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To the Editor —

Ribosome profiling (Ribo-seq) has extended our understanding of the translational
‘vocabulary’ of the human genome, uncovering thousands of open reading frames (ORFs)
within long noncoding RNAs (IncRNASs) and presumed untranslated regions (UTRS) of
protein-coding genes. However, reference gene annotation projects have been circumspect
in their incorporation of these ORFs because of uncertainties about their experimental
reproducibility and physiological roles. Yet, it is clear that certain ‘Ribo-seq ORFs’ make
stable proteins, others mediate gene regulation, and many have medical implications.
Ultimately, the absence of standardized ORF annotation has created a circular problem:
while Ribo-seq ORFs remain unrecognized by reference annotation databases, this lack of
recognition will thwart studies examining their roles. Here, we outline a community-led
effort involving Ensembl/GENCODE, the HUGO Gene Nomenclature Committee (HGNC),
UniProtkKB, HUPO/HPP and PeptideAtlas to produce a standardized catalog of 7,264 human
Ribo-seq ORFs; a path to bring protein-level evidence for Ribo-seq ORFs into reference
annotation databases; and a roadmap to facilitate research in the global community.

Ribo-seq! provides an RNA-sequencing-based readout of mMRNA translation by isolating
ribosome-bound RNA fragments of ~30 nucleotides in length. Sequencing of these
fragments offers genome-wide footprints of ribosome—RNA interactions, detecting
translated ORFs with sub-codon resolution?8. Although Ribo-seq circumnavigates the
experimental difficulties of working with protein molecules (for example, using mass
spectrometry (MS) analytical tools) and readily finds translations missed by in silico
evolutionary methods, it does not demonstrate the actual existence of proteins, and most
translations do not show signs of constraint as coding sequences (CDS). A wide range of
“functional’ scenarios are therefore plausible for Ribo-seq ORFs (Table 1).

Several public resources already process and/or display Ribo-seq datasets, including
SORFs.org?, GWIPS-viz10 and Trips-Viz!!, whereas OpenProt!2 and nORFs.org3
incorporate Ribo-seq into whole-translatome catalogs. Meanwhile, McGillivray et al. have
produced a catalog of upstream ORFs (UORFs) with predicted biological activity4. Such
efforts have made important contributions in Ribo-seq ORF interpretation. Nonetheless, the
global scientific community is constrained by the absence of ‘reference’ gene annotation,
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which supports most large-scale genomics projects and provides the framework for human
variant interpretation (Fig. 1a, Supplementary Fig. 1).

The creation of Ribo-seq annotations within existing reference gene and protein databases
presents specific challenges that were not faced by previous cataloging efforts®13. In
particular, it is necessary to consider how these annotations can be integrated into the broad
range of user workflows that are already supported by global annotation resources. For

such reasons, reference annotation projects are generally conservative when it comes to the
incorporation of new data types. Thus, rather than attempt to describe a ‘maximal’ set of
potential Ribo-seq translations from the outset, our strategy is to build up a comprehensive
resource in stages that is reciprocally improved by input from the scientific community (Fig.
1b).

Here, as ‘Phase I’ of this work, we present a consolidated catalog of Ribo-seq ORFs

from seven publications?-8 annotated onto GENCODE version 35 (Fig. 1c; Supplementary
Tables 1-9). A detailed description of the Ribo-seq datasets, our analysis methods and
OREF characteristics is available in the Supplementary Methods. We removed ORFs smaller
than 16 amino acids (aa) and those translated from non-ATG (‘near-cognate”) initiation
codons, and merged redundant sense overlapping ORFs, resulting in a collated set of 7,264
unique ORFs (Fig. 1c). We classified these ORFs according to their spatial relationship with
existing gene annotations (Fig. 1d), as presented in Table 2. We hope community usage

of this catalog will help address the key technical and biological questions necessary to
move this work into ‘Phase IT’, where we aim to create a more comprehensive resource as
outlined below.

For Phase I, we investigated repeated ORF identifications between studies, observing that
3,085 of 7,264 Ribo-seq ORFs were found by more than one publication (Supplementary
Fig. 2; Supplementary Tables 2 and 3). However, although such ‘reproducibility’ can
demonstrate consistency in Ribo-seq signal, it neither provides insights into biological
function nor indicates that the 4,179 non-replicated ORFs are ‘false’. A major goal of Phase
I1 will be to incorporate a greater diversity of human cell types and tissues for improved
estimates of ORF reproducibility, expression patterns and potential cell type specificity,
along with further evaluation of criteria to quantify the technical confidence in Ribo-seq
OREF calls.

Furthermore, Phase | excluded many translations by restricting the consensus set to ATG-
initiated ‘cognate’ translations of at least 16 aa in length. Although these tiny ORFs may
provoke skepticism in the absence of additional evidence—the smallest annotated human
protein is 24 aa—there may be no lower size limit for a functional ORF®. For example,
the tarsal-less (za/) gene produces a polycistronic transcript translated into proteins as short
as 11 aa in several insect species6. Furthermore, the inclusion of ORFs initiated with
near-cognate start codons can be complicated by ambiguous predictions of initiation site
positions!’. Ribo-seq following treatment with lactimidomycin or homoharringtonine, which
inhibit translation elongation and result in accumulation of sequencing reads at the putative
start sites, can help to identify near-cognate start sites!’+18. Such datasets will be leveraged
by our future Phase 11 efforts. For our current annotation resource, we have separately
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aggregated the Ribo-seq ORFs with near-cognate start codons or translations shorter than 16
codons (Supplementary Fig. 3a—c and Supplementary Tables 4 and 5), rather than including
them in the Phase I catalog.

A core aim of Phase Il will be to identify which Ribo-seq ORFs participate in cell
physiology and how they do so. One aspect is distinguishing between cellular function
mediated by a stable protein and functionality imparted at the level of translation itself.
We here use ‘protein’ as an umbrella term for protein, peptide and polypeptide, although
we recognize that the terms polypeptide, micropeptide or microprotein are commonly used
for small protein molecules (Table 2). Because of the challenges of protein sequencing,
evolutionary analysis has played a major historical role in ORF annotation, which is

based on the assumption that the evolution of translated sequences is driven by selection

at the protein level. Within our Phase | dataset, 75 Phase | replicated Ribo-seq ORFs
(2.4%) present evidence of potential protein-level constraint as measured by PhyloCSF19
(Supplementary Fig. 3d—f); among these, ten have now been classified as protein coding by
GENCODE (Supplementary Table 6).

Nonetheless, the evolutionary profile of many Phase | Ribo-seq ORFs remains hard to
interpret. In part, this is because distinguishing ORF selection at the protein and DNA

levels can be especially difficult for very small regions, and Ribo-seq ORFs are typically
much smaller than those of known annotated proteins (Supplementary Fig. 3g—j). A second
drawback is that evolutionary analysis cannot infer the protein-coding or regulatory potential
of evolutionarily ‘young’ de novo Ribo-seq ORFs20. Reference annotation projects remain
skeptical about the existence of proteins that are not deeply conserved, despite the fact

that some young proteins clearly do participate in cellular physiology?%:21. Furthermore,
there is a substantial knowledge gap in regard to the mode and tempo of regulatory ORF
evolution. Here, genetic variation within human populations may provide insights. For
example, Whiffin et al.22 recently used the gnomAD human variation dataset to identify
3,191 genes in which UORF-perturbing variants are likely to be deleterious, thereby inferring
the physiological importance of these translations. Meanwhile, Neville et al.23 used the same
dataset to find aggregate evidence of selective pressure against deleterious variants in their
nORFs.org catalog!3, which is especially pronounced for STOP-gain variants in uORFs.

In prostate cancer, a recent analysis of 5° UTR variants found regulatory roles for several
UORFs?3,

Although Ribo-seq ORFs may have regulatory roles irrespective of an encoded protein, the
first step in confirming a protein-level physiological role for such an ORF is to demonstrate
the existence of the protein in the cell. MS is a widely accepted approach to catalog

the proteome, and its utility will be an important area of investigation for Phase Il. At
present, 609 of 7,264 Ribo-seq ORFs have been reported to have support in published MS
datasets (Supplementary Table 10). However, different groups use distinct methodologies
and parameters for MS, and for Phase | these findings are simply reported in Supplementary
Tables 2 and 3 without further investigation. Reference annotation projects have historically
favored high-stringency MS approaches, and the Human Proteome Organization (HUPO)/
Human Proteome Project (HPP)—which aims to produce a full annotation of the human
proteome—has published guidelines to standardize the nature of MS evidence required to
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annotate a human protein24. As one facet of our development of an MS workflow, these
Ribo-seq ORFs have been added to the PeptideAtlas analytical pipeline, which is used by
HUPO. In Phase I, our projects will jointly examine the question of how best to use MS
data to define which Ribo-seq ORFs produce proteins. For reference annotation, we see two
aspects to this: first, how to set standards for accepting and reporting potential MS support
for a prospective Ribo-seq ORF protein; and second, how to define the point at which the
body of evidence supports protein-coding annotation.

These aspects are illustrated by a preliminary analysis, which took advantage of the fact that
333 of our Ribo-seq ORFs are present in sequences previously queried by the PeptideAtlas
workflow (Supplementary Methods). We find single-mapping peptide-spectrum matches
(PSMs) for 13 Ribo-seq ORFs (Supplementary Table 11); all but one are supported by

a single PSM each, whereas most of the peptides identified are not fully tryptic (two
examples are presented in Supplementary Fig. 4). The majority of observed PSMs derive
from human leukocyte antigen (HLA) peptidome datasets, which is consistent with prior
proteomic analyses demonstrating enrichment for peptides mapping to Ribo-seq ORFs in
immunopeptidome data2>-27. We emphasize that this preliminary analysis was not a full
remapping of MS data and involved only a fraction of the Ribo-seq ORFs; a larger, focused
effort will be forthcoming.

There are multiple causes contributing to the fact that Ribo-seq ORFs and certain classes of
canonical proteins are infrequently detected in MS data, which are summarized elsewhere?8,
One consideration for HUPO is that an MS-based ‘canonical’ protein assignment requires
multiple PSMs, ideally based on non-overlapping tryptic peptides. Although we recognize
the value of these guidelines, very small proteins may be ‘less discoverable’ by MS,
especially due to a paucity of identifiable tryptic fragments28. Notably, nearly 1,500 protein-
coding genes annotated by GENCODE, UniProt and HGNC do not presently have MS
support recognized by HUPO?%4, Moving forward, we are committed to examining all
potential protein-coding Ribo-seq ORF cases with full manual gene annotation processes,
and we plan to expand this workflow to include manual analysis of the peptide spectra by
PeptideAtlas.

Although the value of MS in identifying translated proteins is indisputable, we believe

a broader ‘gold standard’ for evidence should employ additional methodologies, such

as epitope tagging combined with western blot imaging or endogenous antibody work;
HUPO already incorporates such data in collaboration with the Human Protein Atlas??.
Consideration also needs to be given to emerging proteomics technologies, such as targeted
proteomics workflows and immunopeptidomics, and progress is being made in medium-
throughput functional screening assays. For example, recent large-scale studies have
translated hundreds of Ribo-seq ORFs in mammalian cells through exogenous expression,
finding that nearly 50% may stably produce proteins, despite little evidence of evolutionary
constraint2:6:27,

In addition to their evaluation as proteins or regulatory units, the reference annotation of
Ribo-seq ORFs necessitates the creation of integrated workflows to interpret overlapping
variants, and notwithstanding great community interest in this field, standardized approaches

Nat Biotechnol. Author manuscript; available in PMC 2023 January 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnue Joyiny

1duosnuen Joyiny

Mudge et al.

Page 7

are not yet available. We emphasize that variant interpretation pipelines designed to classify
CDS mutations may be unsuitable for Ribo-seq ORFs (Table 1), and that a minority of
overlapping variants fall within sequences displaying amino-acid-level constraint. Neville
et al.13 found that their NORFs.org catalog contains 48 Human Gene Mutation Database
or ClinVar variants that are already considered pathogenic or likely to be pathogenic,

even though they do not disrupt annotated CDSs. Although these variants may affect
noncanonical ORFs, it will be important to define their mechanisms of action through
experimental studies, as alternative explanations for pathogenicity, such as the creation of
cryptic splice sites, are supported in certain cases. After exclusion of variants in Ribo-seq
ORFs that overlap annotated CDSs, a total of 1,142 single-nucleotide variants present

in the ClinVar database?® were located within our aggregated set of Phase | Ribo-Seq
ORFs (Supplementary Methods). Fewer than 2% of these variants have been classified as
pathogenic or likely to be pathogenic, but this is likely to be an underestimate because the
absence of pathogenesis is commonly inferred from the absence of overlap with known
coding features, and because ClinVar variant coverage is heavily skewed toward annotated
CDSs.

Furthermore, there is major interest in the application of Ribo-seq to study human disease.
In particular, it is being widely used to explore the dynamics of translation in cancer

cells with aberrant proteins as diagnostic markers or targets for immunotherapy?22:26:30,

At present, reference annotation projects do not attempt to distinguish aberrant translation
events from those that contribute to ‘normal’ physiology. It will be important to deduce
the fraction of Ribo-seq ORFs that encode proteins that exist in normal cellular conditions.
Conversely, we envisage the value of classifying potentially aberrant translations within
Phase Il through a distinct annotation framework.

Our intention is for the Ribo-seq Phase | catalog to be seen as a pragmatic interim solution
to a long-term problem. We believe that reference annotation databases can advance both
scientific and clinical research through the propagation and standardization of Ribo-seq
ORF datasets, even—and perhaps especially—while the phenotypic impact of these features
remains uncertain. As biological knowledge improves, this will support the development of
more accurate annotations and variant interpretations, with the potential to yield substantial
insights across all aspects of human biology. In this spirit, we hope the results of Phase | of
this project will be useful and beneficial to the community and invite interested labs to join
our future Phase 11 efforts.
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Fig. 1|. Characterization of a consensus set of Ribo-seq ORFsfor annotation by GENCODE.
a, Schematic of the main steps and goals for this consortium effort. b, Map showing the

participating institutions included in this effort. ¢, Schematic overview of filtering steps
used to create the consensus set of ribosome profiling (Ribo-seq) ORFs. d, Diagrammatic
representation of all Ribo-seq ORFs according to ORF type (see Table 2 for more

information).
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