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HIGHLIGHTED ARTICLE
| INVESTIGATION

A Model of Indel Evolution by Finite-State,
Continuous-Time Machines

Ian Holmes1

Department of Bioengineering, University of California, Berkeley, California 94720

ORCID ID: 0000-0001-7639-5369 (I.H.)

ABSTRACT We introduce a systematic method of approximating finite-time transition probabilities for continuous-time insertion-
deletion models on sequences. The method uses automata theory to describe the action of an infinitesimal evolutionary generator on
a probability distribution over alignments, where both the generator and the alignment distribution can be represented by pair hidden
Markov models (HMMs). In general, combining HMMs in this way induces a multiplication of their state spaces; to control this, we
introduce a coarse-graining operation to keep the state space at a constant size. This leads naturally to ordinary differential equations
for the evolution of the transition probabilities of the approximating pair HMM. The TKF91 model emerges as an exact solution to these
equations for the special case of single-residue indels. For the more general case of multiple-residue indels, the equations can be solved
by numerical integration. Using simulated data, we show that the resulting distribution over alignments, when compared to previous
approximations, is a better fit over a broader range of parameters. We also propose a related approach to develop differential
equations for sufficient statistics to estimate the underlying instantaneous indel rates by expectation maximization. Our code and data
are available at https://github.com/ihh/trajectory-likelihood.

KEYWORDS automata; hidden Markov models; indels; Markov processes; molecular evolution; phylogenetics

IN molecular evolution, the equations of motion describe
continuous-timeMarkovprocesses ondiscrete nucleotide or

amino acid sequences. For substitution processes, these equa-
tions are reasonably well understood, but insertions and
deletions (indels) have proved less tractable.

This paper presents a new approach to analysis of indel
processes. In this introduction, we first discuss core bioinfor-
matics concepts such as alignments, define a continuous-time
Markov process for indels, and review previously published
approximations to the finite-time alignment distributions of
this process, using hidden Markov models (HMMs). In the
remaining sections we describe our new method (in the

Materials and Methods), report on a simulation-based evalu-
ation (in the Results), and discuss the implications of our
results (in the Discussion).

Alignments as Summaries of Indel Histories

Our motivating goal is to calculate probabilities of sequence
alignments, assuming an underlying instantaneous rate model
of indel events. We will mostly consider alignments of two
sequences that we will refer to as the “ancestor” and the “de-
scendant,” where the likelihood function takes the form
P descendant; alignmentjancestor;Q; tð Þ, where Q represents
model parameters (e.g., mutation rates) and t is a time param-
eter. Common uses of this likelihood function include perform-
ing sequence alignment (for downstream inference based on
homology, such as protein structure prediction), finding maxi-
mum-likelihood estimates of the time parameter t (for example,
as part of phylogenetic inference of ancestral relationships), and
comparing different models or parameterizations Q (for exam-
ple, tomeasure the rate of evolution in sequences, or to annotate
conserved regions).

We seek to derive this pairwise alignment likelihood di-
rectly from an instantaneous model of sequence mutation;
that is, a continuous-time Markov chain whose state space is
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the set of all possible DNA or protein sequences. For prac-
tical purposes, we often need to summarize paths through
this process, and it is worth distinguishing between differ-
ent ways of doing so. We will use three progressively de-
tailed descriptions of the evolutionary path which we refer
to as alignments, trajectories, and histories (Figure 1), as
described below.

Alignments

A pairwise alignment consists of the observed initial and
final state of the process (the ancestral and descendant
sequences), with gap characters to showwhich residues are
descended from which. An example alignment is shown in
Figure 1A. Most of our discussion will be at this level of
summarization.

Trajectories

A trajectory includes all the intermediate sequences from
ancestor to descendant. Transitions between the interme-
diate sequences correspond to instantaneous changes. A
trajectory uniquely implies an alignment, but there are
many trajectories consistent with each alignment: the most
plausible trajectory for alignment 1A is shown in 1B, but the
longer trajectories in 1C and 1D are also consistent. We will
refer to this level of summarization when discussing some
previous methods for indel analysis.

Histories

A history consists of a trajectory fully annotated with the time
of each indel event. This is themostdetaileddescription, being
a complete specification of the path of the stochastic process.
For each nontrivial trajectory, there is a continuum of possible
histories. For example, history 1E is consistent with trajectory
1B, with an event time u in the range 0 # u # t. We will not
refer much to this level as it contains more information than
we usually care about.

Reflecting this hierarchy of summarization, we can write

P descendant ancestor;  Q;   tjð Þ

¼
X

alignment

P descendant;   alignment ancestor;Q; tjð Þ

¼
X

alignment

X
trajectory

P descendant;   alignment;ð

  trajectory ancestor;  Q;   tj Þ

¼
X

alignment

X
trajectory

Z t

0
du1

Z u1

0
du2

Z u2

0
du3 . . .

P descendant;  alignment;  trajectory;  history ancestor;Q;   tjð Þ;

where (u1, u2,u3. . .) represents all the event times in a history.
Note that the top-level summation is over alignments.

Many scenarios demand that we marginalize ambiguous or

uncertain alignments. For example, the alignments in 1F are
plausible alternatives to 1A; in 1G, the ordering of insertions
and deletions may be considered irrelevant for many purpo-
ses; and the placement of the second gap in 1H admits some
uncertainty.

If the alignment likelihood can be represented as a path
probability through a pair HMM, F, then we can perform this
sum over alignments using the forward algorithm (Durbin
et al. 1998), writing the result as

FXY ¼ P descendant ¼ Y ancestor ¼ X;  Q;   tjð Þ
¼P

f

P descendant ¼ Y ;   path ¼ f ancestor ¼ X;  Q;   tjð Þ:

This paper focuses on the probability distribution of align-
ment gaps. In general, when we refer to a gap, we will mean
a run of adjacent indels in any order, as in 1G. Because of the
possibility of overlapping indel events, as in 1C, these gaps can
arise in a number of different ways.

The general geometric indel model

Our starting point for defining an evolutionary process is the
point substitutionmodel, applied to a sequence. In suchamodel,
each residue evolves according to a substitution rate matrix R,
such as Kimura’s two-parameter model for DNA (Kimura 1980)
or Dayhoff’s PAM model for proteins (Dayhoff et al. 1978).

Wegeneralize this by allowing instantaneous insertion and
deletion events aswell as point substitution events.We do not
want to be forced always to count the insertion of multiple
adjacent residues as separate events (as in 1D), since this leads
to inferential artifacts such as trajectories with toomany events,
alignments with scattered gaps, rates that are too fast, or times
that are too long. Consequently, our model should allow events
that insert ordeletemultiple residues instantaneously (as in1B),
with the indel length being a random variable.

For simplicity, we want to keep the number of parameters
minimal, so we specify only the mean lengths of insertion and
deletion events. The maximum entropy distribution for this pa-
rameterization is the geometric distribution. Thus, the probability
that a given event involves n residues is xn21 12 xð Þ for an in-
sertion, and yn21 12 yð Þ for a deletion, with mean lengths
1= 12 xð Þ and 1= 12 yð Þ. If the rate of insertions is l and the
rate of deletions ism, then, at any given site, an event that inserts
n residues has rate lxn21 12 xð Þ3 P I1 . . . Inð Þ, where I1 . . . In
represents the actual n residues that were inserted, while an
event that deletes n residues has rate myn21 12 yð Þ. So, for ex-
ample, the instantaneous event EALGVK/EALGKLGVK in the
history shown in Figure 1E,which occurs during the time interval
[u, u + du) and inserts the three residues GKL, has instanta-
neous rate lx2 12 xð Þ3P GKLð Þ and infinitesimal probability
lx2 12 xð ÞP GKLð Þdu. The inserted residues are indepen-
dently drawn from the stationary distribution of the substitution
model, so P I1 . . . Inð Þ ¼Qn

k¼1rIk where rR = 0. Thus,
P GKLð Þ ¼ r Gr KrL. By contrast, deletion rates are completely
independent of the residues being deleted.

1188 I. Holmes



To summarize, the parameters of our indel model are
Q ¼ ðl;m; x; y;RÞ consisting of indel rates (l, m) and indel
length parameters (x, y), together with a substitution rate
matrix R. We call this model the general geometric indel
(GGI) model, following De Maio (2020). The GGI model is
the simplest continuous-time Markov chain over sequences
that is local, allows multiresidue indels, and does not enforce
reversibility. We may contrast the locality with the Poisson
indel process, where the indel rate per site varies inversely
with the total sequence length (Bouchard-Côté and Jordan
2013). As for multiresidue indels, other models such as
TKF92 do allow this, but they do so by introducing unobserv-
able auxiliary information into the state space; specifically,
TKF92 introduces fragment boundaries. We can further con-
strain the parameters in various ways if desired; for example,
by insisting that themodel be reversible ly 12 xð Þ ¼ mx 12 yð Þ½ �,
aswith the long indelmodel ofMiklós et al. (2004); or by requiring
perfect symmetrybetween insertionsanddeletions (l=m andx=
y), as in the simulations of DeMaio (2020); or by restricting indels
to single residues (x= y=0), so all trajectories look like Figure1D,
as with the TKF91 model of Thorne et al. (1991).

Derivation of alignment likelihoods from
indel processes

In the previous section, we described the GGI model with
instantaneous rates (l, m) and extension probabilities (x,y).
We now review previous approaches to calculating alignment
gap likelihoods under this model and related models.
These methods include the pair HMMs we evaluate in
this paper: TKF91 (Thorne et al. 1991), TKF92 (Thorne
et al. 1992), MLH04 (Miklós et al. 2004), LG05 (Löytynoja
and Goldman 2005), RS07 (Redelings and Suchard 2007),
LAHP19 (Levy Karin et al. 2019), and DM20 (De Maio 2020).

All of these methods exploit the property of the GGI model
that the indel and substitution processes are independent of one
another. A pairwise alignment (1H) has a gap profile (1I) that is
like a residue-masked silhouette of the alignment, comprising
three types of column: matches (M), in which ancestral and
descendant residuesarealigned,and insertions (I)anddeletions
(D), in which either ancestor or descendant contains a gap. We
can factorize the alignment likelihood into a term for the gap
profile (written as a sequence of M’s, I’s, and D’s) and a condi-
tionally independent set of terms for the actual residue content:

Figure 1 Three views of evolutionary processes—alignments, trajectories, and histories—represent different levels of summarization. Alignments
include no information about intermediate events except the positions of homologous residues; trajectories include intermediate sequences and the
transition events between them, but not the times at which those events occurred; histories include transition events and times. Panels are illustrated
using examples from the HOMSTRAD database (Mizuguchi et al. 1998); PDB identifiers are shown. (A) Part of an alignment of two proteins from PDB.
(B) A single-event trajectory consistent with alignment A. (C) Two different two-event trajectories consistent with A. (D) A three-event trajectory
consistent with A. (E) A history consistent with trajectory (B), in which the single event occurs between times u and u 1 du. (F) Two alternate alignments
of the sequences in alignment A. (G) Several equivalent alignments containing adjacent insertions and deletions that have been rearranged in different
ways. (H) An alignment that can only be explained by a model incorporating both substitution and indel events. (I) The gap profile of alignment H, and
its associated M/I/D column types. (J) A multiple alignment whose misaligned gap boundaries do not seem to support the TKF92 model’s assumption
that multiresidue gaps arise from indivisible sequence fragments.

P alignment ¼ W 2 D P S N K E R H
I G D P S 2 2 Y P H

ancestor ¼ WDPSNKERHj
� �

¼ P gap  profile ¼ MIMMMDDMMM length of ancestor ¼ 9jð Þ
3MWI 3 rG 3MDD3MPP 3MSS 3MEY 3MRP3MHH:
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Here, MXY is the probability that a descendant residue is Y,
conditional on the ancestor being X; while rY is the probability
that an inserted residue is Y. Since deletion events are residue-
blind in theGGImodel, andwehave already conditioned on the
ancestral sequence, we do not to include terms for the proba-
bility that the two deleted ancestral residues are N and K; the
gap profile tells us what positions the deleted residues were at,
and that is enough.

This decomposition of indel and substitution probabilities
is naturally expressed in terms of a pairHMMwithM, I, andD
states. We can think of the gap profile term as the probability
of the state path through the HMM, while the substitution
terms correspond to the emission probabilities from those
states. The emission part is well understood (Thorne et al.
1991): M and r can be linked to an underlying point sub-
stitution rate matrix R [by the matrix exponentialM= exp(-
Rt) and the stationary distribution rR = 0]. Our focus is on
the likelihood of the gap profile: we seek a similar relation-
ship F tð Þ ’ exp ℝtð Þ between the transition probabilities of

the pair HMM, F tð Þ, and the GGI model’s rate matrix over
sequences, ℝ.

We now review previous work in this area.

TKF91: The first approach, TKF91, addresses a restricted
version of the GGI model allowing only single-residue indels.
This reduces to a linear birth-death process, which can be
solved exactly (Thorne et al. 1991). The probability distribu-
tion over alignments can be represented as a pair HMM
(Holmes and Bruno 2001). Being exactly solvable, TKF91
has become the canonical example of an indel model. However,
as noted previously, it leads to systematic biases during inference,
imputing trajectories with too many events, as in Figure 1D.

TKF92: Attempting to address the deficiencies of TKF91, the
TKF92model (Thorne et al. 1992) posits a similar birth-death
process, but on indivisible multiresidue fragments instead of sin-
gle residues. Each fragment contains a random, geometrically
distributed number of residues. TKF92 has a closed-form pair

Figure 2 Three state machines for modeling
indels in alignments. Match states (sM) are or-
ange, insert states (sI) are green, delete states
(sD) are red, and null states (sN) are uncolored.
Transitions are colored by destination state.
States for the machines in A–C are further de-
scribed in Tables 1, 3, and 4. Our approach is to
approximate C with a machine of the same
form as A. (A) Machine F tð Þ, defined under
Three-state HMM and in Table 3, models align-
ments at divergence time t. (B) Machine G Dtð Þ,
defined under Infinitesimal-time machine and in
Table 1, models the infinitesimal evolution over
time Dt. (C) Machine F tð ÞG Dtð Þ, defined under
Rate of change of expected transition counts
and in Table 4, models alignments at diver-
gence time t + Dt. It is the machine product
of F tð Þ and G Dtð Þ: each state has the form
XY where X is an F state and Y is a G state.
Uppercase is used to indicate that a component
machine makes a transition when the com-
pound state is entered. So, for example, when
FG makes the transition mI / MM, the transi-
tion weight is the product of a (for F’s self-loop-
ing M / M transition) and 1 2 x (for G’s
I / M transition). However, if then makes the
transition MM / Dm, the transition weight is
just c (for F’s M / D transition), since G stays
in the M state without making a transition. This
structure arises from simple rules for transition
synchronization in multiplied machines (Westesson
et al. 2011, 2012).
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HMM solution, rather like TKF91, but with the introduction of
a new parameter corresponding to the mean fragment length.
However, TKF92 is also somewhat unrealistic in practice. The idea
that multiresidue gaps arise from unbreakable fragments is artifi-
cial, as can be illustrated with reference to the multiple sequence
alignment of Figure 1J. The gap boundaries in (1J) do not align,
and this is not uncommon: empirically, there is no evidence that
TKF92’s indivisible fragments are real. In practice, when using
TKF92, it is common to simply marginalize over the fragment
boundaries, effectively treating TKF92 as an ad hoc approximation
to the GGI model. Therefore, by defining a suitable mapping be-
tween TKF92’s fragment parameters and the GGI model’s indels,
we can evaluate it on this basis, as an approximation to GGI.

LG05 and RS07: Similarly, the LG05 pair HMM used in the
PRANKprogram(Löytynoja andGoldman2005) and theRS07
pair HMM used in BAliPhy (Redelings and Suchard 2007) in-
troduce fragment length parameters that can be related (with
some hand-waving) to the indel length parameters of GGI. In
this paper, we evaluate TKF91, TKF92, LG05, and RS07 as
approximations to GGI, but we do not evaluate some other
indel models that are a little harder to reconcile with GGI
because of extra parameters (Rivas and Eddy 2015) or incom-
patible assumptions (Bouchard-Côté and Jordan 2013).

MLH04: The MLH04 approach, developed by Miklós et al.
(2004), computes lower-bound likelihoods for alignment gaps
by considering short trajectories like those in Figure 1, B–D,
integrating out the event times from the corresponding histories
to find a likelihood for each such trajectory. To calculate the
likelihood of an alignment gap, MLH does a brute-force exhaus-
tive enumeration of all consistent trajectories, up to a given
number of indel events and a maximum gap length. Under
the assumption of an infinite sequence, the resulting distribu-
tion is technically still a pair HMM, albeit one with an infinite
number of states (corresponding to every possible size of gap).
As our simulations in the Results section demonstrate, this ap-
proach is extremely slow, and effectively impossible for trajec-
tories with more than three overlapping indel events; however,
for very short evolutionary times, MLH04 remains the most
accurate approximation to GGI, short of direct simulation.

In the special cases of TKF91 and TKF92, the alignment gap
lengths are geometrically distributed. This is not necessarily true
in general for the GGImodel (Rivas and Eddy 2015): alignment
gap lengths are not geometrically distributed even though the
underlying indel event lengths are. Thus, a simple three-state
pair HMM—whose gap lengths are geometrically distributed—
cannot be an exact solution to GGI. Nevertheless, MLH04

shows that the exact solution is, in fact, an infinite-state pair
HMM, so a smaller pairHMMmaybe a reasonable approximation.

LAHP19: A purely simulation-based approach to estimating
the gap probabilities of the GGI model has recently been
described (Levy Karin et al. 2019). In the limit of an infinite
number of random trials, this approach is exact. We use such
simulations as a gold standard to evaluate other approxima-
tions. However, the number of trials required to sample rare
outcomes (i.e., long gaps, particularly those involving multi-
ple-event trajectories) is large, and the simulations become
computationally expensive with longer sequences. The per-
formance and sampling limitations of this approach are fur-
ther discussed in the Results.

DM20: The DM20 method is a recent breakthrough in ap-
proximating the GGI model (De Maio 2020). Starting from
the assumption that the alignment likelihood can be approx-
imated by a product of geometric distributions over insertion
and deletion lengths, De Maio derived ordinary differential
equations (ODEs) for the evolution of the mean lengths of
these distributions, yielding transition probabilities for the pair
HMM. DM20 is a more accurate approximation to the multi-
residue indel process than all previous attempts, although it
has limitations: it does not allow deletions to directly follow
insertions in the alignment (thus limiting its ability to model
covariation between insertion and deletion lengths), it is in-
exact for the special case of the TKF91 model, and it requires
laborious manual derivation of the underlying ODEs.

H20: The H20 method, developed in this paper, builds on
DM20 to develop a systematic differential calculus for
finding HMM-based approximate solutions of continuous-
time Markov processes on strings that are “local” in the
sense that the infinitesimal generator is a pair HMM. Our
approach addresses the limitations of DM20, identified in
the previous paragraph. It does allow deletions to follow
insertions, so as to better account for covariation between
insertion and deletion gap sizes. The TKF91 model emerges
as a special case: the closed-form solutions to TKF91 are also
exact solutions to our model. Finally, although our equations
can be derived without computational assistance, the anal-
ysis is greatly simplified by the use of symbolic algebra pack-
ages, both for the manipulation of equations, for which we
used Mathematica (Wolfram Research, Inc.) (version 2020),
and for the manipulation of state machines, for which we
used our recently published software Machine Boss (Silvestre-
Ryan et al. 2020).

Table 1 Interpretation of states in machine G Dtð Þ (Figure 2B, defined in Infinitesimal-time machine); here, v in;v out 2 V represent input
and output tokens from the residue alphabet

State Name Class On entry Input Output P (vout)

1 M sM Reads vin from input, writes vout to output vin vout exp Rtð Þvinvout

2 I sI Writes vout to output — vout rvout

3 D sD Reads vin from input vin — —

Finite-State, Continuous-Time Machines 1191



The central idea of our approach is that the application of
the infinitesimal generator to the approximating HMM gen-
erates a more complicated HMM that, by a suitable coarse-
graining operation, can be mapped back to the simpler struc-
ture of the approximating HMM. By matching the expected
transition usages of these HMMs, we derive ODEs for the
transition probabilities of the approximator. Our approach is
justified by improved results in simulations, yielding greater
accuracy and generality than all previous approaches to this
problem, including DM20 (which can be seen as a restricted
version of our method). Our approach is further justified by
the emergence of the TKF91 model as an exact special case,
without the need to introduce any additional latent variables
such as fragment boundaries.

While we focus here on themultiresidue indel process, the
generality of the infinitesimal automata suggests that other
local evolutionary models, such as those allowing neighbor-
dependent substitution and indel rates, might also be pro-
ductively analyzed using this approach.

The sequence rate matrix and the infinitesimal-time ma-
chine: We now give a concise preview of the approach de-
scribed in detail in the Materials and Methods.

The rate matrix ℝ of the GGI model is, for two sequences
FðM/IDN/XÞ:

where V is the residue alphabet (e.g., nucleotides or amino
acids), V* is the set of all sequences over that alphabet (in-
cluding the empty sequence e), VN is the set of all sequences
of finite length N, B is the deleted sequence, C is the inserted
sequence, and A;D 2 V* are flanking sequences (we will
mostly be considering the infinite-sequence approximation,
where X; Y ;A;D 6¼ e).

Suppose that c tð Þ 2 V* is a sequence evolving under the
GGI model. Consider G Dtð Þ, the pair HMM defined in Figure
2B and Table 1. Assuming c (t) is infinitely long, the forward
algorithm for G Dtð Þ computes the conditional distribution
over an instant of evolutionary time:

G Dtð ÞXY¼ P cðt þ DtÞ ¼ Y c tð Þ ¼ X;Q; tjð Þ þ o Dtð Þ
¼ exp ℝDtð ÞXYþo Dtð Þ
¼ Iþ ℝXYDt þ o Dtð Þ;

where I is the identity matrix over sequences (IXY ¼ 1 if X =
Y, 0 if X 6¼ Y).

Our approach is to find a pair HMM, F tð Þ (Fig-
ure 2A), that approximates the matrix exponential
F tð Þ ’ exp ℝtð Þ ¼ limDt/0 G Dtð Þð Þt=Dt, by mapping the ma-
chine product F tð ÞG Dtð Þ (Figure 2C) back onto F t þ Dtð Þ.
We match expected transition counts between classes of
states in F tð ÞG Dtð Þ to their representative transitions in

Figure 3 Versions of the first two pair HMMs of Figure 2 that include start and end states, and so can be used for finite sequences. As in Figure 2, match
states (sM) are orange, insert states (sI) are green, delete states (sD) are red, and null states (sN) are uncolored. (A) A version of GðDt) with start and end
states, where deletion rates at the end of the sequence are elevated by a factor 1=ð1� yÞ so that the total rightward deletion rate at any residue is m,
independent of its distance from the end. (B) A version of FðtÞ with start and end states.

ℝXY¼

P
A;C;D

lxN21 12 xð Þ QN
k¼1

rCk
where X ¼ AD and Y ¼ ACD and C 2 VN

P
A;B;D

myN21 12 yð Þ where X ¼ ABD and Y ¼ AD and B 2 VN

P
A;B;C;D

RBC where X ¼ ABD and Y ¼ ACD and B;C 2 V;   B 6¼ C

2
P
Z 6¼X

ℝXZ where X ¼ Y and Z 2 V*

8>>>>>>>>><
>>>>>>>>>:
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F t þ Dtð Þ, and take the limit Dt / 0 to derive differential
equations for the transition weights of A0 ¼ QðMIDN/YÞ.

A note on finite sequences: to model these we can set
ℝAB;A ¼ myN21 for B 2 VN, dropping the 1 2 y term for dele-
tions that remove the end of the sequence. This ensures the

total rightward deletion rate starting at any residue is m,
regardless of its distance from the end. We can then define
G Dtð Þ as in Figure 3A. Imposing reversibility on finite-
sequence models takes slightly more care (Miklós et al.
2004).

Table 2 Glossary of mathematical notation, terminology, and abbreviations used in this paper

Term Meaning Defined in

History Realization of a continuous-time process, including event times Introduction, Figure 1
Trajectory Summary of a history that includes only events but not times Introduction, Figure 1
Alignment Summary of a trajectory that shows homologous residues Introduction, Figure 1
Pair HMM A hidden Markov model for pairwise alignments Durbin et al. (1998)
GGI The general geometric indel model Introduction
TKF91 The links model, a special case of GGI for single-residue indels Thorne et al. (1991)
TKF92 Sequel to the TKF91 model allowing multiresidue indels Thorne et al. (1992)
MLH04 Approximation to GGI that enumerates short trajectories Miklós et al. (2004)
LG05 Pair HMM used by PRANK alignment software Löytynoja and Goldman (2005)
RS07 Pair HMM used by BAliPhy alignment software Redelings and Suchard (2007)
LAHP19 Approximation to GGI that estimates gap probabilities by simulation Levy Karin et al. (2019)
DM20 The cumulative indel model, a direct precursor to this work De Maio (2020)
l, m Rate of beginning an insertion or deletion in the GGI model Introduction
x, y Probability of extending an insertion or deletion in the GGI model Introduction
R Substitution rate matrix in the GGI model Introduction
Q The set of GGI model parameters (l, m, x, y, R) Introduction
t Evolutionary time separating ancestor and descendant sequences Introduction
Dt A very small amount of evolutionary time Introduction
M Substitution probability matrix defined by M = exp (Rt) Introduction
r Probability distribution over inserted residues defined by rR = 0 Introduction
V The residue alphabet, e.g., nucleotides or amino acids Introduction
VN,V* Sets of sequences over V (N denotes fixed length, * denotes any length) Introduction
e The empty sequence Introduction
ℝ The rate matrix over V* for the GGI model Introduction
M A generic pair HMM, a probabilistic input-output machine Materials and Methods
K Number of states in the machine Materials and Methods
sM, sI, sD, sN Sets of Match-, Insert-, Delete-, and Null-type states Materials and Methods
sIDN, sMIDN, etc. Unions of state classes, e.g., sIDN ¼ sI [ sD [ sN Materials and Methods
f A state path through a pair HMM Materials and Methods
Q Transition probability matrix for a pair HMM Materials and Methods
Q M½ � Transition matrix for a particular machine M Materials and Methods
F X/Y/Zð Þ The set of all paths starting in sX, possibly passing through states in sY,

and ending in sZ

Materials and Methods

F M/IDN/Mð Þ The set of all paths that begin and end in the Match state, but do not
otherwise use it for the intervening steps

Materials and Methods

J X/Yð Þ A matrix that contains 1’s for entries corresponding to sX / sY

transitions, and 0’s for other entries
Materials and Methods

Q X/Yð Þ A matrix that contains probabilities for sX / sY transitions, and 0’s for
other entries

Materials and Methods

s The pointwise matrix product, defined by A∘Bð Þij [AijBij Materials and Methods
SX fð Þ The number of sX states in path f Materials and Methods
TXY fð Þ The number of sX / sY transitions in path f Materials and Methods
Ef Mj . . .½ � An expectation over F M/IDN/Mð Þ for machine, M. Materials and Methods
U, V, W Geometric series sums involving the transition matrix Q Equation 1
F tð Þ A pair HMM approximation to finite-time alignments under the GGI

model. Sometimes abbreviated to F

Figure 2A and 1

a, b, c, f, g, h, p, q, r Transition probabilities of F tð Þ. All are functions of t Equation 3 and Equation 4
SX Expectation of SX over F M/IDN/Mð Þ Equation 2, Equation 4, and Equation 7
TXY Expectation of TXY over F M/IDN/Mð Þ Equation 2, Equation 5, and Equation 6
G Dtð Þ A pair HMM for alignments at infinitesimal time intervals under the GGI

model. Sometimes abbreviated to G

Figure 2B and Table 1

F tð ÞG Dtð Þ Automata product of F tð Þ and G Dtð Þ. Abbreviated to FG Figure 2C and Table 4
0 A K 3 K matrix of zeroes
1 A K 3 K matrix of ones
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Materials and Methods

As noted in the Introduction, our approach makes use of pair
HMMs. We assume some familiarity with these models,
which are standard in bioinformatics. A tutorial introduction
can be found in Durbin et al. (1998).

The pair HMMs we will use are normalized for the condi-
tional probability P descendant ancestorjð Þ [rather than for the
joint distribution P ancestor;descendantð Þ as is often seen in
the bioinformatics literature]. Such conditionally normalized
pair HMMs are sometimes called input-output automata, or
transducers. Rather than simultaneously generating two out-
put sequences, these state machines read a specified input
sequence and generate a probabilistic output. Following the
convention of Durbin et al. (1998), these pair HMMs have
Match (input-output), Insert (output-only), and Delete (in-
put-only) states corresponding to the M, I, and D columns in
a pairwise alignment (see e.g., Figure 1I), as well as Null (N)
states that do not input or output anything.

A key result enabling our approach is that two automata
A;Bð Þ can be multiplied together: the output of A is fed into
the input of B. The serial operation of both machines can be
represented by a single compound machine AB, constructed
algorithmically from the two component machines. The al-
gorithm takes a Cartesian product of the two machines’ state
spaces, then synchronizes transitions in this joint space so
that each output-writing transition of A coincides with an
input-reading transition of B, with some ordering of updates
so that indels are not double-counted. The algorithms for
doing these multiplications are published (Westesson et al.
2011, 2012), and software implementations are available
(Silvestre-Ryan et al. 2020).

For our purposes, the only machine-multiplication that
we need is the one shown in Figure 2. A three-state ma-
chine representing a distribution over finite-time pairwise
alignments [F tð Þ, Figure 2A] is multiplied by another three-
state machine representing the action of the GGI model over
an infinitesimal time interval [G Dtð Þ, Figure 2B], yielding
a nine-state machine [F tð ÞG Dtð Þ, Figure 2C].

In the following sections, we show that F tð ÞG Dtð Þ can be
systematically mapped back to F t þ Dtð Þ by a coarse-graining
operation that involves finding the expected number of tran-
sitions of each type (I/I, I/D, etc.) in walks through the
state space that begin and end in the M state. In the following
sections, we describe how to calculate these expectations,
with expository examples relating to F tð Þ, which we then
define in detail. We then apply this to map F tð ÞG Dtð Þ back
to F t þ Dtð Þ, and, by taking the limit Dt / 0, derive

differential equations for the transition probabilities of F tð Þ.
Finally, we show that this reduces correctly to the TKF91
model when x = y = 0.

Table 2 gives a glossary of mathematical terms used
throughout this section. In the Supplemental Material, we
give some additional lemmas and a conjecture relating this
work to the expectation-maximization algorithm for param-
eter estimation.

Expected transition usage

Suppose that we have a pair HMM,M, with K states that can
be partitioned intomatch sM, insert sI, delete sD, and null sN

states. As a shorthandwewill write sID for sI [ sD, and so on.
Thus sMIDN is the complete set of K states.

We will be considering models with only one match state,
which, by convention, will always be the first state, so
sM ¼ 1f g

Letf ¼ f1 . . .fnð Þ denote a state path. The transition prob-
ability matrix is Q with elements Qij ¼ P fkþ1 ¼ j fk ¼ ij� �

.
For X;   Y;   Z4 M;   I;   D;  Nf g, let F X/Y/Zð Þ denote the

set of state paths with the following properties:

The path begins in an sX state;
The path ends in an sZ state;
For paths with more than just a begin and end state, the

intermediate states are all sY states.

Let J X/Yð Þ be a matrix that selects transitions from sX to sY,

J X/Yð Þ
ij ¼ 1 i 2 sX; j 2 sY

0 otherwise

�
;

and let Q X/Yð Þ [ J X/Yð Þ∘Q, where ∘ is the pointwise product,
defined as follows: if A, B are two matrices of the same size,
then A∘Bð Þij [AijBij.

Table 3 Interpretation of states in machine F tð Þ (Figure 2A, defined in Three-state HMM); here, v in;v out 2 V represent input and
output tokens from the residue alphabet

State Name Class On entry Input Output P (vout)

1 M sM Reads vin from input, writes vout to output vin vout exp RDtð Þvinvout

2 I sI Writes vout to output — vout rvout

3 D sD Reads vin from input vin — —

A concrete example is themachineF tð Þ in Figure 2A,which
has sM = {1}, sI = {2}, sD = {3}, and sN ¼ ∅. Thus, for
example, sMIDN = {1, 2, 3} and sIDN = {2,3}. Some exam-
ples of state paths in F M/IDN/Mð Þ are 1; 1ð Þ,
1; 2; 2; 2; 1ð Þ, and 1; 3; 3; 2; 3; 1ð Þ.

The transition matrix is Q ¼
a b c
f g h
p q r

0
@

1
A. The matrix

J MID/IDð Þ ¼
0 1 1
0 1 1
0 1 1

0
@

1
A selects transitions into the I

and D states, so Q MID/IDð Þ ¼
0 b c
0 g h
0 q r

0
@

1
A.
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Consider a random walk f 2 F M/IDN/Mð Þ that
begins and ends in the match state, passing only through
nonmatch states in between. Let TXY fð Þ ¼ i;   jð Þ :fj
j. i; fi . . .fj

� � 2 F X/N/Yð Þgj count the number of transi-
tions fromX states to Y states if null states are removed from the
walk. In other words this is the number of subpaths of f that go
from a state in sX, via zero or more null states, to a state in sY.

To find the expected value of TXY in walks that begin and
end in the match state, we break down paths into three
segments: M to X (via insert, delete, and null states), X to Y
(via null states), and Y to M (via insert, delete, and null
states). The first and last segments are only required if M 6¼
X and Y 6¼ M. The corresponding sets of state paths are
F M/IDN/Xð Þ, F X/N/Yð Þ, and F Y/IDN/Mð Þ.

To sum over all paths in a given setF X/Y/Zð Þ, we can
use the geometric series formula B ¼PN

k¼0A
k ¼ 12Að Þ21,

where 1 is the K 3 K identity matrix. Setting A ¼ Q Y/Yð Þ,
the effective X / Z transition probabilities are the
nonzero entries of C ¼ Q X/Zð Þ þQ X/Yð ÞBQ Y/Zð Þ. We
can further simplify the formulae, for example by
noting that C ¼ J X/Zð Þ∘ Qþ A9BQð Þ ¼ J X/Zð Þ∘ B9Qð Þ where
A9 ¼ Q MIDN/Yð Þ and B9 ¼ 12A9ð Þ21.

Using the methods of the previous paragraphs, the expec-
tation of TXY is

EfjM TXY fð Þ½ �
¼ P

f2F M/IDN/Mð Þ
P fð ÞTXY fð Þ

¼ PN
i¼0

Q MIDN/IDNð Þ
� �i

J X/Yð Þ∘
PN
j¼0

Q MIDN/Nð Þ
� �j

Q

 ! 

XN
k¼0

Q IDN/MIDNð Þ
� �k�

11

¼ U J X/Yð Þ∘ VQð Þ
� �

W
� �

11
; (1)

where

U ¼ 12Q MIDN/IDNð Þ
� �21

V ¼ 12Q MIDN/Nð Þ
� �21

W ¼ 12Q IDN/MIDNð Þ
� �21

:

Let SX fð Þ be the number of X states in f, excluding the
final state. Thus,

SM fð Þ ¼ 1

SX fð Þ ¼ P
Y2M;I;D;N

TXY fð Þ
¼ P

Y2M;I;D;N
TYX fð Þ:

Three-state HMM

Consider the machine F tð Þ shown in Figure 2A with
sM ¼ 1f g, sI ¼ 2f g, sD ¼ 3f g, and

Q F tð Þ½ � ¼
a tð Þ b tð Þ c tð Þ
f tð Þ g tð Þ h tð Þ
p tð Þ q tð Þ r tð Þ

0
@

1
A;

with a+ b+ c=1, f+ g+ h, and p+ q+ r=1. Table 3 gives
the emission probabilities.

Here, t will play the role of a time parameter.
Let

TXY tð Þ ¼ EfjF tð Þ½TXY fð Þ�

SX tð Þ ¼ EfjF tð Þ½SX fð Þ�

¼
X

Y2M;I;D;N

TXY tð Þ

¼
X

Y2M;I;D;N

TYX tð Þ

SM tð Þ ¼ 1; (2)

wheretheexpectationsareasdefinedin(1)[throughoutthispaper,
such expectations are over f 2 F M/IDN/Mð Þ]. Evidently,

a tð Þ ¼ TMM tð Þ;   b tð Þ ¼ TMI tð Þ;   c tð Þ ¼ TMD tð Þ;
f tð Þ¼TIM tð Þ=SI tð Þ;   g tð Þ¼TII tð Þ=SI tð Þ;   h tð Þ¼TID tð Þ=SI tð Þ;
p tð Þ¼TDM tð Þ=SD tð Þ;  q tð Þ¼TDI tð Þ=SD tð Þ;   r tð Þ¼TDD tð Þ=SD tð Þ:

(3)

By (1),

SIðtÞ ¼ ðbð12 rÞ þ cqÞðfð12 rÞ þ hpÞ
ðð12gÞð12rÞ2hgÞ2

SDðtÞ ¼ ðcð12 gÞ þ bhÞðpð12 gÞ þ fqÞ
ðð12gÞð12rÞ2hqÞ2 : (4)

The essence of our approach is to use transducer compo-
sition to study infinitesimal increments in TXY tð Þ, and thereby
obtain differential equations that can be solved to find these
parameters.

Continuing with the example of machine F tð Þ in Figure 2A,
the state path (1, 2, 2, 2, 1) has state types (M, I, I, I, M)

and thus transitions (MI, II, II, IM), so the transition counts
are TMI = TIM = 1 and TII = 2. For an example of a ma-
chine with more complex structure including null states,
consider F tð ÞG Dtð Þ of Figure 2C. A state path
1; 2; 3; 9; 9; 5; 1ð Þ through this machine has state types (M, I, I,
N,N,D,M).Whenweremovethenull states, thisbecomes(M, I, I,D,
M) and so the transitions are (MI, II, ID, DM). Thus the transition
counts are TMI ¼ TII ¼ TID ¼ TDM ¼ 1.

Finite-State, Continuous-Time Machines 1195



Infinitesimal-time machine

The infinitesimal transducer G Dtð Þ of Figure 2B has states
sM ¼ 1f g, sI ¼ 2f g, sD ¼ 3f g, and transition matrix

Q G Dtð Þ½ � ¼
12 lþ mð ÞDt lDt mDt

12 x x 0
12 y 0 y

0
@

1
A:

See Table 1 for emission probabilities. This describes the GGI
model as defined in the introduction. The model parameters
are the insertion and deletion rates (l, m) and extension
probabilities (x, y), and the time interval Dt � 1= lþ mð Þ.

Rate of change of expected transition counts

Composing F tð Þ (Figure 2A) with G Dtð Þ (Figure 2B) yields
F tð ÞG Dtð Þ, the machine of Figure 2C.

This machine has states sM ¼ 1f g, sI ¼ 2; 3; 4f g,
sD ¼ 5; 6; 7; 8f g, sN ¼ 9f g, and transition matrix

Table 4 describes the interpretation of each state, and its
emission probability distribution.

The transducer compositionF tð Þ3G Dtð Þwasperformedusing
the automata algebra programMachine Boss (Silvestre-Ryan et al.
2020). A general procedure for doing this for any two machines
A;B involves taking the Cartesian product of the two machines’

Q½F tð ÞG Dtð Þ� ¼

a 12 lþ mð ÞDtð Þ lDt b 12 lþ mð ÞDtð Þ 0 amDt c 0 0 bmDt
a 12 xð Þ x b 12 xð Þ 0 0 0 0 c 0

f 12 lþ mð ÞDtð Þ 0 g 12 lþ mð ÞDtð Þ lDt fmDt h 0 0 gmDt
f 12 xð Þ 0 g 12 xð Þ x 0 0 0 h 0
a 12 yð Þ 0 b 12 yð Þ 0 ay 0 c 0 by

p 12 lþ mð ÞDtð Þ 0 q 12 lþ mð ÞDtð Þ 0 pmDt r 0 0 qmDt
p 12 yð Þ 0 q 12 yð Þ 0 py 0 r 0 qy
p 12 xð Þ 0 q 12 xð Þ 0 0 0 0 r 0
f 12 yð Þ 0 g 12 yð Þ 0 fy 0 h 0 gy

0
BBBBBBBBBBBB@

1
CCCCCCCCCCCCA
:

Table 4 Interpretation of states in the composite machine F tð ÞG Dtð Þ (Figure 2C, defined in Rate of change of expected transition counts)

State Name Class On entry Input Output P (vout)

1 MM sM F reads input vin, writes vthru to G, enters M state vin vout exp R t þ Dtð Þð Þvinvout

G reads vthru from F, writes output vout, enters M state
2 mI sI F stays in M state (no transition) — vout rvout

G writes output vout, enters I state
3 IM sI F writes vthru to G, enters I state — vout rvout

G reads vthru from F, writes output vout, enters M state
4 iI sI F stays in I state (no transition) — vout rvout

G writes output vout, enters I state
5 MD sD F reads input vin, writes vthru to G, enters M state vin — —

G reads vthru from F, enters D state
6 Dm sD F reads input vin, enters D state vin — —

G stays in M state (no transition)
7 Dd sD F reads input vin, enters D state vin — —

G stays in D state (no transition)
8 Di sD F reads input vin, enters D state vin — —

G stays in I state (no transition)
9 ID sD F writes vthru to G, enters I state — — —

G reads vthru from F, enters D state

Here, v in;v out;v thru 2 V represent input, output, and pass-through tokens from the residue alphabet. Each state has the form XY where X is an F state and Y is a Gstate.
Each transition of FG can involve an F-transition, a G-transition, or both. Uppercase (XY) is used to indicate that a component machine makes a transition when the
compound state is entered; lowercase (xy) indicates the component machine makes no transition. Thus, transitions into MM;     IM;    MD;     Dm;     Dd;     Di;   IDf g involve an
F-transition; transitions into MM;  mI;   IM;     iI;    MD;   IDf g involve a G-transition. This structure arises from simple rules for transition synchronization in multiplied machines
(Westesson et al. 2011, 2012). By these rules, G can only make an input-reading transition when Fmakes an output-writing transition, and vice versa. So, for example, when
FGmakes the transition mI/MM, what happens internally is that Fmakes a self-looping M/M transition while Gmakes an I/M transition, and an (unobserved) token
vthru is passed through from F to G. However, if FG then makes the transition MM / Dm, internally F makes a M / D transition without outputting anything, so G just
stays in the M state without making a transition.
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state spaces and then synchronizing their transitions so that the
output of A drives the input of B. This ensures that, if MXY

represents the result of the forward algorithm for machine
M (with null states eliminated) and sequences X,Y, then
ABð ÞXZ¼

P
Y
AXYBYZ. More details on these operations can be

found elsewhere (Silvestre-Ryan et al. 2020; Westesson et al.
2011, 2012) and their information-theoretic and linguistic roots
in Mohri et al. (2002).

We now make the approximation F tð ÞG Dtð Þ � F t þ Dtð Þ,
which is to say that the nine-state machine of Figure 2C can
be approximated by the three-state machine of Figure 2A by
infinitesimally increasing the time parameter of the sim-
pler machine. This will not, in general, be exact (with the
exception of the TKF91 model, discussed in the next sec-
tion). However, by mapping states (and hence transitions)
of FG back to F, and setting F’s transition probabilities pro-
portional to the expected number of times the correspond-
ing transitions are used in FG, we find a maximum-
likelihood fit.

The expected transition counts evolve via the coupled
differential equations

d
dt
TXY tð Þ ¼ lim

Dt/0

Ef F tþDtð Þj TXY fð Þ½ �2 Ef F tð Þj TXY fð Þ½ �
Dt

¼ lim
Dt/0

Ef F tð ÞG Dtð Þj TXY fð Þ½ �2 Ef F tð Þj TXY fð Þ½ �
Dt

:

Expanding (1) to first order in in Dt and then taking the limit
Dt / 0, we arrive, using Mathematica (Wolfram Research,
Inc.) for the symbolic algebra, at the following equations for
the expected transition counts:

d
dt

TMM tð Þ ¼ m
bf 12 yð Þ
12 gy

2 lþ mð Þa

d
dt

TMI tð Þ ¼ 2m
b 12 gð Þ
12 gy

þ l 12 bð Þ

d
dt

TIM tð Þ ¼ la2m
f 12 gð Þ b 12 rð Þ þ cqð Þ
12 gyð Þ f 12 rð Þ þ hpð Þ

d
dt

TDI tð Þ ¼ m
12 gð Þ b 12 r2 hqð Þ þ cgqð Þ

12 gyð Þ f 12 rð Þ þ hpð Þ ; (5)

with boundary condition

Figure 4 Relative entropies of simulated gap length distributions P (SI, SD) to the predictions of various approximate methods. The approximation methods are
TKF91 (Thorne et al. 1991), TKF92 (Thorne et al. 1992), MLH04 (Miklós et al. 2004), LG05 (Löytynoja and Goldman 2005), RS07 (Redelings and Suchard 2007), and
DM20 (De Maio 2020), reviewed in the Introduction; and H20 (the present method), defined in theMaterials and Methods. The simulation procedure is defined in
the Results. Starting from a parameter setting (l = m = 1, x = y = 0.5) representative of indel lengths in protein structural alignments, the panels show the following
parameter sweeps: (A) varying the time parameter t over a range of scales; (B and C) varying the indel extension probabilities x, y separately, thus exploring irreversible
models with insertion-deletion asymmetry; (D) varying x and y jointly while holding x = y, exploring reversible models with differing indel lengths; and (E and F)
varying the indel rate parameters l,m separately. These are the same experiments (and ordering thereof) shown in Figure 6.
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Figure 5 Moments of the gap length distribution P (SI,SD)
as revealed by simulation, compared to the predictions of
various approximate methods. The approximation methods
are TKF91 (Thorne et al. 1991), TKF92 (Thorne et al. 1992),
MLH04 (Miklós et al. 2004), LG05 (Löytynoja and Goldman
2005), RS07 (Redelings and Suchard 2007), and DM20 (De
Maio 2020), reviewed in the Introduction; and H20 (the
present method), defined in the Materials and Methods.
The simulation procedure is defined in the Results. The pa-
rameter range explored is l = m = 1, x = y = 0.5, and 227 #

t# 21, corresponding to panel A of Figures 4 and 6. Panel A
shows the expected insertion length as a function of time,
and panel B shows the probability that there is no gap
between adjacent ancestral residues.
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TXY 0ð Þ ¼ 1 X ¼ Y ¼ M
0 otherwise

�

The parameters (a, b, c, f, g, h, p, q, r) are defined by (3) for
t . 0, condition at t = 0, where a 0ð Þ ¼ 1, f 0ð Þ ¼ 12 x,
g 0ð Þ ¼ x, p 0ð Þ ¼ 12 y, r 0ð Þ ¼ y, and b 0ð Þ ¼ c 0ð Þ ¼
h 0ð Þ ¼ q 0ð Þ ¼ 0.

The remaining counts are obtained from (2):

TMD tð Þ ¼ 12TMM tð Þ2TMI tð Þ
TII tð Þ ¼ SI tð Þ2TMI tð Þ2TDI tð Þ
TID tð Þ ¼ TMI tð Þ þ TDI tð Þ2TIM tð Þ
TDM tð Þ ¼ 12TMM tð Þ2TIM tð Þ
TDD tð Þ ¼ SD tð Þ þ TMM tð Þ þ TIM tð Þ2TDI tð Þ21: (6)

The expected state occupancies are governed by the fol-
lowing equations:

d
dt

SI tð Þ ¼ l

12 x
1þ SI tð ÞÞ
�

d
dt

SD tð Þ ¼ m

12 y
1þ SD tð ÞÞ;�

which, generalizing De Maio (2020), have the closed-form
solution

SI tð Þ ¼ exp
lt

12 x

� �
2 1

SD tð Þ ¼ exp
mt

12 y

� �
21: (7)

TKF91 model

When x = y = 0, our model reduces to the TKF91 model
(Thorne et al. 1991). Holmes and Bruno (2001) showed
that the solution to the TKF91 model can be expressed

Figure 6 Covariance between the numbers of inserted (SI) and deleted (SD) residues in an alignment gap, as revealed by simulation and
predicted by various approximate methods. The approximation methods are TKF91 (Thorne et al. 1991), TKF92 (Thorne et al. 1992), MLH04
(Miklós et al. 2004), LG05 (Löytynoja and Goldman 2005), RS07 (Redelings and Suchard 2007), and DM20 (De Maio 2020), reviewed in the
Introduction; and H20 (the present method), defined in the Materials and Methods. The simulation procedure is defined in the Results.
Starting from a parameter setting (l = m = 1, x = y = 0.5) representative of indel lengths in protein structural alignments, the panels show the
following parameter sweeps: (A) varying the time parameter t over a range of scales; (B and C) varying the indel extension probabilities x, y
separately, thus exploring irreversible models with insertion-deletion asymmetry; (D) varying x and y jointly while holding x = y, exploring
reversible models with differing indel lengths; and (E and F) varying the indel rate parameters l, m separately. These are the same experiments
(and ordering thereof) shown in Figure 4.
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as a pair HMM of the form shown in Figure 2A, with
parameters

a tð Þ ¼ 12bð Þa;   b tð Þ ¼ b;   c tð Þ ¼ 12bð Þ 12að Þ;
f tð Þ ¼ 12bð Þa;   g tð Þ ¼ b;   h tð Þ ¼ 12bð Þ 12að Þ;
p tð Þ ¼ 12 gð Þa;   q tð Þ ¼ g;   r tð Þ ¼ 12 gð Þ 12að Þ;

where

a t; l;mð Þ ¼ exp 2mtð Þ
b t; l;mð Þ ¼ l exp 2ltð Þ2 exp 2mtð Þð Þ

mexp 2ltð Þ2lexp 2mtð Þ
g t; l;mð Þ ¼ 12 mb

l 12að Þ:

It can readily be verified that this is an exact solution to
Equation (3) through Equation (7), when x = y = 0. Thus,
our model reduces exactly to the TKF91 model when indels
involve only single residues. In this case, the equivalence
F t þ Dtð Þ ¼ F tð ÞG Dtð Þ is exact in the limit Dt / 0.

Using the model for alignment

Toapply thismodel to sequence alignment,weneed to specify
a start and end state for G, rather than implicitly assuming
infinite-length sequences as we have done up to this point.

A version of G with start and end states is shown in Figure
3A. This can be carried throughout the analysis by also specify-
ing start and end states for F and deriving differential equations
for the transitions involving these states. Since this complicates
the formulae considerably, we have omitted it. Instead, we pro-
pose a heuristic modification of F that includes ad hoc transi-
tions from/to start and end states, shown in Figure 3B.

Parameterizing the model

In principle, the likelihood function is sufficient to parame-
terize themodel: we can compute the gradient numerically to
locate the maximum-likelihood parameters, or use Markov
Chain Monte Carlo sampling to find the posterior.

In practice, itmight bemore efficient to use an expectation-
maximization algorithm tailored to this model. In the Sup-
plemental Material, we conjecture that a simple expectation-
maximization algorithm does exist for this model, and we
outline one way it might be arrived at.

Data availability statement

Our code implementing thismodel is available under anopen-
source license at https://github.com/ihh/trajectory-likelihood/
tree/benchmark.

Figure 7 The running time of the
MLH04 method is prohibitive and
increases steeply for long gaps,
since it requires the explicit enu-
meration of all intermediate indel
states in the trajectory (Miklós
et al. 2004). In this plot, each
data point is an average of 100–
1000 repetitions on a late-2014
iMac (4GHz quad-core Intel i7
CPU, 32GB 1600MHz DDR3 RAM).
The running times of DM20 and
H20 are negligible in comparison
(, 1 ms).
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File S1 (gzipped tarball) contains JSON files describing the
state machines in Figure 2, a Makefile and short script for
manipulating these state machines, a Mathematica notebook
deriving the equations in this paper, and a text file listing the
contents of the tarball. Supplemental material available at
figshare: https://doi.org/10.25386/genetics.13040585.

Results

We implemented theH20 likelihood calculations described in
the Materials and Methods and those of the models (TKF91,
TKF92, MLH04, LG05, RS07, and DM20) reviewed in the
Introduction. We also implemented a simulator for the un-
derlying indel process, similarly to LAHP19 but using a suc-
cinct (run-length encoded) representation of the alignment.
We performed simulations at various parameter settings and
calculated summary statistics for all methods, including the
relative entropy from the simulated to approximate joint dis-
tribution P (SI, SD) and various marginals and moments of
this distribution. Our implementations and simulation results
are available at https://github.com/ihh/trajectory-likelihood/
tree/benchmark.

In Figures 4–6, we show summary statistics for several
sweeps of the GGI model parameters (l, m, x, y, t) in the
ranges 227 # t # 21, 0 # x # 0.7, 0 # y # 0.65, 0 # x #

0.8 with y = x, 0 # x # 0.7, 0 , l # 1, and 0 , m # 1. All
sweeps are based around the point l=m=1, x= y= t=0.5,
which was chosen to be indel-symmetric (l = m and x = y)
and representative of amino acid indel lengths: the setting
y ’ 0:5 is consistent with a previous maximum-likelihood
estimate based on indel lengths in the HOMSTRAD database
(Miklós et al. 2004). These parameter sweeps have the effect
of exploring each parameter individually, as well as (in the
case of the x-sweep where y= x) varying the length of inser-
tions and deletions simultaneously.

Tomap theGGImodel parameters onto thoseof themodels
being evaluated, we used the mappings defined by De Maio
(2020), with some adjustments to allow for cases where
insertions and deletions were asymmetric, which were not
reported by De Maio. These mappings are defined in the
Supplemental Material. Our criteria for evaluating a model
was based on the obviousness of these mappings; so, for
example, we did not include models significantly more pa-
rameter-rich than GGI (Rivas and Eddy 2015), where to de-
fine a mapping would have required so many choices as to
have created a new model.

In each experiment we performed N simulations on a se-
quence of length L and estimated gap sizes up to G residues,
discounting gaps at the end of the sequence (which have
different statistics). In most cases these settings were L =
103 and G = 102, with N = 107 for t , 225, N = 106 for
225 # t , 224, and N = 105 for 224 # t , 1. For t $ 1, and
also for y . 0.6, we set L = 105, G = 103, and N = 102. The
higher N at low t was to ensure sufficient sampling of infre-
quent events over short evolutionary timespans. The higher
values of (G, L) at high (t, y) were to mitigate end effects as

deletions become longer (which happens as t or y get large).
Because of the O Lð Þ time complexity of finding a position in
a sequence and then inserting or deleting elements, the sim-
ulation time is O NL2t

� �
yielding O NLtð Þ indel events. Thus,

when increasing L, we also reduced N. The time required for
simulation handily dominated the total CPU time taken by
the experiment, in almost all cases; the longest-running data
points of Figure 4A each required over 10 min on our late-
2014 iMac (4GHz quad-core Intel i7 CPU, 32GB 1600MHz
DDR3 RAM). Even with these run times, the observed counts
were zero for a majority of the (SI,SD) tuples in many cases.
This illustrates a fundamental problem with the purely sim-
ulation-based LAHP19 approach; running it enough times to
sample all cases is impractical. This may be one reason why
the authors of LAHP19 limited the maximum gap length G to
50 residues (Levy Karin et al. 2019). A potential solution to
this problem would be to use a limited sample to fit a para-
metric model, although we have not explored that approach.
Of course, other indel simulation programs may run faster
than ours.

For the MLH04 method, we limited G to 30 in all cases,
since it takes impractically long to calculate likelihoods of
longer gaps. This is illustrated by Figure 7, which plots the
runtime of MLH04 as a function of gap length. To calculate
likelihoods of gap lengths up to 30 residues at a particular
parameter setting, MLH04 takes roughly 10 sec on current
desktop hardware, which is vastly slower than the microsec-
ond-scale runtime of all other methods (with the exception of
direct simulation, which requires many repetitions to achieve
statistical accuracy). Because we only considered shorter
gaps for MLH04, when calculating the relative entropy from
the simulated gap length distribution, we used the truncated
distribution P SI; SD SI #G; SD #Gjð Þ to avoid infinities that
would otherwise occur due to MLH04 assigning zero proba-
bility to longer gaps.

Figure 4 shows the relative entropy (Kullback–Leibler di-
vergence) between the simulated and various approximated
distributions for the six parameter sweeps: t, x, y (separately
and together), l, and m. Starting with the time sweep in
Figure 4A, we see a pattern that was broadly repeated in time
sweeps across other parameterizations (data not shown): at
very short times, the MLH04 trajectory-enumerating approx-
imation is the best fit to the simulated distribution (with the
proviso that it can only handle short gaps, and takes signifi-
cant time to compute). At these low times, the DM20 and
H20 approximations are almost indistinguishable, and are
the second-best fit; TKF92 is the next best after that, followed
by the PRANK and BAliPhy HMMs. However, when t gets
large enough (in Figure 4A it occurs around t* 0:4), the di-
vergence of MLH04 shoots up, to the point where it quickly
becomes the worst or second-worst fit. This is presumably
because, at higher t, there is a significant probability of hav-
ing more than three events in the trajectory (MLH04 is lim-
ited to three events due to the combinatorial complexity of
enumerating longer trajectories). This leaves DM20 and H20
as the best methods. Shortly after this point, DM20 and H20
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start to separate, so that H20 has a slight edge over DM20.
Meanwhile, LG05 (the PRANK HMM) is not defined for all
parameterizations, since it contains probabilities propor-
tional to 1 2 2d where d ¼ 12 exp 2 lt

12 x

� �
. Thus, at high

enough t or x, we have d . 0.5 and so the probabilities be-
come negative. The RS07 HMM (used by BAliPhy) remains
defined but becomes inaccurate at high t. It should be noted
that the time values mt . 1 2 y correspond to a scenario
where the sequence is saturated with deletions, which may
be of less relevance to many applications in alignment and phy-
logenetics. However, it is at the borderline of this region where
the differences between the methods are most pronounced.

Seeking to explore these differences further, we varied x
and y in Figure 4, B and C. The general trend is consistent:
H20 and DM20 are the most accurate methods, LG05 is not
defined for most of this parameter regime, and the other
methods cluster in a pack, affected to varying degrees by
the parameter sweep. TKF92 (which models multiresidue
indels) is consistently a better fit than TKF91 (which does
not), as might be expected. Both TKF91 and TKF92 explic-
itly assume reversibility between insertions and deletions,
and appear to be quite strongly affected by deviations from
symmetry.

When x and y are varied together, as in Figure 4D, we see
quite different behavior across the different approximation
methods. In the special case x= y= 0, when indel events can
include only a single residue, the GGI model is essentially
identical to TKF91. Unsurprisingly TKF91, TKF92, and
H20—which all admit exact solutions in this special case—
have effectively zero relative entropy. By contrast, theMLH04
model performs very poorly when x = y = 0, since this pa-
rameterization requires at least K separate events to explain
a gap of length K, and so MLH04 assigns zero probability to
any gap of length $3, yielding an infinite Kullback–Leibler
divergence from the simulated distribution. As soon as x and
y become nonzero, the MLH04 divergence becomes finite
again, as (from the other direction) do those of TKF91,
TKF92, and H20. All relative entropies continue to rise as
the mean indel length increases, MLH04 rising most slowly.
Eventually, H20’s error approaches DM20’s error from below.
At x* 0:78, the RS07 probabilities—which drop off rapidly
with increasing gap length—are rounded to zero by floating-
point precision errors, including for some gap lengths that are
reached by the simulation, leading to infinities in the relative
entropy for RS07.

Varying l and m (Figures 4, E and F) reveals that H20,
DM20, TKF92, and MLH04 rise monotonically in inaccuracy
as these rate parameters increase from zero. TKF91 is a worse
approximation than all these methods when l = 0 or m = 0,
but stays mostly flat as they are increased, to the point
where it eventually beats MLH04 as an approximation.
RS07’s inaccuracy decreases monotonically with l, but has
a minimum as a function of m. LG05, as with the other
sweeps, performs weakly and is only defined for part of
the parameter regime. One notable point is that H20 and
DM20 have almost identical accuracy when l= 0 or m= 0,

but diverge as those rates increase, with H20 performing
better than DM20.

To summarize Figure 4: at all parameterizations, H20 is
more accurate than DM20, and is the most accurate of all the
three-state pair HMMs. H20 is outperformed only by MLH04,
and then only at very low values of t and for very short gaps
(taking a very long time to compute). In the parameter range
where most alignment occurs (mt � 1), DM20 and H20 are
roughly equivalent; they diverge as gaps become very fre-
quent. Of the closed-form approximations, TKF92 is most
accurate, but is significantly less reliable than H20.

To understand these differences better, we examined
moments of the simulated and approximate distributions.
These are plotted in Figures 5 and 6.

Figure 5A plots the expected insertion length, focusing on
the t-parameter sweep (similar trends were apparent in the
other sweeps). All the methods that find explicit closed-form
formulae for the expected insertion length as a continuous-
time process (which is to say TKF91, TKF92, DM20, and H20)
show an exact fit to the simulated distribution, while RS07
deviatesmore significantly, and LG05 as previously noted is only
defined for part of the time range. MLH04 underestimates the
expected insertion length significantly after t* 223, again pre-
sumably because MLH04 is a poor approximation when there
are multiple expected indel events per observed alignment gap.

Figure 5B plots the probability that adjacent ancestral res-
idues have no gap between them, P(SI = SD = 0). As with
Figure 5A, this is plotted as a function of time; and once
again, DM20 and H20 closely match the simulation, while
RS07 is an overestimate. However, for this statistic (unlike
the expected insertion length), MLH04 and (where defined)
LG05 are as accurate as DM20 and H20, while TKF91 under-
estimates the probability and TKF92 overestimates it.

To summarize the results plotted in Figure 5, the expected
insertion length and empty-gap probability are uninforma-
tive as to the differences between DM20 andH20: bothmeth-
ods seem to get these statistics right. However, noting that
themain difference between the DM20 andH20 is that DM20
does not allow transitions back and forth between the I and D
states, instead requiring deletions to precede insertions, we
might expect the covariance between insertion and deletion
lengths to be a better diagnostic.

Figure 6 plots the insertion-deletion covariance for all pa-
rameter sweeps, using the same ordering of subfigures (one
per parameter sweep) as the relative entropy plots in Figure
4. What we see in these plots is that the relative accuracy of
the covariances for DM20 and H20 closely tracks the relative
entropies of their gap length distributions. In the time sweep,
DM20 and H20 perform identically at low times, but gradu-
ally diverge; in the x and y sweeps, they are separated
throughout the parameter range; and in the l and m sweeps,
they are close when the rate parameter is zero, but then di-
verge rapidly. The most significant single factor determining
the covariance between insertion length SI and deletion length
SD is the joint probability P(SI = SD = 0) that both are zero;
however, Figure 5B shows that both DM20 and H20 basically
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get this probability correct. The most obvious remaining factor
that might explain the different covariances is the absence of an
I / D transition in the DM20 pair HMM, which De Maio ex-
plicitly suggestedmight be a potential limitation on the accuracy
of DM20 (De Maio 2020). Thus, we propose this as an expla-
nation for the improved performance of H20, while noting that
this improvement is relatively small.

As for the covariance of the other methods, the results in
Figure 6 are broadly consistent with Figure 4, although they
do not provide as a coherent single explanation of the differ-
ences between methods, as is the case when comparing
DM20 and H20. Two points are worth remarking on. First,
in Figure 6A, the covariance of MLH04 dips sharply around
t* 223, and in fact eventually becomes negative (although it
is not shown on this plot, due to the logarithmic y-axis). The
negative covariance can be explained by MLH04’s restriction
to a small finite number of indel events in any given trajec-
tory, which implies that every insertion event is one event
that cannot be a deletion, and vice versa. The other point
worth noting is that, as is the case with the relative entropies,
Figure 6D clearly shows that TKF91, TKF92, and H20 are an
exact fit to the simulated data when x= y= 0, which reduces
the GGI model to the TKF91 model.

We can summarize all the simulation results as follows. In
virtually all cases, H20 is the most accurate of pair HMM
methods, outperformed only by MLH04 when the rate of
indels is slow enough that there is negligible probability
that an observed alignment gap can be explained by mul-
tiple overlapping indel events. DM20 is very close behind
H20; the differences between DM20 and H20 appear to be
explainable in terms of H20’s better modeling of covaria-
tion between insertion and deletion lengths, which is prob-
ably attributable to an additional I / D transition in the
H20 pair HMM.

Discussion

We have shown that an evolutionary model which can be
represented infinitesimally as an HMM can be formally con-
nected to a pair HMM that approximates its finite-time solu-
tion. This may be viewed as an automata-theoretic framing of
the Chapman–Kolmogorov equation.

Ours is a coarse-graining technique. It is generally the case
that composing two state machines will yield amore complex
machine, since the composite state space is the Cartesian
product of the components. We approximate this more com-
plex machine with a renormalizing operation that eliminates
null states andmaps the remaining states of each type back to
a single representative state in the approximator.

We used this approach to derive ODEs for the transition
probabilities of a minimal (three-state) pair HMM that ap-
proximates a continuous-time indel process with geometri-
cally distributed indel lengths.We have implemented numerical
solutions to these equations, and demonstrated that they
outperform the previous best methods. The improvement in
accuracy over DM20, the closest method, is small but

significant; further, our approach puts the process of deriving
the approximation on a more systematic footing. In the Sup-
plemental Material, we also conjecture similar ODEs for the
posterior expectations of the sufficient statistics that would be
required to fit this model by expectation maximization, al-
though we have not yet tested this approach.

Point substitution models are the foundation of likelihood
phylogenetics. There is, additionally, a substantial literature
combining such models with HMMs and stochastic context-
free grammars, for the purposes of genome annotation and
other sequence analysis. Indels are a potential annotation
signal: phase-preserving indels, for example, are a common
signature of protein-coding selection. As well as being useful
tools to represent and (approximately) solve such models,
automata theory can be used to build sampling kernels
(Redelings and Suchard 2007) and reconstruct ancestral
sequences (Westesson et al. 2012).

Our emphasis on the GGI model, a continuous-time Markov
process defined on sequences of residues, somewhat disadvan-
tages models like TKF92, which technically defines a process on
sequencesofmultiresiduefragments.Wehavearguedthatthere is
no evidence such indivisible fragments really exist, so insteadwe
evaluatedTKF92asanapproximationtotheGGImodel.However,
the routine usage of amino acid fragment models to predict
protein tertiary structure suggests a valid counterargument: such
models may usefully capture some aspects of selection. Further,
TKF92 can be generalized in other ways, allowing for richer
modelsof fragmentmutation; forexample, tomodeltheevolution
of RNA structure. In this context, it is promising that our method
recovers TKF91 (and therefore TKF92) as special cases.

Input-output automata are well suited to modeling indels in
statisticalphylogenetics. It seemspossible that themethodof this
paper might be applied to other instantaneous rate models of
local evolution where the infinitesimal generator can be repre-
sented as an HMM. It is tempting to speculate that a similar
approachmay also be productively applied to stochastic context-
free grammars, so as to analyze RNA; or to model literary texts,
phonemes, vocabularies, music, source code, bird song, or other
alignable sequences that evolve by local edits over time.
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