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ABSTRACT

The tool box for imaging molecules is well-equipped
today. Some of the techniques visualize the mean geo-
metrical structure, others image the single electron den-
sity or single electron orbitals. Molecules, however, are
many-body systems for which the correlation between
the constituents is often decisive and the spatial and the
momentum distribution of one electron depend on the
positions and momenta of the other electrons and the
nuclei. Such correlations have escaped direct observa-
tion by imaging techniques so far. Here, we implement
an imaging scheme which visualizes correlations between
electrons by coincident detection of the electronic and
nuclear fragments after high energy photofragmentation.
We use this technique to examine parts of the H2 two-
electron wave function in which electron-electron corre-
lation beyond the mean-field level is prominent and we
visualize the dependence of the correlated two-electron
wave function on the internuclear distance. High energy
photoelectrons are shown to be a powerful tool for molec-
ular imaging and our study paves the way for future time
resolved imaging of electron correlations at free electron
lasers and laser based X-ray sources.

INTRODUCTION

Electron correlation is at the heart of several well-
known quantum effects such as superconductivity or gi-
ant magnetoresistance. In molecules, the fundamental

importance of electron correlation can already be per-
ceived when, e.g., comparing values of molecular binding
energies obtained within the commonly used Hartree-
Fock approximation to those actually occurring in na-
ture. Mean-field theories, such as the Hartree-Fock ap-
proximation, by definition neglect electron-electron cor-
relation, as they consider only an overall mean potential
generated by the electron ensemble.

To fully characterize electron correlation, however, the
many-electron wave function of an atom or a molecule has
to be examined directly. For the case of the H2 molecule,
it turns out that this is experimentally achievable: here
we present a novel experimental approach that allows us
to visualize the square of its correlated two-electron wave
function.

RESULTS

Concept of correlation imaging

There are two key ingredients in our approach: Firstly,
photoelectron emission to image one of the electrons and
secondly, coincident detection of the quantum state of
the remaining electron. Photoionization itself is a well-
studied process, which in solid state physics is routinely
used as a powerful tool for band structure imaging [1].
Although photoionization has also been proposed to im-
age molecular orbitals [2], only the reverse process, high-
harmonic generation, has succeeded in accomplishing this
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FIG. 1. Imaging of the H+
2 one-electron wave function. a: The electronic wave function of H+

2 in the polarization plane for an
internuclear distance R = 1.4 a.u. The positions of the two nuclei are indicated by black dots. b: The square of the Fourier
transform of a in the (kx, ky) plane. c: The same as b, but in logarithmic color scale. Notice the appearance of nearly vertical
fringes when |k| is significantly different from zero. The approximate periodicity of these fringes is ∆kx ∼ 2π/R. The dashed
line indicates the region of momentum space associated with an electron kinetic energy of 380 eV (i.e., a radius of |k| = 5.3
a.u.) and θ is the angle with respect to the molecular axis. d: Polar plot of the intensity distribution in panel c along the
dashed line (red) and the corresponding MFPAD in the plane of polarization of the ionizing radiation obtained from nearly
exact calculations (green).

goal [? ]. Other techniques for imaging molecular or-
bitals are electron momentum spectroscopy [3] or strong
field tunnel ionization [4]. Here we use photoionization to
image the correlated molecular wave function. The prop-
erties of a photoionization event, given by the ionization
amplitude D, are determined (within the commonly used
dipole approximation) by only three ingredients: the ini-
tial state of the system φ0, which we want to image, the
properties of the dipole operator µ̂ (responsible for the
photoionization) and the final state representing the re-
maining cation and a photoelectron with momentum k,
χk:

D =

∫
φ0(r) µ̂(r)χk(r) dr, (1)

where r represents the coordinates of target electrons.
The initial wave function is directly accessible provided
that the other two constituents do not introduce signif-
icant distortions. This is the case when utilizing circu-
larly polarized light and examining high energy electrons
(Born limit) within the polarization plane. As an illus-
tration, let us consider the one-electron H+

2 molecular
ion. At a high enough energy, the continuum electron
can be described by a plane wave. In this case, the
photoionization differential cross section in the electron
emission direction (θ, ϕ) (the so-called molecular frame
photoelectron angular distribution, MFPAD) is simply
proportional to the square of the Fourier transform (FT)
of the initial state, φ0(k) (see methods section):

dP

d(cos θ)dk
= k2(2π)3/2

∣∣∣∣ 1

2π3/2

∫
φ0(r) eikrdr

∣∣∣∣2 (2)

= k2(2π)3/2|φ0(k)|2. (3)

Here θ denotes the polar angle with respect to the
molecular axis and ϕ the corresponding azimuthal an-
gle. Thus, by choosing high photon energies and restrict-
ing the measurement of the MFPAD to the polarization
plane (ϕ = 90◦ and 270◦) of the circularly polarized light,
the initial electronic wave function is directly mapped
onto the emitted photoelectron. Fig. 1 illustrates this
mapping procedure for the ground state of H+

2 . As can
be seen from panel d, the MFPAD for an electron of 380
eV is very similar to |φ0(k)|2 for the chosen momentum
k (the square of the FT along the dashed line shown in
panel c). Notice that, due to the smallness of the cross
section at such high electron momentum, the main fea-
tures of the FT are only apparent in the logarithmic plot
shown in panel c.

This tool of high energy photoelectron imaging can
now be combined with coincident detection of the quan-
tum state of a second electron to visualize electron cor-
relation in momentum space. We dissect the entangled
two-electron wave function by analyzing a set of condi-
tional angularly resolved cross sections corresponding to
a high energy continuum electron (A) and a bound elec-
tron (B) detected in a different region of the two-electron
phase space. Quantum mechanically, this is equivalent
to projecting the initial two-electron wave function onto
products of different H+

2 (bound) molecular orbitals (B)
and a plane wave (A) (see methods section). In doing so,
one can thus determine if and how the density distribu-
tion of one electron changes upon changing the region of
phase space in which one detects the other, correlated,
electron.
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FIG. 2. Correlation imaging of the H2 two-electron wave function. a - f: momentum distributions of electron A resulting from
the projection of the two-electron wave function of H2 onto different H+

2 states of electron B; a - c: uncorrelated Hartree-Fock
wave function; d - f: fully correlated wave function. The different quantum states of electron B are 2pσu (a, d), 2sσg (b, e) ,
and 1sσg (c, f). Circular lines show |k| = 5.3 a.u. (c, d, f) and |k| = 5.2 a.u. (b, e), which correspond to ionization by a photon
of 400 eV energy. g - i: ground state wave function (intensity distributions along the circular lines shown in panels d - f). j -
l: Experimental and theoretical MFPADs (symbols and green line, respectively) obtained after photoionization with circularly
polarized photons of an energy of 400 eV for the same final states of electron B measured in coincidence. Ions and electrons
are selected to be in the plane of polarization of the ionizing photon and data for left and right circularly polarized light are
added. Molecular orientation as indicated. The error bars indicate the standard deviation of the mean value.

Application on H2

Fig. 2 illustrates this concept and highlights the differ-
ences between the uncorrelated Hartree-Fock wave func-
tion and the highly correlated nearly exact wave function.
The corresponding one-electron momentum distributions
resulting from the projection of the corresponding ground
state wave functions onto different states of the bound
electron B, nλ, are depicted in Fig. 2 a - c (Hartree-Fock)
and Fig. 2 d - f (exact) as functions of the momentum
components parallel (kx,A) and perpendicular (ky,A) to
the molecular axis. The different rows correspond to the
different states in which the second electron B is left af-

ter photoionization, i.e. they correspond, from bottom to
top, to projections of the ground state wave function onto
the nλ = 1sσg, 2sσg, and 2pσu states of H+

2 . Thus, as in
our one-electron example shown in Fig. 1, the different
panels in Fig. 2 contain direct images of different pieces
of the ground state of H2 through the square of the cor-
responding FTs. The role of electron correlation is quite
apparent in this presentation: panel a is empty for the
uncorrelated Hartree-Fock wave function, since projec-
tion of the latter wave function onto the 2pσu orbital is
exactly zero, while this is not the case for the fully corre-
lated wave function (panel d); also, panels b and c for the
uncorrelated description are identical, while panels e and
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f for the correlated case are significantly different. As in
the example of Fig. 1 c, a fixed energy corresponds to
points around the circumference of a circle. The density
distributions pertaining to points around the circles of
Fig. 2 a - f are shown in panels 2 g - i.

Experimentally, these conditional probabilities are ob-
tained by measuring in coincidence the momentum of the
ejected electron and the proton resulting from the disso-
ciative ionization reaction

γ(400 eV) + H2 → H+
2 (nλ) + e− (4)

↘
H(n) + H+, (5)

which, as explained below, allows us to determine the
final ionic state characterized by the quantum number
nλ. Panels j to l in Fig. 2 depict the experimental re-
sults of the measured angular distributions of electron
A together with numerical data resulting from a nearly
exact theoretical calculation of the photoionization pro-
cess. As can be seen, the measured and calculated MF-
PADs shown in j - l are very similar to the calculated
projections in momentum space of the fully correlated
ground state wave function shown in g - i. In other words,
the momentum of the ejected photoelectron faithfully re-
flects and maps the momentum of a bound state electron
in the molecular ground state when the momentum of
the second bound electron is constrained by projection of
the H2 wave function onto different molecular-ion states;
this represents the correlation between the two electrons.
Note in particular panel g is not empty and panels h and
i are not identical, as it would be for an uncorrelated H2

ground state (compare with panels a - c).

Identifying the quantum state of the second electron

In more detail, the angular emission distributions and
the final quantum state of electron B are obtained in our
experiment by measuring the momenta of the charged
particles generated by the photoionization process in co-
incidence. As the singly charged molecule dissociates in
the cases presented here into a neutral H atom and a pro-
ton, we can obtain the spatial orientation of the molecu-
lar axis by measuring the vector momentum of the proton
(i.e. its emission direction after the dissociation). The
electron emission direction in the molecular frame is then
deduced from the relative emission direction of the proton
and the vector momentum of the electron. Additionally,
the magnitude of the measured ion momentum provides
the kinetic energy release (KER) of the reaction. The
latter enables an identification of the quantum state of
electron B (i.e. the H+

2 electronic state), which is demon-
strated in Fig. 3. Panel a of Fig. 3 shows the relevant
potential energy curves of H+

2 and panel b the measured

(and theoretically predicted) KER spectra. From the
measured sum of the kinetic energies of the electron and
the proton we furthermore identify the asymptotic elec-
tronic state of the neutral H fragment (not detected in
the experiment), mostly H(n = 1) and H(n = 2).

FIG. 3. Correlation diagram and kinetic energy distribution
for dissociation of H+

2 : a: Potential energy curves for the
ground state of H2 (lower curve) and the 1sσg, 2sσg, and
2pσu ionization thresholds (upper curves). The latter corre-
spond to electronic states of H+

2 . The violet shaded area rep-
resents the Franck-Condon region associated to the ground
vibrational state of H2. Notice the break in the energy scale
for a better visualization. The dashed violet line shows how
the initial internuclear distance of the molecule is mapped
onto the kinetic energy release (KER) of the reaction apply-
ing the ”reflection approximation” [5]. b: KER distribution
obtained after single-photon ionization of H2 employing pho-
tons of hν = 400 eV. Symbols: experiment, lines: theory. The
calculation depicted by the black curve includes the twelve
states with the highest photo ionization cross sections (up to
n = 4). The main contributions (besides 1sσg at low KER)
are shown in blue (2sσg) and red (2pσu), others are not visible
on that scale. The shaded areas indicate the regions of KER
selected in Figs. 2 d - f and 4 a - c.
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Nodal structure of the wave function

Our experimentally obtained spectra not only show
the imprint of correlation, but also allows us to sepa-
rate the contribution of different pieces of the electronic
wave function to this correlation. Indeed, the momen-
tum distribution of electron A depends strongly on the
properties of electron B. The most dramatic example can
be seen by comparing the upper and middle rows in Fig.
2, which show electron A under the condition that elec-
tron B is detected in the 2pσu and 2sσg states of H+

2 ,
respectively. Upon this change in the selection of elec-
tron B, the maxima in the momentum distribution of
electron A become minima and vice versa. This can be
intuitively understood in coordinate space. The maxima
in the k-space distribution correspond to the construc-
tive interference of the part of the electron density close
to one or the other nucleus spaced by R. Thus, invert-
ing maxima to minima in k-space corresponds to a phase
shift of π between the wave function at one or the other
nucleus in coordinate space. For H2, the two-electron
wave function is gerade, i.e. it has the same sign of the
overall phase at both centers. For a large part of the
two-electron wave function, this symmetry consideration
is also valid for each individual electron (it reflects the
fact that both electrons occupy the 1sσg orbital most of
the time). Therefore, both electrons have the same phase
at both nuclei, which, in turn, is directly reflected in the
maximum at kx = 0 and the corresponding maximum
in the direction perpendicular to the molecular axis in
Fig. 2 e and f. Due to electron correlation, however,
this is not strictly true for all parts of the wave function:
Projecting electron B onto the 2pσu state highlights this
small fraction of the wave function where electron A has
the opposite phase at the two nuclei. As explained be-
fore, this part of the wave function does not exist for
a Hartree-Fock wave function and panel a in Fig. 2 is
therefore empty. This phase change of the wave function
between the nuclei leads to the nodal line through the
center in Fig. 2 d and the nodes in panels g and j in the
direction perpendicular to the molecular axis.

In addition to identifying the final state of electron B,
the measured KER provides further insights into the ion-
ized H2 molecule. As soon as the potential energy curve
relevant for the process is known, one can infer the inter-
nuclear distance R of the two atoms of the molecule at
the instant of photoabsorption by using the reflection ap-
proximation [5] (see Fig. 3). This allows us to investigate
more details of the two-electron wave function: The dis-
tributions in panels d - f of Fig. 2 show nodal lines that
lead to corresponding nodes in the angular distributions
in panels g - i. As mentioned above, these nodes in k-
space are separated by ∆kx = 2π/R. Within the range of
R covered by the Franck-Condon region, the nodal struc-
ture of the electronic wave function changes significantly

FIG. 4. Dependence of the momentum distribution on the in-
ternuclear distanceR (a to c) and KER (d to f) of the molecule
at the instant of photoionization. Molecular orientation as
indicated. a to c: Square of the correlated wave function, as
shown in Fig. 2 h, but for internuclear distances as stated in
the legends. Electron B is projected onto the 2sσg state while
electron A is depicted. d to f: Experimental and theoretical
MFPADs (symbols and black line, respectively) for the KER
ranges corresponding to the internuclear distances in a - c
resulting from applying the reflection approximation through
the 2sσg potential energy curve. The error bars indicate the
standard deviation of the mean value.

and Fig. 4 demonstrates how the k-space distribution
of the two-electron wave function changes accordingly as
a function of R (or KER respectively). The correspond-
ing experimental and theoretical MFPADs resulting from
high energy photoionization follow a similar pattern.

CONCLUSION

In a broader context, high energy angular resolved pho-
toionization is a promising route to access molecular wave
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functions in momentum space. The process of molec-
ular dissociation in combination with shake up of the
bound electron is universal by its nature. Shake up of
an electron into a continuum state instead of a bound
state, i.e. double ionization of the molecule, might also
come into play. Therefore, this approach can in principle
be extended to molecules with more than two electrons.
In detail, it depends on the shape of the potential en-
ergy surfaces which determines to which extend different
ionic states can be separated by the kinetic energy of the
fragments. Combined with coincidence detection, this
technique opens the door to image correlations in elec-
tronic wave functions. Similar approaches have also been
proposed for imaging correlations in superconductors [6].
With the advent of X-ray free electron lasers and the ex-
tension of higher harmonic sources to high photon ener-
gies, such correlation imaging bares the promise to make
movies of the time evolution of electron correlations in
molecules and solid materials.
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METHODS

Experiment

The experiment has been performed at beamline P04
[7] of the PETRA III facility at DESY in Hamburg. The
circularly polarized photon beam (400 eV photon energy,

about 1.3 · 1013 photons per second, 100 µm focus diam-
eter) was crossed with a supersonic H2 gas jet (diameter
1.1 mm, local target density 5 · 1010 cm−2) at right angle
in the center of a COLTRIMS spectrometer [8–10]. A
homogeneous electric field of 92 V/cm guided electrons
and ions towards position-sensitive micro-channel plate
detectors (active area 80 mm diameter) with hexagonal
delayline readout [11]. In the ion arm of the spectrometer
a 55 mm acceleration region was followed by a 110 mm
drift region. The electron arm of the spectrometer was
formed by a 37 mm long acceleration region. A magnetic
field of 35.5 G parallel to the electric field guided the
electrons on cyclotron trajectories. The data was taken
in 480-bunch operation mode, equaling a repetition rate
of 62.5 MHz. A residual gas pressure of 2 ·10−10 mbar in
the reaction chamber led to about 200 Hz of ions detected
without the gas jet in operation. The count rates during
the experiment were approx. 350 Hz on the ion detector
and about 5 kHz on the electron detector. Dissociative
ionization events (reaction (5)) were selected by gating
on the ion and electron time of flight and on the ion ki-
netic energy. After all conditions applied to the data, we
end up with approx. 200,000 events which we analyze in
the MFPADs.

Correlation imaging

To first order of perturbation theory, the ionization
amplitude of a one-electron molecular system is given by
(within the dipole approximation)

D = 〈φn(r)|µ̂(r)|χk(r)〉, (6)

where φn is the initial state, µ̂ is the dipole operator,
and χk is the final state representing a photoelectron with
momentum k. At high photoelectron energies, one can
approximate the final state by a plane wave, χk(r) = eikr.
Thus, if we consider circularly polarized light propagat-
ing along the z-axis and a molecule fixed along the x-axis
(see Fig. 5), the transition amplitude can be written, in
the velocity gauge:

D ' 〈φn(r)|µ̂(r)|eikr〉

= 〈φn(r)| ∂
∂x

+ i
∂

∂y
|eikr〉

= (−ky + ikx)〈φn(r)|eikr〉. (7)

The corresponding photoionization probability (or
equivalently the photoionization cross section), differen-
tial in the electron emission angles and momentum (or
MFPAD), is proportional to the square of the transition
amplitude (see Fig. 5 for notations):
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FIG. 5. Polar angle θ and azimuthal angle ϕ defining the
direction of the electron momentum k with respect to the
plane defined by the internuclear axis (x) and the propagation
direction kγ .

dP

d(cos θ)dϕdk
' (k2x + k2y)

∣∣〈φn(r)|eikr〉
∣∣2 . (8)

Restricting the detection of the electrons to the plane
containing the molecule and perpendicular to the light
propagation direction, the above expression reduces to:

dP

d(cos θ)dk
= k2

∣∣〈φn(r)|eikr〉
∣∣2 . (9)

This expression is only applicable to differential proba-
bilities in the (x, y) plane. It can be seen that the integral
over r is proportional to the Fourier transform φn(k) of
the φn(r):

dP

d(cos θ)dk
= k2(2π)3/2

∣∣∣∣ 1

(2π)3/2

∫
drφn(r)eikr

∣∣∣∣2 (10)

where we have introduced a factor of (2π)3/2 to make
this relationship clearer, i.e.:

dP

d(cos θ)dk
= k2(2π)3/2 |φn(k)|2 . (11)

Thus, at high photon energies, the MFPADs measured
in the polarization plane of the circularly polarized light
directly map the initial electronic wave function.

Let us now generalize this concept to the case of a cor-
related initial state as that of the H2 molecule. The am-
plitude describing photoionization from the ground state,
Ψ0(r1, r2), can now be written as:

D = 〈Ψ0(r1, r2)|Ô(r1, r2)|Φf(r1, r2)〉 (12)

where Ô(r1, r2) = µ̂(r1) + µ̂(r2) and Φf(r1, r2) is the
final continuum state. At high photoelectron energies,
the latter can be approximately written as a product of
an H+

2 continuum wave function χk(r2) that describes a
photoelectron with linear momentum k and an H+

2 bound
wave function φn(r1) that describes the electron remain-
ing in the ion:

D = 〈Ψ0(r1, r2)|Ô(r1, r2)|φn(r1)χk(r2)〉. (13)

We now write the fully correlated ground state wave
function of H2 as a linear combination of two-electron
configurations expressed as antisymmetrized products of
Hartree-Fock (HF) orbitals

Ψ0 = 1sσHF
g (r1)1sσHF

g (r2) + c12sσHF
g (r1)2sσHF

g (r2)

+ c22pσHF
u (r1)2pσHF

u (r2) + ... (14)

where we have factored out the antisymmetric spin
wave function corresponding to a singlet multiplicity and
c1, c2 << 1. The first term in this expansion represents
the ground state of H2 in the HF approximation,

ΨHF
0 (H2) = 1sσHF

g (r1)1sσHF
g (r2), (15)

which includes screening and exchange but neglects
electron correlation. Substituting equation (14) in (13),
retaining the lowest-order non-zero terms, and using
equation (11), the partial differential photoionization
cross sections (or partial MFPADs) associated with the
lowest three ionization channels, 1sσg, 2sσg, and 2pσu,
can be written (up to a trivial factor of k2(2π)3/2):

|〈Ψ0|Ô|1sσg χk〉|2 ' |〈1sσHF
g |1sσg〉|2|φ1sσHF

g
(k)|2, (16)

|〈Ψ0|Ô|2sσg χk〉|2 ' |〈1sσHF
g |2sσg〉|2|φ1sσHF

g
(k)|2, (17)

|〈Ψ0|Ô|2pσu χk〉|2 ' c2〈2pσHF
u |2pσu〉|2|φ2pσHF

u
(k)|2,

(18)
where the dependence on r1 and r2 is now implicit

in all equations. Hence, the partial differential cross sec-
tions are proportional to the representation of the ground
state HF orbitals in momentum space and to the overlap
between these HF orbitals and the H+

2 orbitals that de-
fine the different ionization thresholds. As can be seen,
in the absence of electron correlation, i.e., when the ini-
tial state is simply described by ΨHF

0 and therefore the
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ci coefficients are zero, ionization can be direct (i.e., an
electron is ejected into the continuum and the other re-
mains in the 1sσg orbital, eq. (16) or can be accom-
panied by excitation of the remaining electron into the
2sσg state (shake-up mechanism, eq. (17)). Ionization
and excitation into the 2pσu state is only possible when
c2 is different from zero (eq. (18)), i.e., when electron
correlation is not negligible.

To get additional information about the relative mag-
nitude of the partial cross sections, we write the HF or-
bitals as linear combinations of H+

2 orbitals. To first or-
der of perturbation theory,

1sσHF
g = 1sσg + λ12sσg + ... (19)

2pσHF
u = 2pσu + λ23pσu + ... (20)

and so on, where λi << 1. Substituting equations
(19) and (20) in (16), (17) and (18), and retaining the
lowest-order non-zero terms in λi, one obtains the follow-
ing simplified expressions for the three ionization chan-
nels above:

|〈Ψ0|Ô|1sσg χk〉|2 ' |φ1sσg(k)|2 (21)

|〈Ψ0|Ô|2sσg χk〉|2 ' λ1|φ1sσg(k)|2, (22)

|〈Ψ0|Ô|2pσu χk〉|2 ' c2|φ2pσu(k)|2, (23)

where we have used the fact that the H+
2 orbitals form

an orthonormal basis. As can be seen, the dominant
mechanism is direct ionization from the 1sσg orbital (eq.
(21)). Ionization with simultaneous excitation of the re-
maining electron (eqs. (22) and (23)) is much less likely,
since both λ1 and c2 are small. Ionization through other
channels only contribute to second or higher order, thus
explaining why they barely contribute to the ionization
cross section. According to this simple formalism, for
both the 1sσg and 2sσg channels, the MFPADs map the
1sσg orbitals in momentum space. The only difference
between them is the absolute value of the electron mo-
mentum (or electron kinetic energy) used to perform the
mapping. In contrast, the MFPAD for the 2pσu channel
maps the 2pσu orbital in momentum space. As explained
in the text, these three channels lead to dissociative ion-
ization in different KER regions: 1sσg mainly contributes
at low KER, 2sσg at intermediate KER and 2pσu at high
KER. Therefore, the analysis of the MFPADs in differ-
ent KER regions provides information about the three
different mechanisms: direct ionization, shake-up ioniza-
tion and ionization driven by electron correlation.

Testing electron correlation by one photon two elec-
tron processes has a long history (see e.g. [12, 13] for
early proposals). Previous works often focused on the
probability of double ionization (see [14] for a review) or
angular distributions for double ionization of molecules
(see e.g. [15]). The present work differs from these ear-
lier ones by the high electron energy which allows for a
direct interpretation of the angular distribution as being
an image of the ground state wave function (plane wave
or Born approximation). In contrast, at lower electron
energies, as they were used in previous works, the elec-
tron angular distributions are shaped by the subtile in-
terplay between three effects: electron correlation in the
initial state, scattering correlations during the ionization
process ([16, 17]) and the ionic potential.

It is worth noticing that the specific form of the MF-
PADs resulting from using eqs. (16) - (18) (or their
simplified versions (21) - (23)) is the consequence of the
dipole selection rule that operates in this particular prob-
lem. As a consequence, for transition operators Ô differ-
ent from the dipole one, different expressions would be
obtained. Nevertheless, even in this case, one can an-
ticipate that in the absence of electron correlation, the
matrix elements given by eqs. (17) and (18) (or equiva-
lently (22) and (23)) would be strictly zero.

Ab initio calculations

The ab initio method used to obtain the dissociative
ionization spectra and the corresponding angular distri-
butions has been described elsewhere [18, 19]. It has been
successfully applied to evaluate photoionization cross sec-
tions and MFPADs of the H2 molecule in both time-
dependent and time-independent scenarios [18–21]. Due
to the high photoelectron energies produced in the exper-
iment, we have made use of the Born-Oppenheimer ap-
proximation, which allows us to describe the initial and
final continuum wave functions as products of an elec-
tronic wave function and a nuclear wave function. The
ground state electronic wave function has been obtained
by performing a configuration interaction calculation in
a basis of antisymmetrized products of one-electron H+

2

orbitals, and the final electronic continuum states by
solving the multichannel scattering equations in a ba-
sis of uncoupled continuum states that are written as
products of a one-electron wave function for the bound
electron and an expansion on spherical harmonics and
B-spline functions for the continuum electron. The mul-
tichannel expansion includes the six lowest ionic states
(1sσg, 2pσu, 2pπu, 2sσg, 3dσg, and 3pσu) and partial
waves for the emitted electron up to a maximum angu-
lar momentum lmax = 7 enclosed in a box of 60 a.u.,
which amounts to around 61,000 discretized continuum
states. The one-electron orbitals for the bound electron
are consistently computed in the same radial box using
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single-center expansions with corresponding angular mo-
menta up to lmax = 16. The electronic wave functions
have been calculated in a dense grid of internuclear dis-
tances comprised in the interval R = [0, 12] a.u.. The
nuclear wave functions have been obtained by diagonal-
izing the corresponding nuclear Hamiltonians in a basis
of B-splines within a box of 12 a.u.. We have thus com-
puted the photoionization amplitudes and cross sections
for circularly polarized light for the dissociative ioniza-
tion process from first order perturbation theory

D = 〈Φf(r1, r2)ξf(R)|Ô(r1, r2)|Ψ0(r1, r2)ξ0(R)〉. (24)

At variance with eq. (12), the previous equation in-
cludes the initial ξ0 and final ξf vibrational wave func-
tions and integration is performed over both electronic
and nuclear coordinates.

The present methodology does not account for the dou-
ble ionization channel, which is open at the photon en-
ergies used in the present work. However, this channel
is expected to have a marginal influence in the reported
results since the corresponding cross section is at least an
order of magnitude smaller than that for the single ion-
ization channel. Additionaly, according to the Franck-
Condon picture, double ionization could only contribute
to the KER spectrum in the region around 19 - 20 eV,
i.e., outside the region of interest discussed in the present
work.
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H. Schmidt-Böcking, C. L. Cocke, and R. Dörner. Single
Photon-Induced Symmetry Breaking of H2 Dissociation.
Science 315, 629-633 (2007).
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