of diverse areas of
chemical space.1−6 In DELs, a concept first introduced by
Brenner and Lerner,7 scientists sequentially couple small
molecules known as building blocks via split-and-pool
combinatorial synthesis. The process tags each building block
with a uniqueDNA oligomer such that each final librarymember
is covalently attached to a record of its synthesis in the form of a
sequenceable DNA barcode. Researchers then incubate the
entire library with a target of interest and wash away any
compounds that do not bind. Finally, experimentalists amplify
and sequence the DNA barcodes of the observed binders and
further investigate any compounds with detected DNA read
counts as potential binders.8,9 Typically, DELs incorporate two
to four cycles of encoding and chemistry, which can achieve a
diversity of up to billions of unique compounds.10−12

Given the large combinatorial scale of DELs, selection data
can be quite noisy due to issues such as variable reaction yields
and formation of truncates,13−15 as well as errors within
experimental procedures and noise during DNA sequenc-
ing.16,17 These sources of noise have made it common to
analyze selection data with computational models to prevent
wasting time and resources resynthesizing and evaluating

unproductive candidates. Recent work suggests how machine
learning approaches can denoise DEL data13,15,18 and identify
promising candidates in out-of-sample data.19 Computational
models likely will yield even further insights as they are applied
to DEL selection data.20

In this paper, we introduce a method for analyzing DEL
selection data at the building block level, with the goal of gaining
insights that we can use to design better DELs for subsequent
screening rounds. First, we introduce an interpretable analysis of
the individual building blocks. Second, we quantify how building
blocks interact with each other to determine whether a
compound binds to the target of interest. Third, leveraging the
idea that similar compounds have similar properties,21 we
demonstrate how we can use similarity scoring methods to
predict the productivity of new building blocks and how
similarity metrics differ in their ability to do so. Finally, we build
a model that combines the behavior of building blocks at each
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position into a statistical prediction on the probability of an
untested molecule binding to the target of interest.
We note that all of the results in this paper come from a pooled

set of three-cycle OpenDEL libraries from HitGen screened
against a single-target, soluble epoxide hydrolase (sEH). We
release all of the data we analyzed in this study so that interested
researchers are able to reproduce our findings. We emphasize
that while the findings presented here are specific to this set of
DELs on sEH, we believe that our informatics workflow can be
extended to analyze the results of various DEL campaigns.

■ RESULTS AND DISCUSSION
We begin by defining the idea of productivity for individual
building blocks, which we use to assess whether an overall
compound binds to a target. We demonstrate how quantifying
the productivity of individual building blocks can provide
general insights into structures that could contribute to binding
of a target of interest. We then developed a method to guide
subsequent DEL screens on a target by (1) identifying
productive candidates from a list of proposed building blocks
and (2) predicting whether compounds containing those
identified building blocks bind to the target of interest. We
demonstrate this concept by splitting our data into training and
holdout sets (where the holdout sets contain building blocks not
seen in training) and provide a workflow for how to incorporate
this method in a practical setting.

Building Block Metric, P(bind), Identifies the Most
Productive Building Blocks at Each Position. This section
introduces a metric that we call P(bind) to quantify the
productivity of building blocks from a set of DEL selection data.

Notation for Building Block Positions. To aid in
interpretation, we establish a bit of notation. For building
block positions, we refer to the position closest to the DNA tag
as p1, the middle position as p2, and the position furthest from
the DNA tag as p3 (Figure 1). Each of these building block

positions is called a monosynthon. We denote the set of all
building blocks for a given position as BBi, where 1≤ i≤ 3 in this
study. Individual building blocks are denoted as bbx, where x is
the identifier, ID, assigned to each unique building block. We
refer to two building block positions considered jointly, also
known as a disynthon, using the notation BBiBBj. In our
definition, the two positions considered for a disynthon do not
need to be adjacent. Finally, we denote trisynthons as
BB1BB2BB3. To specify a subset, we use a vertical bar from set
building notation22 where subset conditions are to the right of
the bar. For example, {BB1BB2 | BB1 = bb1} represents the set of

disynthons where position one contains the building block with
ID 1.

Each Position in the Library Contains a Small Number of
Highly Productive Building Blocks. First, to compare building
blocks quantitatively, we require a metric to characterize a
desirable versus undesirable building block. We define the
productivity of a building block, P(bind), as the fraction of
compounds that bind to the target when a given building block
occurs in a particular position. In this study, we defined binders
as compounds with a read count statistically different from 0 at a
95% confidence threshold, making the assumption that read
counts follow a Poisson distribution16 (see the Methods section
for more details).
To illustrate how we calculate P(bind), we provide the

following example. Let S be the subset of trisynthons such that
position p1 contains the arbitrary building block bbx. This would
be expressed as

= { | = }S BB BB BB BB bbx1 2 3 1 (1)

If the number of trisynthons in the subset S is N, the P(bind) of
the building block bbx is

= = I

N
P(bind) k

N
k1

(2)

where Ik is 1 if the kth compound in S binds to the target and 0
otherwise, as defined in the Data Curation section. We repeated
this calculation by changing the subset represented in eq 1 for
each building block in each position of the library. Comparing
building blocks by their P(bind) values then allows us to identify
the most productive building blocks for each position.
We identify a small fraction of building blocks in each position

with P(bind) values significantly higher than average. Splitting
building blocks into intervals based on their P(bind) values, we
find that the distribution of P(bind) at every position is heavily
right-skewed, with more than 95% of building blocks at every
position having P(bind) values less than 0.20 (Figure 2). For
positions 1 and 2, the top 1% of P(bind) values are contained in
the P(bind) interval [0.40, 0.60), whereas for position 3, the top
1% of P(bind) values extends across the P(bind) interval [0.80,
1.00]. Given the mean P(bind) value of all building blocks at
each position is on the order of 10−2, this tells us that the top
building blocks occur in binders at a rate about 50 times higher
than average.
In this analysis, the difference in the maximum P(bind) value

between one position and another reveals that trisynthons are
more sensitive to the building block present at certain positions.
We posit that in this DEL where trisynthons are synthesized
linearly (Figure 1), position 3, being the furthest from the DNA
barcode and therefore the most exposed, has the greatest effect
on whether the compound binds. Position 1 has the smallest
effect on overall compound binding as the position closest to the
DNA tag. Since DELs are typically screened with DNA tags still
attached, we believe the presence of the DNA tag may partially
obstruct interactions with the target. We note that our
observation of the importance of position 3 could also be
confounded by a larger and more diverse selection of building
blocks in that position. However, with the exception of 10
building blocks in position 3, every building block in each of the
three positions is used in a statistically significant number of
compounds (N > 30)23 (Figure S1). This suggests that our
calculation of the P(bind) metric for each building block should
not be highly impacted by small sample sizes. Thus, we believe

Figure 1. Schematic of the DEL library members. All DEL library
members in this study are composed of three small-molecule building
blocks and referred to as trisynthons. The first added building block is
closest to the DNA (position 1) and the last added is furthest (position
3). Each building block has a corresponding DNA tag encoding its
identity, shown in this figure via color coordination. The combined
DNA tags form a unique barcode, which is amplified and sequenced in
the experiment to verify the presence of the trisynthon. Pictured are
position 1 (blue), position 2 (orange), and position 3 (green), which we
refer to as p1, p2, and p3, respectively.
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that when we observe building blocks with high P(bind) values,
these values indicate the building blocks are truly productive
rather than having values that appear high as an artifact of
sampling bias.
It is certainly possible that our finding that building block

productivity varies based on library position also points to an
issue with false negatives in DELs. Due to the high-throughput
nature of DEL screens, it has been demonstrated that larger
library sizes lead to high false negative rates.10 However, we
believe that because the P(bind) metric is aggregated across all
of the compounds in which the BB occurs, the metric should be
more robust to false negatives. Moreover, we observe some
alignment between building blocks we find to be most
productive in position 3 and structural motifs of sEH inhibitors
in the literature. Notably, the top two most productive building
blocks in position 3 resemble benzhydryl pharmacophores that
have been reported in the literature to form favorable pi-stacking
interactions with residues in the binding pocket of sEH (Figure
S2).24

When various physicochemical properties of more and less
productive building blocks are compared at each position, we
find some commonalities. For example, the most productive
building blocks in all positions have higher calculated logP. The
most productive building blocks in positions 1 and 2 are also
characterized by fewer hydrogen bond donors, whereas the most
productive building blocks in position 3 have fewer hydrogen

bond acceptors and more hydrogen bond donors than their less
productive counterparts (Figure S3). We note that our method
may be able to broadly detect target-specific architectures that
are favored for binding (as in this case with sEH) based on the
differences in productivity for the building blocks in different
positions.

Building Block Productivity Increases the Variety of
Binding Disynthon Pairs.Having identified productive building
blocks at each position, we proceeded to investigate what
characterizes a building block with a high P(bind) value
chemically. To do so, we analyze how building blocks combine
at a disynthon (pairwise) level. We hypothesize that building
blocks with high P(bind) values are compatible with a greater
number of other building blocks. Here, we define two building
blocks as compatible if they co-occur in a compound that binds
to sEH.
To test our hypothesis, we evaluate how the number of

compatible partners for a building block varies with the P(bind)
value of the building block. To calculate the number of
compatible partners, we first identify all compounds that bind
when a building block is in a certain position. We then count
how many unique building blocks are in the other two positions
on this list of binders. The number of compatible building blocks
in position pj for an arbitrary building block x in position pi can
then be expressed as

= |{ | = }|N BB BB BB bbij i j i x (3)

where the vertical bars on each side of the subset are the
cardinality or number of elements in the subset.22

We find that high P(bind) building blocks form binders with a
broader range of partners in both positions. We observe a
monotonically increasing relationship between P(bind) and the
number of compatible partners for all building block pairs
(Figure 3). P(bind) tells us how successful a building block is
when it is placed in a certain position, but tells us nothing about
the behavior at other positions that may lead to the success (or
lack thereof) at one position. Hypothetically, a building block
could have a high P(bind) value but only form binders with a
very limited selection of partners in one of the other positions.
To illustrate this possibility, imagine a scenario where all binders
that contain bbx in p3 occur only if one or a few specific building
blocks are present in p2. This would attribute all of the variation
between these compounds to the identity of the building block
in p1. Since we find the least sensitivity to molecule binding in p1
(Figure 2), this is a realistic hypothesis to rule out.
On the contrary, we see that building blocks that are

successful in one position are compatible with a broader
diversity of building blocks in all other positions. We note that
this could partially be attributed to variations in coupling
reactions present in our library, which we address later in our
discussion. Previous work has shown that in DELs, reactions are
more or less prevalent based on their compatibility with the
available building blocks rather than their perceived robustness
in traditional settings.25 However, what this analysis determines
is that we can generally be more confident that a compound
containing an untested building block is more likely to bind to
sEH if it contains a high P(bind) building block in any position
(Figure 4A−C, Tables S1−S3).

Evaluating the P(bind) of Building Blocks Jointly
Predicts the Binding of Trisynthons. In the following
section, we transition to analyzing DEL selection data at the
trisynthon level. We quantify the probability of forming binders
by combining building blocks with varying P(bind) values. We

Figure 2. Distributions of P(bind) values for each building block
position. Building blocks at each position are separated into P(bind)
bins, with the value above each bar indicating the number of building
blocks contained in each interval. Shown are the distributions of
P(bind) values for building blocks in p1 (blue, top), p2 (orange,
middle), and p3 (green, bottom).
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note here that while we only demonstrate this analysis on 3-cycle

DEL data in this work, we believe our methodology can be

applied to DELs of various cycle numbers in order to identify

productive BBs at each position. For 2-cycle DELs, we would

only need to consider the interaction between a single pair of
positions, which we believe would simplify the analysis.

Higher P(bind) in Individual Positions Leads to Higher
Probability of Molecule Binding. To understand how varying
the P(bind) values of building blocks at each position affects the

Figure 3. Number of compatible partners as a function of P(bind) for each building block. Building blocks are called compatible if they are present
together in a compound that binds. Each column shows how as the P(bind) of the building block in one position changes (filled shape), so does the
number of compatible building blocks in the other two positions (dotted shapes). Shown are the results when building blocks in p1 (left column), p2
(middle column), and p3 (right column) are taken as reference.

Figure 4. Joint probability of forming a binder using P(bind) bins. The P(bind) bins for each position are the same, but p3 has more bins because its
building blocks span a wider range of P(bind) values. Pictured are the joint probabilities of forming binders from building blocks in bins of (A) p1 and
p2, (B) p1 and p3, and (C) p2 and p3.
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probability of forming a trisynthon that binds, we calculated
joint probabilities for pairs of building block positions using the
P(bind) bins shown in Figure 2. We refer to bin positions
numerically, where 1 is the lowest bin of P(bind) values, [0.00,
0.20), and 5 is the highest bin of P(bind) values, [0.80, 1.00].
The subset of compounds where the building block in pi is a
member of binx (denoted by the set membership symbol ∈)22
and the building block in pj is a member of biny is

= { | }S BB BB BB BB BBbin , bini x j y1 2 3 (4)

where 1≤ x, y ≤ 5. We calculate the number of elements in eq 4,
N, and then use eq 2 to find the joint probability of forming
binders for pairs of building block positions (Figure 4).
The joint probabilities reveal that typically for disynthon

combinations, or a pair of building block positions, increasing
the P(bind) of either building block increases the probability of
forming a binder (Figure 4A−C, Tables S1−S3). Furthermore,
we find that high P(bind) building blocks can be used to rescue
binding when combined with building blocks with lower
P(bind). The higher the P(bind) of a building block in one
position, the lower the P(bind) in another needs to be to achieve
the same probability of forming a binder. There is a noticeable
increase in the probability of forming a binder when the building
blocks in both positions have P(bind) values greater than 0.20
(bin 1) (Figure 4A−C, Tables S1−S3).
We find additional evidence that the building block in position

3 has the greatest effect on trisynthon binding. When the
building block in position 3 has a P(bind) value in the range
[0.80, 1.00] (bin 5), the probability of forming a binder is never
less than 93% (Figure 4B,C, Tables S2 and S3). Building blocks
in positions 1 and 2 exhibit far less influence and subsequently
do not rescue binding to the same extent that building blocks in
position 3 can (Figure 4A, Table S1).
Despite variations in the extent to which each building block

position contributes, the general trend is clear: introducing a
high P(bind) building block in any position increases the
probability of forming a compound that binds to sEH. We find
that on average, combining monosynthons constructively
increases P(bind) (Figure 4). This means that building blocks
that are good independently are still good together on average.
While this finding is true on the aggregate, we note that we

cannot necessarily propose a specif ic combination of building
blocks that includes a high P(bind) building block and expect
them to form a binder without considering the chemistry used to
form the DEL. For example, the DEL might have used different
reactions for linking different categories of building blocks so
that one part of the DEL might contain productive building
blocks that simply cannot be linked to other building blocks that
would require linking via a different reaction. Or, certain
building blocks might be hindered from linking due to steric
constraints or other reasons�in other words, the linkage is not
synthetically accessible. Thus, we raise an important caveat: the
results presented are conditional on the fact that a product is and
can be formed, i.e., that the product is a result of what we call
compatible building blocks.

Training on Building Block P(bind) Values Yields Precise
Predictions for the Binding of Trisynthons. To determine how
much signal the P(bind) value alone has in predicting whether a
trisynthon binds, we design a simple test. We randomly split our
total data set into a training set containing 90% of the data and a
test set with the remaining 10%, while ensuring that all building
blocks in the training set are sampled in the test set. This means
all of the trisynthons in the test set are strictly new combinations
of already tested building blocks, allowing us to evaluate whether
P(bind) values can be used to predict if a trisynthon binds when
the P(bind) values for each building block can be calculated. In
later sections, we tackle the issue of predicting whether
trisynthons composed of untested building blocks are binders.
We find that we can identify trisynthons that bind reliably

solely using the P(bind) values of their constituent building
blocks. We construct a simple decision tree that splits the data
based on the P(bind) value at one of the building block positions
(Figure 5) and evaluate the performance of the model using the
metrics precision and recall (see the Methods section). Of the
10,302 binders in the test set of 443,380 trisynthons, the
decision tree model identifies 9432 true positives and incorrectly
predicts 364 false positives, resulting in a test precision of 0.963 (

+
9432

9432 364
) and a test recall of 0.916 ( 9432

10302
). The area under the

curve (AUC) of the precision−recall curve is 0.961, which is
significantly higher than the AUC for a random guessing model,
which is equal to the hit rate of the test set ( 0.023210302

443380
).

Figure 5.Decision tree based on the P(bind) values at each building block position. Each node, shown as boxes, of the decision tree indicates a split of
the data on the condition specified in the first line of text in each box. If the condition is true, the data is split into the bottom left node; otherwise, the
data is split to the bottom right node. Darker orange nodes indicate a higher proportion of nonbinders, and darker blue nodes indicate a higher
proportion of binders. On the bottom of each node is the value of the number of [nonbinding, binding] compounds.
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Given that the AUC of a perfect classifier is equal to 1.0, this
demonstrates that using building block P(bind) to predict
whether a trisynthon binds is highly reliable for this DEL data. A
similar analysis can be performed for other DELs and targets to
verify the fidelity of this analysis for alternative systems.
We note that our analysis ignores singletons, cases in which

species are only enriched in a single selection because we do not
analyze the results of multiple DEL selections.26 As shown in the
literature, some apparent nulls from a single selection have
turned out to be high-affinity hits when multiple selections were
performed16 or when the binding affinity of singletons has been
further assessed.8,27 Thus, we acknowledge that failing to
account for singletons in our analysis could potentially result in
an increased false negative rate,16 a shortcoming accounted for
in other existing methods in the literature.28 However, it has also
been reported in the literature that singletons are often false
positives26 and do not exhibit the high affinity that repeat hits
do.29,30 Historically, DEL practitioners have leaned toward
investigating compounds whose neighboring structures show
similar behavior,31 with the goal of identifying families of related
ligands and gaining general insights into structure−activity
relationships (SARs) for a target of interest.8 We believe that in
spite of its inability to address singletons, our method provides a
systematic and reproducible way of elucidating general SARs,
and offers value as a better alternative than manually evaluating
DEL selection data.31

Clustering Based off Chemical Similarity Estimates the
P(bind) of Untested Building Blocks. In this section, we
discuss how to use similarity scoring to predict the P(bind) value
of building blocks that have not been tested, allowing us to
extend the applicability of our method to new data.

Building Blocks with Similar P(bind) Are Close to Each
Other in Projections of Chemical Space. We hypothesize that
by the similar property principle,21 building blocks that are
similar to each other will have similar P(bind) values.32,33 In this
study, we elect to use a combination of three-dimensional (3D)
shape and color Tanimoto, otherwise known as Tanimoto
combo as our similarity metric.34,35 For each position, we
calculate the Tanimoto combo scores between all building
blocks and transform these scores into two-dimensional (2D)
coordinates via Uniform Manifold Approximation and Projec-
tion (UMAP), a dimensionality reduction technique.36,37 Using
the UMAP coordinates, we create an approximation of chemical
space, where each building block is represented by a point, and
the Euclidean distance between points is inversely proportional
to the chemical similarity of the respective building blocks
(Figure 6A−C). We emphasize that no information regarding
the P(bind) value of building blocks is introduced in this
process.
We find that high P(bind) building blocks generally are much

closer (and therefore more similar) to one another than they are
to random building blocks (Figure 6D−F and Table S4). Here,
we define high P(bind) building blocks as the top 10 by
descending P(bind) value at each position. On average, the
Euclidean distance from a high P(bind) to a randomly selected
building block is twice as large as the distance from one high
P(bind) building block to another (Figure 6D−F and Table S4).
This supports our hypothesis that similar building blocks have
similar P(bind) values and motivates our next step: to predict
the P(bind) value of an untested building block based on the
P(bind) values of the building block(s) most similar to it.
We also test if 2D or 3D Tanimoto similarity results in a

clearer separation of clusters. We observe more random

Figure 6. (A−C)UMAP projection of chemical space for each library position. The relative chemical distance between building blocks at each position
is represented by the distance between points in the UMAP projections. The size and transparency of each point are scaled by the P(bind) of the
building block, with larger, solid color dots indicating building blocks with higher P(bind) values. Pictured are the building blocks in (A) p1, (B) p2, and
(C) p3. (D−F) Distributions of distances in UMAP space between the top 10 building blocks by P(bind) and randomly selected building blocks.
Pictured are the distances between top 10 to top 10 (solid line) and top 10 to random (dotted line) building blocks for (D) p1, (E) p2, and (F) p3.
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separation between building blocks of similar P(bind) value
when using 2D Tanimoto similarity instead of 3D Tanimoto

combo (Figure S4). The UMAP projections from 2D Tanimoto
show building blocks with similar P(bind) value scattered

Figure 7. HDBSCAN clusters on UMAP projection of each library position. (A−C) We apply HDBSCAN to the UMAP projections of each library
position in order to group similar building blocks into clusters. Each cluster is identified visually by a different color and assigned a numeric cluster ID.
Pictured are the cluster assignments for (A) p1, (B) p2, and (C) p3. (D−F) Joint probability of forming binders using HDBSCAN clusters. Aggregating
trisynthon data by cluster ID allows us to identify which combinations of building blocks have a high and low probability of forming binders. We also
indicate combinations of building blocks that are never observed in the data. Shown are joint probabilities when combining clusters from (D) p1 and p2,
(E) p1 and p3, and (F) p2 and p3.

Figure 8.Distribution of the P(bind) values for clusters. We visualize the distribution of P(bind) values for clusters formed via HDBSCAN (left) and
clusters formed from randomly selecting compounds (right). The color of each cluster matches the color assignments in Figure 7. To better visualize
each distribution, we remove all building blocks where P(bind) = 0 and plot P(bind) values on a log scale. Empty grids indicate clusters where all
members have P(bind) = 0. Shown are the results for (A) p1, (B) p2, and (C) p3.
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throughout chemical space with less structure (Figure S4, Table
S5). A potential explanation for this is because 3D Tanimoto
takes into accountmulticonformer overlays of 3D structures, it is
able to better relate the binding ability of molecules compared to
2D Tanimoto.

Groupings by Chemical Similarity Are Predictive of
Building Block Binding. We find that we can form clusters to
estimate the P(bind) value of untested building blocks. To do so,
we first apply HDBSCAN38,39 to the UMAP coordinates of
building blocks (Figure 6A−C), resulting in a set of clusters for
each position in projected chemical space (Figure 7A−C). After
assigning clusters, we compare the full width at half-maximum
(fwhm)40 of the distribution of P(bind) values for HDBSCAN-
generated clusters to randomly generated clusters. We find that
the average fwhmof the P(bind) distributions fromHDBSCAN-
generated clusters is less than that for random clustering (Figure
S5), showing that compounds tend to be grouped into clusters
of somewhat similar P(bind) values. Thus, we conclude that
using a building block’s cluster assignment to predict its P(bind)
value (Figure 8) improves accuracy compared to random
guessing.
Beyond predicting the P(bind) of untested building blocks,

clusters can also be used to identify groups of building blocks
that are compatible. After assigning each building block to a
cluster, we join the cluster results on the trisynthon data in order

to get a list of three cluster IDs (corresponding to the cluster
assignment for the building block at each position) for each
trisynthon. Grouping by the cluster ID at each position then
allows us to calculate the probability of forming compounds that
bind to the target for every distinct cluster combination (Figure
7D−F, Tables S6−S8). We can describe the subset of
compounds where the building blocks in positions pi and pj
are members of the xth cluster of pi and the yth cluster of pj as

= { | }S BB BB BB BB BBcluster , clusteri x
i

j y
j

1 2 3 (5)

As before, we calculate the joint probability for disynthons by
calculating the number of entries in S,N, and then we apply eq 2.
Moreover, we also identify certain combinations of clusters

that are not observed in the experimental data (Figure 7D−F,
Tables S6−S8). While the analysis does not indicate why these
combinations of building blocks are not observed, we believe
that characterizing these gaps could be useful. For example, gaps
could be new combinations of building blocks that might be
desirable to test. On the other hand, these gaps could also
indicate that the combination can not be made (e.g., due to a
DEL being formed using several different reactions so that
certain building blocks cannot be cross-linked given the
reactions employed) or that something went wrong exper-
imentally so that even though the combination was thought to
be tested, no data was collected. Thus, in some cases, gaps in the

Figure 9. Overview of protocol to predict the productivity of out-of-sample building blocks. (A−C) Protocol for processing existing DEL selection
data. (A) We calculate the P(bind) metric for all of the building blocks in the library. (B) We compute the 3D Tanimoto combo between all of the
building blocks at each position in the library. (C) We transform similarity scores among building blocks into a mapping of chemical space via UMAP
and resolve clusters with HDBSCAN. (D−F) Protocol to apply our methodology to new proposed building blocks. (D) We propose a set of building
blocks that have not been tested experimentally. (E) For each position separately, we calculate the 3D Tanimoto combo between the new set of
building blocks and the existing ones. (F) We map the new building blocks onto the existing UMAP projections and assign each one to a cluster.
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data may represent building blocks or combinations of building
blocks to avoid and, in others, areas to test in further rounds of
experimentation.

Application to Holdout Data. In this final section, we
demonstrate how we would apply this method in a practical
setting, where we would work to guide the design of a new DEL
using information available from a prior screen. Here, we model
this design process by testing the performance of our model
using a holdout set (using building blocks not seen previously)
to mimic a new set of building blocks to test.

Building Block Level Analysis PredictsWhether Trisynthons
Containing Untested Building Blocks Bind to sEH.To simulate
an experimental setting in which we would like to choose
promising new building blocks to study after performing an
initial set of DEL screen(s), we randomly select 5% of the
building blocks at each position, remove all trisynthons
containing any of those building blocks, and place them into a
holdout set. The training set, now composed of the remaining
compounds, represents the information we might have obtained
after an initial experimental screen that had used only a limited
set of building blocks. The holdout set represents a set of
proposed follow-up candidates that contain at least one untested
building block.
Our workflow proceeds as follows: (1) Calculate the P(bind)

values for all of the building blocks in our training set (Figure
9A). This P(bind) information is used to train a decision tree
classifier to predict whether compounds bind to the target of
interest. We can also visualize the most productive building
blocks at each position to get a sense of what sorts of chemistries
may be favored for binding to the target of interest. (2) Compute
the 3D Tanimoto combo among all of the building blocks at
each position (Figure 9B). (3) Apply UMAP to each similarity
matrix to create a mapping of chemical space for the building
blocks at each position and cluster with HDBSCAN to resolve
groups of similar building blocks with similar P(bind) values
(Figure 9C). Peeking into the building blocks in each cluster can
further elucidate structures that are potentially favorable for
binding to the target, and aggregating by cluster ID can identify
combinations of building blocks at each position that are more
and less likely to result in a binder. (4) Identify a new set of
building blocks to mix in combination with already tested ones
(Figure 9D). (5) Calculate the 3D Tanimoto combo between all
of the training set building blocks and a new set of building
blocks (Figure 9E). (6) Map new building blocks onto the
existing UMAP embedding and classify them into the existing
clusters (Figure 9F). (7) Predict the P(bind) of each building
block in the holdout set using the building blocks in its cluster.
We explore four differentmethods of approximating the P(bind)
value of each building block in the holdout set:

• the median P(bind) of the cluster
• the mean P(bind) of the cluster
• P(bind) of randomly selected BBs from the cluster
• P(bind) of most similar BBs in the cluster
We train a decision tree classifier using the P(bind) and

cluster information on every building block in the training set as
input (training precision: 0.960, training recall: 0.926) and then
apply the classifier to our holdout set. We find that every method
outperforms random guessing by at least an order of magnitude
(Figure 10). In addition, using the cluster nearest neighbor to
approximate untested building block P(bind) gives the best
result for predicting the binding of trisynthons to sEH (AUC:
0.799; averaged over 50 random trials; Figure S6). This finding

further supports the argument that on average, chemically
similar compounds have a greater probability of similar
productivity.32,33

Building Block Analysis Identifies Productive Regions
of Chemical Space to Probe for Subsequent Screening
Rounds.Compared to existing methods in the literature such as
the tagFinder28 and deldenoiser,13 one distinct advantage of our
method is the ability to take pooled DEL data screened against a
particular target of interest and identify new combinations of
building blocks that are more or less likely to form binders for
this target. We imagine this can greatly inform subsequent
screening rounds, empowering researchers to either exploit
combinations of building blocks that are conducive to forming
binders or explore different regions of chemical space to build up
a diverse assortment of compounds that bind a target of interest.
While we only predict the behavior of building blocks that are
similar to existing ones, we imagine that because we combine
these building blocks in new combinations we can build up a
diverse set of final products that are likely to bind to the target.
As an illustrative example, we showcase a diverse set of
compounds that our method successfully determined bind to
sEH (Figure S7).
Using similarity scoring and a decision tree model, we predict

binders from a set of compounds containing building blocks not
seen in the training set at a rate of more than an order of
magnitude greater than random. The performance of this
approach demonstrates that even relatively simple models can
estimate whether new trisynthons containing building blocks
similar to previously tested ones will bind to sEH. As the
intersection between machine learning and DELs grows, we
challenge researchers to pay attention to straightforward models
such as the one employed here and evaluate whether more
complex machine learning methods perform significantly better.

■ CONCLUSIONS
In this work, we applied computational modeling to understand
the productivity of building blocks in a set of DELs and
predicted how individual building blocks can be combined to

Figure 10. Comparison of the AUC of the precision−recall curves for
different prediction methods. We evaluate four different ways to
estimate the P(bind) of untested building blocks from HDBSCAN
clusters. Predictions are made on a test set, where each compound
contains at least one building block not seen in the training set. The
random guessing benchmark is equal to the hit rate of the holdout set,
which is approximately 2%.
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form compounds that are likely to bind to a single-target, soluble
epoxide hydrolase (sEH). We developed a simple and
interpretable method to predict the behavior of new building
blocks, their interactions with known building blocks, and
whether compounds consisting of holdout set building blocks
would bind to sEH.
Our model can be an effective baseline for future studies due

to its high accuracy and relative simplicity. In the future, it may
be interesting to explore the relative merits of more complex
deep learning architectures versus similarity-based methods. For
example, approaches employed here may have similar perform-
ance to more complex neural networks if out-of-sample data
resemble existing data, such as during medicinal chemistry
efforts or when only small numbers of building blocks and
compounds have been explored. On the other hand, when the
amount of available data becomes large, it seems likely that deep
learning models perform better.
Given the promise of DEL screens for high-throughput testing

of ideas for drug discovery,13,15,18,19 the refinement of
subsequent DEL screens to minimize cost and enhance
follow-up on promising structures is likely to improve outcomes
in drug discovery.While the ability to gather a vast variety of data
in a DEL screen is an experimental advantage, the volume of data
poses challenges for interpretation. Improved computational
methods are pertinent to aid the experimental workflow. Our
method and open-source software41 can be applied to
experimental DEL screens in the future to guide building
block selection, identify essential features needed to bind the
target of interest, and reduce the search space when following up
on potential binders.

■ METHODS
Data Collection. The data set was generated from in-house

screening of several commercially available DEL libraries
(OpenDEL from HitGen) against soluble epoxide hydrolase
(sEH). The DEL screen was performed as previously described
in Clark et al.8 Briefly, N-term his-tagged human Soluble
Epoxide Hydrolase (sEH) protein (1 μM, N-term His-tagged)
was incubated with pooled DEL libraries in a 100 uL reaction
(50 mMHEPES (pH 7.4); 150 mMNaCl; 0.01% Tween-20; 10
mM Imidazole; 1 mM TCEP; 0.1 mg/mL ssDNA). Post-
incubation, the protein was captured by magnetic beads
(Invitrogen Dynabeads His-Tag, and Pierce Ni-NTA magnetic
beads), and the samples were washed with buffer. Each round of
selection was completed by a heat elution (95 °C for 10 min) to
separate protein from bound molecules. A new round was
initiated by the introduction of fresh protein, and the process
was repeated for a total of 3 rounds. In parallel, a matrix-binding-
only sample was included to account for nonspecific binding.
Postselection, samples were PCR amplified and sequenced on a
next-generation sequencing platform.

Data Curation. We compiled input files after experiment as
comma-separated values (CSVs) containing the SMILES of
each composite structure, its experimentally determined read
count, and the SMILES of its constituent building blocks. In
some cases, the SMILES strings for building blocks included the
protecting groups used during synthesis, which would be
removed in the process of constructing full compounds.
As a first step in curation, we classified compounds into binary

categories of either “non-binder” or “binder”�with respective
labels of 0 and 1�based on whether their NGS sequencing
counts (which we call read counts) were statistically different
from 0 at a 95% confidence threshold. We assumed read counts

were drawn from a Poisson distribution, a treatment used across
several studies in the literature.13,16,18 Using this definition, we
selected the top 10K binders by read count value and a random
selection of 10M nonbinders from the total collection of DEL
data screened against sEH. The end result of this is that the
lowest read count for any compounds classified as a “binder” was
81, which means we only analyze very clear binders from this
data set (Figure S8). We note that sEH is a particularly rich
target for DELs4 and there may not always be such a clear
delineation between binders and nonbinders for other targets. In
view of this, we include data reporting how the distribution of
compounds classified as either a “non-binder” or “binder” to the
target changes as we vary the minimum read count threshold
(Table S9). We emphasize that our analysis is not on a complete
set of DEL selection data but rather a subset of a larger data set.
We further curated input files using pandas (v.1.2.1)42,43 to

remove duplicate compounds and lines containing fields with
null entries. In cases where we had building blocks reported in
duplicate with both unspecified and specified stereochemistry,
we elected to remove all compounds containing the building
block with unspecified stereochemistry. This was the case for
fewer than 5% of the building blocks in any of the positions in
the library. We also removed compounds with building blocks
containing boron, because we could not generate conformers for
them due to force field limitations; this library initially had many
boron-containing compounds. Furthermore, some building
blocks were reported with protecting groups still present. We
used ChemDraw (v.17.0) to generate SMIRKS reactions and
used the OEChem toolkit (v.2021.1.1)44 to deprotect Fmoc,
nBoc, methyl ester, and ethyl ester groups on those relevant
building blocks. We did this to ensure that the presence of
protecting groups would not bias our similarity calculations and
because the protecting groups were not present in the final
products. After applying the deprotecting functions, we saved all
of the unique building blocks at each library position to separate
files. Associated code for these steps can be found at https://
github.com/MobleyLab/DEL_analysis.

2D Tanimoto. We calculated 2D Tanimoto scores using
RDKit (v.2020.09.1.0)45 by first converting compounds into
Morgan fingerprints46 with the radius parameter set to 3 bonds.

3D Tanimoto Combo.We calculated 3D Tanimoto combo
using the FastROCS toolkit (v.2021.1.1)44 from OpenEye. The
3D Tanimoto combo score takes into account both volume
(shape) and pharmacophore (color) overlap between two
molecules to produce an aggregated similarity score. Both the
shape and color scores range from 0 to 1, so the 3D Tanimoto
combo has a maximum value of 2.
We first generated up to 200 conformers for each of the

building blocks in the library using the Omega toolkit
(v.2021.1.1).44 We maintained the same settings as the defaults
in the Classic OMEGA floe on Orion (Spring 2020), but
restricted the stereochemistry of input molecules. For building
blocks with unspecified stereochemistry, we used the OEFlipper
function in Omega to enumerate all possible stereoisomers and
generated up to 200 conformers for each of them.
Next, we used FastROCS to generate an all-by-all matrix of

3D Tanimoto combo scores for all of the building blocks
(including enumerated stereoisomers) in each library position.
We iterated over each conformer of each building block to
identify the highest possible shape and color overlap between
the pairs of compounds. Thus, each entry (i, j) of the 3D
Tanimoto combomatrix represented the largest possible overlap
in both shape and color between any conformer of compound i
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and any conformer of compound j. For compounds with
multiple stereoisomers, we identified a single stereoisomer that
gave the highest similarity to other compounds. To do so, we
first enumerated all stereoisomers for the compound and
evaluated the similarity of a given stereoisomer to those of all
other compounds. We then selected the stereoisomer that gave
the highest average similarity to all other compounds and
discarded the rest. Associated code for these steps can be found
at https://github.com/MobleyLab/DEL_analysis

Computational Considerations. It was infeasible to calculate
all-by-all similarity matrices for libraries on the order of 106
molecules, as the task would require performing 1012 similarity
scoring operations. We instead calculated all-by-all similarity
matrices for building blocks at each position individually and
then evaluated combinatorial effects at a later step in the analysis.
This was a much more computationally tractable approach.
Additionally, it mimics considerations involved in library design,
one of our key interests, where one might want to use knowledge
about current building blocks to help design libraries for
screening.

Generating Clusters. We formed clusters based on the 3D
Tanimoto combo score of building blocks at each position. First,
we transformed 3D Tanimoto combo scores into distances by
subtracting each similarity score from 2, the maximum value for
the Tanimoto combo. Due to slight variations in the conformer
overlay process, distance matrices were not perfectly symmetric,
and some diagonal elements (a compound to itself) had
distances slightly greater than zero. To symmetrize the distance
matrix, we averaged it with its transpose and set the diagonal
elements to zero.
We then used Uniform Manifold Approximation and

Projection (UMAP) (v.0.5.3)36,37 to perform a dimensionality
reduction of our data set from 3D to 2D space, both to help with
visualization and because we wanted to pick a coordinate space
to use for subsequent prediction of properties for new building
blocks. This resulted in the conversion of the set of 3D distance
matrices into 2D coordinates for each building block. We
inputted these coordinates into HDBSCAN (v.0.8.28)38,39 to
generate clusters for each library position.
We designed and minimized an objective function to

determine the optimal number of clusters. Specifically, we
arrived at an objective function, L

= + ·L n 10 ICDnoise (6)

where nnoise is the number of points classified as noise and ICD is
the average intracluster distance between clustered points for
each HDBSCAN run. We performed a grid search over
HDBSCAN hyperparameters and calculated the value of the
objective function for each set of clusters. We selected the
hyperparameters corresponding to the global minimum of the
objective function to use for clustering (Figure S10). More
information on the design of the objective function can be found
in the Supporting Information.
Following the cluster assignment, we predicted the cluster

assignment for new building blocks by projecting points onto
existing UMAP embeddings and applying the function
hdbscan.prediction.approximate_predict.
We elected to use UMAP because it was reported to have better
performance and reproducibility than other commonly used
methods47 and was demonstrated to improve the results from
clustering algorithms.48 Associated code for these steps can be
found at https://github.com/MobleyLab/DEL_analysis

Model Construction and Evaluation. We used Scikit-
Learn (v.0.23.2)49 to build a decision tree model and assess the
quality of model predictions. To reduce the chance of overfitting
the training data, we performed 5-fold cross-validation to
determine themaximumdepth of the decision tree (Figure S11).
For our evaluation criteria, we elected to use precision and recall
because of the imbalance of class labels in our data set. Recall
evaluates the fraction of all true binders that are correctly
identified by a classifier and precision evaluates the fraction of
true binders from all compounds classified as binders.50 For a
given imperfect classifier, tuning to yield an increase in precision
(better prediction of binders) results in a decrease in recall
(fewer binders identified), and vice versa. The quality of a
classifier can be described by the extent of this trade-off, which is
quantified by the area under the curve (AUC) of the precision−
recall curve (PRC).50,51 Associated code for these steps can be
found at https://github.com/MobleyLab/DEL_analysis.
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