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Convergence to Perfect Competition of a
Dynamic Matching and Bargaining Market with
Two-sided Incomplete Information and
Fxogenous Exit Rate

Mark Satterthwaite and Artyom Shneyerov*t
January 11, 2005

Abstract

Consider a decentralized, dynamic market with an infinite horizon in
which both buyers and sellers have private information concerning their
values for the indivisible traded good. Time is discrete, each period has
length 6, and each unit of time a large number of new buyers and sellers
enter the market to trade. Within a period each buyer is matched with
a seller and each seller is matched with zero, one, or more buyers. Every
seller runs a first price auction with a reservation price and, if trade occurs,
both the seller and winning buyer exit the market with their realized
utility. Traders who fail to trade either continue in the market to be
rematched or exit at an exogenous rate. We characterize the steady-state,
perfect Bayesian equilibria as § becomes small and the market—in effect—
becomes large. We show that, as d converges to zero, equilibrium prices
at which trades occur converge to the Walrasian price and the realized
allocations converge to the competitive allocation.
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1 Introduction

Asymmetric information and strategic behavior interfere with efficient trade.
Nevertheless economists have long believed that for private goods’ economies
the presence of many traders overcomes both these imperfections and results
in convergence to perfect competition. This paper contributes to a burgeoning
literature that shows the robust ability of simple market mechanisms to elicit
cost and value information from buyers and sellers even as at it uses the in-
formation to allocate the available supply almost efficiently. In particular, we
show how a completely decentralized market with two-sided incomplete infor-
mation converges to a competitive outcome as each trader’s ability to contact
sequentially other traders increases. Thus a market that for each trader is big
over time—as opposed to big at a moment in time—overcomes the difficulties
of asymmetric information and strategic behavior. This is a step towards a full
understanding of why price theory with its assumptions of complete information
and price-taking works as well as it does even in markets where the validity of
neither of these assumptions is self-evident.

These ideas may be made concrete by considering a bilateral bargaining
situation in which the single buyer has a value v € [0,1] for an indivisible
good and the single seller has a cost ¢ € [0,1]. They should trade only if v >
¢, but neither knows the other’s value/cost. Instead each regards the other’s
value/cost as drawn from [0, 1] in accordance with a distribution G () . Myerson
and Satterthwaite (1983) showed that no individually rational, budget balanced
mechanism exists that both respects the incentive constraints the asymmetric
information imposes and prescribes trade only if v > c. Bilateral trade with
two-sided incomplete information is intrinsically inefficient.

An instructive example of this phenomenon is the linear equilibrium Chat-
terjee and Samuelson (1983) derived for the bilateral 3-double auction when G
is the uniform distribution on [0, 1]. The rules of this double auction are that
buyer and seller simultaneously announce a bid B (v) and offer S (¢) and they
trade at price p = 1 (B (v) + S (¢)) only if the buyer’s bid is greater than the
seller’s offer. In their linear equilibrium trade occurs only if v — ¢ > %, i.e., the
asymmetric information and resulting misrepresentation of value/cost inserts an
inefficient “wedge” of thickness i into the double auction’s outcome. Moreover
the magnitude of this wedge is irreducible. Myerson and Satterthwaite (1983)
showed that subject to budget balance, individual rationality, and incentive con-
straints this equilibrium maximizes the ex ante expected gains from trade and
therefore is ex ante efficient.

A sequence of papers on the static, multi-lateral k-double auction in the in-
dependent private values environment have confirmed economists’ intuition that
increasing the number of traders causes this wedge to shrink and ultimately van-
ish in the limit. In the multilateral double auction there are n sellers each sup-
plying one unit and n buyers each demanding one unit. Each trader’s cost/value
is private and, from the viewpoint of every other trader, independently drawn
from [0,1] with distribution G. Sellers and buyers submit offers/bids simulta-
neously, a market clearing price p is computed, and the n units of supply are



allocated at price p to those n traders who revealed through their offers/bids
that they most value the available supply. Satterthwaite and Williams (1989)
and Rustichini, Satterthwaite, and Williams (1994) established that as n in-
creases the thickness of the wedge and the relative inefficiency associated with
each equilibrium are O (1/n) and O (1/n?) respectively. Relative inefficiency is
the expected gains that the traders would realize if the market were perfectly
competitive divided into the expected gains that the traders fail to realize in
the equilibrium of the double auction market.

Thus, quite quickly, the static double auction market with independent pri-
vate values converges to ex post efficiency—that is, perfect competition—as the
number of traders grows.! This is despite dispensing with the technically im-
portant, but often unrealistic assumption of auction theory that the seller’s cost
is common knowledge among all participants. These results, however, are de-
rived under three restrictive assumptions: costs/values are independently drawn
private signals, sellers have unit supply and buyers have unit demand, and the
timing of the market is a one-shot static game.

Papers by Fudenberg, Mobius, and Szeidl (2003), Cripps and Swinkels (2003),
and Reny and Perry (2003) relax the first two assumptions. Specifically, Fu-
denberg, Mobius, and Szeidl show that for large markets in an environment
with correlated private costs/values an equilibrium to the static double auction
exists and traders misrepresentation of their true values is O (%) . Cripps and
Swinkels, using a more general model of correlated private values, additionally
dispense with the second assumption of unit supply/unit demand assumption
and show that the relative inefficiency of the static double auction is O (#)
where ¢ is arbitrarily small. Reny and Perry loosen the first assumption most
dramatically, allowing traders’ cost/values to have a common value component
and their private signals to be affiliated. They show in a carefully crafted model
that, if the market is large enough, an equilibrium exists, is almost ex post
efficient, and almost fully aggregates the traders’ private information, i.e., the
double auction equilibrium is almost the unique, fully revealing rational expec-
tations equilibrium that exists in the limit.

This paper, while retaining the independent private values and unit sup-
ply/unit demand assumptions, eliminates the third assumption that traders are
playing a one-shot game in which, if they fail to trade now, they never have
a later opportunity to trade. Commonly a trader who fails to trade now can
enter into a new negotiation within a short time, perhaps even within minutes.
To account for this possibility we consider a dynamic matching and bargaining
model in which trades are consummated in a decentralized matter and traders
who do not trade in the current period may rematch in the next period and try
again.

A description of our model and result is this. An indivisible good is traded in
a market in which time progresses in discrete periods of length ¢ and generations
of traders overlap. The parameter § is the exogenous friction in our model that

'Indeed Satterthwaite and Williams (2001) show that for this environment it converges as
fast as possible in the sense of worst case asymptotic optimality.



we take to zero. Every active buyer is randomly matched with an active seller
each period. Depending on the luck of the draw, a seller may end up being
matched with several buyers, a single buyer, or even no buyers. Each seller
solicits a bid from each buyer with whom she is matched. If the highest of
the bids is satisfactory to her, she sells her single unit of the good and both
she and the successful buyer exit the market. A buyer or seller who fails to
trade remains in the market and seeks a new match the next period unless for
exogenous reasons he elects to exit the market without trading.

Each unit of time a large number of potential sellers (formally, measure
1 of sellers) enters the market along with a large number of potential buyers
(formally, measure a of sellers). Each potential seller independently draws a cost
c in the unit interval from a distribution Gg and each potential buyer draws
independently a value v in the unit interval from a distribution Gp. Individuals’
costs and values are private to them. A potential trader only enters the market
if, conditional on his private cost or value, his equilibrium expected utility is
positive. Potential traders who have zero probability of profitable trade in
equilibrium elect not to participate.

If trade occurs between a buyer and seller at price p, then they exit with
utilities v — p and p — ¢ respectively that they discount back at rate r to their
times of entry. As in McAfee (1993) unsuccessful active traders face a risk of
exiting whose source is exogenous. Specifically, each period each unsuccessful
trader exits with probability e °* where y is the exit rate per unit of time. If §
is large (i.e., periods are long), then a trader who enters the market is impatient,
seeking to consummate a trade and realize positive utility amongst the first few
matches he realizes. If, however, ¢ is small (i.e., periods are short), then a trader
can patiently wait through many matches looking for a good price with little
concern about exiting with no gain.

Buyers with higher values find it worthwhile to submit higher bids than
buyers with lower values. At the extreme, a buyer with a value 0.1 will certainly
not submit a bid greater than 0.1 while a buyer with a value 0.95 certainly might.
The same logic applies to sellers: low cost sellers may be willing to accept lower
bids than are higher cost sellers. This means high value buyers and low cost
sellers tend quickly to realize a match that results in trade and exit. Low value
buyers and high cost sellers may take a much longer time on average to trade
and are likely to exit without trading. Consequently, among the buyers and
sellers who are active in the market in a given period ¢, low value buyers and
high cost sellers may be overrepresented relative to the entering distributions
Gp and Gg.

We characterize subgame perfect Bayesian equilibria for the steady state of
this market and show that, as the period length goes to zero, all equilibria of
the market converge to the Walrasian price and the competitive allocation. The
Walrasian price py in this market is the solution to the equation

Gs(pw) =a(1-Gp(pw)), (1)

i.e., it is the price at which the measure of entering sellers with costs less than py
equals the measure of entering buyers with values greater than pyy,. If the market



were completely centralized with every active buyer and seller participating in
an enormous exchange that cleared each period’s bids and offers simultaneously,
then py would be the market clearing price each period. Our result is this.

Given a § > 0, then each equilibria induces a trading range {Qs’ ]75:|. It is the

range of offers that sellers of different types make, the range of bids that buyers
make, and the range of prices at which trades are actually consummated. We
show that limg_.q ps = lims_.ops = pw, i.e., the trading range converges to
the competitive price. That the resulting allocations give traders the expected
utility they would realize in a perfectly competitive market follows as a corollary.

This result, both intuitively and in its proof, is driven by two phenomena;:
local market size and global market clearing.? By local market size we mean
the number of other traders with whom each individual trader interacts. This
contrasts with global market size—the total number of traders active in the
entire market—which is always large in our model. As the time period ¢ shrinks
each trader expects he can match an increasing number of times seeking a
profitable trade before some exogenous event in his live causes him to exit. Thus
as d becomes small each trader’s local market becomes big over time rather than
big at a point in time as is the case in the centralized k-double auction. This
creates a strong option value effect for every trader. Even if a buyer has a high
value, he has an increasing incentive as ¢ decreases to bid low and hold out for
an offer near the low end of the offer distribution. Therefore all serious buyers
bid within an increasingly narrow range just above the minimum offer any seller
makes. A parallel argument applies to sellers, with the net effect being, as
becomes small, all bids and offers concentrate within an interval of decreasing
length, i.e., the trading range converges to a single price.

Local market size only forces the market to converge to a single price, not
necessarily to the Walrasian price. It is global market clearing that forces con-
vergence to the Walrasian price. To see this, suppose the market converges to a
price p that is less than the Walrasian price. This low price attracts more buy-
ers into the market than it does sellers. Buyers are therefore rationed randomly
through exogenous exit, for then even a high value buyer has a substantial prob-
ability of exiting for exogenous reasons prior to being matched with a seller who
is willing to sell at p. This, however, is inconsistent with equilibrium: the high
value buyer can increase his bid above p so as to guarantee that he will trade
instead of being rationed out. This increases his expected utility and contra-
dicts the hypothesis that the equilibrium converges to the price p rather than
the Walrasian price.

A substantial literature exists that investigates the non-cooperative foun-
dations of perfect competition using dynamic matching and bargaining games.?
This paper is most closely related to Gale (1987), Mortensen and Wright (2002),

2De Fraja and Sékovics (2001) introduced these distinctions.

3There is a related literature that we do not discuss here concerns the micro-structure of
intermediaries in markets, e.g., Spulber (1999) and Rust and Hall (2002). These models allow
entry of an intermediary who posts fixed ask and offer prices and is assumed to be large enough
to honor any size buy or sell order without exhausting its inventory or financial resources.



and our companion paper, Satterthwaite and Shneyerov (2004).* These three
papers show convergence to the Walrasian price and an ex post efficient alloca-
tion as the market friction vanishes. The primary difference between our papers
and the papers of Gale and of Mortensen and Wright is that in their mod-
els when two traders meet they reciprocally observe each other’s cost/value.
This—full versus incomplete information—is fundamental, for the purpose of
our papers is to determine if a decentralized market can elicit sufficient pri-
vate valuation information at the same time it uses that information to assign
the available supply almost efficiently. Their models, with their assumption of
complete information, are silent on this important question.

The difference between this paper and our companion paper is that here
traders have no cost of participating in the market while there each trader incurs
a small participation cost each period he is active and never exits for exogenous
reasons. As a consequence in the companion paper active traders only exit
as the result of successful trade. There are two reasons—one substantive and
one technical—why consideration of this, the exogenous exit rate variant of the
model, is important.

First, substantively, the rise of Internet enabled markets increasingly is mak-
ing the cost of participation in many markets trivial. Here we eliminate partici-
pation costs and substitute an exogenous exit rate. The idea is that participating
in a market with trivial participation costs still requires the scarce resource of
attention. A person when he decides to enter a market knows there is a sig-
nificant probability that, if he is unsuccessful at trading quickly, his situation
may change unexpectedly, preempt his attention, and force exit. The trader is
therefore impatient to consummate the trade because exiting does not indicate
that trade would no longer be of value. It only indicates that he can not give it
attention now.’

Second, technically, these alternative assumptions—exogenous exit vs. pos-
itive participation costs—induce equilibria that have different structures yet
share identical efficiency properties in the limit. As described above, given a
positive exogenous exit rate, a trading interval {B 5 175} characterizes each equi-
librium. This interval is the range both of buyers’ bids and of sellers’ offers.
Consequently trade does not occur each time a match takes place and the price
at which trade does occur may fall anywhere within it. Equilibria in the pres-
ence of participation costs is quite different. The extreme case is “full trade

4The books of Osborne and Rubinstein (1990) and Gale (2000) contain excellent discussions
of both their own and others’ contributions to this literature. Papers, in addition to Gale
(1987) and Mortensen and Wright (2002), that have been particularly influential include
Mortensen (1982), Rubinstein and Wolinsky (1985, 1990), and Gale (1986).

5Scarce attention is not the only reason why making the exit rate p a primitive of the model
makes sense. Among the many decision biases psychologists have identified is overoptimism.
One form this may take is that a trader may be optimistic as to how much time and attention
consumating a trade in the market will take. For such a less than fully rational trader,
participation in the market, if he is not fortunate in getting a good match early on, tends to
disabuse him of this optimism and lead to a decision to exit. Two references to this literature,
which Adam Galinsky and Keith Murnighan kindly brought to our attention, are Kahneman
and Lovallo (1993) and Buelher, Griffin, and Ross (1994).



equilibria” in which the range of sellers’ offers is an interval [gg,]_ag} and the

range of buyers’ bids is an adjacent interval {Bg, pg} that shares only the point

BZ; in common. As a consequence, every match for sure results in a trade be-
ing consummated. This ensures that if convergence to one price occurs, then
that price must be the Walrasian price because if it were another price, traders
from the long side of the market would accumulate and no steady state would
exist. By contrast, in this paper’s model, matches often fail to result in trade
and consequently steady states can exist even if the market converges to a non-
Walrasian price. Despite this, convergence to the Walrasian price and ex post
efficiency still occurs. This illustrates the robustness of convergence to per-
fect competition and provide clues towards identifying a set of necessary and
sufficient conditions for its occurrence.

Butters (circa 1979), Wolinsky (1988), De Fraja and Sékovics (2001), and
Serrano (2002) are the most important dynamic bargaining and matching mod-
els that incorporate incomplete information, albeit one-sided in the cases of
Wolinsky and of De Fraja and Sékovics.® Of these four papers, only Butters
obtains robust convergence to perfect competition in the limit. Specifically, in
an old, incomplete manuscript he analyzes almost the identical two-sided incom-
plete information model that we study here and makes a great deal of progress
towards proving a variant of the convergence theorem that we prove here.

Without going into the details of Wolinsky (1988), De Fraja and Sdkovics
(2001), and Serrano (2002), the simplest explanation why they fail to converge
robustly to the Walrasian price and allocation is that the information/allocation
problem each attempts to solve is different than the problem that large, static
double auctions solve robustly. Think of the baseline problem as being this.
Each unit of time measure 1 sellers and measure a buyers enter the market, each
of whom has a private cost/value for a single unit of the homogeneous good.
The sellers’ units of supply need to be reallocated to those traders who most
highly value them. Whatever mechanism is employed, it must both induce the
traders to reveal some degree of information about their costs/valuations and
carry out the reallocation. Static double auctions with even a moderate number
of traders solve this problem essentially perfectly by closely approximating the
Walrasian price and then using that price to mediate trade.

Given this definition of the problem that both the static double auction and
our matching and bargaining market solve, the reason why Wolinsky (1988),
De Fraja and Sdkovics (2001), and Serrano (2002) do not obtain competitive
outcomes as the frictions in their models vanish is clear: the problems their
models address are different and, as their results establish, not intrinsically per-
fectly competitive even when the market becomes almost frictionless. Wolinsky’s
model relaxes the homogeneous good assumption and does not fully analyze the
effects of entry/exit dynamics. De Fraja and Sdkovics’ model’s entry/exit dy-
namics do not specify fixed measures of buyers and sellers entering the market

6 Another example of a centralized trading institution is the system of simultaneous
ascending-price auctions, studied in Peters and Severinov (2002). They also find robust con-
vergence to the competitive outcome.



each unit of time and therefore have no force moving the market towards a
supply-demand equilibrium. Serrano’s model is a market that may initially
be large but, as buyers and sellers successfully trade, becomes small and non-
competitive over time, an effect that the discreteness of its prices aggravates.

The next section formally states the model and our main result establishing
that the Walrasian price robustly emerges as the market becomes frictionless.
Section 3 derives basic properties of equilibria and presents a computed example
illustrating our result. Section 4 proves our result and section 5 concludes with
a discussion of possible extensions.

2 Model and theorem

We study the steady state of a market with two-sided incomplete information
and an infinite horizon. In it heterogeneous buyers and sellers meet once per
period (¢t =...,—1,0,1,...) and trade an indivisible, homogeneous good. Every
seller is endowed with one unit of the traded good for which she has cost ¢ €
[0, 1]. This cost is private information to her; to other traders it is an independent
random variable with distribution Gg and density gg. Similarly, every buyer
seeks to purchase one unit of the good and has value v € [0,1]. This value is
private; to others it is an independent random variable with distribution Gg
and density gg. Our model is therefore the standard independent private values
model. We assume that the two densities are bounded away from zero: a g > 0
exists such that, for all ¢,v € [0,1], gs(c) > g and gg(v) > g. B

The length of each period is 6. Each unit of time a large number of potential
sellers and a large number of potential buyers consider entering the market; for-
mally each unit of time measure 1 of potential sellers and measure a of potential
buyers consider entry where a > 0. This means that each period measure § of
potential sellers and measure ad of potential buyers consider entry. Only those
potential traders whose expected utility from entry is positive elect to enter
and become active traders.” Active buyers and sellers who did not leave the
market through either trade or exogenous exit the previous period carry over
and remain active in the next period.

Let the strategy of a seller, S : [0,1] — [0,1] U {N}, map her cost ¢ into
either a decision A not to enter or the minimal bid that she is willing to accept.
Similarly, let the strategy of a seller, B : [0,1] — [0,1] U{N}, map his value v
into either a decision A not to enter or the bid that he places whenever he is
matched with a seller. Denote with p > 0 the exogenous exit rate.® Finally let

"In an earlier version of this paper we assumed that potential traders whose expected
utility is zero did enter the market and become active. These traders had zero probability of
trading and exited the market at the exogenous rate pud per period. Our convergence result
(theorem 2 below) still holds under this alternative assumption, though the proofs of claims
16 and 17 are somewhat more complicated because of the presence of active traders who have
zero probability of trading.

8The presence of a positive exit rate (or something similar) is necessary if particpation
costs are zero. The reason is that every trader who enters must have a probability of either
trading or exiting that, per unit of time, is bounded away from zero. Otherwise traders



¢ be the endogenous steady state ratio of active buyers to active sellers in the
market. Given this notation, a period consists of four steps:

1. Each potential trader decides whether to enter and become an active
trader as a function of his type, i.e., a potential seller declines entry if
S (¢) = N and a potential buyer declines entry if B (v) = N.

2. Every active buyer is matched with one active seller. His match is equally
likely to be with any active seller and is independent of the matches other
buyers realize. Since there are a continuum of buyers and sellers the
matching probabilities are Poisson: the probability that a seller is matched
with £ =0,1,2,.. buyers is’

k
b= )

Consequently a seller may end up being matched with zero buyers, one
buyer, two buyers, etc.

3. Traders within a match bargain in accordance with the rules of the buyers’
bid double auction.

(a) Simultaneously every buyer announces a take-it-or-leave-it offer to
the seller. A type v buyer bids B (v). At the time he submits his
bid, he does not know how many other buyers he is bidding against;
he only knows the endogenous steady-state probability distribution
of how many buyers with whom he is competing.

(b) The seller reviews the bids she has received and accepts the highest
one provided it is at least as large as her reservation value, S (c). If
two or more buyers tie with the highest bid, then the seller uses a
fair lottery to choose between them.

(c) If trade occurs between a type c seller and a type v buyer at price
p, then the seller leaves the market with utility p — ¢ and the buyer
leaves the market with utility v — B(v). Each seller, thus, runs an
optimal auction; moreover their commitment to this auction is cred-
ible since the reservation value each sets stems from their dynamic
optimization.'®

whose probability of trading is infinitesimal but positive would accumulate in the market and
jeopardize the existence of a steady state. The presence of the exogenous exit rate does this
directly. The presence of a small participation cost in Satterthwaite and Shneyerov (2004)
does this indirectly, for it causes any potential trader who has a low or zero probability of
trading to refuse entry because he can not in expectation recover those expected costs.

9In a market with M sellers and (M buyers, the probability that a seller is matched with

k buyers is ko = ((]16\/1) (ﬁ)k (1 — ﬁ)@47k. Poisson’s theorem (see, for example, Shiryaev,
1995) shows that limps_,co €M = &,
10We do not know if these auctions are the equilibrium mechanism that would result if we

tried to replicate McAfee’s analysis (1993) within our model.



4. Every active trader who fails to trade remains active the next period
with probability e~%* and, for exogenous reasons, exits with probability
1 — e~ % Traders who exit without trading leave with zero utility.

Traders’ time preference cause them to discount their expected utility at the rate
7 > 0 per unit time. This, together with the exit risk p per unit time, induces
impatience. Section 3.1 shows that e 9®+7) is the overall rate per period at
which each trader discounts his utility.

A seller who has low cost tends to trade within a short number of periods of
her entry because most buyers with whom she might be matched have a value
higher than her cost and therefore tend to bid sufficiently high to obtain agree-
ment. A high cost seller, on the other hand, tends not to trade as quickly or,
perhaps, not at all. As a consequence, in the steady state among the popula-
tion of sellers who are active, high cost sellers are relatively common and low
cost seller are relatively uncommon. Exactly parallel logic implies that, in the
steady state, low value buyers are relatively common and high value buyers are
relatively uncommon. Moreover, this tendency of traders to wait several peri-
ods before trading or exiting implies that the total measure of traders active
within the market may be larger—perhaps much larger—than the total measure
(14 a)d of potential traders who consider entry each period.

To formalize the fact that the distribution of trader types within the market’s
steady state is endogenous, let T's be the measure of active sellers in the market
at the beginning of each period, T be the measure of active buyers, Fs be
the distribution of active seller types, and Fp be the distribution of active
buyer types. The corresponding densities are fg and fp and, establishing useful
notation, the right-hand distributions are Fs=1—Fgand Fg =1 — Fg. Let,
in the steady state, the probability that in a given period a type c seller trades
be pg [S(c)] and the let the probability that a type v buyer trades be pg [B(v)].
Define Wy (¢) and Wg (v) to be the beginning-of-period steady-state net payoffs
to a seller of type ¢ and the buyer of type v, respectively. Let

c = 5(0), (3)
¢ = Slip{C\ Ws (¢) > 0},

= i{)lf {v|Wg(v) >0}, and
v = B(1).

No seller enters whose cost exceeds ¢ and no buyer enters whose value is less than
v because a trader only becomes active if his expected utility from participating
is positive. We show in the next section that active sellers’ equilibrium bids all
fall in the interval [c, &), active buyers’ equilibrium offers all fall in (v, %], and
that: [c,e] = [v,9] = [p,D].

Our goal is to establish sufficient conditions for symmetric, steady state
equilibria to converge to the Walrasian price and competitive allocation as the
period length in the market goes to zero. By a steady state equilibrium we mean
one in which every seller in every period plays a symmetric, time invariant

10



strategy S (), every buyer plays a symmetric, time invariant strategy B (-),
and both these strategies are always optimal. Let Wg (c) and Wg (v) be the
sellers and buyers’ interim utilities for sellers of type ¢ and the buyers of type
v respectively, i.e, they are beginning-of-period, steady-state, equilibrium net
payoffs conditional on their types. Given the friction J, a market equilibrium
M consists of strategies {S, B}, traders’ masses {Ts,Tg}, and distributions
{Fs, Fg} such that (i) {S, B}, {Ts,Ts}, and {Fs, Fg} generate {Ts,Tp} and
{Fs, Fp} as their steady state and (ii) no type of trader can increase his or
her expected utility (including the continuation payoff from matching in future
periods if trade fails in the current period) by a unilateral deviation from the
strategies {S, B}, and (iii) equilibrium strategies {S, B}, masses {Ts,Ts}, and
distributions {Fs, Fp} are common knowledge among all active and potential
traders.
We assume that:

A1. The equilibrium is subgame perfect Bayesian.

A2. For each § > 0 an equilibrium satisfying A1 exists in which each potential
trader’s ex ante probability of trade is positive.

Three points need emphasis concerning these assumptions. First, since within a
given match buyers announce their bids simultaneously and only then does the
seller decide to accept or reject the highest of the bids, Assumption A1l implies
that a seller whose highest received bid is above her total dynamic opportunity
cost of ¢ + e #Wg (c) accepts that bid. In other words, a seller’s strategy is
her full dynamic opportunity cost:

S(c)=c+e PWs(c).

Second, beliefs are simple to handle because there are continuums of traders and
all matching is anonymous and independent. Therefore off-the-equilibrium path
actions do not cause any inference ambiguities. Third, Assumption A2 states
that well behaved equilibria exist in which trade occurs. This is necessary for
two reasons. First, a no-trade equilibrium always exists in which neither buyers
nor sellers enter the market. Second, it is an open question that has not yet
yielded to our efforts whether such non-trivial equilibria always exist, though
numerical experiments (see section 3.5) suggest that they do for well behaved
distribution Gg and Gg.!!

In order to state our theorem we must define admissible sequences of equi-
libria. An admissible equilibrium sequence rules out sequences in which the
buyer-seller ratio (5 goes to either 0 or co as ¢ goes to 0. Consider for exam-
ple a sequence of equilibria indexed by § such that §1,d2,...,d,,... — 0 and
(s — 00.'2 Such a sequence is uninteresting because it violates the spirit of

11'We have proved existence in our companion paper’s model, provided § is sufficiently small.

12We suspect such sequences can not exist, but have not been successful in proving that
conjecture. Our expectation is that an existence proof will, as a by-product, rule out such
sequences.
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assumption A2’s requirement that each trader’s ex ante probability of trading
is positive. Specifically, the number of buyers with which each seller is matched
grows unboundedly. Therefore each seller is sure to sell to a buyer whose value
v is arbitrarily close to 1 and each buyer whose value is significantly less than
1 is certain not to trade. In fact, if Pg? denotes the ex ante probability that a
potential buyer will trade, then in such sequences lims_.q PE? = 0 because the
probability of a buyer drawing value v = 1 is zero.

Definition 1 A sequence of equilibria indexed by 0 such that d1,02,...,0p,... —
0 is admissible if a ¢ > 0 exists such that the equilibrium for each 9§, ex-
1sts, satisfies A1, gives each trader an ex ante positive probability of trade, and

We may now state our main result.

Theorem 2 Fix a sequence of equilibria indexed by § such that d1,02,...,05, ...
0. Let {Ss, Bs} be the strategies associated with the equilibrium that § indexes,
let [cs,Cs] = [vs, Ds] be the offer/bid ranges those strategies imply, and let W5 (c)
and Wpgs (v) be the resulting interim expected utilities of the sellers and buyers
respectively. Then both the bidding and offering ranges converge to pyy :

lim ¢; = lim ¢5 = lim vs = lim U5 = . 4
5%0_6 §—0 J 5%0_6 §—0 d bw ( )

In addition, each trader’s interim expected utility converges to the utility he
would realize if the market were perfectly competitive:

}irr(l) Wss (¢) = max [0, pw — (] (5)

and
(}in}) Wpgs (v) = max [0,v — pw]. (6)

Observe that in setting up the model we assume that traders use symmetric,
pure strategies. We do this for simplicity of exposition. At a cost in notation
we could define trader-specific and mixed strategies and then prove that the
anonymous nature of matching and the strict monotonicity of strategies implies
they in fact must be symmetric and (essentially) pure. To see this, first consider
the implication of anonymous matching for buyers. Even if different traders
follow distinct strategies, every buyer would still draw his opponents from the
same population of active traders.'®> Therefore, for a given value v, every buyer
will have the identical best response correspondence. Second, as we show below,
every selection from this correspondence is strictly increasing. This means that
the best response is pure except at a measure zero set of values where jumps
occur. Mixing can occur at these jump points, but does not affect other traders’
strategies because the measure of the jump points is zero and therefore has no
consequence for other traders’ maximization problems.

Section 4 contains the theorem’s proof.

13 This is strictly true because we assume a continuum of traders.
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3 Basic properties of equilibria

In this section we derive basic properties that equilibria satisfy. These properties—
formulas for probabilities of trade, the strict monotonicity of strategies, and
necessary conditions for a strategy pair (S, B) to be an equilibrium—enable us
to compute examples of equilibria and provide the foundations for the proof of
our main result. We assume throughout both this section and the next that §
and the equilibrium it indexes is an element of an admissible sequence.

3.1 Discounted ultimate probability of trade

An essential construct for our analysis is the discounted ultimate probability of
trade. It allows a trader’s expected gains from participating in the market to
be written as simply as possible. Given any period, let pg (A) be the probability
that a seller who chooses reservation price A trades that period and, similarly,
let pg (A) be the probability that a buyer who bids A trades that period. Also,
let pg (A) =1—pg(A) and pp (A) =1—pp (A).

Define recursively Pg (\) to be a buyer’s discounted ultimate probability of
trade if he bids A:

Ps(N) = pp )+ () e e Py (N)
pp(N) +pp (N e P (N)
where § = p + r. Therefore

Ps (A)
Pg(\) = . 7
B( ) 1—6_66+€_56PB()\) ( )
Observe that the formula incorporates both the trader’s risk of having to exit
and his time discounting into the calculation. The parallel recursion for sellers

implies that

A
Ps () = 171 i(e)ﬁéps B ©

This construct is useful within a steady state equilibrium because it con-
verts the buyer’s dynamic decision problem into a static decision problem.
Specifically, if successfully trading gives the type v buyer an expected gain
U = E,(v — p), then his discounted expected utility W2 from following the
stationary strategy of bidding A is

WP AU) = ppNU+pg(N)e e WP (\U)
— oW U + s W) e WE (AT,
Solving this recursion gives the explicit formula:

WEB(\U)=Pg(\U. (9)

Similarly,
WS (\,U) = Ps (\) U. (10)

In section 3.3 we derive explicit formulas for pg () and pg ().
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3.2 Strategies are strictly increasing

This subsection demonstrates the most basic property that our equilibria sat-
isfy: equilibrium strategies are strictly increasing. As a preliminary, we first
characterize the set of traders that are active in the market. We then turn to
the monotonicity results.

Claim 3 In any equilibrium v < 1, ¢ > 0, and

(v,1] € {v|Wp (v) > 0}, (11)
[0,2) C {c|Ws (¢) > 0} (12)

Proof. If an equilibrium has positive ex ante probability of trade for each po-
tential trader, then Tg fvl pp [B )] fe(v)dv > 0 and Ts [; pg [S (¢)] fs(c)de >
0. This is true only if v < 1 and ¢ > 0. By bidding B(v) in every period, a buyer
gets an equilibrium payoff Wg(v) = vPg [B (v)] — D (B (v)) where Dg (v) is
his discounted expected equilibrium payment. By Milgrom and Segal’s (2002)
theorem 2,

Wg(v) = Wg (v) +/ Pg [B (z)] dz,
v
so Wp(-) is non-decreasing on (v, 1]. Assume, contrary to (11), that Wy [B (v')] =
0 for some v' € (v,1]. It then follows by the monotonicity of Wg (-) that
Wg(w) = 0 for all v € (v,v'), contradicting the definition of v. Therefore
Wg (v) > 0 for all v € (v,1], establishing (11). The proof of (12) is exactly
parallel and is omitted.H

Claim 4 B is strictly increasing on (v, 1].

Proof. Wg(v) = supy~o(v — A\)Pg(A) = (v — B (v))Pp(B (v)) is the up-
per envelope of a set of affine functions . It follows that Wp (-) is a continu-
ous, increasing, and convex function that is differentiable almost everywhere.'*
Convexity implies that W (+) is non-decreasing on [v, 1]. By the envelope the-
orem Wg(-) = Pg[B(:)]; Pg[B(-)] is therefore non-decreasing on [v,1] at all
differentiable points. Milgrom and Segal’s (2002) theorem 1 implies that at
non-differentiable points v" € [v, 1]

lim W5 (v) < Pg(B()) < lim Wg(v).
v—v'— v—v’ 4
Thus Pg [B (+)] is everywhere non-decreasing on [v, 1].

Pick any v, v' € (v,1] such that v < ¢'. Since Pg[B(:)] is everywhere
non-decreasing, Pp [B (v)] < Pp[B (v')] necessarily. We first show that B is
non-decreasing on (v,1]. Suppose, to the contrary, that B(v) > B(v'). The
rules of the buyer’s bid double auction imply that Pg (-) is non-decreasing;
therefore Pg [B (v)] > Pg [B (v')]. Consequently Pg B (v)] = Pg[B (v')]. But
this gives v’ incentive to lower his bid to B(v'), since by doing so he will buy with

M An increasing function is differentiable almost everywhere.
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the same positive probability but pay a lower price. This contradicts B being
an optimal strategy and establishes that B is non-decreasing. If B(v') = B(v)
(= A) because B is not strictly increasing, then any buyer with v” € (v,v") will
raise his bid infinitesimally from A to A’ > A to avoid the rationing that results
from a tie. This proves that B is strictly increasing.'°H

Claim 5 S is continuous and strictly increasing on [0,¢).

Proof. Assumption Al states that since sellers in the market do not affect
price, they bid their total opportunity cost:

S(c) = c+ e PWs(c) (13)

for all ¢ € [0,¢) where Wg(c) is the equilibrium payoff to a seller with cost ¢. In
a stationary equilibrium Wg(c) = D(S (¢)) — ¢Ps(S(c)) where Pg[S (¢)] is her
discounted ultimate probability of trading when her offer is S (¢) and D(S (¢)) is
the expected equilibrium payment to the seller with cost c. Milgrom and Segal’s
theorem 2 implies that Wy (+) is continuous and can be written, for ¢ € [0, ¢, as

Ws (c) Ws () + / " Po(S(x))dx (14)

@
[ Pss(nis (15)
C

where the second line follows from from the definition of ¢ and the continuity of
Wy (). This immediately implies that Wg (-) is strictly decreasing (and there-
fore almost everywhere differentiable) because the definition of ¢ implies that
Ps (S(¢)) > 0 for all ¢ € [0,¢). It, when combined with equation (13), also
implies that S (+) is continuous. Therefore, for almost all ¢ € [0,¢),

S'(c)=1-ePs[S(c)] >0

because W§ (¢) = —Ps[S(c)]. Since S (-) is continuous, this is sufficient to es-
tablish that S (-) is strictly increasing for all ¢ € [0,¢).H

Claim 6 p=v=c=5(0) = B(v+) andp=¢c=0 = B(1) = S (¢—).

Proof. Given that S is strictly increasing, S (0) = ¢ is the lowest offer any
seller ever makes. A buyer with valuation v < ¢ does not enter the market
because he can only hope to trade by submitting a bid at or above ¢ and such
a bid would be above his valuation. S is continuous by claim 5, so a buyer with
valuation v > ¢ will enter the market with a bid B (v) € (¢, v) because he can
make profit with positive probability. Therefore lim, ..+ B (v) =v =¢.

By definition ¢ = sup.{c| Ws (¢) > 0}. Equation (13) therefore implies that
S(¢—) = & A seller with cost ¢ > 7 = B(1) will not enter the market, so

15 Alternatively, one can use Theorem 2.2 in Satterthwaite and Williams (1989) with only
trivial adaptations.
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¢ < B(1). If ¢ = S(e—) < v = B(1), then a seller with cost ¢ € (¢, B (1
can enter and, with positive probability, earn a profit with an offer S (¢’)
(c, B (1)) .This, however, isacontradiction : sup . {c|Ws(c) > 0} > ¢ > ¢
sup.{c|Ws (¢) > 0}.Therefore S(c—) =¢=v= B(1).1

These findings are summarized as follows.

- m

Proposition 7 Suppose that {B,S} is a stationary equilibrium. Then B and
S are strictly increasing over their domains. They also satisfy the boundary
conditions p=v =c= S(0) = B(v+) and p =t =10 = B(1) = S (¢c—).

Note that strict monotonicity of B and S allows us to define their inverses,
Vand C: V() = inf{v: B(v) > A} and C(\) = inf{c: S(c) > A}. These
functions are used frequently below.

3.3 Explicit formulas for the probabilities of trading

Focus on a seller of type ¢ who in equilibrium has a positive probability of trade.
In a given period she is matched with zero buyers with probability £, and with
one or more buyers with probability £, = 1 — &,. Suppose she is matched and
v* is the highest type buyer with whom she is matched. Since by Proposition
7 each buyer’s bid function B (+) is increasing, she accepts his bid if and only if
B (v*) > A where X is her reservation price. The distribution from which v* is

drawn is F}; (+): for v € [uv, 1],

0 4=1

Fa) = = & [Fs @) (16)

1 ¢ i
= gt
1=
eSFr(v) _q

e —1

where Fp (-) is the steady state distribution of buyer types and {£,&;,&s, ...}
are the probabilities with which each seller is matched with zero, one, two, or
more buyers.!® Note that this distribution is conditional on the seller being
matched. Thus if a seller has reservation price A, her probability of trading in
a given period is

ps (N = &1 — F5(V (V). (17)

This formula takes into account the probability that she is not matched in the
period.

16 This formula follows from the facts that:

>zt - s e —1
— =¢e” —1 and = = .
EZI'L' 50 1:2151 EC
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A similar expression obtains for pg (A), the probability that a buyer sub-
mitting bid A successfully trades in any given period. In order to derive this
expression, we need a formula for wy, the probability that the buyer is matched
with k rival buyers. If T is the mass of active buyers and Tg is the mass of
active sellers, then w;Tg, the mass of buyers participating in matches with &
rival buyers, equals k£ + 1 times £, T, the mass of sellers matched with & +1
buyers:

wrlp = (k‘ + 1) §k+1TS~

Solving, substituting in the formula for &, ,,, and recalling that ¢ = Tp/Ts
shows that wy and &, are identical:

(k+1) (k+1) ¢FH
WE = T&k-i—l = C (k ¥ 1)'€< = gkr'

(18)

The striking implication of this is that the distribution of bids that a buyer must
beat is exactly the same distribution of bids that each seller receives when she
is matched with at least one buyer.

Turning back to pp, a buyer who bids A and is the highest bidder has proba-
bility Fis(C (X)) of having his bid accepted. This is just the probability that the
seller with whom the buyer is matched will have a low enough reservation price
so as to accept his bid. If a total of j+ 1 buyers are matched with the seller with
whom the buyer is matched, then he has j competitors and the probability that
all j competitors will bid less than X is [F (V (X))}’ . Therefore the probability
that the bid X is successful in a particular period is

pp(N) = Fs(CO)Y. wilFs (V)

= Fs(CO)Y & [Fs (V)P

~ By S

P [P (V- (N)
= Fg(C(\)e FsV),

where the fourth equality follows from E;’;Oxj /il =e€*.

3.4 Necessary conditions for strategies and steady state
distributions

In this subsection the goal is to write down a set of necessary conditions that are

sufficiently complete so as to form a basis for calculating section 3.5’s example

and, also, to create a foundation for section 4’s proof of theorem 2. We first

derive fixed point conditions that traders’ strategies must satisfy. Consider
sellers first. Substituting (14),

We () = / Py (S(x))dx (19)
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into (13) gives a fixed point condition sellers’ strategies must satisfy:

S(c)=c+e / ' Ps(S(x))dz. (20)

c

The parallel expression for a buyer’s expected utility is'”

Wi(v) = / " Py [B(2)] do (21)

for v € (v,1]. Alternatively,

Wi(v) = max (v~ N)P5() = (v = B0)) P (B ().
Substituting (21) into this and solving gives a fixed point condition buyers’
strategies must satisfy:

1 v
B(v)=wv Py [B)] /2 Pg [B(x)] dzx (22)
for v € [v,1].

In our model, the distributions {Fp, Fs} are endogenously determined by
traders’ strategies. In any steady state, the numbers of entering and leaving
traders must be equal. This gives rise to three necessary conditions. First, in
the steady state, for each type v € [v, 1], the density fp must be such that the
mass of buyers entering equals the mass of buyers leaving;:

adgp(v) = Tpfp (v){pg [B ()] +pp B ()] (1—e ")} (23)

where the left-hand side is the measure of type v buyers of who enter each period
and the right-hand side is the measure of type v buyers who exit each period.
Note that it takes into account that within each period successful traders exit
prior to traders who exit for exogenous reasons. Second, the analogous steady
state condition for the density fg is, for ¢ € [0, ],

dgs (¢) = Tsfs () {ps [S ()] + pg [S ()] (1 — )} (24)

Third, trade always occurs between pairs consisting of one seller and one buyer.
Therefore, given a cohort of buyers and sellers who enter during a given unit of
time, the mass of those buyers who ultimately end up trading must equal the
mass of sellers who ultimately end up trading:

1 e

o [ Put)on o= [ Ps(e)gs(©)de (25)
v 0

Together the fixed point conditions (20 and 22), the expected utility formulas

(19 and 21), the steady state conditions (23 and 24), and the overall mass

balance equation (25) form a useful set of necessary conditions for equilibria of

our model.

1"Formally, theorem 2 of Milgrom and Segal (2002) justifies this standard expression.
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3.5 A computed example

These necessary conditions (19-25) supplemented with boundary conditions en-
able us to compute an illustrative example of an equilibrium for our model and
to show how, as § is reduced, the equilibrium converges towards the perfectly
competitive limit. The boundary conditions are

5(0) = ¢S(e=)=¢Ws(e-)=0
Bw+) = v,B(1)=0,Wp(v+)=0

where © =7 = p and v = ¢ = p. Our computation specifies that traders’ private
values are drawn from the uniform distribution (gs (¢) = g (v) = 1) on the unit
interval, the mass of buyers entering each unit of time exceeds the mass of sellers
entering by 10% (a = 1.1), the exit rate is one per unit time (x = 1.0), and the
discount rate is zero (r = 0.0). The Walrasian price for these parameter values
is pw = 0.524. We computed the equilibrium by fitting sixth degree Chebyshev
polynomials to the set of conditions using the method of collocation.

Figure 1 graphs equilibrium strategies S, B and steady state densities fs, fp
for these parameter values.'® The left column of the figure graphs strategies and
densities for period length § = 0.2; the right column does the same for period
length § = 0.1. Visual inspection of these equilibria shows the flattening of
strategies that occurs as the period length shortens and each trader’s option to
wait another period for a better deal becomes more valuable. Thus, as ¢ is cut in
half, the trading range [p, p] narrows from [0.387, 0.570] down to [0.449, 0.550],
which is almost a halving of its width from 0.182 to 0.100. In both equilibria
the buyer-seller ratio is ¢ = 1.570. Observe that for both period lengths the
trading range includes the Walrasian price. Inspection of the densities shows
that, as the period length shortens, sellers with costs just below ¢ and buyers
with values just above v tend to accumulate within the market.

4 Proof of the theorem

4.1 A restriction on the shape of B

Our purpose in this subsection is to show that buyers’ equilibrium strategies
B (-) must be within §'/3 of either v or ¥ except within some interval contained
in [v, 1] that has length no greater than 63 The first claim we establish is a
preliminary restriction on the shape of B (-).

Claim 8 In equilibrium, for all ¢ € [0, ],

1
/ B (x) — S(e)] fs (x) do < 2085, (26)

V(S(e))

18We do not know if this equilibrium is unique.
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Figure 1: This figure graphs two equilibria for the case in which gs and gp
are uniform, a = 1.1, u = 1.0, and » = 0.0. The upper panel exhibits bidding
and acceptance strategies (the lower and upper curves, respectively). The lower
panel exhibits the densities of types in the market (the left curve for the sellers
and the right curve for the buyers). On the left side period length is § = 0.20.1t
has relative inefficiency I = 0.095 and masses of active traders Ts = 0.201
and T = 0.316. On the right side period length is § = 0.10. It has relative
inefficiency I = 0.0513 and masses of active traders Tg = 0.106 and Tz = 0.166.
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Proof. Wg(c), a seller’s expected utility can be written recursively as the
sum of the seller’s expected gains from trade in the current period plus her
expected continuation value if she fails to trade in the current period:

W (c)

1
3 / B(z) f3 (2)dr — EF5 (V (S (c)))
V(S(c))
L+ EFE (VS (@)} e Ws (c).

where F (V (S (c))) is the probability that, conditional on at least one buyer
being matched with her, she fails to trade in the current period. Move all
terms involving Ws (¢) to the left-hand-side (LHS) and insert the expression
—S(c) + ¢+ e B°Ws (c) = 0, which is equation (13) rewritten, into its RHS:

W (e) {1 —e %6, — e P& F; (V (S (0)} =

1
& / B(2) 5 (2) de — EocFy (V (S (c)))
V(S(c))

+ & F5 (V(S(0){-S(c)+c+ e POWy (0)}.
Cancel two terms on the RHS and move terms to the LHS to get

1-— e_ﬁ5£ B
Ws (o) { BB, [Py (V (S () + Fi (V (S ()] } =

& / B(2) fj (x)dz — EF5 (V (S () S (0).
V(S(c))

Recall that Fj(v) + Fj (v) =1 and £ + &, = 1. Then

56Ws () = &, /V ) [B@ =S @) 1 @) (27)

1

i.e., in equilibrium, for a type c seller, the expected marginal cost of waiting an
additional period to trade is equal to the expected marginal expected gain from
waiting.

Since 1 — e~#% < B6, rearranging (27) gives

/ [B(2) ~ 5(0)] i (2) do = Lws () < 2
V(S(9)

because Wg(c) < 1. First order stochastic dominance implies that

B(z) =S (c)] fg (z)dzx <
/V(S(C))[() (©)] 15 () </

[B () =S ()] [5 () dz;
V(5(e))

Therefore

1
/ B ()5 ()] /5 (@) de < 22 (28)
V(S(c)) o
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for all ¢ € [0,€). The probability that a seller will not be matched with any
buyer is
SRS Y.
0= g1t = ¢ <¢© (29)
because the equilibrium is an element of an admissible sequence and therefore
¢ €[1/¢,¢]- A bound on the the complementary probability is

. 1
Eo>1—e Vo> o

2¢
because 1 —e™ =z — %2 + ... and % is both small and positive. Using this
observation, we conclude from (28):
1 —
[ B@ =S s (@) de < 250 (30)
V(5(e))

The bound (30) does not have any bite if fg (x) becomes small as § becomes
small. Therefore in the next claim we establish a lower bound on fp (v) that is
independent of 4.

Claim 9 For allv € [v,1] and sufficiently small 6 > 0, fp (v) > g—% (¢—B(v)).

Proof. Consider the highest type buyer, v = 1. In equilibrium he bids B (1)
instead of some A < B (1). His expected gain from following this strategy is
P (B(1))(1—B(1)). If he bids A < B (1), then his expected gain is Pg (\) (1—
A). Revealed preference implies Pg (B(1)) (1—B (1)) > Pp (A) (1—A). Therefore

Pp(B1)(1-B(1) _Ps@(1-¢)
Pr(3) < 1-\ T1-x

(31)

Note also that, for A < B (1), pg [B(1)] > pg (A) because pg is a non-decreasing
function.

Inequality (31) permits us to bound pg (A) from above. It and formula (7)

imply the following sequence of inequalities

pp (M) Pp(@)(1-0)

P A ey = 1A

s _ Pa@(1-9)
pp(A)+ 85~ L=x 7

519
PB (>‘) S 11—\ .
Pg(c)(1—c)
Bd
PB ()‘> S 1-\ 1
1o
Bé(1—2o)
P S
ps(A) < 2\

(32)

)

1

, and
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where the second line follows from 1 — e~ %% < 3§ and dropping the less than
unity factor (1 — pg (\)), the third line from solving the inequality, the fourth
line from Pp (¢) < 1, and the fifth line from simplifying the fourth line.

Inequality (32) allows us to establish the desired lower bound on fg (v)
provided we have an upper bound on T, the mass of buyers active in the market.
Suppose all potential buyers (measure a each period) entered and became active,
none successfully traded, and all ultimately left the market due to the workings
of the exit rate p. The total mass of active buyers in the market would then be
Tp = ad/ (1 — e %), which follows from equating T5(1 —e™*?), the measure of
buyers who enter each period, with ad, the measure of buyers who enter each
period, and solving. Since many buyers leave as a result of successful trade an
upper bound on the mass of sellers in the market is T < ad/(1 — e ). To
obtain the needed lower bound on fp (v) solve for it in equation (23) and then
simplify:

s ad gp (v)
o) = o BT oy B =) (3)
S 1 ad gp (v)
= Tppp[B@)]+pg[B )] (1-e )
s L ad gp (v)
~ T (1-p6) 202 4 s
U ()
= By (1-B0)=£+1
S B 95 (v)
T O28(1-B) =S +1
> M g
T O28(1-pB8) 41
w9 opg,
> ﬁ(;:f)—l—l_%x(c_)\)
> % (¢—B(v))

where 8 = r + 1 > p implies the second line, (32) and 1 — e~#% < 36 implies
the third line, Tp < ad/(1 — e #°) implies the fourth line, 1 — e=#° > 13§
for sufficiently small § implies the fifth line, g being the lower bound on the
densities gp implies the sixth line, (1 — 48) < 1 implies the seventh line, and
A < 1 implies the last line.ll

We now use the bounds established in claims 8 and 9 to place a strong
restriction on the shape of B. Figure 1 shows the construction used in the next
claim and shows how the claim’s conclusion confines B (-) to a narrow band of
width proportional to §/3.

Claim 10 Suppose ¢— v > 263, For giwen & > 0 sufficiently small, let v* =
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Figure 2: v/ band that confines B(-)
1% (y+ 51/3) and v** =V (Ef 51/3) . Then
vt — vt < 45 513, (34)

Ky
Proof. Substituting inequality (33) into (30) gives

pg [

28 V(S(C))(B () = 5(e)) (€~ B (x)) dv < 208

The special case of this inequality in which ¢ = 0 gives the restriction on the

buyers’ strategy B (-):

4C6°%0
Hg

/ (B(z) —v) (¢~ B(x)) dr < (35)

because S (0) =c=wand V (v) = v.
Note that, for « € [v*,v**], the following inequalities are true: B (z) —v >
63 and (¢ — B (z)) > 6'/3. Therefore

/ (B(z) - v) (6— B(x)) dz > (0™ — v*)6%/%.
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This inequality together with the observation that the integrand of (35) is pos-
itive for the whole interval of integration [v, 1] implies

4¢p5?
19

]

%

/ (B(x) - v) (@~ B (2)) d

[ B@-ve-Bw) i

> (’U** o ’U*)(52/3.

%

The first and last terms of this sequence of inequalities imply (34).H

4.2 The law of one price

In this subsection, we demonstrate that lims_,0(¢s — v5) = 0. Since all trades
occur at prices within the interval [ug, ¢5] this means that as the period length
approaches zero all trades occur at essentially one price. Intuitively this is driven
by increasing local market size and the resulting option value, i.e., as 6 becomes
small each trader can safely wait for a very favorable offer/bid.
Proposition 11 Consider any -admissible sequence of equilibria 6,, — 0. Then
lim (¢5 — =0.
lim (5 — v5)

Proof.  Suppose a sequence of equilibria indexed by 4 exists such that
01,92,...,0p,... — 0 and lims_o(¢s — vs) = n > 0. We show that this is a
contradiction: therefore, necessarily, lims_,o(¢s — v5) = 0. From now on, fix a
subsequence such that lim, . (¢s —vs) =7 and & — vs > 7.

Pick a small § from the subsequence and let the strategies {S, B}, proba-
bilities {£g,&1,&s, - ..}, and distributions [Fs, Fp] characterize the equilibrium
associated with it. Recall that S(0) = ¢ = v = B(v+) and B(1) = o =
¢ = S (¢—) .Alsorecallabove fromabovethede finitionso fv*and v** .Define in ad-
dition

A ey 1/3 ~r /
v—vfz(vfy), b=B(0),b=b+d"", and 0’ =V ()
as shown in figure 2. We prove the proposition with a sequence of four claims,
the last of which has the proposition as a corollary. The first of these claims
derives three intermediate inequalities.

Claim 12 Given the construction of v, v*, v**, b, and V' and given that, by
assumption, lims_,o(¢s —vs) =n > 0, if 0 is sufficiently small, then

0 <ov¥, (36)
1
inf (v—B(v)) > =n, (37)
vE[D,v'] 2
1
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Figure 3: Construction of v*, v**, v, ¥/, b and ¥'.

Proof. We begin with three observations:

O1 The assumption that o — v > n for all § in the sequence and the definition
9=0v—1(v—0) imply 0+ in < .

02 The definition B (v**) = o — 6'/% and the inequality B (v**) < v** imply
that o — 6'/% < v**. That B (v**) < v** follows from the fact that v** €
(v,€) and therefore pg (v**) > 0; hence bidding A € (v, v**) generates a
positive payoff and bidding A € (v**,1) generates a negative payoff.

03 Recall from (34) that v** <ov* + ﬁ—i B261/3.
To derive (36), note that O2 and O3 imply
4_ 2
v< vt + (1+—CB >61/3
Ky
Combining this with O1 gives

*n2
ﬁ<v*—ln+(l+ﬁ>6l/3.
4 Hg

Thus, for small enough ¢,



Turning to (37), that B (-) is increasing, © < v*, B(0) = b, B (v*) =
Y =b+6Y3 and B(v*™*) =V together imply that b € [v,v + 6/%]

vt6'3,
and b €

[v+ S8 v+ 251/3]. Consequently, for sufficiently small 4,

inf (0-B() > v-¥ (40)
ve[v,v’

> 9 y—261/5

> n—2"°

S 1

= 277-

This proves (37). Finally, to establish (38), note that by construction v* < v'.

Therefore

v

%

>

>

vt =7 (41)
’U** - 4662 61/3
Hg
= 52
v—ﬁ—<1+4<ﬁ ) 5173
Hg

= 02
177_ <1+ﬁ> §1/3
4 g
1
g

where line two follows from v** < v* + % ia) 1 3 line three follows from v** >

-6 3 line four follows from o — & > %n, and line five follows if § is sufficiently

small.ll

Claim 13 Given lims_o(¢s — vs) = n > 0, if § is sufficiently small, then a

v > 0 exists such that

pp (V)
g (b)

>147.

Proof. Since V (V') =o' and V (b) = 0, the ratio of pg(b’) and pg(b) is

pp(b)

Fs (C (1)) e—CFr(®)

pp (b)

Vv 1V

Y

Fs (C(B) e o0
oCFB()~F5 ()]

1+ ([Fp(t") — Fp(0)]

1+%/ﬁv fB(2) dz,

where the second line follows from & > b and both Fg and C being increasing,
the third line follows by ¢ > 1+« (x > 0), and the last line follows from
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¢ >1/C. Recall from (33) that fp (v) > g (v — B (v)). Therefore

pp(b) g _
14+ = - B d
pp (b) S +C B @ () do
> 1—1—2(5'—1) inf (v— B (v))
C vE[D,0’]
g/1\ /1
> 14 (5) ()
_ 195
= e
= 1l+v

where line three follows from (37) and (38) and line five follow from v =
1.2

ﬁgn i |

Claim 14 Given lims—o(Cs — vg) =1 > 0, if § is sufficiently small, then

Py (V)
Pg (b)

>1+9"

where v* = ivn > 0.

Proof. Direct calculation proves this. Recall from (7) the formula for
Pg (b) . Therefore

Pg (')  pp () Bo+pp(b) —Bopg (b)

Pp(b)  pp(b) Bo+pp (V) — Bopp (V)
Define = and y so that pg (V') = Béx and pp (b) = [oy. Then, after some
manipulation,
Pg (V) L+y—60
Pp (b) 1+ —f6

1
> 1+57@=Y)

where line two follows from claim 13’s implication that é > 1',*'77, line four follows
from B0 € (0,1), line five follows from the definition of x, and line six follows
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from inequality (32) and 1 — ¥’ < 1. By construction b’ € (v + AT 261/3).
Hence, for § sufficiently small,

Pg (V') 1 1/3
14+ = — v —
Prb) = +2v(v v—06"7°)
1
> —_
> 1+4777

because v —v > n.1

Claim 15 Given lims_,o(Cs —uvs5) =1 > 0, if 0 is sufficiently small, then a type
0 buyer has an incentive to deviate from bidding B (0) = b to bidding b’ > b.

Proof. If we denote the expected utility of a type v buyer who bids A as
w5 (A, v), then to prove this we need to show that 7p(¥/,0) — 75 (b,0) > 0
for § sufficiently small. First note that by construction & = o — 1 (v —v) and
b<v+ §/3. Therefore

1
i-b > - - -p- 5
3
= Z(@—E)—51/3
3
> Zp—g'/3
z 477
S 1
z 277

for sufficiently small § because ¥ — v > n. Next observe that, for sufficiently
small ¢,

50, 0) — 75 (b,3) = (5—b)Pg )~ (5—0b)Pg(b)
) (=) = (5~ )] Py (0
) (5-b=8"3) = (5 v)| P5 (¥)

V(= b) = (1477 8] Ps (0)

\Y
=

vV
1
N =
3
2

*

\
_

+
-2

*

>

N

~

w
—_

)
sy]
—
=

where line 2 follows from claim 14. B

Claim 15 directly implies proposition 11 because it contradicts the main-
tained hypothesis that an admissible subsequence of equilibria exists such that
limg_,o(ég — y(;) =n>0.

4.3 Convergence of the bidding and offering ranges to the
Walrasian price

Recall that the Walrasian price py is the solution to the equation

Gs (pw) = a Gp(pw); (42)
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it is just the price at which the measure of sellers entering the market with cost
¢ < pw equals the measure of buyers entering the market with values v > py .
This price would clear the market each period if there were a centralized market.
In this subsection we prove our main result: as 6 — 0 the bidding range [v, 7]
collapses to the Walrasian price. More formally, for any sequence of equilibria
indexed by ¢ such that d1,92,...,0,,... — 0, both

li - lim 75 = pyy. 4
lim v5 = py and lim 75 = pw (43)

We show this through the proof of two claims. Each of these claims uses the
idea that if the price is not converging to the Walrasian price, then the market
does not clear globally and an excess of traders builds up on one side or the
other of the market. Traders on the long side then have an incentive to deviate
from their prescribed bid/offer in order to trade before exiting for exogenous
reasons.

Claim 16 limg (75 > pw.

Proof. Let v, = lims (75 and assume, contrary to the statement in the
claim, that v, < pw. For the remainder of this proof, fix a subsequence v5 —
vy. Let U5 = U5 + /U5 — v5 (note that 05 € (5, 1] for all small enough ¢, by
proposition 11). Revealed preference implies that

g (Bs (0s),05) > mp(Bs(1),0s)
[Us — Bs (0s)] Pps [Bs (0s)] > [0s — Bs (1)] Pps[Bs (1)].
Therefore
Pps [Bs (Us)] = %P&s [Bs (1)] (44)
% Bi ) p s (1)),
Vs — Us

where the second inequality follows from the fact that Bs (+) is strictly increasing
and therefore B; (U5) > Bj (vs5) = vs. Note that
5B (] .
Us s _ U5 — s (45)
Vs — Vs Vs — Us
VU5 — Vg
Vs — U5 + 05 — us
where the equality in the first line follows from Bs (1) = 75, and the equality

in the second line is the substitution of the definition 95 = v5 + /s — vs.
Combining (44) and (45) we get

Pgs [Bs (05)] > ﬁ;%ﬁ _25P35 [Bs (1)],
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So in particular, Pgs[Bs (1)] = 1 and, by proposition 11, lims_o(7s — vs5) = 0
imply!?
%EI%) Pps [Bs (0s)] = 1.

Mass balance, equation (25) above, states that
1 Vs
/ agi(x) Pys [Bs (x)] do = / 95 () Pss [ S5 ()] da. (46)
Vs 0

Given that Pps [Bs (+)] is increasing and 95 > v,

/1 agp(w)Pps [Bs (2)] > Pps [Bs (Us)] [1 agp(x)dx > Pp; [Bs (Us)] aG g (0s)

Ys 8

and

| asto)Pss 5 @) do < G o]
Therefore it follows from (46) that
Pps [Bs (05)] aG p(75) < Gs [Us]
or, since Pps [Bs (05)] < 1,
aGp(s5) < Gg [vs] - (47)

By taking limits in (47) as § — 0 and invoking continuity of G5 and Gp, we

obtain
G im v < im v .
aGp <§1_I)]%v5> <Gs (%L{%W) (48)

The definition of v, and proposition 11 imply lims_.o 05 = lims_.q [T5 + /U5 — Us] =
05 and, by hypothesis, lims_,q U5 = v,. Therefore we obtain from (48):

aGp(v,) < Gs (vy).

This, however, is a contradiction because the the maintained assumption that
ve < pw implies that aGg(v.) > aGp(pw) = Gs (pw) > Gs (v.).W

Claim 17 mg_,og(; < Pw.

Proof. Verification of this claim follows the same logic as that of claim
16. Define ¢, = mtsﬂoglg and suppose, contrary to the statement in the claim,
that ¢, > pw. For the remainder of this proof, fix a subsequence ¢; — c..
Let ¢5 = ¢5 + 1/¢5 — ¢5 noting that proposition 11 implies ¢; € [0,¢5) for all
small enough 0. A seller who offers and succeeds in trading does not realize
Ss (v) as her revenue. She realizes something more because the bid she accepts
is at least as great as Ss (v) . Therefore, for each ¢ sufficiently small, a function

19A type 1 buyer always trades immediately because B (1) =0 =¢= S (¢—).
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@5 (+) : [0,E5] — [cs, Cs] exists that maps, conditional on consummating a trade,
the seller’s offer into her expected revenue from the sale. Thus ¢g[Ss (c)] is
a type c seller’s expected revenue given that she offers S5 (¢). Take note that
@5 [Ss (¢)] € [Ss (), 5] because the expected revenue can not be less than the
seller’s offer S5 (c) . Revealed preference implies that

75 (85 (85),8) > ms(S5(0),¢5)
(95 S5 (Cs)] — Es5] Pss[Ss (Cs)] = [¢s5[95(0)] — &s] Pss [Ss(0)].  (49)
Solving,
_ ¢s[S5(0)] — Cs
Pss[95 (65)] = %6[5{ ) = G Pgs[95(0)] (50)
> iz — ? Py [S5(0)]

where the second line follows from the fact that ¢5[Ss(0)] > S5 (0) = ¢5; and
the third line follows by substitution of the definition for ¢5. So in particular,
Ps;s[S5(0)] = 1 and, by proposition 11, lims_,o(¢5 — ¢5) = 0 together imply

lim Pss [S5 (¢5)] = 1. (51)

As in the proof of claim 16, the mass balance equation (46) must hold:
1 Ts
/ ag5(x) P [Bs (a)] dz = / 95(x) Ps5 [S; ()] do. (52)
Cs 0
Since

/ " gs(@)Pss 195 ()] d > Ps 1S5 (7)) s (@)

and
/ ag5(%) Pos [Bs (x)] dz < aGp(cs),

=5

it follows from (52) that
aGp(cs) > Pss [ (¢5)] Gs(Cs)
or, since Pss [S5 ()] < 1,
aGp(cs) > Gs(Gs). (53)

By taking limits in (53) as § — 0 and invoking continuity of G's and Gp, we
obtain
2l . > . ~ .
aGp (}%gé) > Gy (;l_)r% 05) (54)
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Since limgs_,¢ és = ¢, and lims_,g ¢s = ¢, by proposition 11, (54) implies
aGp(c.) > Gs(cy) .

This, however, is a contradiction because the maintained assumption ¢, > pw
implies aGp(c) < aGp(pw) = Gs (pw) < Gs (c,).A

Proof of the main theorem. Claims 16 and 17 together with infs_,o(cs —
vs) = 0 establishes (43): prices realized in the market converge to the Walrasian
price. The proofs of those two claims together show that an arbitrarily small
deviation upward in a buyer’s equilibrium bid or an arbitrarily small deviation
downward in a seller’s equilibrium offer can guarantee trade, provided § is suf-
ficiently small. This, together with the result that realized prices converge to
the Walrasian price, establishes (5) and (6): equilibrium expected utility for
both buyers and sellers approaches what they would expect if the market were
competitive.ll

5 Conclusions

In this paper we consider a simple, dynamic matching and bargaining mar-
ket in which both sellers and buyers have incomplete information and risk being
forced to exit at any moment due to exogenous reasons. We show that this mar-
ket converges to the Walrasian price and competitive allocation as the model’s
friction—the length of the matching period—goes to zero. This convergence is
driven by the interaction of two forces within the model: local market size and
global market clearing. The significance of our result is to show that in the
presence of private information a fully decentralized market such as the one we
model can deliver the same economic performance as a centralized market such
as the k-double auction that Rustichini, Satterthwaite, and Williams (1994)
studied.

This is an important extension of the full information dynamic matching
and bargaining models because it shows that a decentralized market in which
matching frictions are small can elicit sufficiently well private values and costs
so as to allocate almost perfectly the market supply to the traders who most
highly value that supply. Compared to Satterthwaite and Shneyerov (2004) this
paper demonstrates that convergence to the Walrasian price does not depend on
the entering number of buyers exactly matching the entering number of sellers
each period. Equilibrium with small frictions appears to be robustly almost
efficient.

The limitations of our model and results immediately raise further questions.
Two stand out for future investigation. First, existence of admissible sequences
of equilibria needs to be established. Second, our model assumes independent
private values and costs. We would like to know if our results generalize to both
correlated costs/values and to interdependent values with a common component
and affiliated private signals. Showing this would be particularly interesting if
the stochastic process generating traders’ cost and values resulted in a time
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varying Walrasian price. Convergence to that price as the period length ap-
proached zero would establish that fully decentralized dynamic matching and
bargaining markets can effectively follow—and reveal—an unknown and chang-
ing competitive price. Since economists appear to believe this to be true, it
would be nice to have a theory showing how this can be.
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