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ABSTRACT OF THE DISSERTATION

Subgroup Analysis of Survival Data With Interval Censoring and Time Varying Covariates

by

Michael Tyler Brannan

Doctor of Philosophy, Graduate Program in Applied Statistics
University of California, Riverside, March 2021

Dr. Yehua Li, Chairperson

We developed a model that performs unsupervised clustering of survival times in

a joint survival-longitudinal framework with known longitudinal trajectories and all forms

of censoring and truncation. The model allows for data that is observed, left censored, right

censored, interval censored, along with all forms of truncation. From simulation studies,

the model correctly identifies the parameter estimates in any level of censoring quickly.

When clustering is present, we use variations of AIC and BIC for identifying the correct

number of clusters. From simulation studies, we find that BIC correctly identifies the right

number of clusters within multiple levels of censoring greater than 90% of the time along

with correctly estimating the parameter estimates. All the analysis is performed in the

R package currently being developed, which performs the analysis relatively quickly. We

applied the model to the Study of Women’s Health Across the Nation (SWAN) dataset.

We used this data set for detecting Alzheimer’s disease and to decipher what covariates are

linked to an increased risk for developing Alzheimer’s disease.
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Chapter 1

Introduction, Background,

Literature Review, and Model

Framework

1.1 Introduction

My research addresses the topic of unsupervised clustering of survival times in

a joint survival-longitudinal modeling environment where the longitudinal trajectories are

known. From the other published works we have reviewed, no one has attempted this before.

Others in the field have developed joint survival-longitudinal models including clustering,

but none performed clustering in an unsupervised setting. Moreover, this model allows

observed data, left censored, right censored, interval censored, and all forms of truncation.

Most models only allow observed and right censored data with a few also including interval

1



censored. However, we have not found any that include all possible data forms. Since

our model contains a non-parametric baseline function, we decided to use a method that

allows estimation of the parameters without needing to include additional parameter con-

straints. Therefore, we followed a framework by Cai and Betensky (2003) instead of adding

constraints or reparameterizing the baseline parameters as in Rizopoulos et al. (2009).

This research harnesses ideas from survival analysis, longitudinal analysis, and

mixture modeling. We modified and fused techniques from all three areas to more closely

model the real world. The longitudinal part of my model uses B-spline basis functions to

model both the mean and individual trajectories. The longitudinal framework is modeled

after the form in Rice and Wu (2001). This allows the B-spline basis function knots to

differ between the fixed and random effects. The added flexibility for the individual knots

is different from the technique used in other joint survival-longitudinal models, like one

found in Brown et al. (2005).

For the clustering aspect of the model, we used the Expectation-Maximization

(EM) algorithm by Dempster et al. (1977) along with an extension of Akaike Information

Criterion (AIC) by Akaike (1973) and Bayesian Information Criterion (BIC) by Schwarz

(1978) for determining the number of clusters. This has been applied in a mixture regression

setting with normal densities as described by Naik et al. (2007). However, we have not seen

this done in a joint survival-longitudinal setting.

I am also building an R package to allow others access to this model. I have coded

the model using the R package Rcpp by Eddelbuettel and François (2011), Eddelbuettel

(2013), and Eddelbuettel and Balamuta (2017). Rcpp allows the integration of R by R Core
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Team (2020) and c++. I also used Rcpp Armadillo by Eddelbuettel and Sanderson (2014).

This allowed me to write the package in c++ to gain speed while still being able to use

objects specific to R by R Core Team (2020).

From the parts of the model that are included in the package, the package runs

quickly. Given reasonable starting values, it can find the estimates for 36 parameters in

under 10 minutes for 200 individuals and under 20 minutes for 500 individuals.

To demonstrate that the survival portion of the model estimates the parameters

correctly, we simulated data sets with two longitudinal covariates and two time independent

covariates. We had 200 replicates of data sets with 200 individuals and 500 individuals.

From these findings, we were able to show that the model has very little bias and is not

greatly affected by increasing censoring, specifically interval censoring.

Additionally, we demonstrated that the unsupervised clustering aspect of the sur-

vival model with known longitudinal covariates correctly identifies the number of clusters

along with the correct parameter estimates for each cluster. We ran 200 replicates with

both 300 and 900 individuals. For the ones that converged, we found that it estimated the

correct number of clusters, which was 2, and correctly estimated the 32 baseline parameters

and 4 cluster specific parameters.

This survival model with known longitudinal covariates has potential to promote

immense cross-fertilization of ideas or application for other disciplines. We applied it to

the Study of Women’s Health Across the Nation (SWAN) dataset. We used this data set

for detecting Alzheimer’s disease and to decipher what covariates are linked to an increase

3



risk in developing Alzheimer’s disease. Covariates given include blood pressure, medical

conditions, smoking status, relationships, BMI, and numerous vitamin levels.

1.2 Structure

This dissertation is structured into 6 chapters. The first chapter is a background

of methods used, a literature review of techniques for survival, longitudinal, clustering, and

joint modeling, and the framework of our model. The second chapter is forming a joint

survival-longitudinal model assuming the longitudinal part is fully known and there is no

clustering. The third chapter is performing unsupervised clustering of the joint survival-

longitudinal model assuming the longitudinal part is fully known. The fourth chapter is a

look into the R Package I developed. The fifth chapter is using the model to analyze the

SWAN dataset. The sixth chapter is current and future work.

1.3 Background

1.3.1 Numerical Integration

There are multiple numerical integration techniques available. We described the

five techniques as stated in Section 7.7 of Stewart (2008), which are left endpoint approx-

imation, right endpoint approximation, Midpoint Rule, Trapezoidal Rule, and Simpson’s

Rule. Given that f (x) is the function value at point x in the interval [a = x0, b = xn],

∆x = b−a
n , xi = a + i∆x, x̄i = xi−1+xi

2 , and n is the number of segments [a, b] is divided

into, the formulas for the numerical integration techniques are:

4



Technique Formula

Left endpoint approximation
∫ b
a f (x) dx =

∑n
i=1 f (xi−1) ∆x

Right endpoint approximation
∫ b
a f (x) dx =

∑n
i=1 f (xi) ∆x

Midpoint Rule
∫ b
a f (x) dx =

∑n
i=1 f (x̄i) ∆x

Trapezoidal Rule
∫ b
a f (x) dx =

∑n
i=1 (f (xi−1) + f (xi))

∆x
2

Simpson Rule
∫ b
a f (x) dx =

∑n
i=1 (f (xi−1) + 4f (x̄i) + f (xi))

∆x
3 .

Figures 1.1-1.5 show how each numerical integration technique performs at esti-

mating the integral of f (x) = ex.
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Figure 1.1: Left Endpoint Approximation
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Figure 1.2: Right Endpoint Approximation
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Figure 1.3: Midpoint Rule

0 1 2 3 4 5

0
50

10
0

15
0

x

f(
x)

Figure 1.4: Trapezoidal Rule
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Figure 1.5: Simpson’s Rule

Since the Midpoint Rule always gives an equal or better numerical approximation

to the left and right endpoint approximations, we will not be discussing them from now on.

Therefore, the error rates for Midpoint Rule, Trapezoidal Rule, and Simpson’s Rule are:

Technique Error Rate

Midpoint Rule |EM | = |f ′′(x)|(b−a)3

24n2

Trapezoidal Rule |ET | = |f ′′(x)|(b−a)3

12n2

Simpson’s Rule |ES | =
|f (4)(x)|(b−a)5

180n4 ,

where f ′′ (x) is the second derivative of f and f (4) is the fourth derivative of f . Additionally,

n must always be even when using any formulas involving Simpson’s Rule.

From looking at the error rates, we can see that Simpson’s Rule’s error rate is

much smaller than the Midpoint Rule’s error rate and the Trapezoidal Rule’s error rate.

Since Simpson’s Rule only required calculating one additional point per interval more than

the Trapezoidal Rule, we felt that the extra computation time was worth the decrease in

error rate. Even though Midpoint Rule only required calculating one point per interval,

the error rate was much larger compared to Simpson’s Rule. There are other techniques
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with even smaller error rates, but they require calculating even more function values, like

Boole’s Rule and Hardy’s Rule that require five and seven function values per segment,

respectively. We felt that they would take too much computational time for a diminishing

decrease in error rate. Additionally, we allow the user to increase the number of segments

per interval if higher precision is desired. As can be see from the figures of ex, we can see that

Simpson’s Rule does a better job estimating the integral of ex than does the Midpoint Rule

or Trapezoidal Rule, since it more closely follows the function’s value. Since our function

is a form of ex, we conclude that Simpson’s Rule would also give a close approximation for

our function.

1.3.2 Newton Optimization

We begin by explaining Newton’s method for a function f (x) as given in Section

4.8 of Stewart (2008). Newton’s method uses the idea that given a specific point, x1, on the

function f (x), the tangent line’s x-intercept at x1 is close to the root of f (x). Therefore,

we can find the x-intercept of the tangent line easily. The slope of the tangent line at x1 is

f ′ (x1). Since we know that the y-value of the x-intercept of the tangent line is 0, we find

x2 using the the point slope equation and get the following equation for x2:

y − f (x1) = f ′ (x1) (x2 − x1)

0− f (x1) = f ′ (x1) (x2 − x1)

(x2 − x1) = − f (x1)

f ′ (x1)

x2 = x1 −
f (x1)

f ′ (x1)
.
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Having found x2, we now use it as our starting value for the next round. The general

formula is:

xn+1 = xn −
f (xn)

f ′ (xn)
.

We continue the process until the difference between xn and xn+1 is less than some pre-

specified threshold. The application of the method can be seen in Figure 1.6 for estimating

the root for the function ex − 2.
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f(
x)

(x1,f(x1))

x1

(x2,f(x2))

x2

(x3,f(x3))

x3x4

root

Figure 1.6: Plot of Newton’s method for ex − 2.

For Newton optimization, we use this same formula, but instead of finding the

roots of f (x), we find the roots of f ′ (x). We make this change since we are interested in

finding the maximum or minimum of f (x). These points are the location where f ′ (x) = 0,

which are the roots of f ′ (x). Therefore, the formula in the univarate case becomes:

xn+1 = xn −
f ′ (xn)

f ′′ (xn)
,
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where f ′′ is the second derivative of f . In the multivariate case, the general formula becomes:

Xn+1 = Xn −
[
f ′′ (Xn)

]−1
f ′ (Xn) ,

where X is a p-dimensional vector, f ′ (X) is the p-dimensional gradient vector or vector

of first derivatives of f (X), and f ′′ (X) is the p × p Hessian matrix or matrix of second

derivatives of f (X).

1.3.3 B-Splines

In our model, we make use of basis splines, referred to as B-splines. They are the

basis functions for the spline space and are used due to the fact that they are numerically

stable and uniquely defined by their knot sequence. Additionally, the sum of the B-splines

is always 1 and they are piece-wise polynomials of order n and degree p = n − 1. The

locations where the piece-wise polynomials meet are called knots. Given the knots are all

distinct, the B-spline meets the criteria of being continuous up to degree at least n− 2. We

find that B-splines of degree 0 have the following form:

Bi,0 (x) =


1 if ki ≤ x < ki+1.

0 otherwise,

where ki is the ith knot where i = 0, . . . ,K. This means that if the value of x is in the knot

segment the value of the B-spline is 1, otherwise it is 0. Using this result, the Cox de-Boor
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recursion formula from De Boor (1978) for representing B-splines of degree p is:

Bi,p =
x− ki
ki+p − ki

Bi,p−1 (x) +
ki+p+1 − x
ki+p+1 − ki+1

Bi+1,p−1 (x) .

Since a single B-spline extends over p+ 2 knots, as can be seen by Bi,0 extending over the

two knots ki and ki+1, internal knots have to be extended by p in order to calculate the

first and last knot. This is usually done by repeating the first and last knots each p times

more, sometimes called boundary knots.

1.3.4 Maximum Likelihood Estimation (MLE)

Maximum likelihood estimation (MLE) is a method of estimating the parameters

of a probability distribution by maximizing the likelihood function. This is done by finding

the parameter values that make the observed data most probable. The process usually starts

with forming the likelihood and then either taking the derivative of the likelihood or more

commonly the loglikelihood. When the first derivative exists, we then set the derivative

with respect to the parameter equal to 0 and then solve for the parameter of interest in

terms of the remaining parameters and the observed data. The point found, along with

boundary points when applicable, are checked to see if the point indeed maximizes the

likelihood or loglikelihood function. This is the method used to estimate the parameters in

our model and full derivations are given in the Appendices. A more detailed background

with examples can be found in Section 7.2.2 of Casella and Berger (2002).
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1.3.5 Survival Analysis

The following overview is a brief introduction of what is described in further de-

tail in Chapters 1, 2, 3, and 8 of Klein and Moeschberger (2011). Survival analysis was

designed to analyze problems involving time to event data. Many times, the data can have

observations that are censored or truncated. Censored data occurs when the event happens

outside of the given period of time. For example, if a study was conducted and individuals

were watched for a year to see if a certain event occurred, right censored observations would

mean the event did not occur during the year, left censored observations would mean the

event occurred before the year began, and interval censored observations would mean the

event occurred during the year, but the observers do not know preciously when. Right cen-

soring means the event did not occur before some prespecified time, left censoring means

the event occurred before they are observed in the study, and interval censored means the

event is known to occur between two specified times. Truncation means that only individ-

uals within a certain observation window are observed. The difference between truncation

and censoring is that with truncation, any individual who does not have an event in the

observation window, gives no information to the observer. Censoring, on the other hand,

does give partial information to the observer, since individuals may have already had the

event occur before the observation windows or still have not had it occur by the time the

observation window ends. Therefore, truncated data causes conditional estimation.

Left truncation means that we only observe the event if it is greater than the

truncation time. An example of this occurs with microscopic particles. The scientist can

only see particles that are large enough to be discerned by the microscope. Anything
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smaller is not observed by the scientist. For humans, this could be exposure to some

disease, diagnosis of the disease, or entry into a retirement home. For instance, if I wanted

to conduct a study looking at the age when a member of the retirement home died, only

individuals who entered the retirement home are included. Individuals who died before

being able to enter the retirement home are not included, since the truncation point was

age entering the retirement. Right truncation occurs when the event occurs before the

truncation time. This occurs with star viewing, since stars too far away to be seen are not

included. In humans, AIDS studies commonly use right truncation. Studies that look at

AIDS caused by transfusions take the time from the transfusion until a certain time, and

include individuals who have had AIDS occur by that date. Therefore, this causes right

truncation as individuals who had not had AIDS occur at this point are not included in the

study.

Before we show how censoring and trunction are written mathematically, we will

briefly review some of the basics of survival analysis. First we define the survival function.

The survival function is defined as the probability that an individual survives beyond a cer-

tain value, Pr (X > x). When X is a continuous random variable, the survival function is a

continuous, strictly decreasing function. It is the complement of the cumulative distribution

function, F (X), meaning S (X) = 1− F (X). Now,

S (X) = Pr (X > x) =

∫ ∞
x

f (t) dt and

f (x) = −dS (X)

dx
,
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where f (x) is the probability density function of X. The hazard function is the probability

that an individual at time x will experience the event in the next instant. It is defined as:

h (x) = lim
∆x→0

Pr (x ≤ X < x+ ∆x|X ≥ x)

∆x
.

Given X is a continuous random variable,

h (x) =
f (x)

S (X)
= −d log (S (x))

dx
.

The cumulative hazard function, H (X) is defined as:

H (X) =

∫ x

0
h (t) dt = − log (S (x)) .

This means the following relationship exists:

S (x) = e−H(X) = e−
∫ x
0 h(t)dt.

Lastly, since we assume a Cox proportional hazards model in our model framework,

we explain the basics of the Cox proportional hazards model. The model, developed by Cox

in Cox (1972), is a way of predicting the survival time by a set of explanatory variables.

The basic model, as discussed in Klein and Moeschberger (2011) is:

h (t|Z) = h0 (t) c
(
βTZ

)
,
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where h (t|Z) is the hazard rate at time t for an individual with covariates Z, h0 (t) is the

baseline hazard rate, β is the vector of parameters, and c
(
βTZ

)
is a known function. This

type of model is a semi-parametric model, since a parametric model is assumed only for the

covariate effect, c
(
βTZ

)
, whereas the baseline hazard rate is treated non-parametrically.

What is commonly used is c
(
βTZ

)
= eβ

TZ .

With this background, we have the following list of how each observed, censored,

and truncated observation is written:

observed f (x)

right-censored S (Cr)

left-censored F (Cl)

interval-censored S (Tl)− S (Tr)

left-truncation f(x)
S(L)

right-truncation f(x)
S(R)

interval-truncation f(x)
S(L)−S(R) .

Now Cl and Cr are the left and right censoring times, respectively, and L and R are the

right and left truncation times, respectively. For ease of writing, we used f (x) for the

numerator of all the truncation equations. However, right, left, and interval censored data

can be truncated as well.

1.3.6 Mixed Models applied to Longitudinal Data

In this section, we give a brief overview of mixed models as they relate to lon-

gitudinal data analysis. As stated in Chapter 4 of Ruppert et al. (2003), mixed models
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are regression models that incorporate random effects along with fixed effects. The general

form, using standard regression notation, is:

Y = Xβ + Zu+ ε,

where Y is the vector of response values for the individuals, X is the matrix of fixed effects,

β is vector of fixed effect parameters, Z is the matrix of random effects, u is the vector of

random effect parameters, and ε is the random error component. The assumptions on u

and ε are:

E

u
ε

 =

0

0

 and Cov

u
ε

 =

G 0

0 R

 ,

where G is the covariance-variance matrix for u and R = σ2
ε I. Since longitudinal data is

data with repeated measures and can have elements that are the same for all members,

fixed effects, and those that are individual specific, random effects, the mixed model fits

this type of data well. The random effects are considered to have come from a distribution

with a shared covariance-variance matrix, G. An example would be blood pressure, since

it is usually measured multiple times over some defined period. Blood pressure differs per

individual, but there is an assumption that all people come from a common distribution

with a shared covariance-variance matrix. Therefore, the fixed effects could be each week

the measurement was taken or estimating the overall mean of the population. The random

effect could be as simple as a random intercept for each person or the more complicated

estimation of each person’s blood-pressure trajectory from the overall mean trajectory.
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In our model, looking at one longitudinal covariate, j, for a single individual, i,

this would be measured mij times. There would be a component that is fixed, which is

the mean trajectory function, and a random component, which is the individual trajectory.

The overview of how this is written in our model is:

Y ij = Xij + εij ,

where each is a vector of length mij and each row of Xij is Xij = βTj Bj + ξTijBj , where

βTj Bj is the fixed effect part where βj is the jth mean trajectory coefficients shared by

all individuals and ξTijBj is the random effect part where ξij is the ith individual’s jth

individual trajetory coefficients. Moreover, Bj and Bj are the vectors of B-spline basis for

longitudinal trajectory j for the mean and random effects, respectively. Additionally,the

random effects share a common covariance-variance matrix, Σξj , εij ∼ Nmij

(
0, σ2

Yj
I
)

, and

ξij and εij are independent. Full details are given in the Section 1.5.1.

1.3.7 Mixture Models

We briefly describe mixture models as stated in Naik et al. (2007). A mixture

model is a probability distribution for representing sub-populations in the overall popula-

tion. We are interested in finite mixture regression models, which means that the number

of regression models, C, in the mixture is not infinite. Using standard regression notation,

the mixture regression model is:

f (y;x, φ) =

C∑
c=1

ωcfc (y;x,βc, σc) ,
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where 0 ≤ ωc ≤ 1,
∑C

c=1 ωc = 1, and fc (y;x,βc, σc) is a normal density with mean xTβc

and variance σc. Now x is a p × 1 vector of explanatory variables, which are considered

fixed, βc is a p×1 parameter vector, and φc = {ωc,βc, σc} for c = 1, . . . , C. The idea is that

each of the sub-populations’ densities is weighted by the amount of the population it makes

up, given by ωc, and each of the C densities have their own parameter estimates φc. Since

we do not know for sure which individuals belong to each sub-population, each individual’s

density is a mixture of all C densities with corresponding weights ω.

1.3.8 K-Means Clustering

We briefly describe K-Means Clustering as stated in Section 10.3.1 of James et al.

(2013). The idea is to partition the data into K distinct clusters where the observations

within each cluster is similar by some measure. The algorithm starts by randomly assigning

each observation to one of the K clusters. Assuming that each of the observations is of

dimension p, we then calculate each cluster’s centroid. The centroid of a cluster is the

vector of p-dimensional means of the observations in that cluster. We then assign, using

Euclidean distance, each observation to the centroid it is closest to. We repeat the process

until there is no observations that change clusters. Figure 1.7 shows three iterations of the

K-means algorithm, which is calculating the centroids and then reassigning the observations

to the new centroids.
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Figure 1.7: First three iterations of the K-means algorithm

1.3.9 Expectation-Maximization (EM) Algorithm

Since we used a mixture model as part of our model framework, we had latent

variables for which group an individual was assigned to that needed to be estimated along

with the parameters. Therefore, we use the Expectation-Maximization (EM) Algorithm to

find the maximum of the loglikelihood function as stated in Dempster et al. (1977). In this

context, the idea behind the EM algorithm is that in the E-step, we take the expected value

of the loglikelihood with the current parameter values, which means finding the expected

values of the latent variables, since the latent variables state the probabilities per cluster

for each individual. Once we have those values for each individual, we then maximize the

18



expected loglikelihood with respect to the parameters of interest. Since the EM algorithm

is an iterative method, we continue this process until the difference between the previous

and the current iterations is below a preset threshold. We give the EM example presented

in Naik et al. (2007) in Section 1.4.5 along with the our EM algorithm in Chapter 3 with

the full derivations in Appendix G.

1.3.10 Joint Model

A joint model combines the probability distributions of multiple distributions into

one, hence joining them. In our case, we are combining a mixed model that represents the

longitudinal data, a survival model given by a Cox proportional hazards model, as well as a

mixture model to account for the subgroups. The reason why we use a joint model over just

estimating a longitudinal model and then estimating a survival model is that parameters

shared across models can be better estimated since information from both models is used.

For instance, the parameter coefficeints of the B-spline that estimate a longitudinal element,

such as blood pressure, are used in both the longitudinal submodel, to estimate the observed

measurements, as well as in the survival submodel, to estimate the measurement at the time

of the event of interest, per each identified cluster.

1.4 Literature Review

Standardized notation was used throughout this paper. The same notation used in

our model is what is used as closely as possible for the models used in the papers mentioned

below. Terms are defined each time and a list of them are given in Appendix A.
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1.4.1 Cai and Betensky (2003)

In Cai and Betensky (2003), they had the following survival model:

Ti ∼ λi (t|Zi) = λ0 (t) eZ
T
i ζ ,

where λi (t|Zi) is the hazard function for the ith individual, λ0 (t) is the baseline hazard

function, ζ is the coefficients for the baseline covariates, Zi =



Zi1

Zi2

...

Ziq


is the baseline

covariates for the ith individual where there are q baseline covariates, and Zij is the jth

baseline covariate for the ith individual where j = 1, . . . , q. For the baseline hazard function

λ0 (t), they used the following form:

λ0 (t) = eα0+α1t+
∑K
k=1 bk(t−κk)+ or

log λ0 (t) = η0 (t) = α0 + α1t+
K∑
k=1

bk (t− κk)+ ,

where (t− κk)+ ≡ max (0, (t− κk)) . For the spline model, they treated the bk’s, the coeffi-

cient parameters for each of the k knots where k = 1, . . . ,K, as random effects distributed

as follows:

b =


b1

...

bK

 ∼ NK(0, σ2
bIK).
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Their model could handle survival times that are observed, right censored, or interval cen-

sored. Furthermore, their baseline hazard form avoids needing to add constraints or repa-

rameterize the baseline coefficient parameters. However, they did not have time dependent

or longitudinal covariates.

1.4.2 Brown et al. (2005)

In Brown et al. (2005), they used the following joint longitudinal and survival

model in a Bayesian setting. They let the longitudinal model have the following form:

Yijl = Xij (tijl) + εijl, where i = 1, . . . , n, j = 1, . . . , p, and l = 1, . . . ,mij .

Now Xij (tijl) is the jth trajectory function for the ith individual and tijl is the lth observed

time point for the ith individual’s jth trajectory. Additionally, n is the number of individuals,

p is the number of longitudinal trajectories, and mij is the number of observed time points

for the ith individual’s jth trajectory.

Furthermore, Xil (t) =



Xi1

Xi2

...

Xip


(til) and Xijl (t) =

∑J
k′=1 ξijk′Bk′ (tijl), where

J is the number of basis knots for the individual trajectory functions, ξijk′ is the k′

individual basis knot’s coefficient for the ith individual’s jth individual trajectory func-

tion, and Bk′ (t) is the k′ basis knot for the individual trajectory function. They let

ξik′ ∼ N
(
β0k′ +Z

T
i ζ,V 0k′

)
, where β0k′ and V 0k′ are the p dimensional k′th basis spline’s

mean and covariance-variance matrix, respectively, and both of which have priors. Also, ζ
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is the coefficients for the baseline covariates, Zi =



Zi1

Zi2

...

Ziq


is the baseline covariates for

the ith individual where there are q baseline covariates, and Zij is the jth baseline covariate

for the ith individual where j = 1, . . . , q. Now Y il ∼ Np (Xil (t) ,Σ) where Σ has a prior

distribution.

The survival part of the model is defined as follows:

Ti ∼ λi (t|Xi,Zi) = λ0 (t) eX
T
i (t)γ+ZTi ζ ,

where λi (t|Xil,Zi) is the hazard function for the ith individual, λ0 (t) is the baseline hazard

function, Xi (t) =



Xi1

Xi2

...

Xip


(t) is the vector of trajectory functions at survival time t, γ is

the coefficients for the longitudinal trajectory functions, ζ is the coefficients for the baseline

covariates, Zi =



Zi1

Zi2

...

Ziq


is the baseline covariates for the ith individual where there

are q baseline covariates, and Zij is the jth baseline covariate for the ith individual where

j = 1, . . . , q.
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To form the joint likelihood function for individual i, they used the product of the

longitudinal and survival likelihoods, thus f (Y i, Ti) = f (Ti|Xi,Zi) f (Y i) , where f (Y i)

is the longitudinal likelihood function and f (Ti|Xi,Zi) is the survival likelihood function.

Their model assumes the baseline hazard is piecewise constant, allows only ob-

served and right censored data, and the same basis functions are used for the mean tra-

jectory and the individual trajectories. Furthermore, they applied the trapezoidal rule to

approximate their integral of the cumulative hazard function. Also, the model works when

given specific prior distributions, such as Σ−1 ∼ Wishart and β0j ∼ Np (A0, A1) where

A0 and A1 are user chosen to keep generality while maintaining proper and conjugate pri-

ors. Lastly, the authors stated that their coded version of the the model does not always

converge.

1.4.3 Rice and Wu (2001)

In Brown et al. (2005), they reference Rice and Wu (2001) as a frequentist’s ex-

ample of a longitudinal model, which had the following form:

Yijl = Xij (tijl) + εijl, where i = 1, . . . , n, j = 1, . . . , p, and l = 1, . . . ,mij .

Now Xij (tijl) is the jth trajectory function for the ith individual and tijl is the lth observed

time point for the ith individual’s jth trajectory. Additionally, n is the number of individuals,

p is the number of longitudinal trajectories, and mij is the number of observed time points

for the ith individual’s jth trajectory.
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Furthermore, Xi (t) =



Xi1

Xi2

...

Xip


(t) and Xij (t) = ψj (t) +

∑J
k′=1 ξijk′Bk′ (t) where

ψj (t) is the jth mean trajectory function and is given by ψj (t) =
∑J

k′=1 βjk′Bk′ (t). Lastly,

J and J are the number of basis knots for the mean and individual trajectory functions,

respectively, βjk′ is the k′ mean basis knot’s coefficient for the jth mean trajectory function,

Bk′ (t) is k′ basis knot for the mean trajectory function, ξijk′ is the k′ individual basis

knot’s coefficient for the ith individual’s jth individual trajectory function, and Bk′ (t) is the

k′ basis knot for the individual trajectory function.

This model allows for the flexibility in the number of basis knots between the

mean and individual longitudinal trajectory functions. We adopted this structure in our

longitudinal model.

1.4.4 Rizopoulos et al. (2009)

In Rizopoulos et al. (2009), they performed a joint survival-longitudinal model.

The longitudinal model has the following form:

Yil = Xi (til) + εil, where i = 1, . . . , n and l = 1, . . . ,mi.

Now Xi (til) is the trajectory function for the ith individual and til is the lth

observed time point for the ith individual’s trajectory. Additionally, n is the number of

individuals and mi is the number of observed time points for the ith individual’s trajectory.

Furthermore, Xi (t) = xi (t)β + zi (t) ξi where xi (t) and zi (t) are the rows for the fixed

24



and random effects for an individual, respectively. They state spline functions can be used

for xi (t) and zi (t). Additionally, β and ξi are the coefficients for the fixed and random

effects, respectively, where i = 1, . . . , n.

For the survival part of the model, the survival times, Ti, have the following form:

Ti ∼ log Λi (t|Xi,Zi) = log Λ0 (t) +Xi (t) γ +ZT
i ζ,

where Λi (t|Xi,Zi) is the cumulative hazard function for the ith individual, Λ0 (t) is the

baseline cumulative hazard function, γ is the coefficient for the longitudinal trajectory

function, ζ is the coefficients for the baseline covariates, Zi =



Zi1

Zi2

...

Ziq


is the baseline

covariates for the ith individual where there are q baseline covariates, and Zij is the jth

baseline covariate for the ith individual where j = 1, . . . , q. The log baseline cumulative

hazard function, log Λ0 (t) , is modeled by a B-spline as follows:

log Λ0 (t) = $0 +

m∑
k=1

$kBk {log (t) , q} ,

where $T = ($0, $1, . . . , $m) are the B-spline coefficients, B {log (t) , q} is the B-spline

basis knots and q is the degree of the B-spline. To maintain monotonicity of log Λ0 (t) , the

following reparameterization of $ is done:

$1 = $∗1 and $k = $k−1 + exp ($∗k) ,
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where $∗k is the unconstrained parameter values and $k is the constrained parameter.

The joint model is p (Y i, Ti) =
∫
p (Ti|Xi,Zi, ξi) p (Y i|ξi) p (ξi) dξi where

p (Ti|Xi,Zi, ξi) is the survival probability density function, p (Y i|ξi) is the longitudinal

probability density function, and p (ξi) is the random effects probability density function,

which they assumed was a normal density function.

This model does perform joint survival-longitudinal modeling; however, it only

allows for one longitudinal covariate. Moreover, it requires constraining the baseline B-

spline coefficients, $. Cai and Betensky (2003) on the other hand avoids having to due this

by how they designed the cumulative hazard function.

1.4.5 Naik et al. (2007)

For determining how to cluster the data, we decided to follow the technique similar

to Naik et al. (2007), even though they used a normal regression setting for their density

framework. Since they used a normal regression setting, we use standard regression notation

for terms not shared in our model. For their model, they assumed a finite-mixture regression

model having the following density function:

f (y;x, φ) =

C∑
c=1

ωcfc (y;x,βc, σc) ,

where 0 ≤ ωc ≤ 1,
∑C

c=1 ωc = 1, and fc (y;x,βc, σc) is a normal density with mean xTβc

and variance σc. Now x is a p × 1 vector of explanatory variables, which are considered

fixed, βc is a p × 1 parameter vector, and φ = {ωc,βc, σc for c = 1, . . . , C}. Letting V be
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an n× C indicator matrix with icth element, vic, equaling:

vic =


1 if i is in cluster c.

0 if i is not in cluster c.

Therefore, for a given set of data (yi,xi, vi) , i = 1, . . . , n, the complete data loglikelihood

is:

` (φ;V ,Y ,X) =

C∑
c=1

n∑
i=1

vic {log (ωc) + log fc (yi;xi,βc, σc)} ,

where Y = (y1, . . . , yn)T , X = (x1, . . . ,xn)T is an n× p matrix of explanatory vectors xi,

and V is the n× C indicator matrix defined above.

They applied the expectation-maximization (EM) algorithm to estimate the model

parameters. They let φ(m) =
{
ω

(m)
c ,β

(m)
c , σ

(m)
c for c = 1, . . . , C

}
for the mth iteration of

the EM algorithm and defined Q
(
φ;φ(m)

)
= E

[
`|Y ,X, φ(m)

]
. In the E-step, Q

(
φ;φ(m)

)
is obtained by replacing vic with the expected value τic = E [vic|yi]. τic is given by

τ
(m)
ic =

ω
(m)
c fc

(
yi;xi,β

(m)
c , σ

(m)
c

)
∑C

c=1 ω
(m)
c fc

(
yi;xi,β

(m)
c , σ

(m)
c

) .
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In the M-step, they maximized Q
(
φ;φ(m)

)
with respect to (ωc,βc, σc), giving closed-form

estimates for the (m+ 1) iteration of:

ω(m+1)
c =

n∑
i=1

τ
(m)
ic

n
,

β(m+1)
c =

(
X̃

(m)T
c X̃

(m)
c

)−1
X̃

(m)T
c Ỹ

(m)
c , and

σ2(m+1)
c =

Ỹ
(m)T
c

(
I − H̃(m)

c

)
Ỹ

(m)
c

tr
(
W

(m)
c

) ,

for c = 1, . . . , C. Now W
(m)
c = diag

(
τ

(m)
c

)
, where τ c is the vector of probabilities that

each individual belongs to cluster c, X̃
(m)
c = W

(m)1/2
c X, Ỹ

(m)
c = W

(m)1/2
c Y , and H̃

(m)
c =

X̃
(m)
c

(
X̃

(m)T
c X̃

(m)
c

)−1
X̃

(m)T
c .

The EM algorithm stops once the value of log
{
f
(
Y ;X, φ(m+1)

)
/f
(
Y ;X, φ(m)

)}
decreases below a pre-specified threshold. In order to initialize the EM algorithm, τ

(0)
ic for

each individual is initialized by partitioning X into C clusters and they performed this

initialization using the K-means clustering method. They do state that partitioning can be

done either randomly or using the K-means clustering method.

They developed the Mixture Regression Criterion (MRC) and were able to write

it in the following form:

MRC =

C∑
c=1

n̂c log
(
σ̂2
c

)
+

C∑
c=1

n̂c (n̂c + pc)

n̂c − pc − 2
− 2

C∑
c=1

n̂c log (ω̂c) ,

where pc = tr
(
Ĥc

)
and n̂c = tr

(
Ŵ c

)
.
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The authors state that the first term measures the lack of fit, the second term

is a penalty for overfitting the model by adding more variables, and the third term is a

clustering penalty function to mitigate for overclustering. When comparing models with

different amounts of clusters and variables, the model with the lowest MRC is to be chosen.

The authors state that in order to determine how many clusters and variables

to keep, they implemented a two-stage procedure. The first stage keeps all variables and

determines the number of clusters. Once the number of clusters is decided, then the number

of variables is decided for each cluster. The authors stated that simulation results showed

the two-stage procedure worked well when compared to an exhaustive search.

The authors compared MRC to AIC = −2 log f
(
Y ;X, φ̂

)
+ 2p and

BIC = −2 log f
(
Y ;X, φ̂

)
+ p log (n). However, since these are the expressions for one

cluster, to account for having C clusters and p variables per cluster, they replaced p with

d = (C − 1) + C (p+ 1) when comparing to the MRC.
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1.5 The Model

1.5.1 Longitudinal Submodel

The longitudinal portion of the model is defined as:

Yijl = Xij (tijl) + εijl, where i = 1, . . . , n, j = 1, . . . , p, and l = 1, . . . ,mij .

Now Xij (tijl) is the jth trajectory function for the ith individual and tijl is the lth observed

time point for the ith individual’s jth trajectory. Additionally, n is the number of individuals,

p is the number of longitudinal trajectories, and mij is the number of observed time points

for the ith individual’s jth trajectory.

Furthermore, Xi (t) =



Xi1

Xi2

...

Xip


(t) and Xij (t) = ψj (t) +

∑J
k′=1 ξijk′Bk′ (t) where

ψj (t) is the jth mean trajectory function and is given by ψj (t) =
∑J

k′=1 βjk′Bk′ (t). Lastly,

J and J are the number of basis knots for the mean and individual trajectory functions,

respectively, βjk′ is the k′ mean basis knot’s coefficient for the jth mean trajectory function,

Bk′ (t) is k′ basis knot for the mean trajectory function, ξijk′ is the k′ individual basis

knot’s coefficient for the ith individual’s jth individual trajectory function, and Bk′ (t) is the

k′ basis knot for the individual trajectory function. We assume that each jth set of individual

trajectory coefficients have a shared covariance-variance matrix, Σξj . Additionally, εijl ∼

N
(

0, σ2
Yj

)
and ξij and εij are independent.
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1.5.2 Survival Submodel

For the survival portion of the model, the survival times, Ti, have the following

model:

Ti ∼ λi (t|Xi,Zi) = λ0 (t) eX
T
i (t)γ+ZTi ζ ,

where λi (t|Xi,Zi) is the hazard function for the ith individual, λ0 (t) is the baseline haz-

ard function, γ is the coefficients for the longitudinal trajectory functions, Xi is the p-

dimensional vector of longitudinal trajectories for the ith individual, ζ is the coefficients for

the baseline covariates, Zi =



Zi1

Zi2

...

Ziq


is the baseline covariates for the ith individual where

there are q baseline covariates, and Zij is the jth baseline covariate for the ith individual

where j = 1, . . . , q. For the baseline hazard function λ0 (t), we used the following form:

λ0 (t) = eα0+α1t+
∑K
k=1 bk(t−κk)+ or

log λ0 (t) = η0 (t) = α0 + α1t+

K∑
k=1

bk (t− κk)+ ,

where (t− κk)+ ≡ max (0, (t− κk)) . In our spline model, we are going to treat the bk’s,

the coefficient parameters for each of the k knots where k = 1, . . . ,K, as random effects
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distributed as follows:

b =


b1

...

bK

 ∼ NK(0, σ2
bIK).

Our survival times, Ti, can be observed, left censored, right censored, or interval censored.

Additionally, they can be left and right truncated. We denoted observed and right censored

times by T ri and left censored times by T li . For truncation, we denote left truncated times

by Li and right truncated times by Ri.

1.5.3 Clustering Submodel

When there are clusters, the survival times, Ti, have the following model:

Ti ∼
∑C

c=1 vicλic (t|Xic,Zi) =
∑C

c=1 vicλ0 (t) eX
T
ic(t)γc+Z

T
i ζc ,

where λic (t|Xic,Zi) is the hazard function for the ith individual for cluster c, λ0 (t) is the

baseline hazard function, Xic is the p-dimensional vector of longitudinal trajectories for the

ith individual for cluster c, γc is the coefficients for the longitudinal trajectory functions for

cluster c, ζc is the coefficients for the baseline covariates for cluster c where c = 1, . . . , C

and C is the number of clusters.

The longitudinal part of the model, if it has clustering, has the following form:

Yijl =
∑C

c=1 vic (Xijc (tijl) + εijlc), where i = 1, . . . , n,

j = 1, . . . , p, l = 1, . . . ,mij , and c = 1, . . . , C.

Now Xijc (tijl) is the jth trajectory function for cluster c for the ith individual and tijl is the

lth observed time point for the ith individual’s jth trajectory. Additionally, n is the number

32



of individuals, p is the number of longitudinal trajectories, mij is the number of observed

time points for the ith individual’s jth trajectory.

Now,

vic =


1 if i ∈ c.

0 if i /∈ c.

Furthermore, Xic (t) =



Xi1c

Xi2c

...

Xipc


(t) and Xijc (t) = ψjc (t) +

∑J
k′=1 ξijck′Bk′ (t) where

ψjc (t) is the jth mean trajectory function for cluster c and is given by

ψjc (t) =
∑J

k′=1 βjck′Bk′ (t). Lastly, J and J are the number of basis knots for the mean

and individual trajectory functions, respectively, βjck′ is the k′ mean basis knot’s coefficient

for the jth mean trajectory function for cluster c, Bk′ (t) is k′ basis knot for the mean

trajectory function, ξijck′ is the k′ individual basis knot’s coefficient for the ith individual’s

jth individual trajectory function for cluster c, and Bk′ (t) is the k′ basis knot for the

individual trajectory function.
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1.5.4 Joint Model

The complete data likelihood for the joint model is:

L
(

Θ;T l,T r,L,R, δO, δR, δL, δI ,Z,Y ,V , ξ
)

=

n∏
i=1

C∏
c=1

{
ωc

(
λc (T ri |Xic,Zi) e

−Λc(T
r
i |Xic,Zi)

e−Λc(Li|Xic,Zi) − e−Λc(Ri|Xic,Zi)

)δOi ( e−Λc(T
r
i |Xic,Zi)

e−Λc(Li|Xic,Zi) − e−Λc(Ri|Xic,Zi)

)δRi

×

(
1− e−Λc(T li |Xic,Zi)

e−Λc(Li|Xic,Zi) − e−Λc(Ri|Xic,Zi)

)δLi (
e−Λc(T li |Xic,Zi) − e−Λc(T

r
i |Xic,Zi)

e−Λc(Li|Xic,Zi) − e−Λc(Ri|Xic,Zi)

)δIi

×
p∏
j=1

(
σ2
Yjc

)−mij2

e

(
−‖Y ij−Xijc‖2/2σ2

Yjc

)
det
(

Σξjc

)− 1
2

e−
ξTijΣ

−1
ξjc

ξij

2


vic

,

where Θ =
(
α0, α1, b, ωc,γc, ζc, σ

2
b ,σ

2
Y ,βjc,Σξjc

)
, c = 1, . . . , C, and j = 1, . . . , p. Now T li

and T ri are the left and right time to event values, respectively, Li and Ri are the left and

right truncation times, respectively,

δOi =


1 if Ti is observed.

0 otherwise.

, δRi =


1 if Ti is right censored.

0 otherwise.

,

δLi =


1 if Ti is left censored.

0 otherwise.

, δIi =


1 if Ti is interval censored.

0 otherwise.

,

and Λc (t|Xic,Zi) =
∫ t

0 λc (t|Xic,Zi) is the cumulative hazard function. Additionally,

λc (t|Xic,Zi) = λ0 (t) eX
T
icγc+Z

T
i ζc , where λ0 (t) is represented by a linear spline model.

The model is:

λ0 (t) = eα0+α1t+
∑K
k=1 bk(t−κk)+ ,

where K is the number of basis knots and length of vector b, κk is the kth basis knot, b is

the vector of bk’s, where bk is the coefficient for the kth basis knot, α0 is the intercept term,

and α1 is the coefficient for κ0 = 0. Lastly, γc is the coefficients for the time-dependent
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covariates, X, per cluster c, ζc is the coefficients for the baseline covariates, Z, per cluster

c, and Xic is the p-dimensional vector of longitudinal trajectory functions for individual i

for cluster c, c = 1, . . . , C. Note: (t− κk)+ ≡ max (0, (t− κk)) and when the time value is

observed, T li = T ri = Ti and thus T ri is used.

Additionally, since we now have clustering in this model, we have that ω =

(ω1, . . . , ωC) is the vector of cluster proportions, where C is the number of clusters, ωc

is the cluster proportion for cluster c, 0 ≤ ωc ≤ 1, and
∑C

c=1 ωc = 1. Now V is the n × C

matrix of indicator values were:

vic =


1 if i ∈ c.

0 if i /∈ c.
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Chapter 2

Survival Analysis with Time

Varying Covariates Under Various

Censoring & Truncation Schemes

2.1 Forming The Loglikelihood

The likelihood function is given by:

L
(
θ;σ2

b

)
=

n∏
i=1

(
λ (T ri |Xi,Zi) e

−Λ(T ri |Xi,Zi)

e−Λ(Li|Xi,Zi) − e−Λ(Ri|Xi,Zi)

)δOi (
e−Λ(T ri |Xi,Zi)

e−Λ(Li|Xi,Zi) − e−Λ(Ri|Xi,Zi)

)δRi

×

(
1− e−Λ(T li |Xi,Zi)

e−Λ(Li|Xi,Zi) − e−Λ(Ri|Xi,Zi)

)δLi (
e−Λ(T li |Xi,Zi) − e−Λ(T ri |Xi,Zi)

e−Λ(Li|Xi,Zi) − e−Λ(Ri|Xi,Zi)

)δIi
,

where θ =
(
αT , bT ,γT , ζT

)T
with α = (α0, α1)T , T li and T ri are the left and right time to

event values, respectively, Li and Ri are the left and right truncation times, respectively,
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δOi =


1 if Ti is observed.

0 otherwise.

, δRi =


1 if Ti is right censored.

0 otherwise.

,

δLi =


1 if Ti is left censored.

0 otherwise.

, δIi =


1 if Ti is interval censored.

0 otherwise.

,

and Λ (t|Xi,Zi) =
∫ t

0 λ (t|Xi,Zi) is the cumulative hazard function. Additionally,

λ (t|Xi,Zi) = λ0 (t) eX
T
i γ+ZTi ζ , where λ0 (t) is represented by a linear spline model. The

model is:

λ0 (t) = eα0+α1t+
∑K
k=1 bk(t−κk)+ ,

where K is the number of basis knots and length of vector b, κk is the kth basis knot, b is

the vector of bk’s, where bk is the coefficient for the kth basis knot, α0 is the intercept term,

and α1 is the coefficient for κ0 = 0. Lastly, γ is the coefficients for the time-dependent

covariates, X, and ζ is the coefficients for the baseline covariates, Z. Note: (t− κk)+ ≡

max (0, (t− κk)) and when the time value is observed, T li = T ri = Ti and thus T ri is used.

37



Now the loglikelihood is:

`0 =

n∑
i=1

[
log
(
λ0 (T ri ) eX

T
i (T ri )γ+ZTi ζ

)
δOi + log

(
e−Λ(T ri |Xi,Zi)

)
δOi+

log
(
e−Λ(T ri |Xi,Zi)

)
δRi + log

(
1− e−Λ(T li |Xi,Zi)

)
δLi+

log
(
e−Λ(T li |Xi,Zi) − e−Λ(T ri |Xi,Zi)

)
δIi−

log
(
e−Λ(Li|Xi,Zi) − e−Λ(Ri|Xi,Zi)

)
(δOi + δRi + δLi + δIi)

]
=

n∑
i=1

[
log (λ0 (T ri )) δOi +

(
XT

i (T ri )γ +ZT
i ζ
)
δOi − Λ (T ri |Xi,Zi) δOi−

Λ (T ri |Xi,Zi) δRi + log
(

1− e−Λ(T li |Xi,Zi)
)
δLi−

Λ
(
T li |Xi,Zi

)
δIi + log

(
1− eΛ(T li |Xi,Zi)−Λ(T ri |Xi,Zi)

)
δIi+

Λ (Li|Xi,Zi)− log
(

1− eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)
)]

=

n∑
i=1

[
η0 (T ri ) δOi +

(
XT

i (T ri )γ +ZT
i ζ
)
δOi − Λ (T ri |Xi,Zi) (δOi + δRi) +

log
(

1− e−Λ(T li |Xi,Zi)
)
δLi − Λ

(
T li |Xi,Zi

)
δIi+

log
(

1− eΛ(T li |Xi,Zi)−Λ(T ri |Xi,Zi)
)
δIi+

Λ (Li|Xi,Zi)− log
(

1− eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)
)]
,

where δOi + δRi + δLi + δIi = 1 for i = 1, . . . , n. Since we want to estimate

θ =
(
αT , bT ,γT , ζT

)T
, we will use the penalized loglikelihood, which is given by:

`p
(
θ;σ2

b

)
= `0

(
θ;σ2

b

)
− b

Tb

2σ2
b

,
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where this means that the variance, σ2
b , controls the amount of smoothing. Under the given

mixed model, the loglikelihood becomes:

`
((
αT ,γT , ζT

)T
;σ2

b

)
= −K

2
log σ2

b +

∫
`p
(
θ;σ2

b

)
db.

Since this is a K-dimensional intractable integral, we adapt a penalized

quasilikelihood (PQL) approach to approximate `
((
αT ,γT , ζT

)T
;σ2

b

)
giving:

`
(
θ̂;σ2

b

)
' −K

2
log σ2

b + `p

(
θ̂;σ2

b

)
.

The derivation and a brief explanation of PQL is given in Appendix B. In order to estimate

`
(
θ̂;σ2

b

)
, we must find Q and Q, where Q is the (2 +K + p+ q) × 1 vector of first-order

partial derivatives of `p
(
θ;σ2

b

)
and Q is the (2 +K + p+ q)×(2 +K + p+ q) matrix of the

second-order partial derivatives of `p
(
θ;σ2

b

)
. The first step to finding Q and Q is finding

the first and second partial derivatives of Λ (t|Xi,Zi).
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2.2 Λ (t|X i,Zi) & 1st Derivatives of Λ (t|X i,Zi)

We first decided to divide up the space by knot segments to integrate over

Λ (t|Xi,Zi). Therefore,

Λ (t|Xi,Zi) =

k∗t−1∑
k=0

∫ κk+1

κk

eα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γ+ZTi ζdu

+

∫ t

κk∗t

eα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γ+ZTi ζdu

= eZ
T
i ζ

k∗t−1∑
k=0

∫ κk+1

κk

eα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γdu

+ eZ
T
i ζ

∫ t

κk∗t

eα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γdu,

where κ0 = 0 and k∗t = max (k : κk < t, 1 ≤ k ≤ K).

The derivatives of Λ with respect to α0 and bj are given here. All the derivatives

are found in Section C.1 of the Appendix.

∂

∂α0
Λ (t|Xi,Zi) = Λ (t|Xi,Zi)

∂

∂bj
Λ (t|Xi,Zi) = eZ

T
i ζI (t > κj)

k∗t−1∑
k=0

∫ κk+1

κk

(u− κj)+ e
α0+α1u+

∑K
l=1 bl(u−κl)++XT

i (u)γdu

+ eZ
T
i ζI (t > κj)

∫ t

κk∗t

(u− κj)+ e
α0+α1u+

∑K
l=1 bl(u−κl)++XT

i (u)γdu,

where bj is the jth element of the coefficient vector for the knots where j = 1, . . . ,K. Since

the integrals do not have analytic solutions when the degree of XT
i (t) is greater than one,

we use Simpson’s Rule to integrate the derivatives.
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2.3 1st Derivatives of The Loglikelihood

Using the above results, we find the first derivatives of `p
(
θ;σ2

b

)
= `0− bT b

2σ2
b

, where

`0 =
∑n

i=1

[
η0 (T ri ) δOi +

(
XT

i (T ri )γ +ZT
i ζ
)
δOi − Λ (T ri |Xi,Zi) (δOi + δRi) +

log
(

1− e−Λ(T li |Xi,Zi)
)
δLi − Λ

(
T li |Xi,Zi

)
δIi+

log
(

1− eΛ(T li |Xi,Zi)−Λ(T ri |Xi,Zi)
)
δIi + Λ (Li|Xi,Zi)−

log
(
1− eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

)]
. The first derivative with respect to α0 is given here and

all the derivatives are found in Section C.2 of the Appendix.

∂

∂α0
`p
(
θ;σ2

b

)
=

∂

∂α0
`0
(
θ;σ2

b

)
=

n∑
i=1

[
δOi −

∂

∂α0
Λ (T ri |Xi,Zi) (δOi + δRi)

+
e−Λ(T li |Xi,Zi) ∂

∂α0
Λ
(
T li |Xi,Zi

)
1− e−Λ(T li |Xi,Zi)

δLi −
∂

∂α0
Λ
(
T li |Xi,Zi

)
δIi

−
eΛ(T li |Xi,Zi)−Λ(Tri |Xi,Zi)

(
∂
∂α0

Λ
(
T li |Xi,Zi

)
− ∂

∂α0
Λ (T ri |Xi,Zi)

)
1− eΛ(T li |Xi,Zi)−Λ(Tri |Xi,Zi)

δIi

+
∂

∂α0
Λ (Li|Xi,Zi)

+
eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

(
∂
∂α0

Λ (Li|Xi,Zi)− ∂
∂α0

Λ (Ri|Xi,Zi)
)

1− eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)


=

n∑
i=1

[
δOi −

∂

∂α0
Λ (T ri |Xi,Zi) (δOi + δRi) +

∂
∂α0

Λ
(
T li |Xi,Zi

)
eΛ(T li |Xi,Zi) − 1

δLi

− ∂

∂α0
Λ
(
T li |Xi,Zi

)
δIi −

(
∂
∂α0

Λ
(
T li |Xi,Zi

)
− ∂

∂α0
Λ (T ri |Xi,Zi)

)
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi) − 1

δIi

+
∂

∂α0
Λ (Li|Xi,Zi) +

(
∂
∂α0

Λ (Li|Xi,Zi)− ∂
∂α0

Λ (Ri|Xi,Zi)
)

eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

 .

The final equation for the derivative is better computationally and comes from multiplying

by a form of 1 on certain terms. For example, for the left censor term we multiplied by

e
Λ(Tli |Xi,Zi)

e
Λ(Tli |Xi,Zi)

.
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2.4 2nd Derivatives of Λ (t|X i,Zi)

The second derivatives of Λ (t|Xi,Zi) with respect to α1 are given here. All the

derivatives can be found in Section C.3 of the Appendix.

∂2

∂α2
1

Λ (t|Xi,Zi) = eZ
T
i ζ

k∗t−1∑
k=0

∫ κk+1

κk

u2eα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γdu

+ eZ
T
i ζ

∫ t

κk∗t

u2eα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γdu,

∂2

∂α1∂bj
Λ (t|Xi,Zi) = eZ

T
i ζ

k∗t−1∑
k=0

∫ κk+1

κk

u (u− κj)+ e
α0+α1u+

∑K
l=1 bl(u−κl)++XT

i (u)γdu

+ eZ
T
i ζ

∫ t

κk∗t

u (u− κj)+ e
α0+α1u+

∑K
l=1 bl(u−κl)++XT

i (u)γdu,

∂2

∂α1∂γj
Λ (t|Xi,Zi) = eZ

T
i ζ

k∗t−1∑
k=0

∫ κk+1

κk

uXij (u) eα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γdu

+ eZ
T
i ζ

∫ t

κk∗t

uXij (u) eα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γdu,

∂2

∂α1∂ζj
Λ (t|Xi,Zi) = Zije

ZTi ζ

k∗t−1∑
k=0

∫ κk+1

κk

ueα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γdu

+ Zije
ZTi ζ

∫ t

κk∗t

ueα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γdu.

Now, bj is the jth element of the coefficient vector for the baseline knots where j = 1, . . . ,K,

γj is the jth element of the coefficient vector for the trajectory functions where j = 1, . . . , p,

Xij (t) is the jth trajectory function for the ith individual at time t where j = 1, . . . , p, ζj

is the jth element of the covariate coefficient vector where j = 1, . . . , q, and Zij is the jth

element of the covariate vector for the ith individual where j = 1, . . . , q. Since again the
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integrals do not have analytic solutions when the degree of XT
i (t) is greater than one, we

use Simpson’s Rule to integrate the derivatives.

2.5 2nd Derivatives of the Loglikelihood

Using the above results, we find the second derivatives for `p
(
θ;σ2

b

)
= `0 − bT b

2σ2
b

,

where `0 =
∑n

i=1

[
η0 (T ri ) δOi +

(
XT

i (T ri )γ +ZT
i ζ
)
δOi − Λ (T ri |Xi,Zi) (δOi + δRi) +

log
(

1− e−Λ(T li |Xi,Zi)
)
δLi − Λ

(
T li |Xi,Zi

)
δIi + log

(
1− eΛ(T li |Xi,Zi)−Λ(T ri |Xi,Zi)

)
δIi+

Λ (Li|Xi,Zi)− log
(
1− eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

)]
. One of the the second derivatives with

respect to α0 is given here. All the second derivatives of the loglikelihood are found in
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Section C.4 of the Appendix.

∂2

∂α2
0

`p
(
θ;σ2

b

)
=

∂2

∂α2
0

`0
(
θ;σ2

b

)
=

n∑
i=1

[
− ∂2

∂α2
0

Λ (T ri |Xi,Zi) (δOi + δRi)

+

∂2

∂α2
0
Λ
(
T li |Xi,Zi

)
eΛ(T li |Xi,Zi) − 1

δLi −
eΛ(T li |Xi,Zi)

(
∂
∂α0

Λ
(
T li |Xi,Zi

))2

(
eΛ(T li |Xi,Zi) − 1

)2 δLi

− ∂2

∂α2
0

Λ
(
T li |Xi,Zi

)
δIi −

(
∂2

∂α2
0
Λ
(
T li |Xi,Zi

)
− ∂2

∂α2
0
Λ (T ri |Xi,Zi)

)
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi) − 1

δIi

−
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi)

(
∂
∂α0

Λ
(
T li |Xi,Zi

)
− ∂

∂α0
Λ (T ri |Xi,Zi)

)2

(
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi) − 1

)2 δIi

+
∂2

∂α2
0

Λ (Li|Xi,Zi) +

(
∂2

∂α2
0
Λ (Li|Xi,Zi)− ∂2

∂α2
0
Λ (Ri|Xi,Zi)

)
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

+
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi)

(
∂
∂α0

Λ (Li|Xi,Zi)− ∂
∂α0

Λ (Ri|Xi,Zi)
)2

(eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1)
2


=

n∑
i=1

[
− ∂2

∂α2
0

Λ (T ri |Xi,Zi) (δOi + δRi)

+

∂2

∂α2
0
Λ
(
T li |Xi,Zi

)
eΛ(T li |Xi,Zi) − 1

δLi −
e−Λ(T li |Xi,Zi)

(
∂
∂α0

Λ
(
T li |Xi,Zi

))2

(
1− e−Λ(T li |Xi,Zi)

)2 δLi

− ∂2

∂α2
0

Λ
(
T li |Xi,Zi

)
δIi −

(
∂2

∂α2
0
Λ
(
T li |Xi,Zi

)
− ∂2

∂α2
0
Λ (T ri |Xi,Zi)

)
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi) − 1

δIi

−
eΛ(T li |Xi,Zi)−Λ(Tri |Xi,Zi)

(
∂
∂α0

Λ
(
T li |Xi,Zi

)
− ∂

∂α0
Λ (T ri |Xi,Zi)

)2

(
1− eΛ(T li |Xi,Zi)−Λ(Tri |Xi,Zi)

)2 δIi

+
∂2

∂α2
0

Λ (Li|Xi,Zi) +

(
∂2

∂α2
0
Λ (Li|Xi,Zi)− ∂2

∂α2
0
Λ (Ri|Xi,Zi)

)
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

+
eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

(
∂
∂α0

Λ (Li|Xi,Zi)− ∂
∂α0

Λ (Ri|Xi,Zi)
)2

(1− eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi))
2

 .

The final equation is better computationally and comes from multiplying by a form of 1 on

certain terms. For example, for the second left censor term we multiplied by

(
e
−Λ(Tli |Xi,Zi)

e
−Λ(Tli |Xi,Zi)

)2

.
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2.6 Estimating the Smoothing Parameter

Since σ2
b controls the amount of smoothing, we can automatically select the smooth-

ness by using the marginal loglikelihood. Cai and Betensky (2003) stated that although a

restricted maximum likelihood (REML) is sought for estimating the variance component, it

is not well defined for a non-Gaussian mixed model. However, Harville (1974) showed that

the REML for Gaussian models is the same as the marginal likelihood when the regression

parameters are integrated with a flat prior. Therefore, we need to maximize the marginal

loglikelihood, given by:

`marg
(
σ2
b

)
= −K

2
log
(
σ2
b

)
+ log

∫
exp

[
`p
(
θ;σ2

b

)]
dθ.

We apply Laplace’s method to approximate `marg
(
σ2
b

)
, leading to:

`marg
(
σ2
b

)
' −K

2
log
(
σ2
b

)
+ `p

{
θ̂
(
σ2
b

)
;σ2

b

}
− 1

2
log
∣∣∣−Q{θ̂ (σ2

b

)
;σ2

b

}∣∣∣ ,
where θ̂

(
σ2
b

)
is the solution to Q

(
θ;σ2

b

)
= 0. Additionally, Q is the (2 +K + p+ q) ×

1 vector of first-order partial derivatives of `p
(
θ;σ2

b

)
and Q is the (2 +K + p+ q) ×

(2 +K + p+ q) matrix of the second-order partial derivatives of `p
(
θ;σ2

b

)
. By maximizing

the approximated marginal loglikelihood we obtain an estimate for σ2
b . We used Newton op-

timization to find the σ2
b that maximizes the marginal loglikelihood. The short and detailed

derivations of the marginal loglikelihood can be found in Appendix D. The derivations for

its first and second derivatives of the marginal loglikelihood can be found in Appendix E.
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Since an exhaustive method for trying every set of θ and every σ2
b is not feasible,

we decided to perform an iterative estimating between θ and σ2
b . The steps are:

1. Start with initial estimates of θ and σ2
b .

2. Conduct one iteration of Newton optimization for θ with fixed σ2
b .

3. With updated θ estimate, find the σ2
b that maximizes `marg

(
σ2
b

)
.

4. Repeat steps 2 and 3 until the difference between the previous σ2
b and current σ2

b is

less than a specific threshold.

5. If the initial estimates for θ are not good starting values, it can cause σ2
b to tend

towards 0. To stabilize the estimation, the number of iterations for θ are increased

from 1 to 10. From simulation experience, this change does not effect the results for

σ2
b .

2.7 Simulation Setting

2.7.1 Data Simulation Structure

The following structure is used for simulating data:

n # of individuals.

q # of baseline covariates.

p # of longitudinal trajectory functions.

f (t) The baseline hazard function.
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K The number of knots, in our case we used the min
(⌊

n
4

⌋
, 30
)

as in Cai and Betensky (2003).

κk’s The baseline knots where k = 1, . . . ,K. Chosen based on data and usually

spaced on unique quantiles of the survival times T li ’s, T
r
i ’s, and

T li+T
r
i

2 ’s.

α0 The intercept of the estimated baseline hazard function.

α1 The κ0 coefficient of the estimated baseline hazard function. Note: κ0 = 0.

bk’s Distributed NK(0, σ2
bIK) where k = 1, . . . ,K. They are the coefficients

of the (t− κk)+’s, k = 1, . . . ,K. Used in estimating the baseline

hazard function.

ζ The coefficients for the baseline covariates. Chosen by the user.

γ The coefficients for the longitudinal trajectory functions. Chosen by

the user.

Z The baseline covariate matrix that is n× q.

Xi (t) The set of p longitudinal trajectory functions for the ith individual.

Reminder that Xij (t) = ψj (t) +
∑J

k′=1 ξijk′Bk′ (t) where j = 1, . . . , p.
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Additionally, the jth mean trajectory function is given by

ψj (t) =
∑J

k′=1 βjk′Bk′ (t).

βj ’s The mean longitudinal basis knots’ coefficients.

ξij ’s Distributed NJ

(
µξj ,Σξj

)
where J is the number of individual

longitudinal basis knots and µξj and Σξj are mean and covariance-

variance matrix for the ξij ’s. For the simulation, since the trajectory

functions are all known, we decided to let the individual longitudinal

coefficients all have the same mean and covariance-variance matrix.

The covariance-variance matrix we decided on is:

Σξj = σ2
ξj



1 ρξj ρξj · · · ρξj

ρξj 1 ρξj · · · ρξj

...
...

... · · ·
...

ρξj ρξj ρξj · · · 1


for each j, where σ2

ξj
is the variance and ρξj is the correlation.
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2.7.2 Simulating Actual Times

To simulate the survival times, Ti, i = 1, . . . , n, we used the fact that S(t|Xi,Zi) =

e−Λ(t|Xi,Zi), where Λ (t|Xi,Zi) =
∫ t

0 λ (t). This method is similar to the one used by Brown,

Ibrahim, and DeGruttola (2005) to simulate their joint survival-longitudinal data. The

method is:

1. Simulate a random survival probability, s ∼ U(0, 1).

2. Use R’s Uniroot function to solve log (s) + Λ (t|Xi,Zi) for where the function is 0

along with using R’s Integrate function to integrate Λ (t|Xi,Zi) from 0 to the value

of t such that the above equation is true.

2.7.3 Simulation Study Setup

We conducted a simulation study where we performed 200 replicates for both

200 and 500 individuals. We simulated each replicate in R with a different seed from

i = 0, . . . , 199 and chose the following values for the inputs and parameters:

n 200 or 500.

q 2.

p 2.

f (t) (t−20)4

108 + 0.05.

K 30, since
⌊
n
4

⌋
> 30.
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κk’s Changed with each of the 200 replicates for each sample size n. We used

the unique quantiles of the survival times T li ’s, T
r
i ’s, and

T li+T
r
i

2 ’s.

α0 Estimated in each of the replicates.

α1 Estimated in each of the replicates.

bk’s Estimated in each of the replicates and 30 used since K = 30.

ζ The coefficients are 1.1 and 0.9.

γ The coefficients are 1 and 1.2.

Z The matrix that is n× 2 of the time independent covariates.

Each Zij ∼ Beta(2, 2) ∗ 4− 2 for i = 1, . . . , n and j = 1, 2.

Unlike a normal distribution, this beta only allows for values

between -2 and 2 and is still mound-shaped symmetric.

Xi (t) Is ψj (t) +
∑J

k′=1 ξijk′Bk′ (t) where J = J = 8 since we have 6

distinct knots at 0, 20, 40, 60, 80, and 100 and are using a

cubic B-spline. Additionally, the jth mean trajectory

function is given by ψj (t) =
∑J

k′=1 βjk′Bk′ (t).
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β


−1.41 −0.80 −0.25 −0.49 0.30 0.49 0.76 1.42

0.42 1.17 0.11 −0.29 −0.38 −0.32 −0.69 −1.21

.

ξij ’s Distributed NJ

(
µξj = 0,Σξj = 3I

)
.

This gave us survival times between 0 − 100 years old with baseline hazard de-

creasing until 20 and then increasing from then on. Given in Figures 2.1-2.2 are plots of

the survival times for n = 200 and n = 500 for one replicate.
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Figure 2.1: Plot of 200 survival times
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Figure 2.2: Plot of 500 survival times

2.7.4 Censoring Time’s Design and Values

We performed five different levels of censoring. They were 0% censored, 50%

censored, 75% censored, 90% censored, and 100% censored. We let T li and T ri be the left

51



and right time values, respectively, for the ith individual. We let Cl and Cr be the left and

right censoring times, respectively, for the data sets. For interval censored data, we set the

T li and T ri to be the floor and ceiling, respectively, of the observed time value. For instance,

if Ti = 2.4, we let T li = 2 and T ri = 3. To control the amount of censoring, we used a uniform

random variable, U, and set the threshold accordingly. We only allowed observed values

that were above Cl and below Cr. Therefore, we used U with the observed data and any

remaining times that were not right censored and left censored became interval censored.

For example, if we wanted 75% of the data censored, then we set the threshold for U < .25

and only chose times that were between Cl and Cr. Therefore, once the 25% randomly

selected times were found, the remaining times that were not greater than Cr and less than

Cl were interval censored to achieve 75% censoring. The design for the 75% is:

T li = T ri = Ti if (U < .25 & Cl < Ti & Cr > Ti)

T li = T ri = Cr if (Cr < Ti)

T li = T ri = Cl if (Cl > Ti)

T li = bTic , T ri = dTie otherwise.

In our simulation study, we set Cl = 1 and Cr = 75. This seemed to be realistic of the

human race.

2.7.5 Performing the Simulation Study

Given that we are assuming that the longitudinal trajectory functions are known,

we use the true trajectory function, Xij (t) = ψj (t) +
∑J

k′=1 ξijk′Bk′ (t). When conducting

the actual simulation study, we chose starting values that we believed would be reasonable

for α0, α1, bk’s, ζ’s, and γ’s and performed Newton optimization. However, even if poor
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starting values were chosen, the method finds the values that maximize the likelihood func-

tion. We used the method described above to find both the best estimate of σ2
b as well

as the best estimates for θ. The simulations with 200 individuals took under 10 minutes

per replicate and the simulations with 500 individuals took under 20 minutes per replicate.

This speed is probably due to the fact that all of the coding is done using Rcpp and all

functions are written in c++.
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2.8 Results

Parameter Simulation Results

n = 200 n = 500

pcens RBias ECP MESE ESE RBias ECP MESE ESE

0

γ1(1.0) 0.00 0.97 0.07 0.07 -0.01 0.94 0.05 0.04

γ2(1.2) 0.00 0.97 0.08 0.08 -0.02 0.95 0.05 0.05

ζ1(1.1) -0.01 0.92 0.10 0.10 -0.03 0.91 0.06 0.06

ζ2(0.9) -0.03 0.92 0.09 0.10 -0.03 0.93 0.06 0.06

50

γ1(1.0) 0.01 0.97 0.08 0.08 0.00 0.97 0.05 0.05

γ2(1.2) 0.01 0.94 0.09 0.10 0.00 0.96 0.06 0.06

ζ1(1.1) -0.01 0.95 0.11 0.11 -0.02 0.94 0.07 0.07

ζ2(0.9) -0.02 0.93 0.10 0.11 -0.02 0.95 0.06 0.06

75

γ1(1.0) 0.01 0.97 0.08 0.08 0.00 0.97 0.05 0.05

γ2(1.2) 0.01 0.95 0.09 0.10 0.00 0.96 0.06 0.06

ζ1(1.1) -0.01 0.95 0.11 0.11 -0.02 0.94 0.07 0.07

ζ2(0.9) -0.02 0.94 0.10 0.11 -0.02 0.95 0.06 0.06

90

γ1(1.0) 0.01 0.97 0.08 0.08 0.00 0.98 0.05 0.05

γ2(1.2) 0.01 0.94 0.09 0.10 0.00 0.96 0.06 0.06

ζ1(1.1) -0.01 0.96 0.11 0.11 -0.02 0.94 0.07 0.07

ζ2(0.9) -0.02 0.93 0.10 0.11 -0.02 0.95 0.06 0.06

100

γ1(1.0) 0.01 0.97 0.08 0.08 0.00 0.98 0.05 0.05

γ2(1.2) 0.01 0.94 0.09 0.10 0.00 0.95 0.06 0.06

ζ1(1.1) -0.01 0.96 0.11 0.11 -0.02 0.94 0.07 0.07

ζ2(0.9) -0.02 0.93 0.10 0.11 -0.02 0.95 0.06 0.06

Table 2.1: Parameter Results for Survival Analysis with Time Varying Covariates
Under Various Censoring & Truncation Schemes
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We see in Table 2.1 that for all the different levels of censoring, pcens, the results

show there is minimal relative bias (RBias), the empirical 95% coverage probabilities (ECPs)

are around 95%, and the mean estimated standard errors (MESEs) and empirical standard

errors (ESEs) have values that are close to each other. The mean estimated standard errors

and empirical standard errors decrease as the sample size increases. The formulas for RBias,

ECP, MESE, and ESE along with the derivation for the standard errors is given in F of the

Appendix.

σ2
b Simulation Results

n = 200 n = 500

pcens Average ESE Average ESE

0 0.04 0.02 0.04 0.02

50 0.06 0.02 0.05 0.01

75 0.06 0.02 0.05 0.02

90 0.06 0.02 0.05 0.01

100 0.06 0.02 0.05 0.02

Table 2.2: σ2
b Results for Survival Analysis with Time Varying Covariates
Under Various Censoring & Truncation Schemes

We can see in Table 2.2 that the value of σ2
b increases with censoring, meaning less

smoothing is needed. However, in both sample sizes and all 5 levels of censoring the values

of σ2
b are very close to 0. This means a large level of smoothing was required for the b’s.
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Chapter 3

Survival Analysis with Time

Varying Covariates Under Various

Censoring & Truncation Schemes

With Clustering

The likelihood, assuming that the longitudinal trajectories are completely known,

is:

L
(

Θ;T l,T r,L,R, δO, δR, δL, δI ,X,Z,V
)

=

n∏
i=1

C∏
c=1

ωc
(
λc (T ri |Xic,Zi) e

−Λc(Tri |Xic,Zi)

e−Λc(Li|Xic,Zi) − e−Λc(Ri|Xic,Zi)

)δOi (
e−Λc(Tri |Xic,Zi)

e−Λc(Li|Xic,Zi) − e−Λc(Ri|Xic,Zi)

)δRi

×

(
1− e−Λc(T li |Xic,Zi)

e−Λc(Li|Xic,Zi) − e−Λc(Ri|Xic,Zi)

)δLi (
e−Λc(T li |Xic,Zi) − e−Λc(Tri |Xic,Zi)

e−Λc(Li|Xic,Zi) − e−Λc(Ri|Xic,Zi)

)δIi
vic

,
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where Θ = (α0, α1, b, ωc,γc, ζc), c = 1, . . . , C, and j = 1, . . . , p. Now T li and T ri are the

left and right time to event values, respectively, Li and Ri are the left and right truncation

times, respectively,

δOi =


1 if Ti is observed.

0 otherwise.

, δRi =


1 if Ti is right censored.

0 otherwise.

,

δLi =


1 if Ti is left censored.

0 otherwise.

, δIi =


1 if Ti is interval censored.

0 otherwise.

,

and Λc (t|Xic,Zi) =
∫ t

0 λc (t|Xic,Zi) is the cumulative hazard function. Additionally,

λc (t|Xic,Zi) = λ0 (t) eX
T
icγc+Z

T
i ζc , where λ0 (t) is represented by a linear spline model.

The model is:

λ0 (t) = eα0+α1t+
∑K
k=1 bk(t−κk)+ ,

where K is the number of basis knots and length of vector b, κk is the kth basis knot, b is

the vector of bk’s, where bk is the coefficient for the kth basis knot, α0 is the intercept term,

and α1 is the coefficient for κ0 = 0. Lastly, γc is the coefficients for the time-dependent

covariates, X, per cluster c, ζc is the coefficients for the baseline covariates, Z, per cluster

c, and Xic is the p-dimensional vector of longitudinal trajectory functions for individual i

for cluster c, c = 1, . . . , C. Note: (t− κk)+ ≡ max (0, (t− κk)) and when the time value is

observed, T li = T ri = Ti and thus T ri is used.

Since we now have clustering in this model, we have that ω = (ω1, . . . , ωC) is the

vector of cluster proportions, where C is the number of clusters, ωc is the cluster proportion

for cluster c, 0 ≤ ωc ≤ 1, and
∑C

c=1 ωc = 1. Now V is the n× C matrix of indicator values
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where:

vic =


1 if i ∈ c.

0 if i /∈ c.

The loglikelihood is:

`
(

Θ;T l,T r,L,R, δO, δR, δL, δI ,Z,V
)

=

n∑
i=1

C∑
c=1

[vic log (ωc)

+vic log


(
λc (T ri |Xic,Zi) e

−Λc(Tri |Xic,Zi)

e−Λc(Li|Xic,Zi) − e−Λc(Ri|Xic,Zi)

)δOi (
e−Λc(Tri |Xic,Zi)

e−Λc(Li|Xic,Zi) − e−Λc(Ri|Xic,Zi)

)δRi

×

(
1− e−Λc(T li |Xic,Zi)

e−Λc(Li|Xic,Zi) − e−Λc(Ri|Xic,Zi)

)δLi (
e−Λc(T li |Xic,Zi) − e−Λc(Tri |Xic,Zi)

e−Λc(Li|Xic,Zi) − e−Λc(Ri|Xic,Zi)

)δIi
 .

3.1 EM Layout

In order to estimate the mixture survival models, we decided on using a version

of the expectation-maximization (EM) algorithm by Dempster et al. (1977) as discussed in

Naik et al. (2007). We denote `
(
Θ;T l,T r,L,R, δO, δR, δL, δI ,Z,V

)
as ` and we let

Sc (Θ) =

n∏
i=1

Sic (Θ) =

n∏
i=1

Sc
(
Θ;T li , T

r
i , Li, Ri, δOi , δRi , δLi , δIi ,Xic,Zi

)
=

n∏
i=1

(
λc (T ri |Xic,Zi) e

−Λc(T
r
i |Xic,Zi)

e−Λc(Li|Xic,Zi) − e−Λc(Ri|Xic,Zi)

)δOi ( e−Λc(T
r
i |Xic,Zi)

e−Λc(Li|Xic,Zi) − e−Λc(Ri|Xic,Zi)

)δRi

×

(
1− e−Λc(T li |Xic,Zi)

e−Λc(Li|Xic,Zi) − e−Λc(Ri|Xic,Zi)

)δLi (
e−Λc(T li |Xic,Zi) − e−Λc(T

r
i |Xic,Zi)

e−Λc(Li|Xic,Zi) − e−Λc(Ri|Xic,Zi)

)δIi

for ease of reading. We let Θ(m) =
(
α

(m)
0 , α

(m)
1 , b(m),γ

(m)
c , ζ

(m)
c , ω

(m)
c

)
where c = 1, . . . , C

be the estimates of the parameters of interest at the mth iteration. We let Q
(
Θ; Θ(m)

)
=

E
(
`|Θ(m),T l,T r,L,R, δO, δR, δL, δI ,Z

)
. Thus for the E-step, we obtain Q

(
Θ; Θ(m)

)
by

substituting vic with τic = E
[
vic|T li , T ri , Li, Ri, δOi , δRi , δLi , δIi ,Xi,Zi

]
. We find that τic for
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each iteration m is given by:

τ̂
(m)
ic =

ω
(m)
c Sic

(
Θ(m)

)∑C
c′=1 ω

(m)
c′ Sic′

(
Θ(m)

) .
In the M-step, unlike Naik et al. (2007) where each parameter had a closed-form solution,

the only closed-form solution we have is:

ω̂(m)
c =

∑n
i=1 τ

(m)
ic∑n

i=1

∑C
c′=1 τ

(m)
ic′

=

∑n
i=1 τ

(m)
ic

n
.

The derivations of these terms is given in Appendix G. To estimate the other parameters

of Θ, we again use Newton optimization as we did in Chapter 2 to estimate Q and Q.

Now though, we estimate Q and Q for each of the C clusters. The EM algorithm stops

once the value of log
∑C
c=1 ωcSc(Θ(m+1))∑C
c′=1 ωc′Sc′(Θ(m))

decreases below a pre-specified threshold. In order

to initialize the EM algorithm, τ
(0)
ic for each individual is initialized by partitioning (X,Z)

into C clusters using K-means clustering method, where X is the matrix of longitudinal

covariate values for all individuals at their survival times and Z is the baseline covariates

for all individuals.

3.2 1st and 2nd Derivatives of Loglikelihood

We again used the penalized loglikelihood. Therefore, the penalized loglikelihood

for a single cluster, c, is now written as `p,c
(
Θ;σ2

b

)
= `0,c − bT b

2σ2
b

, where

`0,c =
∑n

i=1

{
τic log (ωc) + τic

[
η0 (T ri ) δOi +

(
XT

ic (T ri )γc +ZT
i ζc
)
δOi−

Λc (T ri |Xic,Zi) (δOi + δRi) + log
(

1− e−Λc(T li |Xic,Zi)
)
δLi − Λc

(
T li |Xic,Zi

)
δIi+

log
(

1− eΛc(T li |Xic,Zi)−Λc(T ri |Xic,Zi)
)
δIi + Λc (Li|Xic,Zi)−

log
(
1− eΛc(Li|Xic,Zi)−Λc(Ri|Xic,Zi)

)]}
. The first derivative with respect to α0 is now mul-
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tiplied by τic for clustering as given below. The rest, as mentioned in Chapter 2 when there

was no clustering, are found in Section C.2 of the Appendix. The only update to them

would be multiplying by τic and using the parameters estimates for cluster c as given here:

∂

∂α0
`p,c

(
Θ;σ2

b

)
=

∂

∂α0
`0,c

(
Θ;σ2

b

)
=

n∑
i=1

τic

[
δOi −

∂

∂α0
Λc (T ri |Xic,Zi)

(
δOi + δRi

)
+

∂
∂α0

Λc
(
T li |Xic,Zi

)
eΛc(T

l
i |Xic,Zi) − 1

δLi

−
∂

∂α0
Λc
(
T li |Xic,Zi

)
δIi −

(
∂
∂α0

Λc
(
T li |Xic,Zi

)
− ∂
∂α0

Λc
(
T ri |Xic,Zi

))
eΛc(T

r
i |Xic,Zi)−Λc(T li |Xic,Zi) − 1

δIi

+
∂

∂α0
Λc (Li|Xic,Zi) +

(
∂
∂α0

Λc (Li|Xic,Zi)− ∂
∂α0

Λc (Ri|Xic,Zi)
)

eΛc(Ri|Xic,Zi)−Λc(Li|Xic,Zi) − 1

 .

One of the second derivatives with respect to α0 now multiplied by τic for clustering is

given below. The rest, as mentioned in Chapter 2 when there was no clustering, are found

in Section C.4 of the Appendix. The only update to them would be multiplying by τic and

using the parameters estimates for cluster c as given here:

∂2

∂α2
0

`p,c
(
Θ;σ2

b

)
=

∂2

∂α2
0

`0,c
(
Θ;σ2

b

)
=

n∑
i=1

τic

[
−
∂2

∂α2
0

Λc (T ri |Xic,Zi)
(
δOi + δRi

)

+

∂2

∂α2
0

Λc
(
T li |Xic,Zi

)
eΛc(T

l
i |Xic,Zi) − 1

δLi −
e
−Λc

(
T li |Xic,Zi

) (
∂
∂α0

Λc
(
T li |Xic,Zi

))2

(
1− e−Λc(T li |Xic,Zi)

)2
δLi

−
∂2

∂α2
0

Λc
(
T li |Xic,Zi

)
δIi −

(
∂2

∂α2
0

Λc
(
T li |Xic,Zi

)
− ∂2

∂α2
0

Λc
(
T ri |Xic,Zi

))
eΛc(T

r
i |Xic,Zi)−Λc(T li |Xic,Zi) − 1

δIi

−
e
Λc

(
T li |Xic,Zi

)
−Λc(Tri |Xic,Zi)

(
∂
∂α0

Λc
(
T li |Xic,Zi

)
− ∂
∂α0

Λc
(
T ri |Xic,Zi

))2

(
1− eΛc(T li |Xic,Zi)−Λc(Tri |Xic,Zi)

)2
δIi

+
∂2

∂α2
0

Λc (Li|Xic,Zi) +

(
∂2

∂α2
0

Λc (Li|Xic,Zi)− ∂2

∂α2
0

Λc (Ri|Xic,Zi)

)
eΛc(Ri|Xic,Zi)−Λc(Li|Xic,Zi) − 1

+
eΛc(Li|Xic,Zi)−Λc(Ri|Xic,Zi)

(
∂
∂α0

Λc (Li|Xic,Zi)− ∂
∂α0

Λc (Ri|Xic,Zi)
)2

(
1− eΛc(Li|Xic,Zi)−Λc(Ri|Xic,Zi)

)2
 .
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3.3 Unsupervised Clustering Methodology

Since we wanted to develop an unsupervised clustering methodology for our sur-

vival model that would both determine the correct number of clusters along with cor-

rect parameter estimates, we had to decide a threshold to stop conducting more clus-

ters. We decided to use the model selection criterions of AIC Akaike (1973), AIC =

−2 log
(∑C

c=1 ωcSc (Θ)
)

+ 2p, and BIC Schwarz (1978), BIC = −2 log
(∑C

c=1 ωcSc (Θ)
)

+

p log (n). However, since these are the expressions for one cluster, we used a version of the

modified form mentioned in Naik et al. (2007) to account for having C clusters and p vari-

ables per cluster by replacing p with d = (C − 1)+Cp. Since we know that BIC’s penalty is

harsher than AIC’s penalty, we thought that once the two models with additional clusters

have AIC values that are greater the current model, this would be the stopping criterion.

The methodology given current cluster number C is:

• If AICC < AICC+1 and AICC < AICC+2, then C is the optimal number of clusters.

• If not, keep increasing C until a pre-specified maximum number of clusters is reached.

We chose to check that AICC < AICC+1 and AICC < AICC+2 to decrease the chance of

stopping earlier by having the AIC for the model with C + 1 clusters have a slighly higher

AIC than C clusters due to chance when really more clusters is the better fitting model.

Since we have a baseline hazard function, λ0 (t), that is assumed the same for all

groups since it is for the population, then each cluster shares the coefficient estimates of the

baseline spline model. Since we still have to estimate the smoothing parameter σ2
b along

with the fact that we perform the clustering model chronologically, we decided to estimate
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σ2
b when n = 1 and use that estimate for all the other clusters. From simulation results,

the method seems to work well.

3.4 Simulation Setting

Note: Since the longitudinal part is assumed known, we only focused on clustering

in the survival model and assumed no clustering in the longitudinal part.

3.4.1 Data Simulation Structure

The following structure is used for simulating data:

n # of individuals.

q # of baseline covariates.

p # of longitudinal trajectory functions.

f (t) The baseline hazard function.

K The number of knots, in our case we used the min
(⌊

n
4

⌋
, 30
)

as in Cai and Betensky (2003).

κk’s The baseline knots where k = 1, . . . ,K. Chosen based on data and usually

spaced on unique quantiles of the survival times T li ’s, T
r
i ’s, and

T li+T
r
i

2 ’s.

α0 The intercept of the estimated baseline hazard function.
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α1 The κ0 coefficient of the estimated baseline hazard function. Note: κ0 = 0.

bk’s Distributed NK(0, σ2
bIK) where k = 1, . . . ,K. They are the coefficients

of the (t− κk)+’s, k = 1, . . . ,K. Used in estimating the baseline

hazard function.

C The number of clusters.

ζ The q × C matrix of coefficients for the baseline covariates.

Chosen by the user.

γ The p× C matrix of coefficients for the longitudinal trajectory functions.

Chosen by the user.

ω The vector of length C of cluster weights.

Z The baseline covariate matrix that is n× q.

Xi (t) The set of p longitudinal trajectory functions for the ith individual.

Reminder that Xij (t) = ψj (t) +
∑J

k′=1 ξijk′Bk′ (t) where j = 1, . . . , p.

Additionally, the jth mean trajectory function is given by

ψj (t) =
∑J

k′=1 βjk′Bk′ (t).

βj ’s The mean longitudinal basis knots’ coefficients.
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ξij ’s Distributed NJ

(
µξj ,Σξj

)
where J is the number of individual

longitudinal basis knots and µξj and Σξj are mean and covariance-

variance matrix for the ξij ’s. For the simulation, since the trajectory

functions are all known, we decided to let the individual longitudinal

coefficients all have the same mean and covariance-variance matrix.

The covariance-variance matrix we decided on is:

Σξj = σ2
ξj



1 ρξj ρξj · · · ρξj

ρξj 1 ρξj · · · ρξj

...
...

... · · ·
...

ρξj ρξj ρξj · · · 1


for each j, where σ2

ξj
is the variance and ρξj is the correlation.

3.4.2 Simulating Actual Times

To simulate the survival times, Ti, i = 1, . . . , n, we used the fact that S(t|Xi,Zi) =

e−Λ(t|Xi,Zi), where Λ (t|Xi,Zi) =
∫ t

0 λ (t). This method is similar to the one used by Brown,

Ibrahim, and DeGruttola (2005) to simulate their joint survival-longitudinal data.

The method is:

1. Simulate a random survival probability, s ∼ U(0, 1).
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2. Use R’s Uniroot function to solve log (s) + Λ (t|Xi,Zi) for where the function is 0

along with using R’s Integrate function to integrate Λ (t|Xi,Zi) from 0 to the value

of t such that the above equation is true.

To account for multiple clusters, we applied the following method to each cluster and then

took the proportional amount of each cluster that we were using to achieve the desired

dataset for each replicate. The method looks like:

1. Generate n samples from each cluster c, c = 1, . . . , C.

2. Using R’s rmultinom (1, n, prob = ω) function to select the appropriate proportion

per cluster.

3.4.3 Simulation Study Setup

We conducted a simulation study where we performed 200 replicates for both

300 and 900 individuals. We simulated each replicate in R with a different seed from

i = 0, . . . , 199 and chose the following values for the inputs and parameters:

n 300 or 900.

q 2.

p 2.

f (t) (t−20)4

108 + 0.05.

K 30, since
⌊
n
4

⌋
> 30.
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κk’s Changed with each of the 200 replicates for each sample size n. We used

the unique quantiles of the survival times T li ’s, T
r
i ’s, and

T li+T
r
i

2 ’s.

α0 Estimated in each of the replicates.

α1 Estimated in each of the replicates.

bk’s Estimated in each of the replicates and 30 used since K = 30.

C 2.

ζ


1.1 −1.1

0.9 −0.9

.

ω (0.6, 0.4).

γ


1.0 −1.0

1.2 −1.2

.

Z The matrix that is n× 2 of the time independent covariates.

Each Zij ∼ Beta(2, 2) ∗ 4− 2 for i = 1, . . . , n and j = 1, 2.

Unlike a normal distribution, this beta only allows for values

between -2 and 2 and is still mound-shaped symmetric.

Xi (t) Is ψj (t) +
∑J

k′=1 ξijk′Bk′ (t) where J = J = 8 since we have 6 distinct
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knots at 0, 20, 40, 60, 80, and 100 and are using a cubic B-spline.

Additionally, the jth mean trajectory function is given by

ψj (t) =
∑J

k′=1 βjk′Bk′ (t).

β


−1.41 −0.80 −0.25 −0.49 0.30 0.49 0.76 1.42

0.42 1.17 0.11 −0.29 −0.38 −0.32 −0.69 −1.21

.

ξij ’s Distributed NJ

(
µξj = 0,Σξj = 3I

)
.

This gave us survival times between 0 − 100 years old with baseline hazard de-

creasing until 20 and then increasing from then on. Given in Figures 3.1-3.4 are the survival

times for n = 300 and n = 900 along with color coding for clusters for one replicate.
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Figure 3.1: Plot of 300 survival times
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Figure 3.2: Plot of 900 survival times

0 50 100 150 200 250 300

0
20

40
60

80
10

0

Survival Times

Index

T
im

es

Figure 3.3: Plot of 300 survival times with
cluster color coding
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Figure 3.4: Plot of 900 survival times with
cluster color coding
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3.5 Results for 2 Clusters

Cluster Assignment for n = 300

Cluster Number

Criterion pcens 1 2 3 4 5 6

AIC

0 1 (0.52%) 146 (76.44%) 36 (18.85%) 6 (3.14%) 1 (0.52%) 1 (0.52%)

50 0 159 (83.68%) 27 (14.21%) 4 (2.11%) 0 0

75 0 154 (81.05%) 30 (15.79%) 6 (3.16%) 0 0

90 0 158 (83.16%) 24 (12.63%) 8 (4.21%) 0 0

100 0 156 (82.11%) 25 (13.16%) 9 (4.74%) 0 0

BIC

0 1 (0.52%) 178 (93.19%) 10 (5.24%) 2 (1.05%) 0 0

50 0 189 (99.47%) 1 (0.53%) 0 0 0

75 0 189 (99.47%) 1 (0.53%) 0 0 0

90 0 188 (98.95%) 2 (1.05%) 0 0 0

100 0 187 (98.42%) 3 (1.58%) 0 0 0

Table 3.1: Table of which cluster was chosen best with n = 300 by criterion. 2 clusters was the correct
cluster number.
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Cluster Assignment for n = 900

Cluster Number

Criterion pcens 1 2 3 4 5 6

AIC

0 0 157 (78.89%) 34 (17.09%) 5 (2.51%) 3 (1.51%) 0

50 0 151 (76.26%) 40 (20.20%) 7 (3.54%) 0 0

75 0 148 (74.75%) 44 (22.22%) 6 (3.03%) 0 0

90 0 153 (77.27%) 40 (20.20%) 5 (2.53%) 0 0

100 0 147 (74.24%) 46 (23.23%) 5 (2.53%) 0 0

BIC

0 0 190 (95.48%) 9 (4.52%) 0 0 0

50 0 196 (98.99%) 2 (1.01%) 0 0 0

75 0 197 (99.49%) 1 (0.51%) 0 0 0

90 0 198 (100%) 0 0 0 0

100 0 198 (100%) 0 0 0 0

Table 3.2: Table of which cluster was chosen best with n = 900 by criterion. 2 clusters was the correct
cluster number.

Specification Rate

n = 300 n = 900

pcens Ave ESE Ave ESE

0 0.91 0.05 0.92 0.01

50 0.92 0.02 0.92 0.01

75 0.92 0.01 0.92 0.01

90 0.92 0.02 0.92 0.01

100 0.91 0.04 0.92 0.01

Table 3.3: Table of average specification rate (AVE) along the empirical standard error (ESE) for n = 300
and n = 900.
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Cluster Proportions

n = 300 n = 900

ω 1 (.6) 2 (.4) 1 (.6) 2 (.4)

pcens RBias ESE RBias ESE RBias ESE RBias ESE

0 -0.01 0.03 0.01 0.03 0.00 0.02 0.00 0.02

50 -0.01 0.03 0.01 0.03 0.00 0.02 0.00 0.02

75 -0.01 0.03 0.01 0.03 0.00 0.02 0.00 0.02

90 -0.01 0.03 0.01 0.03 0.00 0.02 0.00 0.02

100 -0.01 0.04 0.01 0.04 0.00 0.02 0.00 0.02

Table 3.4: Table of relative bias (RBias) along the empirical standard error (ESE) for ω for n = 300 and
n = 900.

Simulation Results - 100% Observed

n = 300 n = 900

Cluster RBias ECP MESE ESE RBias ECP MESE ESE

1

γ1 (1.0) -0.04 0.86 0.07 0.13 -0.03 0.79 0.04 0.06

γ2 (1.2) -0.02 0.81 0.07 0.15 -0.02 0.73 0.04 0.06

ζ1 (1.1) -0.03 0.85 0.10 0.18 -0.04 0.80 0.05 0.07

ζ2 (0.9) -0.01 0.90 0.09 0.15 -0.04 0.84 0.05 0.06

2

γ1 (-1.0) -0.01 0.85 0.07 0.12 -0.01 0.77 0.04 0.05

γ2 (-1.2) -0.02 0.87 0.08 0.18 -0.02 0.85 0.05 0.06

ζ1 (-1.1) -0.02 0.87 0.12 0.19 -0.03 0.89 0.07 0.07

ζ2 (-0.9) -0.03 0.93 0.11 0.17 -0.03 0.90 0.06 0.07

Table 3.5: Table of relative bias (RBias), emperical coverage probabilities (ECP), mean estimated standard
errors (MESE), and the empirical standard error (ESE) for the parameter estimates per cluster with 100%

observed data for n = 300 and n = 900.
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Simulation Results - 50% Censored

n = 300 n = 900

Cluster RBias ECP MESE ESE RBias ECP MESE ESE

1

γ1 (1.0) 0.00 0.88 0.09 0.11 -0.01 0.88 0.05 0.06

γ2 (1.2) 0.02 0.83 0.08 0.11 0.00 0.79 0.04 0.07

ζ1 (1.1) 0.00 0.86 0.11 0.14 -0.02 0.83 0.06 0.08

ζ2 (0.9) 0.01 0.90 0.10 0.13 -0.02 0.83 0.06 0.08

2

γ1 (-1.0) 0.03 0.84 0.09 0.11 0.00 0.83 0.05 0.07

γ2 (-1.2) 0.02 0.86 0.11 0.15 -0.01 0.88 0.06 0.08

ζ1 (-1.1) 0.01 0.91 0.14 0.16 -0.03 0.90 0.08 0.09

ζ2 (-0.9) -0.01 0.90 0.13 0.16 -0.02 0.90 0.07 0.09

Table 3.6: Table of relative bias (RBias), emperical coverage probabilities (ECP), mean estimated standard
errors (MESE), and the empirical standard error (ESE) for the parameter estimates per cluster with 50%

censored data for n = 300 and n = 900.

Simulation Results - 75% Censored

n = 300 n = 900

Cluster RBias ECP MESE ESE RBias ECP MESE ESE

1

γ1 (1.0) 0.00 0.88 0.09 0.10 0.00 0.87 0.05 0.06

γ2 (1.2) 0.01 0.83 0.08 0.11 0.00 0.79 0.04 0.07

ζ1 (1.1) -0.01 0.87 0.11 0.14 -0.02 0.82 0.06 0.08

ζ2 (0.9) 0.01 0.92 0.10 0.12 -0.02 0.85 0.06 0.08

2

γ1 (-1.0) 0.03 0.86 0.09 0.11 0.00 0.81 0.05 0.07

γ2 (-1.2) 0.02 0.86 0.11 0.15 -0.01 0.88 0.06 0.08

ζ1 (-1.1) 0.01 0.92 0.14 0.17 -0.03 0.89 0.08 0.09

ζ2 (-0.9) -0.01 0.91 0.13 0.16 -0.02 0.91 0.07 0.09

Table 3.7: Table of relative bias (RBias), emperical coverage probabilities (ECP), mean estimated standard
errors (MESE), and the empirical standard error (ESE) for the parameter estimates per cluster with 75%

censored data for n = 300 and n = 900.
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Simulation Results - 90% Censored

n = 300 n = 900

Cluster RBias ECP MESE ESE RBias ECP MESE ESE

1

γ1 (1.0) 0.00 0.87 0.09 0.11 0.00 0.87 0.05 0.06

γ2 (1.2) 0.02 0.82 0.08 0.11 0.00 0.79 0.04 0.07

ζ1 (1.1) 0.00 0.86 0.11 0.14 -0.02 0.83 0.06 0.08

ζ2 (0.9) 0.01 0.92 0.10 0.12 -0.02 0.84 0.06 0.08

2

γ1 (-1.0) 0.03 0.86 0.09 0.11 0.00 0.82 0.05 0.07

γ2 (-1.2) 0.02 0.86 0.11 0.15 -0.01 0.87 0.06 0.08

ζ1 (-1.1) 0.01 0.91 0.14 0.16 -0.03 0.90 0.08 0.09

ζ2 (-0.9) -0.01 0.90 0.13 0.16 -0.02 0.91 0.07 0.09

Table 3.8: Table of relative bias (RBias), emperical coverage probabilities (ECP), mean estimated standard
errors (MESE), and the empirical standard error (ESE) for the parameter estimates per cluster with 90%

censored data for n = 300 and n = 900.

Simulation Results - 100% Censored

n = 300 n = 900

Cluster RBias ECP MESE ESE RBias ECP MESE ESE

1

γ1 (1.0) 0.00 0.87 0.09 0.11 0.00 0.87 0.05 0.06

γ2 (1.2) 0.01 0.79 0.08 0.14 0.00 0.81 0.04 0.06

ζ1 (1.1) -0.01 0.87 0.11 0.15 -0.02 0.83 0.06 0.08

ζ2 (0.9) 0.01 0.91 0.10 0.13 -0.02 0.83 0.06 0.08

2

γ1 (-1.0) 0.02 0.85 0.09 0.13 0.00 0.82 0.05 0.07

γ2 (-1.2) 0.02 0.86 0.11 0.19 -0.01 0.88 0.06 0.08

ζ1 (-1.1) 0.01 0.89 0.14 0.19 -0.03 0.90 0.08 0.09

ζ2 (-0.9) -0.02 0.89 0.13 0.17 -0.02 0.90 0.07 0.09

Table 3.9: Table of relative bias (RBias), emperical coverage probabilities (ECP), mean estimated standard
errors (MESE), and the empirical standard error (ESE) for the parameter estimates per cluster with 100%

censored data for n = 300 and n = 900.
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We ran 200 replicates and the results in Tables 3.1-3.9 are for the replicates that

converged, which was about 190 when n = 300 and about 198 when n = 900. We can see

from Table 3.1 and Table 3.2 that BIC outperforms AIC at identifying the correct number of

clusters and correctly identifies the right cluster greater than 93% of the time. Additionally,

the specification rate, which is the number of individuals correctly specified to their cluster

divided by the total number of individuals, is greater than 90%. We see that the cluster

proportions, ω, have very little relative bias (RBias) and small empirical standard errors

(MESEs) in both sample sizes.

In Tables 3.5 - 3.9 for all the different levels of censoring, pcens, the results show

there is minimal relative bias (RBias), the empirical 95% coverage probabilities (ECPs)

are lower than 95%, and the mean estimated standard errors (MESEs) are smaller than

the empirical standard errors (ESEs). The mean estimated standard errors and empirical

standard errors decrease as the sample size increases. We believe that the MESEs are

underestimated due to only having access to the observed data, as stated in Louis (1982),

and therefore causing the ECPs to be lower than 95%. The formulas for RBias, ECP,

MESE, ESE, and specification rate along with the derivation for the standard errors are

given in Appendix F.
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Chapter 4

R Package

4.1 Overview

All of the analysis performed in this dissertation was done using the package I am

currently writing using RStudio by RStudio Team (2020). I have developed the package

using Rcpp by Eddelbuettel and François (2011), Eddelbuettel (2013), and Eddelbuettel and

Balamuta (2017), along with Rcpp Armadillo Eddelbuettel and Sanderson (2014). This has

allowed me to use elements from R by R Core Team (2020) while gaining the speed of c++.

Due to the nature of this model and since I wrote the package using Rcpp, I had to write

most of the functions needed. For example, I wrote a B-spline function, Simpson’s Rule

function, and Newton optimization function. For functions I wrote that were similar to

functions existing in other well-know packages, I tested their results against R packages and

confirmed they were working correctly.

The speed of c++ is needed since there are multiple iterations when performing

Newton optimization and multiple iterations in the EM algorithm step, which needs to
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perform the Newton optimization each time. Therefore, using only R based functions would

be too slow due to the shear number of iterations.

4.2 Functions

My package has numerous functions that I had to write; however, there are cur-

rently only a few functions that I believe the user would want to use. I want to highlight

two of them.

The first one is the the function MSCEM2, which stands for Mixture Survival

Criterion Expectation-Maximization 2. The idea for the name comes from Naik et al.

(2007), since they called their criterion the Mixture Regression Criterion (MRC), and the

fact I used the expectation-maximization (EM) algorithm by Dempster et al. (1977). The

following is the function along with each input:

MSCEM2(NumericVector assigns, NumericMatrix z, NumericVector Tl,

NumericVector Tr, NumericVector delta_O, NumericVector delta_R,

NumericVector delta_L, NumericVector delta_I, NumericVector L,

NumericVector R, NumericMatrix knots_n_p_q,

NumericVector knots_p, NumericVector beta, NumericMatrix xi,

NumericMatrix p, NumericMatrix d, NumericVector knots_q,

NumericMatrix start_vals, double sigma_2_b = 0, int n_simp = 2,

int maxit_n = 50, int maxit_s = 100, int maxit_em = 50,

double rel_error_em = .1, double rel_error_n = .1,

double rel_error_s = .02, double stepsize = 1, int Case = 2,

int CaseX = 1).

The inputs are described below:

assigns The initial assignments of the individuals to each group.

z The n× q matrix of baseline covariates.
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Tl The vector of length n of left censored or the left interval censored

time points per individual, input vector of 0’s if not used.

Tr The vector of length n of observed, right censored, or the right

interval censored time points per individual, input vector of 0’s

if not used.

delta O Vector of length n of which individuals have observed times,

1 is yes and 0 is no.

delta R Vector of length n of which individuals have right censored times.

1 is yes and 0 is no.

delta L Vector of length n of which individuals have left censored times.

1 is yes and 0 is no.

delta I Vector of length n of which individuals have interval censored times.

1 is yes and 0 is no.

L Vector of length n of left truncation times, 0 is no left truncation.

R Vector of length n of right truncation times, 0 is no right truncation.

knots n p q The matrix of how many knots each of the longitudinal mean
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and individual trajectories should have. The first column is for each

mean trajectory and the second column is for each individual

trajectory.

knots p The vector of all the knots for the mean longitudinal trajectories.

beta The vector of all the coefficient values for the mean longitudinal

trajectories.

xi The matrix of all the coefficient values for the individual

trajectories. There are n rows, where each row is the coefficients

for all the longitudinal trajectories.

p The matrix stating the degree of the B-splines for the longitudinal

trajectories. The first column is for each mean trajectory and the

second column is for each individual trajectory.

d The matrix stating which derivative of the pth degree B-splines

for the longitudinal trajectories to use. The first column is for

each mean trajectory and the second column is for each

individual trajectory.
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knots q The vector of all the knots for the individual longitudinal

trajectories.

start vals User supplied set of starting values for the baseline hazard as well

as for the coefficents of interest. If no good initial estimates, then

input a matrix of 0’s whose rows equal the number of

coefficients in the model and whose columns are the number of

clusters sought.

sigma 2 b User specified value of the smoothing parameter σ2
b .

If 1 cluster, σ2
b will be estimated using the method stated in Chapter

2. If more than 1 cluster is specified, then the σ2
b given will be used.

If 0 is given, then σ2
b=0.2. σ2

b=0.2 is used since the value was stable

in the simulations and lead to reasonable answers even when σ2
b was

actually much smaller than that value.

n simp The number of segments to use for Simpson’s rule. Default is 2.

maxit n The maximum number of Newton optimization iterations when

finding the coefficient values. Default is 50.
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maxit s The maximum number of Newton optimization iterations when

estimating σ2
b in the 1 cluster scenario. Default is 100.

maxit em The maximum number of EM iterations. The default is 50.

rel error em The threshold for when the EM algorithm has converged.

It is the value such that log
(
Θ(m+1)

)
− log

(
Θ(m)

)
< rel error em.

Default is 0.1.

rel error n The threshold for when the Newton optimization algorithm for the

coefficents has converged. It is the value that every element in the

vector Q is less than if Case = 2. Default is 0.1.

rel error s The threshold for when the Newton optimization algorithm for σ2
b

has converged. It is the value such that the first-derivative of the

marginal loglikelihood is less than it if Case = 2. Default is 0.02.

stepsize The stepsize of the Newton optimization algorithm for both the

coefficents and σ2
b . Default is 1.

Case Case = 1 means that the Newton optimization algorithm uses the

rel error value to check relative error value between the previous and
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current values of the coefficients or σ2
b , depending on what is being

calculated. Case = 2 means that it checks that the 1st derivative is

less than the rel error values.

CaseX CaseX = 1 means that the clusters have the same baseline.

Case = 2, which means that baselines are allowed to differ between

clusters is still experimental.

With these inputs, the function returns the following outputs:

omega new The final values of ω.

omega old The previous round values of ω.

tau new The final values for τ .

tau old The previous round values for τ .

total old The previous round of loglikelihood value.

total new The current round of loglikelihood value.

count How many EM rounds it took to converge.

like old The previous round expected loglikelihood value.
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Had as check to make sure likelihood increased.

like new The current round expected loglikelihood value.

Had as check to make sure likelihood increased.

AICC The AIC value with the penalty using d

instead of p to account for clusters. Hence,

the extra C to correct for clusters.

BIC The BIC values with the penalty using d

instead of p to account for clusters.

X n The final values of the coefficients for all C clusters.

X n tuned old The previous round values of

the coefficients for all C clusters.

X n tuned Same as X n.

Var The variance for the coefficient parameters

for the C clusters. First column has the baseline

coefficients’ variances for all clusters.

sigma old The previous EM round’s σ2
b value.
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Only changes in 1 cluster setting.

sigma new The current EM round’s σ2
b value.

Only changes in 1 cluster setting.

This function runs relatively quickly. With n = 300 and 1 cluster, the code is

done in under 10 minutes. With multiple clusters, the function usually finishes in under 30

minutes.

The other function of interest to users is MSCC, which stands for Mixture Survival

Criterion Clustering. This is the function that uses MSCEM2 for each number of clusters,

C. The function stops once the AIC is greater for both C + 1 and C + 2 clusters than the

current C clusters or the maxclust value is reached, whichever occurs first. The function

starts each cluster number C with dividing the data into C initial assignments using K-

means clustering. The version we are currently using is from the stats package by R Core

Team (2020). The function with its inputs is given here:

MSCC(NumericMatrix z, NumericVector Tl, NumericVector Tr,

NumericVector delta_O, NumericVector delta_R,

NumericVector delta_L, NumericVector delta_I,

NumericVector L, NumericVector R,

NumericMatrix knots_n_p_q, NumericVector knots_p,

NumericVector beta, NumericMatrix xi, NumericMatrix p,

NumericMatrix d, NumericVector knots_q, int n_simp = 2,

int maxclust = 6, int maxit_n = 50, int maxit_s = 100,

int maxit_em = 50, double rel_error_em = .1,

double rel_error_n = .1, double rel_error_s = .02,

double stepsize = 1, int Case = 2, int CaseX = 1,

int CaseK = 1, int maxrestarts_km=10, int maxit_km = 10).

The description of the inputs that differ from MSCEM2 is given below:
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maxclust The maximum number of clusters allowed if the AIC threshold

is not met. Default is 6.

CaseK CaseK = 1 means that only the covariates are included when

performing K-means. CaseK = 2 means that the survival times

are also included. Default is CaseK = 1.

maxrestarts km The maximum number of restarts with different seeds for

K-means function. Default is 10, where as 1 the default

set by R Core Team (2020).

maxit km The maximum number of iterations allowed. Default is 10,

which is the same default set by R Core Team (2020).

With these inputs, the function returns the following outputs:

1, . . . , C + 2 Each value gives all of the information given in

MSCEM2 up to the (C + 2)th cluster values greater

than the Cth cluster with lowest AIC value.

AICC The list of all the AIC values for all clusters
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calculated.

BIC The list of all the BIC values for all clusters

calculated.

best number of clusters aicc The cluster whose AIC value is the lowest.

best number of clusters bic The cluster whose BIC value is the lowest.

This function with n = 300 takes multiple hours to run, due to the nature of

running MSCEM2, which takes about 30 minutes, multiple times. This runtime is due

to the fact that MSCC runs a minimum of 3 clusters, if the AIC is lowest of 1 cluster.

Otherwise, it runs even more clusters.

4.3 Comparison to Other Packages

There is a package in R called lcmm, which stands for latent class mixed models,

by Proust-Lima et al. (2019) based on Proust-Lima et al. (2017). The package is designed

to estimate latent class mixed models (LCMM), joint latent class mixed models (JLCM),

and mixed models with univariate and multivariate outcomes. They estimated all param-

eters using a maximum likelihood framework. The package also contains multiple post fit

functions.

The package includes 4 estimation functions:
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hlme Estimation of latent class linear mixed models.

lcmm Estimation of univariate latent process

(and latent class) mixed models.

multlcmm or mlcmm Estimation of multivariate latent process

(and latent class) mixed models.

Jointlcmm or jlcmm Estimation of joint latent class models for longitudinal

and time to event data.

Of these 4 functions, the first three are very similar and deal with univariate and mul-

tivariate mixed models with different link functions. However, the Jointlcmm function is

the one closest to my function MSCC. The Jointlcmm allows the user, given a specific

number of clusters, to specify a survival model with longitudinal and baseline covariates.

The function will return the values for the coefficients of the baseline hazard, the coeffi-

cient estimates for the longitudinal and baseline covariates, the coefficient estimates for the

fixed effects of the longitudinal model, and the variance-covariance matrix of the random

effects. The Jointlcmm function supports survival data that is observed, right censored, or

left truncated.

In my MSCC function, I allow the user to specify a survival model with longitudinal

and baseline covariates. Unlike Jointlcmm, the user currently has to specify the longitudinal

fixed and random effects since my package does not yet support joint modeling. My function

then outputs the coefficent estimates for the longitudinal and baseline covariates. Unlike

Jointlcmm, the user is allowed to provide data that is all forms of censoring and truncation.

Also, the user does not have to prespecify the number of latent classes; instead, the model

determines which number of clusters is optimal based on AIC or BIC depending on which

criteria the user wants to use.
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There is another package in R called JM, which stand for joint model, by Rizopou-

los (2010) based on the work in Rizopoulos et al. (2009). The function in there most similar

to MSCC is called jointModel. Given a survival model with normal longitudinal responses

and baseline covariates, the function returns the values for the coefficients of the baseline

hazard, the coefficient estimates for the longitudinal and baseline covariates, the coefficient

estimates for the fixed effects of the longitudinal model, and the variance-covariance matrix

of the random effects. The jointModel function supports survival data that is observed and

right censored.

The difference between jointModel and MSCC is that, since my package currently

does not support joint modeling, the user has to specify the longitudinal fixed and random

effects. However, the user is allowed to provide data that is all forms of censoring and

truncation. Additionally, jointModel does not perform clustering of any form where as

MSCC does unsupervised clustering.
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Chapter 5

SWAN Dataset

5.1 Data Description

We were interested in applying our model to the Study of Women’s Health Across

the Nation (SWAN) dataset. Sutton-Tyrrell et al. (2010) states that the goal of the study

“is to help scientists, health care providers, and women learn how mid-life experiences affect

health and quality of life during aging.” The study focused on women who were ages 40-55,

living in the following geographic areas with the research centers given in parentheses:

Ypsilanti and Inkster, MI (University of Michigan)

Boston, MA (Massachusetts General Hospital)

Chicago, IL (Rush Presbyterian-St. Luke’s Medical Center)

Alameda and Contra Costa County, CA (UC Davis and Kaiser Permanente)

Los Angeles, CA (UC Los Angeles)

Hackensack, NJ (Hackensack University Medical Center)

Pittsburgh, PA (University of Pittsburgh).
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Each woman had to speak either English, Japanese, Cantonese, and/or Spanish

and have the cognitive ability to consent to the study. They also had to belong to one of

the five targeted racial/ethnic groups, which included African American, Asian American

(Chinese and Japanese), Hispanic/Latino American, and White/Non-Hispanic American.

They started with 202,985 individuals. After screening, 34,985 were considered eligible for

the study. Of the 34,985 eligible, 16,065 completed the survey. Only 3,302 enrolled in the

longitudinal survey.

The part of the study we are looking at ranges from 1996-2008 where each member

was suppose to be tested 10 times. Even though 3,302 enrolled, only 2,245 completed their

tenth visit. The study is still ongoing and is now conducting visits 15 and 16 for those in

the original cohort. Furthermore, they have started new cohorts with each funding round.

The study contains three different data sets. One contains the cognitive scores and

time-variant variables, another time-invariant variables, and the last dataset has nutrition

variables. Complete detail of all variables is provided in Sutton-Tyrrell et al. (2010). The

cognitive and time-variant variables include the following:

COGDAY The day the cognitive function tests were taken. They were only

taken on visits 4 and 6-10 if they were even taken.

IMED Immediate recall of story. There were 12 ideas and the sum of

the number of ideas they can recall after 5 seconds is the

IMED score.

DELAY Delayed recall of story. Same as above except that they asked

a few moments later instead of seconds.

DIGIT Number of correct responses to 12 questions which asks for

subjects to say certain numbers backwards.
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The next 3 terms require a little background. They all refer to the Symbol Digit

Modalities Test (SDMT), which is a test for detecting cognitive impairment and takes about

5 minutes to administer. It is meant to catch brain damage and/or cognitive functional

changes over time. The test consists of giving an individual a reference key where numbers

have certain geometric shapes associated with them. The individual then has 90 seconds

to pair a set of given numbers with the geometric shapes and can give responses either in

written or oral form. There are 110 such questions per exam. Table 5.1 is the beginning of

what a SDMT test would look like. An example test form is given in Langdon et al. (2011).

Example SDMT Test

KEY

♥
∫

α ∞ 4 F � ♣ ♦

1 2 3 4 5 6 7 8 9

∫
F ♥ ♣ ♦ α �

∫
♣

Table 5.1: Example Symbol Digit Modalities Test (SDMT)

However, this strictly gives the raw score. The test itself does not come with a

specified cutoff for mental impairment. What is considered a low score is dependent on the

condition of the individual and the study. For instance, the opening sentence of Greenslade

and Pinot de Moira (2016) states “The SDMT manual does not provide Standard Scores.”

Therefore, the UK decided on the following formula as the criteria, which is widely used by

educational statisticians. However, Greenslade and Pinot de Moira (2016) states that other

fields should check the validity of the formula for their area of work. The method is:

1. Take the SDMT and substract the mean given for each age group.
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2. Divide by the standard deviation given for each age group.

3. Multiply by 15.

4. Add 100.

5. Round up or down to get standard score.

Greenslade and Pinot de Moira (2016) states that the mean and standard deviation

for each age in the UK is available and included the mean scores per age group. The focus of

their document was on supporting special needs in schools. The SDMT test is also used for

checking cognitive impairment in Multiple Sclerosis (MS) patients. In Sonder et al. (2014),

the article is comparing multiple mental cognitive tests to determine which works best at

assessing MS patients.

With this background on SDMT, here are the remaining cognitive variables:

SDMTCOR The number correct (0− 110) for the Symbol Digit Modalities

Test.

SDMTATM The number attempted (0− 110) for the Symbol Digit

Modalities Test.

SDMT (# correct (0− 110) /# attempted (0− 110)) ∗ 12.

COGSCORE IMED+DELAY+DIGIT+SDMT.

GLBSCORE Average of z scores of IMED, DELAY, DIGIT, and SDMT.

The time-variant variables included were BMI, both diastolic and systolic blood

pressure, pulse, three different hormone measures, and four different cardiovascular mea-

sures, like total cholesterol and glucose. These variables could be taken every visit but may

not have. The study also contained 12 time-invariant variables including age, occupation,
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race, current religious preference, and smoking status. Lastly, the study contained 35 nu-

tritional variables such as alpha carotene, Animal Zinc, and B1 which were taken on visits

0, 5, 9 if they were taken.

Histograms of SDMTCOR, SDMT, COGSCORE, COGSCORE Percentile, and

GLBSCORE are in given in Figures 5.1-5.2.
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Figure 5.1: SDMTCOR, SDMT, COGSCORE, and COGSCORE divided by 48
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Figure 5.2: GLBSCORE variable for all individuals for all tests

5.2 Data Setup and Reasoning

From the SWAN dataset, we removed any time points with missing values across

all variables of interest. Additionally, for the longitudinal variables in our analysis, we only

used individuals with at least 4 longitudinal measures. This left 2,643 individuals in our

analysis where 753 were African-American, 234 were Chinese, 258 were Japanese, 1,245 were

White Non-Hispanic, and 153 were Hispanic. Since there is no set threshold for cognitive

impairment when using SDMT, we used the SDMT values given by the variable SDMT in

the SWAN dataset as the score received from the test. Additionally, we did not find any

literature about what are acceptable values for people not already suffering some sort of

disease or impaired mental state as in the cohort from the SWAN dataset. Therefore, we

decided to use values less than 9 out of 12 as our cutoff, since that would be the equivalent of

a 75% on an exam. In order to structure the data in a survival analysis setting, we decided
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that the first time an individual’s SDMT score was below 9, that would be considered

a failure. Using this criteria, we ended up with 2,510 right censored individuals, 52 left

censored individuals, and 81 interval censored individuals.

The longitudinal variables we used were diastolic blood pressure (DIABP) and sys-

tolic blood pressure (SYSBP). In an article on the Johns Hopkins Medicine (2020) website,

it states that having too high of systolic blood pressure can hurt the vessels in the brain

increasing the chance of Alzheimer’s disease. Both McLeod (2019) in an article on The

Conversation and Johns Hopkins Medicine (2020) in an article on their website state that

having too low of diastolic blood pressure can increase the chance of dementia due to the

fact that low diastolic blood pressure means blood is not being pushed through the body

strong enough and therefore the brain is not receiving enough oxygenated blood.

The baseline covariates we used were the ones labeled RACE and HOUSEHL.

On the Alzheimer’s Association (2020) website, it states that older Latinos and African-

Americans are one-and-a-half and twice, respectively, as likely to get Alzheimer’s diesease

as older whites, and therefore we included race. HOUSEHL was a variable stating whether

or not the woman lived alone. In Desai et al. (2020), it states that living alone increases the

risk of dementia by approximately 30% and therefore we included the variable HOUSEHL.

5.3 Data Analysis

The variables we included in our analysis were:

ID The identification number given the woman when entering the study.
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COGYEAR This was the variable COGDAY, which was the day since entering

the study the cognitive function tests were taken, divided by 365.

VISITS Which visit number the variable was recorded on.

SDMT (#correct on SDMT (0− 110) /#attempted on SDMT (0− 110)) ∗ 12.

DIABP Diastolic blood pressure measurements.

SYSBP Systolic blood pressure measurements.

RACE Coded 1-5 for the 5 races included in the study where

1 was African-American, 2 was Chinese, 3 was Japanese,

4 was White Non-Hispanic, and 5 was Hispanic. We coded it

as an indicator variable where 0 was Latino or African-American

and 1 was Chinese, Japanese, and White Non-Hispanic.

HOUSEHL Coded where 1 means the person lives alone and 2 means

she lives with others. We coded it as an indicator variable

where 0 means she lives alone and 1 means she lives with others.

Once we had decided on the variables and their coding scheme, we normalized

the values of the variables DIABP and SYSBP. Since these are longitudinal covariates, we
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decided to treat them as B-splines. We had 3 knots for both the mean trajectory as well as

the individual trajectories for each of the splines at times 0, 6, and 12 since the maximum

time value was 11.48. We decided to let the mean trajectory be a cubic spline and therefore

it has 5 coefficients. We decided that the individual trajectories should be linear splines.

We did not believe higher order splines seem reasonable, since we are requiring a minimum

number of longitudinal measures per individual of 4. Therefore each individual’s trajectory

function has 3 coefficients. We then used the R package lme4 to estimate the mean and

longitudinal coefficients. Using these estimates, along with the survival times and baseline

covariates, we found the optimal number of clusters and coefficient values.

5.4 Results

Given in Table 5.12 is the AIC and BIC values per cluster.

Cluster AIC Value BIC Value

1 1353.88 1377.40

2 1352.12 1405.04

3 1357.03 1439.34

4 1368.95 1480.66

Table 5.12: Cluster Number, AIC Value, and BIC Value
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Since the lowest AIC value of 1352.12 occurs with 2 clusters, the method checks

that both cluster’s 3 and 4 have AIC values greater than 2 before is quits making more

clusters. In Table 5.13, the values for ω and σ2
b for the best clusters are given.

AIC BIC

Best # of Clusters ω σ2
b Best # of Clusters ω σ2

b

2

0.56 0.06 1 1.0 0.06

0.44 0.06

Table 5.13: Best cluster ω and σ2
b values by AIC and BIC

Since n = 2, 643, the penalty on BIC is quite large. Therefore, we decided to use

the AIC criterion for the optimal number of clusters, which was 2. The coefficient values

with their standard errors for the 2 clusters can be seen in Table 5.14.

Variable Cluster 1 Cluster 2

DIABP -0.95 (0.26) 0.36 (0.22)

SYSBP 0.69 (0.22) -0.20 (0.20)

RACE 0.82 (0.37) -5.43 (1.12)

HOUSEHL -0.04 (0.42) 2.52 (0.14)

Table 5.14: Coefficient values and standard errors for the 2 clusters
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Cluster 2 contains 87 individuals; however, 4 individuals have probabilities of

being in the cluster between 0.50 and 0.51 and are not very representative of the rest of the

group. 3 of the 4 are right censored and 1 is left censored. The remaining 83 individuals

are either African American or Hispanic as they have 0 for RACE. They also all have 1

for the variable HOUSEHL meaning all the individuals live with at least one other person.

The survival times are all either left or interval censored, with 35 being left censored and

48 being interval censored. In cluster 1, 16 are left censored and 33 are interval censored.

Of the 81 individuals who are left or interval censored, 80 are either Chinese, Japanese,

or White Non-Hispanic as their indicator values are 1 for the variable RACE. Most of the

women live with at least one other person as the value for HOUSEHL is 1, but some do

not. Right censored individuals had probabilities of being in cluster 1 of 0.67 with median

value of 0.55. For cluster 2, all three individuals where below 0.51.
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Chapter 6

Future Work

6.1 Short-Term Future Work

We are currently looking at accurately estimating the variance as we believe it is

currently under estimated. We have looked at Louis (1982), but the covariance-variance

matrices for smaller sample sizes have not always been positive-definite. We are now cur-

rently looking at implementing the technique in Meng and Rubin (1991). Additionally, we

are working on expanding this model to work in a joint modeling setting. We decided to

use an MCEM framework for our joint survival-longitudinal model with clustering.

For the package, I am currently working on making the joint model functional. I

have been able to get the MCE-step running, and part of the M-step working. However,

I am still working getting the rest of the M-step running. Our goal is to apply this joint

model to the Study of Women’s Health Across the Nation (SWAN) dataset described above.

The theory is given below.
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6.2 Current MCEM Work

The complete data likelihood for the joint model is:

L
(

Θ;T l,T r,L,R, δO, δR, δL, δI ,Z,Y ,V , ξ
)

=

n∏
i=1

C∏
c=1

{
ωc

(
λc (T ri |Xic,Zi) e

−Λc(T
r
i |Xic,Zi)

e−Λc(Li|Xic,Zi) − e−Λc(Ri|Xic,Zi)

)δOi ( e−Λc(T
r
i |Xic,Zi)

e−Λc(Li|Xic,Zi) − e−Λc(Ri|Xic,Zi)

)δRi

×

(
1− e−Λc(T li |Xic,Zi)

e−Λc(Li|Xic,Zi) − e−Λc(Ri|Xic,Zi)

)δLi (
e−Λc(T li |Xic,Zi) − e−Λc(T

r
i |Xic,Zi)

e−Λc(Li|Xic,Zi) − e−Λc(Ri|Xic,Zi)

)δIi

×
p∏
j=1

(
σ2
Yjc

)−mij2

e

(
−‖Y ij−Xijc‖2/2σ2

Yjc

)
det
(

Σξjc

)− 1
2

e−
ξTijΣ

−1
ξjc

ξij

2


vic

,

where Θ =
(
α0, α1, b, ωc,γc, ζc, σ

2
b ,σ

2
Y ,βjc,Σξjc

)
, c = 1, . . . , C, and j = 1, . . . , p.

In the joint model, along with the terms to estimate in the survival model with

clustering, we have to estimate the C × p matrix of error variances, σ2
Y , each of the p

covariance-variance matrices for the C clusters, Σξjc, and each individual’s Xic and Xijc.

Now in order to estimate Xic and Xijc, we have to estimate the mean trajectory coefficients

for the longitudinal covariates per cluster, βjc, along with each individual’s individual trajec-

tory coefficients, ξij , where j = 1, . . . , p and c = 1, . . . , C. Since the ξi individual trajectory

coefficients are random effects, then they are latent variables like the cluster membership,

τ i, for i = 1, . . . , n. We chose to use the Monte Carlo Expectation-Maximization (MCEM)

algorithm to estimate the parameters as in Huang et al. (2014).

6.2.1 Overview of MCEM Methodology

The overview of the MCEM methodology is as follows:
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1. Given that the complete data likelihood has the above form, we take take the loglike-

lihood. Therefore, `
(
Θ;T l,T r,L,R, δO, δR, δL, δI ,Z,Y ,V , ξ

)
=

log
{
L
(
Θ;T l,T r,L,R, δO, δR, δL, δI ,Z,Y ,V , ξ

)}
. From now on, we will write the

loglikelihood as ` (Θ;V , ξ) or ` (Θ; τ , ξ), depending on if the cluster assignment is

known or not, for ease of reading.

2. Now, Q (Θ|Θprev) =
∑n

i=1E
[
`i
(
Θ;T li , T

r
i , Li, Ri, δOi , δRi , δLi , δIi ,Zi,Y i, τ i, ξi

)
|

T li , T
r
i , Li, Ri, δOi , δRi , δLi , δIi ,Zi,Y i,Θprev

]
. Therefore, Q is the expected

loglikelihood and from now on we write Q (Θ|Θprev) =
∑n

i=1E [`i (Θ; τ i, ξi) |Θprev],

for ease of reading.

3. We approximate Q (Θ|Θprev) by its Monte Carlo estimate,

Q̂ (Θ|Θprev) =
1

R

R∑
r=1

n∑
i=1

`i

(
Θ; τ

(r)
i , ξ

(r)
i

)
,

where R is the number of Monte Carlo replicates and both τ
(r)
i and ξ

(r)
i are samples

from the conditional distribution[
τ

(r)
i , ξ

(r)
i |T li , T ri , Li, Ri, δOi , δRi , δLi , δIi ,Zi,Y i,Θprev

]
.

4. Since this distribution does not have a closed form, we use a Gibbs sampler incorpo-

rated with a Metropolis-Hastings step.

5. In the M-step, we need to maximize Q̂ (Θ|Θprev), where

Θ =
(
α0, α1, b, ωc,γc, ζc, σ

2
b ,σ

2
Y ,βjc,Σξjc

)
, c = 1, . . . , C, and j = 1, . . . , p.
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6. Now, Q̂ (Θ|Θprev) can be factored into the following way:

Q̂ (Θ|Θprev) =
1

R

R∑
r=1

n∑
i=1

C∑
c=1

τ
(r)
ic log (ωc)

+
1

R

R∑
r=1

n∑
i=1

C∑
c=1

τ
(r)
ic log

[
fc
(
T li , T

r
i , Li, Ri, δOi , δRi , δLi , δIi ,Zi|ξ

(r)
i ,Θprev

)]
+

1

R

R∑
r=1

n∑
i=1

C∑
c=1

τ
(r)
ic

p∑
j=1

log
[
fc
(
Y ij |ξ(r)

ij ,Θprev

)]

+
1

R

R∑
r=1

n∑
i=1

C∑
c=1

τ
(r)
ic

p∑
j=1

log
[
fc
(
ξ

(r)
ij |Θprev

)]
,

where the three density functions per cluster c are defined as:

(a) The survival submodel is denoted by:

fc
(
T li , T

r
i , Li, Ri, δOi , δRi , δLi , δIi ,Zi|ξi,Θprev

)
=(

λc (T ri |Xic,Zi) e
−Λc(Tri |Xic,Zi)

e−Λc(Li|Xic,Zi) − e−Λc(Ri|Xic,Zi)

)δOi (
e−Λc(Tri |Xic,Zi)

e−Λc(Li|Xic,Zi) − e−Λc(Ri|Xic,Zi)

)δRi

×

(
1− e−Λc(T li |Xic,Zi)

e−Λc(Li|Xic,Zi) − e−Λc(Ri|Xic,Zi)

)δLi (
e−Λc(T li |Xic,Zi) − e−Λc(Tri |Xic,Zi)

e−Λc(Li|Xic,Zi) − e−Λc(Ri|Xic,Zi)

)δIi
.

(b) The longitudinal submodel is denoted by

fc
(
Y ij |ξij ,Θprev

)
=
(
σ2
Yjc

)−nij
2
e

(
−‖Y ij−Xijc‖2/2σ2

Yjc

)
, for j = 1, . . . , p.

(c) The random effects density is given by

fc
(
ξij |Θprev

)
= det

(
Σξjc

)− 1
2
e−

ξTijΣ−1
ξjc

ξij

2 , for j = 1, . . . , p.

However, the survival and longitudinal densities share β′jcs, and therefore we cannot

maximize them separately. In order to estimate the parameters from Θ, we decided

to use Newton optimization, which involves finding Q and Q of the loglikelihood as

before, but they are now augmented in order to also estimate β′jcs. In addition, we

must also estimate σ2
Y and Σξjc, j = 1, . . . , p and c = 1, . . . , C.

102



6.2.2 Detailed Description of MCEM Methodology

E-Step Methodology

The E-Step Methodology for r = 1, . . . , R per individual, i, i = 1, . . . , n is:

1. The marginal distribution of τ i is τ i ∼Multinomial [1, (ω1,prev, . . . , ωC,prev)] .

2. For τ
(r+1)
i , we have that [τ i|Θprev] ∼Multinomial [1, (ω̃i1, . . . , ω̃iC)] where

ω̃ic =
ωc,prevAc

(
ξ

(r)
1 , . . . , ξ

(r)
p ,Θprev

)
∑C

c′=1 ωc′,prevAc′
(
ξ

(r)
1 , . . . , ξ

(r)
p ,Θprev

) .

Now, Ac

(
ξ

(r)
1 , . . . , ξ

(r)
p ,Θprev

)
equals:

Ac

(
ξ

(r)
1 , . . . , ξ(r)

p ,Θprev

)
=fc

(
T li , T

r
i , Li, Ri, δOi , δRi , δLi , δIi ,Zi|ξi,Θprev

)
×

p∏
j=1

fc
(
Y ij |ξij ,Θprev

)
fc
(
ξij |Θprev

)
.

3. Since there can be p different ξij ’s that we have to estimate, we update each set

separately, holding the other ones fixed. We use the updated values from the ξij ’s

already updated when estimating the current one. For a specific ξij , we have that

f
(
ξij |T li , T ri , Li, Ri, δOi , δRi , δLi , δIi ,Zi,Y i, τ

(r+1)
i ,Θprev

)
∝

f
(
T li , T

r
i , Li, Ri, δOi , δRi , δLi , δIi ,Zi|ξi, τ

(r+1)
i ,Θprev

)
f
(
Y i|ξi, τ

(r+1)
i ,Θprev

)
f
(
ξij |τ

(r+1)
i ,Θprev

)
.
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Since this function does not have a closed form, we use a Metropolis-Hastings inde-

pendence sampler. We sample ξ∗ij from f
(
ξij |τ

(r+1)
i ,Θprev

)
, which is multivariate

normal, Nnij

(
0,Σξijc,prev

)
. Since ξi stands for all p longitudinal individual trajec-

tory coefficients for an individual, ξ∗i and ξ
(r)
i means that only the current ξij that is

being updated is changing while all the other ξ′ijs are fixed. Therefore, the acceptance

ratio becomes:

f
(
ξ∗ij |T li , T ri , Li, Ri, δOi , δRi , δLi , δIi ,Zi,Y i, τ

(r+1)
i ,Θprev

)
f
(
ξ

(r)
ij |τ

(r+1)
i ,Θprev

)
f
(
ξ

(r)
ij |T li , T ri , Li, Ri, δOi , δRi , δLi , δIi ,Zi,Y i, τ

(r+1)
i ,Θprev

)
f
(
ξ∗ij |τ

(r+1)
i ,Θprev

) =

f
(
T li , T

r
i , Li, Ri, δOi , δRi , δLi , δIi ,Zi|ξ

∗
i , τ

(r+1)
i ,Θprev

)
f
(
Y i|ξ∗i , τ

(r+1)
i ,Θprev

)
f
(
T li , T

r
i , Li, Ri, δOi , δRi , δLi , δIi ,Zi|ξ

(r)
i , τ

(r+1)
i ,Θprev

)
f
(
Y i|ξ(r)

i , τ
(r+1)
i ,Θprev

)
×
f
(
ξ∗ij |τ

(r+1)
i ,Θprev

)
f
(
ξ

(r)
ij |τ

(r+1)
i ,Θprev

)
f
(
ξ

(r)
ij |τ

(r+1)
i ,Θprev

)
f
(
ξ∗ij |τ

(r+1)
i ,Θprev

) =

f
(
T li , T

r
i , Li, Ri, δOi , δRi , δLi , δIi ,Zi|ξ

∗
i , τ

(r+1)
i ,Θprev

)
f
(
Y i|ξ∗i , τ

(r+1)
i ,Θprev

)
f
(
T li , T

r
i , Li, Ri, δOi , δRi , δLi , δIi ,Zi|ξ

(r)
i , τ

(r+1)
i ,Θprev

)
f
(
Y i|ξ(r)

i , τ
(r+1)
i ,Θprev

) .

The three density functions are defined as follows:

(a) The survival submodel is denoted by:

f
(
T li , T

r
i , Li, Ri, δOi , δRi , δLi , δIi ,Zi|ξi, τ

(r+1)
i ,Θprev

)
=

C∏
c=1

[
fc

(
T li , T

r
i , Li, Ri, δOi , δRi , δLi , δIi ,Zi|ξi,Θprev

)]τ (r+1)
ic

.

(b) The longitudinal submodel is denoted by

f
(
Y i|ξi, τ

(r+1)
i ,Θprev

)
=
∏C
c=1

[∏p
j=1 fc

(
Y ij |ξij ,Θprev

)]τ (r+1)
ic

.

(c) The random effects density is given by

f
(
ξij |τ

(r+1)
i ,Θprev

)
=
∏C
c=1

[
fc
(
ξij |Θprev

)]τ (r+1)
ic for j = 1, . . . , p.
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We set ξ
(r+1)
ij = ξ∗ij with probability

αprob = min

{
1,

f
(
T li ,T

r
i ,Li,Ri,δOi ,δRi ,δLi ,δIi ,Zi|ξ

∗
i ,τ

(r+1)
i ,Θprev

)
f
(
Y i|ξ∗i ,τ

(r+1)
i ,Θprev

)
f
(
T li ,T

r
i ,Li,Ri,δOi ,δRi ,δLi ,δIi ,Zi|ξ

(r)
i ,τ

(r+1)
i ,Θprev

)
f
(
Y i|ξ

(r)
i ,τ

(r+1)
i ,Θprev

)
}

and ξ
(r+1)
ij = ξ

(r)
ij otherwise. We write it as:

ξ
(r+1)
ij =


ξ∗ij with probability αprob.

ξ
(r)
ij otherwise.

M-Step Methodology

The M-Step Methodology for r = 1, . . . , R for maximizing Q̂ (Θ|Θprev), where we

need to find the estimates of Θ =
(
α0, α1, b, ωc,γc, ζc, σ

2
b ,σ

2
Y ,βjc,Σξjc

)
, c = 1, . . . , C, and

j = 1, . . . , p is:

1. We find that the estimate for ωc is:

ω̂c =

R∑
r=1

n∑
i=1

τ
(r)
ic

nR
for c = 1, . . . , C.

2. We find that the estimate for σ2
Yjc

is:

σ̂2
Yjc =

∑R
r=1

∑n
i=1 τ

(r)
ic ‖Y ij −X(r)

ijc‖2∑R
r=1

∑n
i=1 τ

(r)
ic mij

.

3. We find that the estimate for Σξjc is:

Σ̂ξjc =

∑R
r=1

∑n
i=1 τ

(r)
ic

(
ξ

(r)
ij ξ

T (r)
ij

)
∑R

r=1

∑n
i=1 τ

(r)
ic

.
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4. Derivations for the estimates of σ2
Yjc

and Σξjc are found in Appendix I. The remaining

terms of Θ are found using Newton optimization and thus we must estimate Q and

Q per cluster c, c = 1, . . . , C. We will only being looking at a single cluster to

demonstrate estimating both Q and Q. Since we have shown how to estimate most

of the parameters of Θ before, we only demonstrate here how to find one of first and

second derivatives of βjk′ to account for the joint model. All of the derivatives of

Λ (t|Xi,Zi) and Q̂p (Θ|Θprev) with respect to βjk′ are found in Appendix H. The

rest of the terms are estimated as found in Chapter 3 except for now they take into

account the R replicates.

5. The 1st derivative of Λ (t|Xi,Zi) with respect to βjk′ , k
′ = 1, . . . , J is:

∂

∂βjk′
Λ (t|Xi,Zi) =eZ

T
i ζ

k∗t−1∑
k=0

∫ κk+1

κk

γjBjk′ (u) eα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γdu

+ eZ
T
i ζ

∫ t

κk∗t

γjBjk′ (u) eα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γdu.

6. The 2nd derivative of Λ (t|Xi,Zi) with respect to βjk′ , k
′ = 1, . . . , J is:

∂

∂βjk′∂βj′k′′
Λ (t|Xi,Zi) =eZ

T
i ζ

k∗t−1∑
k=0

∫ κk+1

κk

γjBjk′ (u) γj′Bj′k′′ (u) eα0+α1u+
∑K
l=1 bl(u−κl)++XTi (u)γdu

+ eZ
T
i ζ

∫ t

κk∗t

γjBjk′ (u) γj′Bj′k′′ (u) eα0+α1u+
∑K
l=1 bl(u−κl)++XTi (u)γdu.
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7. The first derivative of Q̂p (Θ|Θprev),with respect to βjk′c is:

∂

∂βjk′c
Q̂p (Θ|Θprev) =

1

R

n∑
i=1

R∑
r=1

τ
(r)
ic

B
T

jk′

(
Y ij −X(r)

ijc

)
σ2
Yjc

+
1

R

R∑
r=1

∂

∂βjk′c
`(r)p,c

(
θ;σ2

b

)
=

n∑
i=1

B
T

jk′
(
Y ij −Xijc

)
σ2
Yjc

+
1

R

R∑
r=1

∂

∂βjk′c
`(r)p,c

(
θ;σ2

b

)
,

where Qp is Q now taking into account the penalized survival likelihood and

`
(r)
p,c

(
θ;σ2

b

)
is the penalized survival likelihood as stated in Chapter 3 now taking into

account the R replicates of τ
(r)
ic and ξ

(r)
ij . Now X

(r)
ijc (t) = ψjc (t) +

∑J
k′=1 ξ

(r)
ijk′Bk′ (t),

where ψjc (t) is the jth mean trajectory function for cluster c and is given by ψjc (t) =∑J
k′=1 βjk′cBk′ (t). Thus, only ξij depends on r and in the last line we get Xijc (t) =∑J
k′=1 βjk′cBk′ (t) +

∑J
k′=1 ξijk′Bk′ (t), where ξijk′ =

∑R
r=1 ξ

(r)
ijk′ . Note: R in these

formulas is the replicates per individual i that occur in cluster c. Thus R per individual

i per cluster c, which we denote by Ric, in practice is calculated by Ric =
∑C

c=1 τ
(r)
ic .

The first derivative of `p,c
(
θ;σ2

b

)
with respect to βjk′c is:

∂

∂βjk′c
`p,c

(
θ;σ2

b

)
=

∂

∂βjk′
`0,c

(
θ;σ2

b

)

=
n∑
i=1

τ
(r)
ic

(γjBjk′ (T ri )
)
δOi −

∂

∂βjk′c
Λc
(
T ri |X

(r)
ic ,Zi

) (
δOi + δRi

)
+

∂
∂βjk′c

Λc
(
T li |X

(r)
ic ,Zi

)
e
Λc

(
T li |X

(r)
ic ,Zi

)
− 1

δLi

−
∂

∂βjk′c
Λc
(
T li |X

(r)
ic ,Zi

)
δIi −

(
∂

∂βjk′c
Λc
(
T li |X

(r)
ic ,Zi

)
− ∂
∂βjk′c

Λc
(
T ri |X

(r)
ic ,Zi

))
e
Λc

(
Tri |X

(r)
ic ,Zi

)
−Λc

(
T li |X

(r)
ic ,Zi

)
− 1

δIi

+
∂

∂βjk′c
Λc
(
Li|X

(r)
ic ,Zi

)
+

(
∂

∂βjk′c
Λc
(
Li|X

(r)
ic ,Zi

)
− ∂
∂βjk′c

Λc
(
Ri|X

(r)
ic ,Zi

))
e
Λc

(
Ri|X

(r)
ic ,Zi

)
−Λc

(
Li|X

(r)
ic ,Zi

)
− 1

 .

8. The second derivative of Q̂p (Θ|Θprev) with respect to βjk′c and βj′k′′c is:

∂

∂βjk′c∂βj′k′′c
Q̂p (Θ|Θprev) =

1

R

n∑
i=1

R∑
r=1

−τ (r)
ic

B
T
jk′Bj′k′′

σ2
Yj

+
1

R

R∑
r=1

∂

∂βjk′c∂βj′k′′c
`p,c

(
θ;σ2

b

)
=

n∑
i=1

−
B
T
jk′Bj′k′′

σ2
Yj

+
1

R

R∑
r=1

∂

∂βjk′c∂βj′k′′c
`p,c

(
θ;σ2

b

)
,
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where the second derivative of `p
(
θ;σ2

b

)
with respect to βjk′c and βj′k′′c is:

∂2

∂βjk′c∂βj′k′′c
`p,c

(
θ;σ2

b

)
=

∂2

∂βjk′c∂βj′k′′c
`0,c

(
θ;σ2

b

)

=
n∑
i=1

− ∂2

∂βjk′c∂βj′k′′c
Λc
(
T ri |X

(r)
ic ,Zi

) (
δOi + δRi

)
+

∂2

∂βjk′c∂βj′k′′c
Λc
(
T li |X

(r)
ic ,Zi

)
e
Λc

(
T li |X

(r)
ic ,Zi

)
− 1

δLi

−
e
−Λc

(
T li |X

(r)
ic ,Zi

)
∂

∂βjk′c
Λc
(
T li |X

(r)
ic ,Zi

)
∂

∂βj′k′′c
Λc
(
T li |X

(r)
ic ,Zi

)
(

1− e−Λ(T li |Xi,Zi)
)2

δLi

−
∂2

∂βjk′c∂βj′k′′c
Λc
(
T li |X

(r)
ic ,Zi

)
δIi

−

(
∂2

∂βjk′c∂βj′k′′c
Λc
(
T li |X

(r)
ic ,Zi

)
− ∂2

∂βjk′c∂βj′k′′c
Λc
(
T ri |X

(r)
ic ,Zi

))
e
Λc

(
Tri |X

(r)
ic ,Zi

)
−Λc

(
T li |X

(r)
ic ,Zi

)
−1

δIi

−
e
Λc

(
T li |X

(r)
ic ,Zi

)
−Λc

(
Tri |X

(r)
ic ,Zi

) (
∂

∂βjk′c
Λc
(
T li |X

(r)
ic ,Zi

)
− ∂
∂βjk′c

Λc
(
T ri |X

(r)
ic ,Zi

))
(

1− eΛc
(
T li |X

(r)
ic ,Zi

)
−Λc

(
Tri |X

(r)
ic ,Zi

))2

×
(

∂

∂βj′k′′c
Λc
(
T li |X

(r)
ic ,Zi

)
−

∂

∂βj′k′′c
Λc
(
T ri |X

(r)
ic ,Zi

))
δIi

+
∂2

∂βjk′c∂βj′k′′c
Λc
(
Li|X

(r)
ic ,Zi

)

+

(
∂2

∂βjk′c∂βj′k′′c
Λc
(
Li|X

(r)
ic ,Zi

)
− ∂2

∂βjk′c∂βj′k′′c
Λc
(
Ri|X

(r)
ic ,Zi

))
e
Λc

(
Ri|X

(r)
ic ,Zi

)
−Λc

(
Li|X

(r)
ic ,Zi

)
− 1

+

e
Λc

(
Li|X

(r)
ic ,Zi

)
−Λc

(
Ri|X

(r)
ic ,Zi

) (
∂

∂βjk′c
Λc
(
Li|X

(r)
ic ,Zi

)
− ∂
∂βjk′c

Λc
(
Ri|X

(r)
ic ,Zi

))
(

1− eΛc
(
Li|X

(r)
ic ,Zi

)
−Λc

(
Ri|X

(r)
ic ,Zi

))2

×
(

∂

∂βj′k′′c
Λc
(
Li|X

(r)
ic ,Zi

)
−

∂

∂βj′k′′c
Λc
(
Ri|X

(r)
ic ,Zi

))]
.

9. Thus, Qc = 1
R

∑n
i=1

∑R
r=1Q

(r)
ic and Qc = 1

R

∑n
i=1

∑R
r=1 Q

(r)
ic .

10. We continue the process until maxj

(
Θcurr,j−Θprev,j

Θprev,j+δ1

)
< δ2, where j is indexing for all

terms in Θ. As stated in Huang et al. (2014), they used δ1 = 0.001 and δ2 = 0.005 as

recommended in Booth and Hobert (1999).

In Figures 6.1-6.3, we provide trace plots for one individual’s Gibbs Sampler for

τ i and the Metropolis-Hastings independence sampler within a Gibbs Sampler of the first
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element of two ξij ’s of dimension three where there are two clusters. We plotted every 100th

from a run of 100,000 iterations.
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Figure 6.1: Plot of every 100th iteration of τic.
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Figure 6.2: Plot of every 100th iteration of
the 1st element of 1st ξij .
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Figure 6.3: Plot of every 100th iteration of
the 1st element of 2nd ξij .

We can see that τ i is not mixing between the two clusters, but both of the ξij ’s

are mixing well.

6.3 Long-Term Future Work

Long term, once the package performs the joint survival-longitudinal model, I

would like to add flexibility to the package to allow time-dependent inputs other than just

longitudinal variables represented as B-splines. I would also like to add the ability to plot
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outputs of the data. For instance, I would like to have a plot of the fitted time values vs. the

actual time values as is common in regression settings. Additionally, I would like to add the

ability to perform clustering strictly in the longitudinal submodel as I have in the survival

submodel. Since time is a factor, we may optimize the package by multi-threading it. This

would probably be conducted using RcppParallel by Allaire et al. (2020) and further usage

of RcppArmadillo.

In terms of theory, we are looking at adding that cluster membership could be

affected by the individual’s covariates. It would probably be modeled by logistic regression.

However, estimating these parameters along with all the other parameters we are estimating

may not be easily accomplished.
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P., Hartung, h.-p., Krupp, L., Penner, I., Reder, A., and Benedict, R. (2011). Recom-
mendations for a brief international cognitive assessment for multiple sclerosis (bicams).
Multiple sclerosis (Houndmills, Basingstoke, England), 18:891–8.

Laplace, P. S. (1986). Memoir on the probability of the causes of events. Statistical Science,
1(3):364–378.

Louis, T. A. (1982). Finding the observed information matrix when using theEMAlgorithm.
Journal of the Royal Statistical Society: Series B (Methodological), 44(2):226–233.

McLeod, K. (2019). Low blood pressure could be a culprit in dementia, studies suggest.
Electronic. Accessed:December 30, 2020.

Meng, X.-L. and Rubin, D. B. (1991). Using EM to obtain asymptotic variance-
covariance matrices: The SEM algorithm. Journal of the American Statistical Asso-
ciation, 86(416):899–909.

Naik, P. A., Shi, P., and Tsai, C.-L. (2007). Extending the akaike information criterion to
mixture regression models. Journal of the American Statistical Association, 102(477):244–
254.

112



Proust-Lima, C., Philipps, V., Diakite, A., and Liquet, B. (2019). lcmm: Extended Mixed
Models Using Latent Classes and Latent Processes. R package version: 1.8.1.

Proust-Lima, C., Philipps, V., and Liquet, B. (2017). Estimation of extended mixed models
using latent classes and latent processes: The R package lcmm. Journal of Statistical
Software, 78(2):1–56.

R Core Team (2020). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria.

Rice, J. A. and Wu, C. O. (2001). Nonparametric mixed effects models for unequally
sampled noisy curves. Biometrics, 57(1):253–259.

Rizopoulos, D. (2010). JM: An R package for the joint modelling of longitudinal and time-
to-event data. Journal of Statistical Software, 35(9):1–33.

Rizopoulos, D., Verbeke, G., and Lesaffre, E. (2009). Fully exponential laplace approxi-
mations for the joint modelling of survival and longitudinal data. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 71(3):637–654.

RStudio Team (2020). RStudio: Integrated Development Environment for R. RStudio,
PBC., Boston, MA.

Ruppert, D., Wand, M. P., and Carroll, R. J. (2003). Semiparametric Regression. Num-
ber 12. Cambridge University Press.

Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics,
6(2):461–464.

Sonder, J. M., Burggraaff, J., Knol, D. L., Polman, C. H., and Uitdehaag, B. M. (2014).
Comparing long-term results of pasat and sdmt scores in relation to neuropsychological
testing in multiple sclerosis. Multiple Sclerosis Journal, 20(4):481–488.

Stewart, J. (2008). Calculus Early Transcendentals Sixth Edition. Thomson Brooks/Cole,
6 edition.

Sutton-Tyrrell, K., Selzer, F., Sowers, MaryFran, R. (Mary Frances Roy), Neer, R., Powell,
L., Gold, E. B., Greendale, G., Weiss, G., Matthews, K. A., and McKinlay, S. (2010).
Study of women’s health across the nation (swan): Baseline dataset, [united states],
1996-1997.

113



Appendix A

Terms

The following is the list of terms used throughout the dissertation organized by

submodel, starting with survival, then longitudinal, and ending with cluster specific terms.

The list is broken into terms used for the group and at the individual level.

A.1 Survival Model

This is the list of the terms used at the group level:

T l Vector of left survival time points.

T r Vector of right survival time points.

L Vector of left truncation time points.

R Vector of right truncation time points.

δO Vector of indicators for which time points are observed.
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δR Vector of indicators for which time points are right censored.

δL Vector of indicators for which time points are left censored.

δI Vector of indicators for which time points are interval censored.

α0 Intercept term for baseline hazard function.

α1 Coefficient for κ0.

α Vector of α0 and α1.

b Vector of baseline hazard spline coefficients.

γ Matrix or vector of coefficients for time-dependent covariates.

X Matrix of longitudinal covariates.

ζ Matrix or vector of coefficient for baseline covariates.

Z Matrix of baseline covariates.

θ Vector of parameters for survival model.

σ2
b Variance of baseline hazard spline coefficients.

λ0 (t) Baseline hazard function at generic time point, t.

λ (t|Xi,Zi) Hazard function at generic time point, t.

Λ (t|Xi,Zi) Cumulative hazard function generic time point, t.

115



`0 The survival loglikelihood without penalty term.

`p The survival penalized loglikelihood.

This is the list of the terms used at the individual level:

T li The left survival time point for individual i.

T ri The right survival time point for individual i.

Li The left truncation time point for individual i.

Ri The right truncation time point for individual i.

δOi The indicator for individual i for whether or not

the time point is observed.

δRi The indicator for individual i for whether or not

the time point is right censored.

δLi The indicator for individual i for whether or not

the time point is left censored.

δIi The indicator for individual i for whether or not

the time point is interval censored.
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Zi Vector of baseline covariates for individual i.

Xi Vector of longitudinal covariates for individual i for all

longitudinal trajectories given a specific time.

λ0 (T ri ) Baseline hazard function at time point T ri .

λ
(
T li |Xi,Zi

)
Hazard function at time point T li .

λ (T ri |Xi,Zi) Hazard function at time point T ri .

Λ
(
T li |Xi,Zi

)
Cumulative hazard function at time point T li .

Λ (T ri |Xi,Zi) Cumulative hazard function at time point T ri .

Λ (Li|Xi,Zi) Cumulative hazard function at time point Li.

Λ (Ri|Xi,Zi) Cumulative hazard function at time point Ri.

A.2 Longitudinal Model

This is the list of terms used at the group level not already specified in the survival

model above:

Y Matrix of longitudinal measures.

σ2
Y Matrix of error variances for longitudinal trajectories.
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σ2
Yj

Error variance for longitudinal trajectory j.

βj The J dimensional vector of mean trajectory coefficients for the

jth longitudinal covariate.

βjk′ The k′ element of the J dimensional vector of mean trajectory coefficients

for the jth longitudinal covariate.

ξ Matrix of all individual longitudinal trajectories.

Σξj Covariance-variance matrix for individual longitudinal covariate j.

This is the list of terms used at the individual level level not already specified in

the survival model above:

Y i Matrix or vector of observed longitudinal values for individual i.

Y ij Vector of the longitudinal measurements for individual i and

longitudinal trajectory j.

Xij Vector of longitudinal covariates for individual i for longitudinal

trajectory j.

ξi Matrix of individual longitudinal trajectories for individual i.

ξij Vector of individual longitudinal trajectories for individual i for

118



longitudinal trajectory j.

Bjk′ The mij dimensional vector of k′ basis knot values for the jth mean

trajectory for individual i at times tijl, l = 1, . . . ,mij .

Bjk′ The k′ element of the basis knots for the jth mean trajectory for

individual i at time, tijl.

A.3 Clustering Model

This is the list of terms used at the group level in the clustering model:

V Matrix of indicators that is n× C, where each row is for an individual

telling which cluster, c, the individual belongs to.

τ Matrix of probabilities that is n× C, where each row is the individual’s

probabilities of being in each cluster.

τ c Vector of length n of probabilities for cluster c.

ω Vector of weights for each cluster c.

ωc Weight for cluster c.

γc Vector of coefficients for time-dependent covariates for cluster c.
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ζc Vector of coefficients for baseline covariates for cluster c.

`0,c The survival loglikelihood without penalty term for cluster c.

`p,c The survival penalized loglikelihood for cluster c.

σ2
Y c Vector of variances for longitudinal covariates for cluster c.

Σξjc Covariance-variance matrix for individual longitudinal covariate

j for cluster c.

βjc The J dimensional vector of mean trajectory coefficients for the jth

longitudinal covariate for cluster c.

βjk′c The k′ element of the J dimensional vector of mean trajectory coefficients

for the jth longitudinal covariate for cluster c.

Θ Vector of all parameters.

This is the list of terms used at the individual level in the clustering model:

vic Indicator stating if individual i belong to cluster c.

Used in the complete data likelihood,

and the value is either 0 or 1.
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τ i Vector of length C of an individual’s probabilities of being

in each cluster.

τic Probability that individual i belongs to cluster c.

Xic Vector of longitudinal covariates for individual i for all

longitudinal trajectories given a specific time for cluster c.

Xijc Vector of longitudinal covariates for individual i for

longitudinal trajectory j for cluster c.

λc
(
T li |Xic,Zi

)
Hazard function at time point T li for cluster c.

λc (T ri |Xic,Zi) Hazard function at time point T ri for cluster c.

Λc
(
T li |Xic,Zi

)
Cumulative hazard function at time point T li for cluster c.

Λc (T ri |Xic,Zi) Cumulative hazard function at time point T ri for cluster c.

Λc (Li|Xic,Zi) Cumulative hazard function at time point Li for cluster c.

Λc (Ri|Xic,Zi) Cumulative hazard function at time point Ri for cluster c.

σ2
Yjc

Variance for longitudinal covariate j for cluster c.

ξijc Vector of individual longitudinal trajectories for individual i

for longitudinal trajectory j for cluster c.
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Appendix B

Derivation of Loglikelihood

We start with the fact that:

`
((
αT ,γT , ζT

)T
;σ2

b

)
=− K

2
log σ2

b +

∫
`p
(
θ;σ2

b

)
db,

where `p
(
θ;σ2

b

)
= `0

(
θ;σ2

b

)
− bT b

2σ2
b

and a brief background of what penalized quasilikelihood

(PQL) is. Penalized quasilikelihood (PQL), as stated in Section 10.8.2 of Ruppert et al.

(2003) with full derivation of PQL given in Section 10.10.4 of Ruppert et al. (2003), is used

in mixed models framework. PQL estimates of the parameters are achieved by treating the

random effects as fixed parameters and penalizing the likelihood according to the distribu-

tion of the random effects. Therefore, in our framework, since the b’s are assumed to be

distributed b ∼ NK

(
0, σ2

bIK
)
, the PQL approximation for the penalized loglikelihood is:

∫
`p
(
θ;σ2

b

)
db '`p

(
θ̂
(
αT ,γT , ζT

)
;σ2

b

)
,
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where θ̂
(
αT ,γT , ζT

)
=
(
αT , b̂T ,γT , ζT

)T
and b̂ = argmax

b
`p
(
θ;σ2

b

)
. Thus, finding

the maximum likelihood estimates of `p
(
θ;σ2

b

)
with respect to θ leads to maximizing

`
((
αT ,γT , ζT

)T
;σ2

b

)
with respect to

(
αT ,γT , ζT

)T
. Therefore, we can now see that under

our given mixed model:

`
((
αT ,γT , ζT

)T
;σ2

b

)
=− K

2
log σ2

b +

∫
`p
(
θ;σ2

b

)
db

can be approximated using the PQL approach giving:

`
(
θ̂;σ2

b

)
' −K

2
log σ2

b + `p

(
θ̂;σ2

b

)
.
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Appendix C

1st and 2nd Derivatives of

Λ (t|Xi,Zi) and the Loglikelihood

C.1 Λ (t|X i,Zi) & 1st Derivatives of Λ (t|X i,Zi)

We first decided to divide up the space by knot segments to integrate over

Λ (t|Xi,Zi). Therefore,

Λ (t|Xi,Zi) =

k∗t−1∑
k=0

∫ κk+1

κk

eα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γ+ZTi ζdu

+

∫ t

κk∗t

eα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γ+ZTi ζdu

= eZ
T
i ζ

k∗t−1∑
k=0

∫ κk+1

κk

eα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γdu

+ eZ
T
i ζ

∫ t

κk∗t

eα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γdu,

where κ0 = 0 and k∗t = max (k : κk < t, 1 ≤ k ≤ K).
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The first derivatives are:

∂

∂α0
Λ (t|Xi,Zi) = Λ (t|Xi,Zi)

∂

∂α1
Λ (t|Xi,Zi) = eZ

T
i ζ

k∗t−1∑
k=0

∫ κk+1

κk

ueα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γdu

+ eZ
T
i ζ

∫ t

κk∗t

ueα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γdu,

∂

∂bj
Λ (t|Xi,Zi) = eZ

T
i ζI (t > κj)

k∗t−1∑
k=0

∫ κk+1

κk

(u− κj)+ e
α0+α1u+

∑K
l=1 bl(u−κl)++XT

i (u)γdu

+ eZ
T
i ζI (t > κj)

∫ t

κk∗t

(u− κj)+ e
α0+α1u+

∑K
l=1 bl(u−κl)++XT

i (u)γdu,

∂

∂γj
Λ (t|Xi,Zi) = eZ

T
i ζ

k∗t−1∑
k=0

∫ κk+1

κk

Xije
α0+α1u+

∑K
l=1 bl(u−κl)++XT

i (u)γdu

+ eZ
T
i ζ

∫ t

κk∗t

Xije
α0+α1u+

∑K
l=1 bl(u−κl)++XT

i (u)γdu,

∂

∂ζj
Λ (t|Xi,Zi) = Zije

ZTi ζ

k∗t−1∑
k=0

∫ κk+1

κk

eα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γdu

+ Zije
ZTi ζ

∫ t

κk∗t

eα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γdu,

where bj is the jth element of the coefficient vector for the baseline knots where j = 1, . . . ,K,

γj is the jth element of the coefficient vector for the trajectory functions where j = 1, . . . , p,

Xij (t) is the jth trajectory function for the ith individual at time t where j = 1, . . . , p,

ζj is the jth element of the covariate coefficient vector where j = 1, . . . , q, and Zij is the

jth element of the covariate vector for the ith individual where j = 1, . . . , q. Since the

integrals do not have analytic solutions when the degree of XT
i (t) is greater than one, we

use Simpson’s Rule to integrate the derivatives.
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C.2 1st Derivatives of the Loglikelihood

Using the results from Section C.1, we find that for `p
(
θ;σ2

b

)
= `0 − bT b

2σ2
b

, where

`0 =
∑n

i=1

[
η0 (T ri ) δOi +

(
XT

i (T ri )γ +ZT
i ζ
)
δOi−

Λ (T ri |Xi,Zi) (δOi + δRi) + log
(

1− e−Λ(T li |Xi,Zi)
)
δLi − Λ

(
T li |Xi,Zi

)
δIi+

log
(

1− eΛ(T li |Xi,Zi)−Λ(T ri |Xi,Zi)
)
δIi + Λ (Li|Xi,Zi)−

log
(
1− eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

)]
, the first derivatives are:

∂

∂α0
`p
(
θ;σ2

b

)
=

∂

∂α0
`0
(
θ;σ2

b

)
=

n∑
i=1

[
δOi −

∂

∂α0
Λ (T ri |Xi,Zi) (δOi + δRi)

+
e−Λ(T li |Xi,Zi) ∂

∂α0
Λ
(
T li |Xi,Zi

)
1− e−Λ(T li |Xi,Zi)

δLi −
∂

∂α0
Λ
(
T li |Xi,Zi

)
δIi

−
eΛ(T li |Xi,Zi)−Λ(Tri |Xi,Zi)

(
∂
∂α0

Λ
(
T li |Xi,Zi

)
− ∂

∂α0
Λ (T ri |Xi,Zi)

)
1− eΛ(T li |Xi,Zi)−Λ(Tri |Xi,Zi)

δIi

+
∂

∂α0
Λ (Li|Xi,Zi)

+
eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

(
∂
∂α0

Λ (Li|Xi,Zi)− ∂
∂α0

Λ (Ri|Xi,Zi)
)

1− eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)


=

n∑
i=1

[
δOi −

∂

∂α0
Λ (T ri |Xi,Zi) (δOi + δRi) +

∂
∂α0

Λ
(
T li |Xi,Zi

)
eΛ(T li |Xi,Zi) − 1

δLi

− ∂

∂α0
Λ
(
T li |Xi,Zi

)
δIi −

(
∂
∂α0

Λ
(
T li |Xi,Zi

)
− ∂

∂α0
Λ (T ri |Xi,Zi)

)
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi) − 1

δIi

+
∂

∂α0
Λ (Li|Xi,Zi) +

(
∂
∂α0

Λ (Li|Xi,Zi)− ∂
∂α0

Λ (Ri|Xi,Zi)
)

eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1
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∂

∂α1
`p
(
θ;σ2

b

)
=

∂

∂α1
`0
(
θ;σ2

b

)
=

n∑
i=1

[
tδOi −

∂

∂α1
Λ (T ri |Xi,Zi) (δOi + δRi)

+
e−Λ(T li |Xi,Zi) ∂

∂α1
Λ
(
T li |Xi,Zi

)
1− e−Λ(T li |Xi,Zi)

δLi −
∂

∂α1
Λ
(
T li |Xi,Zi

)
δIi

−
eΛ(T li |Xi,Zi)−Λ(Tri |Xi,Zi)

(
∂
∂α1

Λ
(
T li |Xi,Zi

)
− ∂

∂α1
Λ (T ri |Xi,Zi)

)
1− eΛ(T li |Xi,Zi)−Λ(Tri |Xi,Zi)

δIi

+
∂

∂α1
Λ (Li|Xi,Zi)

+
eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

(
∂
∂α1

Λ (Li|Xi,Zi)− ∂
∂α1

Λ (Ri|Xi,Zi)
)

1− eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)


=

n∑
i=1

[
tδOi −

∂

∂α1
Λ (T ri |Xi,Zi) (δOi + δRi) +

∂
∂α1

Λ
(
T li |Xi,Zi

)
eΛ(T li |Xi,Zi) − 1

δLi

− ∂

∂α1
Λ
(
T li |Xi,Zi

)
δIi −

(
∂
∂α1

Λ
(
T li |Xi,Zi

)
− ∂

∂α1
Λ (T ri |Xi,Zi)

)
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi) − 1

δIi

+
∂

∂α1
Λ (Li|Xi,Zi) +

(
∂
∂α1

Λ (Li|Xi,Zi)− ∂
∂α1

Λ (Ri|Xi,Zi)
)

eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1
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∂

∂bj
`p
(
θ;σ2

b

)
=

∂

∂bj
`0
(
θ;σ2

b

)
− bj
σ2
b

=

n∑
i=1

[
(t− κj)+ δOi −

∂

∂bj
Λ (T ri |Xi,Zi) (δOi + δRi)

+
e−Λ(T li |Xi,Zi) ∂

∂bj
Λ
(
T li |Xi,Zi

)
1− e−Λ(T li |Xi,Zi)

δLi −
∂

∂bj
Λ
(
T li |Xi,Zi

)
δIi

−
eΛ(T li |Xi,Zi)−Λ(Tri |Xi,Zi)

(
∂
∂bj

Λ
(
T li |Xi,Zi

)
− ∂

∂bj
Λ (T ri |Xi,Zi)

)
1− eΛ(T li |Xi,Zi)−Λ(Tri |Xi,Zi)

δIi

+
∂

∂bj
Λ (Li|Xi,Zi)

+
eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

(
∂
∂bj

Λ (Li|Xi,Zi)− ∂
∂bj

Λ (Ri|Xi,Zi)
)

1− eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

− bj
σ2
b

=

n∑
i=1

[
(t− κj)+ δOi −

∂

∂bj
Λ (T ri |Xi,Zi) (δOi + δRi) +

∂
∂bj

Λ
(
T li |Xi,Zi

)
eΛ(T li |Xi,Zi) − 1

δLi

− ∂

∂bj
Λ
(
T li |Xi,Zi

)
δIi −

(
∂
∂bj

Λ
(
T li |Xi,Zi

)
− ∂

∂bj
Λ (T ri |Xi,Zi)

)
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi) − 1

δIi

+
∂

∂bj
Λ (Li|Xi,Zi) +

(
∂
∂bj

Λ (Li|Xi,Zi)− ∂
∂bj

Λ (Ri|Xi,Zi)
)

eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

− bj
σ2
b
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∂

∂γj
`p
(
θ;σ2

b

)
=

∂

∂γj
`0
(
θ;σ2

b

)
=

n∑
i=1

[
Xij (T ri ) δOi −

∂

∂γj
Λ (T ri |Xi,Zi) (δOi + δRi)

+
e−Λ(T li |Xi,Zi) ∂

∂γj
Λ
(
T li |Xi,Zi

)
1− e−Λ(T li |Xi,Zi)

δLi −
∂

∂γj
Λ
(
T li |Xi,Zi

)
δIi

−
eΛ(T li |Xi,Zi)−Λ(Tri |Xi,Zi)

(
∂
∂γj

Λ
(
T li |Xi,Zi

)
− ∂

∂γj
Λ (T ri |Xi,Zi)

)
1− eΛ(T li |Xi,Zi)−Λ(Tri |Xi,Zi)

δIi

+
∂

∂γj
Λ (Li|Xi,Zi)

+
eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

(
∂
∂γj

Λ (Li|Xi,Zi)− ∂
∂γj

Λ (Ri|Xi,Zi)
)

1− eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)


=

n∑
i=1

[
Xij (T ri ) δOi −

∂

∂γj
Λ (T ri |Xi,Zi) (δOi + δRi) +

∂
∂γj

Λ
(
T li |Xi,Zi

)
eΛ(T li |Xi,Zi) − 1

δLi

− ∂

∂γj
Λ
(
T li |Xi,Zi

)
δIi −

(
∂
∂γj

Λ
(
T li |Xi,Zi

)
− ∂

∂γj
Λ (T ri |Xi,Zi)

)
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi) − 1

δIi

+
∂

∂γj
Λ (Li|Xi,Zi) +

(
∂
∂γj

Λ (Li|Xi,Zi)− ∂
∂γj

Λ (Ri|Xi,Zi)
)

eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1
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∂

∂ζj
`p
(
θ;σ2

b

)
=

∂

∂ζj
`0
(
θ;σ2

b

)
=

n∑
i=1

[
ZijδOi −

∂

∂ζj
Λ (T ri |Xi,Zi) (δOi + δRi)

+
e−Λ(T li |Xi,Zi) ∂

∂ζj
Λ
(
T li |Xi,Zi

)
1− e−Λ(T li |Xi,Zi)

δLi −
∂

∂ζj
Λ
(
T li |Xi,Zi

)
δIi

−
eΛ(T li |Xi,Zi)−Λ(Tri |Xi,Zi)

(
∂
∂ζj

Λ
(
T li |Xi,Zi

)
− ∂

∂ζj
Λ (T ri |Xi,Zi)

)
1− eΛ(T li |Xi,Zi)−Λ(Tri |Xi,Zi)

δIi

+
∂

∂ζj
Λ (Li|Xi,Zi)

+
eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

(
∂
∂ζj

Λ (Li|Xi,Zi)− ∂
∂ζj

Λ (Ri|Xi,Zi)
)

1− eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)


=

n∑
i=1

[
ZijδOi −

∂

∂ζj
Λ (T ri |Xi,Zi) (δOi + δRi) +

∂
∂ζj

Λ
(
T li |Xi,Zi

)
eΛ(T li |Xi,Zi) − 1

δLi

− ∂

∂ζj
Λ
(
T li |Xi,Zi

)
δIi −

(
∂
∂ζj

Λ
(
T li |Xi,Zi

)
− ∂

∂ζj
Λ (T ri |Xi,Zi)

)
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi) − 1

δIi

+
∂

∂ζj
Λ (Li|Xi,Zi) +

(
∂
∂ζj

Λ (Li|Xi,Zi)− ∂
∂ζj

Λ (Ri|Xi,Zi)
)

eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

 ,

where bj is the jth element of the coefficient vector for the baseline knots where j = 1, . . . ,K,

γj is the jth element of the coefficient vector for the trajectory functions where j = 1, . . . , p,

Xij (t) is the jth trajectory function for the ith individual at time t where j = 1, . . . , p, ζj

is the jth element of the covariate coefficient vector where j = 1, . . . , q, and Zij is the jth

element of the covariate vector for the ith individual where j = 1, . . . , q. The final equation

for each derivative is better computationally and comes from multiplying by a form of 1 on

certain terms. For example, for the left censor term we multiplied by e
Λ(Tli |Xi,Zi)

e
Λ(Tli |Xi,Zi)

.
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C.3 2nd Derivatives of Λ (t|X i,Zi)

The second derivatives are:

∂2

∂α2
0

Λ (t|Xi,Zi) =
∂

∂α0
Λ (t|Xi,Zi) = Λ (t|Xi,Zi)

∂2

∂α0∂α1
Λ (t|Xi,Zi) =

∂

∂α1
Λ (t|Xi,Zi)

∂2

∂α0∂bj
Λ (t|Xi,Zi) =

∂

∂bj
Λ (t|Xi,Zi)

∂2

∂α0∂γj
Λ (t|Xi,Zi) =

∂

∂γj
Λ (t|Xi,Zi)

∂2

∂α0∂ζj
Λ (t|Xi,Zi) =

∂

∂ζj
Λ (t|Xi,Zi)
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∂2

∂α2
1

Λ (t|Xi,Zi) = eZ
T
i ζ

k∗t−1∑
k=0

∫ κk+1

κk

u2eα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γdu

+ eZ
T
i ζ

∫ t

κk∗t

u2eα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γdu,

∂2

∂α1∂bj
Λ (t|Xi,Zi) = eZ

T
i ζ

k∗t−1∑
k=0

∫ κk+1

κk

u (u− κj)+ e
α0+α1u+

∑K
l=1 bl(u−κl)++XT

i (u)γdu

+ eZ
T
i ζ

∫ t

κk∗t

u (u− κj)+ e
α0+α1u+

∑K
l=1 bl(u−κl)++XT

i (u)γdu,

∂2

∂α1∂γj
Λ (t|Xi,Zi) = eZ

T
i ζ

k∗t−1∑
k=0

∫ κk+1

κk

uXij (u) eα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γdu

+ eZ
T
i ζ

∫ t

κk∗t

uXij (u) eα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γdu,

∂2

∂α1∂ζj
Λ (t|Xi,Zi) = Zije

ZTi ζ

k∗t−1∑
k=0

∫ κk+1

κk

ueα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γdu

+ Zije
ZTi ζ

∫ t

κk∗t

ueα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γdu

∂2

∂bj∂bj′
Λ (t|Xi,Zi) = eZ

T
i ζI (t > κj)

k∗t−1∑
k=0

∫ κk+1

κk

(u− κj)+

(
u− κj′

)
+
eα0+α1u+

∑K
l=1 bl(u−κl)++XTi (u)γdu

+ eZ
T
i ζI (t > κj)

∫ t

κk∗t

(u− κj)+

(
u− κj′

)
+
eα0+α1u+

∑K
l=1 bl(u−κl)++XTi (u)γdu,

∂2

∂bj∂γj′
Λ (t|Xi,Zi) = eZ

T
i ζI (t > κj)

k∗t−1∑
k=0

∫ κk+1

κk

(u− κj)+ Xij′ (u) eα0+α1u+
∑K
l=1 bl(u−κl)++XTi (u)γdu

+ eZ
T
i ζI (t > κj)

∫ t

κk∗t

(u− κj)+ Xij′ (u) eα0+α1u+
∑K
l=1 bl(u−κl)++XTi (u)γdu,

∂2

∂bj∂ζj′
Λ (t|Xi,Zi) = Zij′e

ZTi ζI (t > κj)

k∗t−1∑
k=0

∫ κk+1

κk

(u− κj)+ eα0+α1u+
∑K
l=1 bl(u−κl)++XTi (u)γdu

+ Zij′e
ZTi ζI (t > κj)

∫ t

κk∗t

(u− κj)+ eα0+α1u+
∑K
l=1 bl(u−κl)++XTi (u)γdu
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∂2

∂γj∂γj′
Λ (t|Xi,Zi) = eZ

T
i ζ

k∗t−1∑
k=0

∫ κk+1

κk

Xij (u)Xij′ (u) eα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γdu

+ eZ
T
i ζ

∫ t

κk∗t

Xij (u)Xij′ (u) eα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γdu,

∂2

∂γj∂ζj′
Λ (t|Xi,Zi) = Zij′e

ZTi ζ

k∗t−1∑
k=0

∫ κk+1

κk

Xij (u) eα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γdu

+ Zij′e
ZTi ζ

∫ t

κk∗t

Xij (u) eα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γdu

∂2

∂ζj∂ζj′
Λ (t|Xi,Zi) = ZijZij′e

ZTi ζ

k∗t−1∑
k=0

∫ κk+1

κk

eα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γdu

+ ZijZij′e
ZTi ζ

∫ t

κk∗t

eα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γdu.

Now, bj is the jth element of the coefficient vector for the baseline knots where

j = 1, . . . ,K, γj is the jth element of the coefficient vector for the trajectory functions where

j = 1, . . . , p, Xij (t) is the jth trajectory function for the ith individual at time t where

j = 1, . . . , p, ζj is the jth element of the covariate coefficient vector where j = 1, . . . , q, and

Zij is the jth element of the covariate vector for the ith individual where j = 1, . . . , q. Since

again the integrals do not have analytic solutions when the degree of XT
i (t) is greater than

one, we use Simpson’s Rule to integrate the derivatives.
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C.4 2nd Derivatives of the Loglikelihood

Using the results from Sections C.1 and C.3, we find that for `p
(
θ;σ2

b

)
= `0− bT b

2σ2
b

,

where `0 =
∑n

i=1

[
η0 (T ri ) δOi +

(
XT

i (T ri )γ +ZT
i ζ
)
δOi−

Λ (T ri |Xi,Zi) (δOi + δRi) + log
(

1− e−Λ(T li |Xi,Zi)
)
δLi − Λ

(
T li |Xi,Zi

)
δIi+

log
(

1− eΛ(T li |Xi,Zi)−Λ(T ri |Xi,Zi)
)
δIi + Λ (Li|Xi,Zi)−

log
(
1− eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

)]
, the second derivatives are as follows:
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∂2

∂α2
0

`p
(
θ;σ2

b

)
=

∂2

∂α2
0

`0
(
θ;σ2

b

)
=

n∑
i=1

[
− ∂2

∂α2
0

Λ (T ri |Xi,Zi) (δOi + δRi)

+

∂2

∂α2
0
Λ
(
T li |Xi,Zi

)
eΛ(T li |Xi,Zi) − 1

δLi −
eΛ(T li |Xi,Zi)

(
∂
∂α0

Λ
(
T li |Xi,Zi

))2

(
eΛ(T li |Xi,Zi) − 1

)2 δLi

− ∂2

∂α2
0

Λ
(
T li |Xi,Zi

)
δIi −

(
∂2

∂α2
0
Λ
(
T li |Xi,Zi

)
− ∂2

∂α2
0
Λ (T ri |Xi,Zi)

)
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi) − 1

δIi

−
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi)

(
∂
∂α0

Λ
(
T li |Xi,Zi

)
− ∂

∂α0
Λ (T ri |Xi,Zi)

)2

(
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi) − 1

)2 δIi

+
∂2

∂α2
0

Λ (Li|Xi,Zi) +

(
∂2

∂α2
0
Λ (Li|Xi,Zi)− ∂2

∂α2
0
Λ (Ri|Xi,Zi)

)
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

+
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi)

(
∂
∂α0

Λ (Li|Xi,Zi)− ∂
∂α0

Λ (Ri|Xi,Zi)
)2

(eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1)
2


=

n∑
i=1

[
− ∂2

∂α2
0

Λ (T ri |Xi,Zi) (δOi + δRi)

+

∂2

∂α2
0
Λ
(
T li |Xi,Zi

)
eΛ(T li |Xi,Zi) − 1

δLi −
e−Λ(T li |Xi,Zi)

(
∂
∂α0

Λ
(
T li |Xi,Zi

))2

(
1− e−Λ(T li |Xi,Zi)

)2 δLi

− ∂2

∂α2
0

Λ
(
T li |Xi,Zi

)
δIi −

(
∂2

∂α2
0
Λ
(
T li |Xi,Zi

)
− ∂2

∂α2
0
Λ (T ri |Xi,Zi)

)
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi) − 1

δIi

−
eΛ(T li |Xi,Zi)−Λ(Tri |Xi,Zi)

(
∂
∂α0

Λ
(
T li |Xi,Zi

)
− ∂

∂α0
Λ (T ri |Xi,Zi)

)2

(
1− eΛ(T li |Xi,Zi)−Λ(Tri |Xi,Zi)

)2 δIi

+
∂2

∂α2
0

Λ (Li|Xi,Zi) +

(
∂2

∂α2
0
Λ (Li|Xi,Zi)− ∂2

∂α2
0
Λ (Ri|Xi,Zi)

)
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

+
eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

(
∂
∂α0

Λ (Li|Xi,Zi)− ∂
∂α0

Λ (Ri|Xi,Zi)
)2

(1− eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi))
2
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∂2

∂α0∂α1
`p
(
θ;σ2

b

)
=

∂2

∂α0∂α1
`0
(
θ;σ2

b

)
=

n∑
i=1

− ∂2

∂α0∂α1
Λ (T ri |Xi,Zi)

(
δOi + δRi

)
+

∂2

∂α0∂α1
Λ
(
T li |Xi,Zi

)
eΛ(T li |Xi,Zi) − 1

δLi

−
e
Λ
(
T li |Xi,Zi

)
∂
∂α0

Λ
(
T li |Xi,Zi

)
∂
∂α1

Λ
(
T li |Xi,Zi

)
(
eΛ(T li |Xi,Zi) − 1

)2
δLi

−
∂2

∂α0∂α1
Λ
(
T li |Xi,Zi

)
δIi

−

(
∂2

∂α0∂α1
Λ
(
T li |Xi,Zi

)
− ∂2

∂α0∂α1
Λ
(
T ri |Xi,Zi

))
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi)−1

δIi

−
e
Λ(Tri |Xi,Zi)−Λ

(
T li |Xi,Zi

) (
∂
∂α0

Λ
(
T li |Xi,Zi

)
− ∂
∂α0

Λ
(
T ri |Xi,Zi

))
(
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi) − 1

)2

×
(

∂

∂α1
Λ
(
T li |Xi,Zi

)
−

∂

∂α1
Λ (T ri |Xi,Zi)

)
δIi

+
∂2

∂α0∂α1
Λ (Li|Xi,Zi) +

(
∂2

∂α0∂α1
Λ (Li|Xi,Zi)− ∂2

∂α0∂α1
Λ (Ri|Xi,Zi)

)
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

+
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi)

(
∂
∂α0

Λ (Li|Xi,Zi)− ∂
∂α0

Λ (Ri|Xi,Zi)
)

(
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

)2
×
(

∂

∂α1
Λ (Li|Xi,Zi)−

∂

∂α1
Λ (Ri|Xi,Zi)

)]

=

n∑
i=1

− ∂2

∂α0∂α1
Λ (T ri |Xi,Zi)

(
δOi + δRi

)
+

∂2

∂α0∂α1
Λ
(
T li |Xi,Zi

)
eΛ(T li |Xi,Zi) − 1

δLi

−
e
−Λ
(
T li |Xi,Zi

)
∂
∂α0

Λ
(
T li |Xi,Zi

)
∂
∂α1

Λ
(
T li |Xi,Zi

)
(

1− e−Λ(T li |Xi,Zi)
)2

δLi

−
∂2

∂α0∂α1
Λ
(
T li |Xi,Zi

)
δIi

−

(
∂2

∂α0∂α1
Λ
(
T li |Xi,Zi

)
− ∂2

∂α0∂α1
Λ
(
T ri |Xi,Zi

))
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi)−1

δIi

−
e
Λ
(
T li |Xi,Zi

)
−Λ(Tri |Xi,Zi)

(
∂
∂α0

Λ
(
T li |Xi,Zi

)
− ∂
∂α0

Λ
(
T ri |Xi,Zi

))
(

1− eΛ(T li |Xi,Zi)−Λ(Tri |Xi,Zi)
)2

×
(

∂

∂α1
Λ
(
T li |Xi,Zi

)
−

∂

∂α1
Λ (T ri |Xi,Zi)

)
δIi

+
∂2

∂α0∂α1
Λ (Li|Xi,Zi) +

(
∂2

∂α0∂α1
Λ (Li|Xi,Zi)− ∂2

∂α0∂α1
Λ (Ri|Xi,Zi)

)
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

+
eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

(
∂
∂α0

Λ (Li|Xi,Zi)− ∂
∂α0

Λ (Ri|Xi,Zi)
)

(
1− eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

)2
×
(

∂

∂α1
Λ (Li|Xi,Zi)−

∂

∂α1
Λ (Ri|Xi,Zi)

)]
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∂2

∂α0∂bj
`p
(
θ;σ2

b

)
=

∂2

∂α0∂bj
`0
(
θ;σ2

b

)
=

n∑
i=1

− ∂2

∂α0∂bj
Λ (T ri |Xi,Zi)

(
δOi + δRi

)
+

∂2

∂α0∂bj
Λ
(
T li |Xi,Zi

)
eΛ(T li |Xi,Zi) − 1

δLi

−
e
Λ
(
T li |Xi,Zi

)
∂
∂α0

Λ
(
T li |Xi,Zi

)
∂
∂bj

Λ
(
T li |Xi,Zi

)
(
eΛ(T li |Xi,Zi) − 1

)2
δLi

−
∂2

∂α0∂bj
Λ
(
T li |Xi,Zi

)
δIi

−

(
∂2

∂α0∂bj
Λ
(
T li |Xi,Zi

)
− ∂2

∂α0∂bj
Λ
(
T ri |Xi,Zi

))
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi)−1

δIi

−
e
Λ(Tri |Xi,Zi)−Λ

(
T li |Xi,Zi

) (
∂
∂α0

Λ
(
T li |Xi,Zi

)
− ∂
∂α0

Λ
(
T ri |Xi,Zi

))
(
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi) − 1

)2

×
(

∂

∂bj
Λ
(
T li |Xi,Zi

)
−

∂

∂bj
Λ (T ri |Xi,Zi)

)
δIi

+
∂2

∂α0∂bj
Λ (Li|Xi,Zi) +

(
∂2

∂α0∂bj
Λ (Li|Xi,Zi)− ∂2

∂α0∂bj
Λ (Ri|Xi,Zi)

)
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

+
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi)

(
∂
∂α0

Λ (Li|Xi,Zi)− ∂
∂α0

Λ (Ri|Xi,Zi)
)

(
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

)2
×
(

∂

∂bj
Λ (Li|Xi,Zi)−

∂

∂bj
Λ (Ri|Xi,Zi)

)]

=

n∑
i=1

− ∂2

∂α0∂bj
Λ (T ri |Xi,Zi)

(
δOi + δRi

)
+

∂2

∂α0∂bj
Λ
(
T li |Xi,Zi

)
eΛ(T li |Xi,Zi) − 1

δLi

−
e
−Λ
(
T li |Xi,Zi

)
∂
∂α0

Λ
(
T li |Xi,Zi

)
∂
∂bj

Λ
(
T li |Xi,Zi

)
(

1− e−Λ(T li |Xi,Zi)
)2

δLi

−
∂2

∂α0∂bj
Λ
(
T li |Xi,Zi

)
δIi

−

(
∂2

∂α0∂bj
Λ
(
T li |Xi,Zi

)
− ∂2

∂α0∂bj
Λ
(
T ri |Xi,Zi

))
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi)−1

δIi

−
e
Λ
(
T li |Xi,Zi

)
−Λ(Tri |Xi,Zi)

(
∂
∂α0

Λ
(
T li |Xi,Zi

)
− ∂
∂α0

Λ
(
T ri |Xi,Zi

))
(

1− eΛ(T li |Xi,Zi)−Λ(Tri |Xi,Zi)
)2

×
(

∂

∂bj
Λ
(
T li |Xi,Zi

)
−

∂

∂bj
Λ (T ri |Xi,Zi)

)
δIi

+
∂2

∂α0∂bj
Λ (Li|Xi,Zi) +

(
∂2

∂α0∂bj
Λ (Li|Xi,Zi)− ∂2

∂α0∂bj
Λ (Ri|Xi,Zi)

)
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

+
eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

(
∂
∂α0

Λ (Li|Xi,Zi)− ∂
∂α0

Λ (Ri|Xi,Zi)
)

(
1− eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

)2
×
(

∂

∂bj
Λ (Li|Xi,Zi)−

∂

∂bj
Λ (Ri|Xi,Zi)

)]
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∂2

∂α0∂γj
`p
(
θ;σ2

b

)
=

∂2

∂α0∂γj
`0
(
θ;σ2

b

)
=

n∑
i=1

− ∂2

∂α0∂γj
Λ (T ri |Xi,Zi)

(
δOi + δRi

)
+

∂2

∂α0∂γj
Λ
(
T li |Xi,Zi

)
eΛ(T li |Xi,Zi) − 1

δLi

−
e
Λ
(
T li |Xi,Zi

)
∂
∂α0

Λ
(
T li |Xi,Zi

)
∂
∂γj

Λ
(
T li |Xi,Zi

)
(
eΛ(T li |Xi,Zi) − 1

)2
δLi

−
∂2

∂α0∂γj
Λ
(
T li |Xi,Zi

)
δIi

−

(
∂2

∂α0∂γj
Λ
(
T li |Xi,Zi

)
− ∂2

∂α0∂γj
Λ
(
T ri |Xi,Zi

))
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi)−1

δIi

−
e
Λ(Tri |Xi,Zi)−Λ

(
T li |Xi,Zi

) (
∂
∂α0

Λ
(
T li |Xi,Zi

)
− ∂
∂α0

Λ
(
T ri |Xi,Zi

))
(
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi) − 1

)2

×
(

∂

∂γj
Λ
(
T li |Xi,Zi

)
−

∂

∂γj
Λ (T ri |Xi,Zi)

)
δIi

+
∂2

∂α0∂γj
Λ (Li|Xi,Zi) +

(
∂2

∂α0∂γj
Λ (Li|Xi,Zi)− ∂2

∂α0∂γj
Λ (Ri|Xi,Zi)

)
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

+
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi)

(
∂
∂α0

Λ (Li|Xi,Zi)− ∂
∂α0

Λ (Ri|Xi,Zi)
)

(
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

)2
×
(

∂

∂γj
Λ (Li|Xi,Zi)−

∂

∂γj
Λ (Ri|Xi,Zi)

)]

=

n∑
i=1

− ∂2

∂α0∂γj
Λ (T ri |Xi,Zi)

(
δOi + δRi

)
+

∂2

∂α0∂γj
Λ
(
T li |Xi,Zi

)
eΛ(T li |Xi,Zi) − 1

δLi

−
e
−Λ
(
T li |Xi,Zi

)
∂
∂α0

Λ
(
T li |Xi,Zi

)
∂
∂γj

Λ
(
T li |Xi,Zi

)
(

1− e−Λ(T li |Xi,Zi)
)2

δLi

−
∂2

∂α0∂γj
Λ
(
T li |Xi,Zi

)
δIi

−

(
∂2

∂α0∂γj
Λ
(
T li |Xi,Zi

)
− ∂2

∂α0∂γj
Λ
(
T ri |Xi,Zi

))
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi)−1

δIi

−
e
Λ
(
T li |Xi,Zi

)
−Λ(Tri |Xi,Zi)

(
∂
∂α0

Λ
(
T li |Xi,Zi

)
− ∂
∂α0

Λ
(
T ri |Xi,Zi

))
(

1− eΛ(T li |Xi,Zi)−Λ(Tri |Xi,Zi)
)2

×
(

∂

∂γj
Λ
(
T li |Xi,Zi

)
−

∂

∂γj
Λ (T ri |Xi,Zi)

)
δIi

+
∂2

∂α0∂γj
Λ (Li|Xi,Zi) +

(
∂2

∂α0∂γj
Λ (Li|Xi,Zi)− ∂2

∂α0∂γj
Λ (Ri|Xi,Zi)

)
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

+
eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

(
∂
∂α0

Λ (Li|Xi,Zi)− ∂
∂α0

Λ (Ri|Xi,Zi)
)

(
1− eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

)2
×
(

∂

∂γj
Λ (Li|Xi,Zi)−

∂

∂γj
Λ (Ri|Xi,Zi)

)]
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∂2

∂α0∂ζj
`p
(
θ;σ2

b

)
=

∂2

∂α0∂ζj
`0
(
θ;σ2

b

)
=

n∑
i=1

− ∂2

∂α0∂ζj
Λ (T ri |Xi,Zi)

(
δOi + δRi

)
+

∂2

∂α0∂ζj
Λ
(
T li |Xi,Zi

)
eΛ(T li |Xi,Zi) − 1

δLi

−
e
Λ
(
T li |Xi,Zi

)
∂
∂α0

Λ
(
T li |Xi,Zi

)
∂
∂ζj

Λ
(
T li |Xi,Zi

)
(
eΛ(T li |Xi,Zi) − 1

)2
δLi

−
∂2

∂α0∂ζj
Λ
(
T li |Xi,Zi

)
δIi

−

(
∂2

∂α0∂ζj
Λ
(
T li |Xi,Zi

)
− ∂2

∂α0∂ζj
Λ
(
T ri |Xi,Zi

))
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi)−1

δIi

−
e
Λ(Tri |Xi,Zi)−Λ

(
T li |Xi,Zi

) (
∂
∂α0

Λ
(
T li |Xi,Zi

)
− ∂
∂α0

Λ
(
T ri |Xi,Zi

))
(
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi) − 1

)2

×
(

∂

∂ζj
Λ
(
T li |Xi,Zi

)
−

∂

∂ζj
Λ (T ri |Xi,Zi)

)
δIi

+
∂2

∂α0∂ζj
Λ (Li|Xi,Zi) +

(
∂2

∂α0∂ζj
Λ (Li|Xi,Zi)− ∂2

∂α0∂ζj
Λ (Ri|Xi,Zi)

)
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

+
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi)

(
∂
∂α0

Λ (Li|Xi,Zi)− ∂
∂α0

Λ (Ri|Xi,Zi)
)

(
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

)2
×
(

∂

∂ζj
Λ (Li|Xi,Zi)−

∂

∂ζj
Λ (Ri|Xi,Zi)

)]

=

n∑
i=1

− ∂2

∂α0∂ζj
Λ (T ri |Xi,Zi)

(
δOi + δRi

)
+

∂2

∂α0∂ζj
Λ
(
T li |Xi,Zi

)
eΛ(T li |Xi,Zi) − 1

δLi

−
e
−Λ
(
T li |Xi,Zi

)
∂
∂α0

Λ
(
T li |Xi,Zi

)
∂
∂ζj

Λ
(
T li |Xi,Zi

)
(

1− e−Λ(T li |Xi,Zi)
)2

δLi

−
∂2

∂α0∂ζj
Λ
(
T li |Xi,Zi

)
δIi

−

(
∂2

∂α0∂ζj
Λ
(
T li |Xi,Zi

)
− ∂2

∂α0∂ζj
Λ
(
T ri |Xi,Zi

))
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi)−1

δIi

−
e
Λ
(
T li |Xi,Zi

)
−Λ(Tri |Xi,Zi)

(
∂
∂α0

Λ
(
T li |Xi,Zi

)
− ∂
∂α0

Λ
(
T ri |Xi,Zi

))
(

1− eΛ(T li |Xi,Zi)−Λ(Tri |Xi,Zi)
)2

×
(

∂

∂ζj
Λ
(
T li |Xi,Zi

)
−

∂

∂ζj
Λ (T ri |Xi,Zi)

)
δIi

+
∂2

∂α0∂ζj
Λ (Li|Xi,Zi) +

(
∂2

∂α0∂ζj
Λ (Li|Xi,Zi)− ∂2

∂α0∂ζj
Λ (Ri|Xi,Zi)

)
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

+
eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

(
∂
∂α0

Λ (Li|Xi,Zi)− ∂
∂α0

Λ (Ri|Xi,Zi)
)

(
1− eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

)2
×
(

∂

∂ζj
Λ (Li|Xi,Zi)−

∂

∂ζj
Λ (Ri|Xi,Zi)

)]
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∂2

∂α2
1

`p
(
θ;σ2

b

)
=

∂2

∂α2
1

`0
(
θ;σ2

b

)
=

n∑
i=1

[
− ∂2

∂α2
1

Λ (T ri |Xi,Zi) (δOi + δRi)

+

∂2

∂α2
1
Λ
(
T li |Xi,Zi

)
eΛ(T li |Xi,Zi) − 1

δLi −
eΛ(T li |Xi,Zi)

(
∂
∂α1

Λ
(
T li |Xi,Zi

))2

(
eΛ(T li |Xi,Zi) − 1

)2 δLi

− ∂2

∂α2
1

Λ
(
T li |Xi,Zi

)
δIi −

(
∂2

∂α2
1
Λ
(
T li |Xi,Zi

)
− ∂2

∂α2
1
Λ (T ri |Xi,Zi)

)
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi) − 1

δIi

−
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi)

(
∂
∂α1

Λ
(
T li |Xi,Zi

)
− ∂

∂α1
Λ (T ri |Xi,Zi)

)2

(
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi) − 1

)2 δIi

+
∂2

∂α2
1

Λ (Li|Xi,Zi) +

(
∂2

∂α2
1
Λ (Li|Xi,Zi)− ∂2

∂α2
1
Λ (Ri|Xi,Zi)

)
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

+
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi)

(
∂
∂α1

Λ (Li|Xi,Zi)− ∂
∂α1

Λ (Ri|Xi,Zi)
)2

(eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1)
2


=

n∑
i=1

[
− ∂2

∂α2
1

Λ (T ri |Xi,Zi) (δOi + δRi)

+

∂2

∂α2
1
Λ
(
T li |Xi,Zi

)
eΛ(T li |Xi,Zi) − 1

δLi −
e−Λ(T li |Xi,Zi)

(
∂
∂α1

Λ
(
T li |Xi,Zi

))2

(
1− e−Λ(T li |Xi,Zi)

)2 δLi

− ∂2

∂α2
1

Λ
(
T li |Xi,Zi

)
δIi −

(
∂2

∂α2
1
Λ
(
T li |Xi,Zi

)
− ∂2

∂α2
1
Λ (T ri |Xi,Zi)

)
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi) − 1

δIi

−
eΛ(T li |Xi,Zi)−Λ(Tri |Xi,Zi)

(
∂
∂α1

Λ
(
T li |Xi,Zi

)
− ∂

∂α1
Λ (T ri |Xi,Zi)

)2

(
1− eΛ(T li |Xi,Zi)−Λ(Tri |Xi,Zi)

)2 δIi

+
∂2

∂α2
1

Λ (Li|Xi,Zi) +

(
∂2

∂α2
1
Λ (Li|Xi,Zi)− ∂2

∂α2
1
Λ (Ri|Xi,Zi)

)
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

+
eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

(
∂
∂α1

Λ (Li|Xi,Zi)− ∂
∂α1

Λ (Ri|Xi,Zi)
)2

(1− eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi))
2
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∂2

∂α1∂bj
`p
(
θ;σ2

b

)
=

∂2

∂α1∂bj
`0
(
θ;σ2

b

)
=

n∑
i=1

− ∂2

∂α1∂bj
Λ (T ri |Xi,Zi)

(
δOi + δRi

)
+

∂2

∂α1∂bj
Λ
(
T li |Xi,Zi

)
eΛ(T li |Xi,Zi) − 1

δLi

−
e
Λ
(
T li |Xi,Zi

)
∂
∂α1

Λ
(
T li |Xi,Zi

)
∂
∂bj

Λ
(
T li |Xi,Zi

)
(
eΛ(T li |Xi,Zi) − 1

)2
δLi

−
∂2

∂α1∂bj
Λ
(
T li |Xi,Zi

)
δIi

−

(
∂2

∂α1∂bj
Λ
(
T li |Xi,Zi

)
− ∂2

∂α1∂bj
Λ
(
T ri |Xi,Zi

))
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi)−1

δIi

−
e
Λ(Tri |Xi,Zi)−Λ

(
T li |Xi,Zi

) (
∂
∂α1

Λ
(
T li |Xi,Zi

)
− ∂
∂α1

Λ
(
T ri |Xi,Zi

))
(
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi) − 1

)2

×
(

∂

∂bj
Λ
(
T li |Xi,Zi

)
−

∂

∂bj
Λ (T ri |Xi,Zi)

)
δIi

+
∂2

∂α1∂bj
Λ (Li|Xi,Zi) +

(
∂2

∂α1∂bj
Λ (Li|Xi,Zi)− ∂2

∂α1∂bj
Λ (Ri|Xi,Zi)

)
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

+
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi)

(
∂
∂α1

Λ (Li|Xi,Zi)− ∂
∂α1

Λ (Ri|Xi,Zi)
)

(
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

)2
×
(

∂

∂bj
Λ (Li|Xi,Zi)−

∂

∂bj
Λ (Ri|Xi,Zi)

)]

=

n∑
i=1

− ∂2

∂α1∂bj
Λ (T ri |Xi,Zi)

(
δOi + δRi

)
+

∂2

∂α1∂bj
Λ
(
T li |Xi,Zi

)
eΛ(T li |Xi,Zi) − 1

δLi

−
e
−Λ
(
T li |Xi,Zi

)
∂
∂α1

Λ
(
T li |Xi,Zi

)
∂
∂bj

Λ
(
T li |Xi,Zi

)
(

1− e−Λ(T li |Xi,Zi)
)2

δLi

−
∂2

∂α1∂bj
Λ
(
T li |Xi,Zi

)
δIi

−

(
∂2

∂α1∂bj
Λ
(
T li |Xi,Zi

)
− ∂2

∂α1∂bj
Λ
(
T ri |Xi,Zi

))
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi)−1

δIi

−
e
Λ
(
T li |Xi,Zi

)
−Λ(Tri |Xi,Zi)

(
∂
∂α1

Λ
(
T li |Xi,Zi

)
− ∂
∂α1

Λ
(
T ri |Xi,Zi

))
(

1− eΛ(T li |Xi,Zi)−Λ(Tri |Xi,Zi)
)2

×
(

∂

∂bj
Λ
(
T li |Xi,Zi

)
−

∂

∂bj
Λ (T ri |Xi,Zi)

)
δIi

+
∂2

∂α1∂bj
Λ (Li|Xi,Zi) +

(
∂2

∂α1∂bj
Λ (Li|Xi,Zi)− ∂2

∂α1∂bj
Λ (Ri|Xi,Zi)

)
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

+
eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

(
∂
∂α1

Λ (Li|Xi,Zi)− ∂
∂α1

Λ (Ri|Xi,Zi)
)

(
1− eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

)2
×
(

∂

∂bj
Λ (Li|Xi,Zi)−

∂

∂bj
Λ (Ri|Xi,Zi)

)]
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∂2

∂α1∂γj
`p
(
θ;σ2

b

)
=

∂2

∂α1∂γj
`0
(
θ;σ2

b

)
=

n∑
i=1

− ∂2

∂α1∂γj
Λ (T ri |Xi,Zi)

(
δOi + δRi

)
+

∂2

∂α1∂γj
Λ
(
T li |Xi,Zi

)
eΛ(T li |Xi,Zi) − 1

δLi

−
e
Λ
(
T li |Xi,Zi

)
∂
∂α1

Λ
(
T li |Xi,Zi

)
∂
∂γj

Λ
(
T li |Xi,Zi

)
(
eΛ(T li |Xi,Zi) − 1

)2
δLi

−
∂2

∂α1∂γj
Λ
(
T li |Xi,Zi

)
δIi

−

(
∂2

∂α1∂γj
Λ
(
T li |Xi,Zi

)
− ∂2

∂α1∂γj
Λ
(
T ri |Xi,Zi

))
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi)−1

δIi

−
e
Λ(Tri |Xi,Zi)−Λ

(
T li |Xi,Zi

) (
∂
∂α1

Λ
(
T li |Xi,Zi

)
− ∂
∂α1

Λ
(
T ri |Xi,Zi

))
(
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi) − 1

)2

×
(

∂

∂γj
Λ
(
T li |Xi,Zi

)
−

∂

∂γj
Λ (T ri |Xi,Zi)

)
δIi

+
∂2

∂α1∂γj
Λ (Li|Xi,Zi) +

(
∂2

∂α1∂γj
Λ (Li|Xi,Zi)− ∂2

∂α1∂γj
Λ (Ri|Xi,Zi)

)
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

+
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi)

(
∂
∂α1

Λ (Li|Xi,Zi)− ∂
∂α1

Λ (Ri|Xi,Zi)
)

(
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

)2
×
(

∂

∂γj
Λ (Li|Xi,Zi)−

∂

∂γj
Λ (Ri|Xi,Zi)

)]

=

n∑
i=1

− ∂2

∂α1∂γj
Λ (T ri |Xi,Zi)

(
δOi + δRi

)
+

∂2

∂α1∂γj
Λ
(
T li |Xi,Zi

)
eΛ(T li |Xi,Zi) − 1

δLi

−
e
−Λ
(
T li |Xi,Zi

)
∂
∂α1

Λ
(
T li |Xi,Zi

)
∂
∂γj

Λ
(
T li |Xi,Zi

)
(

1− e−Λ(T li |Xi,Zi)
)2

δLi

−
∂2

∂α1∂γj
Λ
(
T li |Xi,Zi

)
δIi

−

(
∂2

∂α1∂γj
Λ
(
T li |Xi,Zi

)
− ∂2

∂α1∂γj
Λ
(
T ri |Xi,Zi

))
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi)−1

δIi

−
e
Λ
(
T li |Xi,Zi

)
−Λ(Tri |Xi,Zi)

(
∂
∂α1

Λ
(
T li |Xi,Zi

)
− ∂
∂α1

Λ
(
T ri |Xi,Zi

))
(

1− eΛ(T li |Xi,Zi)−Λ(Tri |Xi,Zi)
)2

×
(

∂

∂γj
Λ
(
T li |Xi,Zi

)
−

∂

∂γj
Λ (T ri |Xi,Zi)

)
δIi

+
∂2

∂α1∂γj
Λ (Li|Xi,Zi) +

(
∂2

∂α1∂γj
Λ (Li|Xi,Zi)− ∂2

∂α1∂γj
Λ (Ri|Xi,Zi)

)
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

+
eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

(
∂
∂α1

Λ (Li|Xi,Zi)− ∂
∂α1

Λ (Ri|Xi,Zi)
)

(
1− eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

)2
×
(

∂

∂γj
Λ (Li|Xi,Zi)−

∂

∂γj
Λ (Ri|Xi,Zi)

)]
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∂2

∂α1∂ζj
`p
(
θ;σ2

b

)
=

∂2

∂α1∂ζj
`0
(
θ;σ2

b

)
=

n∑
i=1

− ∂2

∂α1∂ζj
Λ (T ri |Xi,Zi)

(
δOi + δRi

)
+

∂2

∂α1∂ζj
Λ
(
T li |Xi,Zi

)
eΛ(T li |Xi,Zi) − 1

δLi

−
e
Λ
(
T li |Xi,Zi

)
∂
∂α1

Λ
(
T li |Xi,Zi

)
∂
∂ζj

Λ
(
T li |Xi,Zi

)
(
eΛ(T li |Xi,Zi) − 1

)2
δLi

−
∂2

∂α1∂ζj
Λ
(
T li |Xi,Zi

)
δIi

−

(
∂2

∂α1∂ζj
Λ
(
T li |Xi,Zi

)
− ∂2

∂α1∂ζj
Λ
(
T ri |Xi,Zi

))
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi)−1

δIi

−
e
Λ(Tri |Xi,Zi)−Λ

(
T li |Xi,Zi

) (
∂
∂α1

Λ
(
T li |Xi,Zi

)
− ∂
∂α1

Λ
(
T ri |Xi,Zi

))
(
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi) − 1

)2

×
(

∂

∂ζj
Λ
(
T li |Xi,Zi

)
−

∂

∂ζj
Λ (T ri |Xi,Zi)

)
δIi

+
∂2

∂α1∂ζj
Λ (Li|Xi,Zi) +

(
∂2

∂α1∂ζj
Λ (Li|Xi,Zi)− ∂2

∂α1∂ζj
Λ (Ri|Xi,Zi)

)
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

+
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi)

(
∂
∂α1

Λ (Li|Xi,Zi)− ∂
∂α1

Λ (Ri|Xi,Zi)
)

(
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

)2
×
(

∂

∂ζj
Λ (Li|Xi,Zi)−

∂

∂ζj
Λ (Ri|Xi,Zi)

)]

=

n∑
i=1

− ∂2

∂α1∂ζj
Λ (T ri |Xi,Zi)

(
δOi + δRi

)
+

∂2

∂α1∂ζj
Λ
(
T li |Xi,Zi

)
eΛ(T li |Xi,Zi) − 1

δLi

−
e
−Λ
(
T li |Xi,Zi

)
∂
∂α1

Λ
(
T li |Xi,Zi

)
∂
∂ζj

Λ
(
T li |Xi,Zi

)
(

1− e−Λ(T li |Xi,Zi)
)2

δLi

−
∂2

∂α1∂ζj
Λ
(
T li |Xi,Zi

)
δIi

−

(
∂2

∂α1∂ζj
Λ
(
T li |Xi,Zi

)
− ∂2

∂α1∂ζj
Λ
(
T ri |Xi,Zi

))
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi)−1

δIi

−
e
Λ
(
T li |Xi,Zi

)
−Λ(Tri |Xi,Zi)

(
∂
∂α1

Λ
(
T li |Xi,Zi

)
− ∂
∂α1

Λ
(
T ri |Xi,Zi

))
(

1− eΛ(T li |Xi,Zi)−Λ(Tri |Xi,Zi)
)2

×
(

∂

∂ζj
Λ
(
T li |Xi,Zi

)
−

∂

∂ζj
Λ (T ri |Xi,Zi)

)
δIi

+
∂2

∂α1∂ζj
Λ (Li|Xi,Zi) +

(
∂2

∂α1∂ζj
Λ (Li|Xi,Zi)− ∂2

∂α1∂ζj
Λ (Ri|Xi,Zi)

)
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

+
eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

(
∂
∂α1

Λ (Li|Xi,Zi)− ∂
∂α1

Λ (Ri|Xi,Zi)
)

(
1− eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

)2
×
(

∂

∂ζj
Λ (Li|Xi,Zi)−

∂

∂ζj
Λ (Ri|Xi,Zi)

)]
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∂2

∂bj∂bj′
`p

(
θ;σ

2
b

)
=

∂2

∂bj∂bj′
`0

(
θ;σ

2
b

)
−

1

σ2
b

I
(
j = j

′
)

=
n∑
i=1

− ∂2

∂bj∂bj′
Λ
(
T
r
i |Xi,Zi

) (
δOi + δRi

)
+

∂2

∂bj∂bj′
Λ
(
T li |Xi,Zi

)
e
Λ
(
Tl
i
|Xi,Zi

)
− 1

δLi

−
e
Λ
(
Tli |Xi,Zi

)
∂
∂bj

Λ
(
T li |Xi,Zi

)
∂

∂b
j′

Λ
(
T li |Xi,Zi

)
(
e
Λ
(
Tl
i
|Xi,Zi

)
− 1

)2
δLi

−
∂2

∂bj∂bj′
Λ
(
T
l
i |Xi,Zi

)
δIi

−

(
∂2

∂bj∂bj′
Λ
(
T li |Xi,Zi

)
− ∂2

∂bj∂bj′
Λ
(
Tri |Xi,Zi

))
e
Λ
(
Tr
i
|Xi,Zi

)
−Λ

(
Tl
i
|Xi,Zi

)
−1

δIi

−
e
Λ
(
Tri |Xi,Zi

)
−Λ

(
Tli |Xi,Zi

) (
∂
∂bj

Λ
(
T li |Xi,Zi

)
− ∂
∂bj

Λ
(
Tri |Xi,Zi

))
(
e
Λ
(
Tr
i
|Xi,Zi

)
−Λ

(
Tl
i
|Xi,Zi

)
− 1

)2

×
(

∂

∂bj′
Λ
(
T
l
i |Xi,Zi

)
−

∂

∂bj′
Λ
(
T
r
i |Xi,Zi

))
δIi

+
∂2

∂bj∂bj′
Λ (Li|Xi,Zi) +

(
∂2

∂bj∂bj′
Λ (Li|Xi,Zi)− ∂2

∂bj∂bj′
Λ (Ri|Xi,Zi)

)
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

+

eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi)
(

∂
∂bj

Λ (Li|Xi,Zi)− ∂
∂bj

Λ (Ri|Xi,Zi)
)

(
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

)2

×
(

∂

∂bj′
Λ (Li|Xi,Zi)−

∂

∂bj′
Λ (Ri|Xi,Zi)

)]
−

1

σ2
b

I
(
j = j

′
)

=

n∑
i=1

− ∂2

∂bj∂bj′
Λ
(
T
r
i |Xi,Zi

) (
δOi + δRi

)
+

∂2

∂bj∂bj′
Λ
(
T li |Xi,Zi

)
e
Λ
(
Tl
i
|Xi,Zi

)
− 1

δLi

−
e
−Λ

(
Tli |Xi,Zi

)
∂
∂bj

Λ
(
T li |Xi,Zi

)
∂

∂b
j′

Λ
(
T li |Xi,Zi

)
(

1− e−Λ
(
Tl
i
|Xi,Zi

))2
δLi

−
∂2

∂bj∂bj′
Λ
(
T
l
i |Xi,Zi

)
δIi

−

(
∂2

∂bj∂bj′
Λ
(
T li |Xi,Zi

)
− ∂2

∂bj∂bj′
Λ
(
Tri |Xi,Zi

))
e
Λ
(
Tr
i
|Xi,Zi

)
−Λ

(
Tl
i
|Xi,Zi

)
−1

δIi

−
e
Λ
(
Tli |Xi,Zi

)
−Λ

(
Tri |Xi,Zi

) (
∂
∂bj

Λ
(
T li |Xi,Zi

)
− ∂
∂bj

Λ
(
Tri |Xi,Zi

))
(

1− eΛ
(
Tl
i
|Xi,Zi

)
−Λ

(
Tr
i
|Xi,Zi

))2

×
(

∂

∂bj′
Λ
(
T
l
i |Xi,Zi

)
−

∂

∂bj′
Λ
(
T
r
i |Xi,Zi

))
δIi

+
∂2

∂bj∂bj′
Λ (Li|Xi,Zi) +

(
∂2

∂bj∂bj′
Λ (Li|Xi,Zi)− ∂2

∂bj∂bj′
Λ (Ri|Xi,Zi)

)
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

+

eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)
(

∂
∂bj

Λ (Li|Xi,Zi)− ∂
∂bj

Λ (Ri|Xi,Zi)
)

(
1− eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

)2

×
(

∂

∂bj′
Λ (Li|Xi,Zi)−

∂

∂bj′
Λ (Ri|Xi,Zi)

)]
−

1

σ2
b

I
(
j = j

′
)
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∂2

∂bj∂γj′
`p

(
θ;σ

2
b

)
=

∂2

∂bj∂γj′
`0

(
θ;σ

2
b

)

=
n∑
i=1

− ∂2

∂bj∂γj′
Λ
(
T
r
i |Xi,Zi

) (
δOi + δRi

)
+

∂2

∂bj∂γj′
Λ
(
T li |Xi,Zi

)
e
Λ
(
Tl
i
|Xi,Zi

)
− 1

δLi

−
e
Λ
(
Tli |Xi,Zi

)
∂
∂bj

Λ
(
T li |Xi,Zi

)
∂

∂γ
j′

Λ
(
T li |Xi,Zi

)
(
e
Λ
(
Tl
i
|Xi,Zi

)
− 1

)2
δLi

−
∂2

∂bj∂γj′
Λ
(
T
l
i |Xi,Zi

)
δIi

−

(
∂2

∂bj∂γj′
Λ
(
T li |Xi,Zi

)
− ∂2

∂bj∂γj′
Λ
(
Tri |Xi,Zi

))
e
Λ
(
Tr
i
|Xi,Zi

)
−Λ

(
Tl
i
|Xi,Zi

)
−1

δIi

−
e
Λ
(
Tri |Xi,Zi

)
−Λ

(
Tli |Xi,Zi

) (
∂
∂bj

Λ
(
T li |Xi,Zi

)
− ∂
∂bj

Λ
(
Tri |Xi,Zi

))
(
e
Λ
(
Tr
i
|Xi,Zi

)
−Λ

(
Tl
i
|Xi,Zi

)
− 1

)2

×
(

∂

∂γj′
Λ
(
T
l
i |Xi,Zi

)
−

∂

∂γj′
Λ
(
T
r
i |Xi,Zi

))
δIi

+
∂2

∂bj∂γj′
Λ (Li|Xi,Zi) +

(
∂2

∂bj∂γj′
Λ (Li|Xi,Zi)− ∂2

∂bj∂γj′
Λ (Ri|Xi,Zi)

)
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

+

eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi)
(

∂
∂bj

Λ (Li|Xi,Zi)− ∂
∂bj

Λ (Ri|Xi,Zi)
)

(
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

)2

×
(

∂

∂γj′
Λ (Li|Xi,Zi)−

∂

∂γj′
Λ (Ri|Xi,Zi)

)]

=

n∑
i=1

− ∂2

∂bj∂γj′
Λ
(
T
r
i |Xi,Zi

) (
δOi + δRi

)
+

∂2

∂bj∂γj′
Λ
(
T li |Xi,Zi

)
e
Λ
(
Tl
i
|Xi,Zi

)
− 1

δLi

−
e
−Λ

(
Tli |Xi,Zi

)
∂
∂bj

Λ
(
T li |Xi,Zi

)
∂

∂γ
j′

Λ
(
T li |Xi,Zi

)
(

1− e−Λ
(
Tl
i
|Xi,Zi

))2
δLi

−
∂2

∂bj∂γj′
Λ
(
T
l
i |Xi,Zi

)
δIi

−

(
∂2

∂bj∂γj′
Λ
(
T li |Xi,Zi

)
− ∂2

∂bj∂γj′
Λ
(
Tri |Xi,Zi

))
e
Λ
(
Tr
i
|Xi,Zi

)
−Λ

(
Tl
i
|Xi,Zi

)
−1

δIi

−
e
Λ
(
Tli |Xi,Zi

)
−Λ

(
Tri |Xi,Zi

) (
∂
∂bj

Λ
(
T li |Xi,Zi

)
− ∂
∂bj

Λ
(
Tri |Xi,Zi

))
(

1− eΛ
(
Tl
i
|Xi,Zi

)
−Λ

(
Tr
i
|Xi,Zi

))2

×
(

∂

∂γj′
Λ
(
T
l
i |Xi,Zi

)
−

∂

∂γj′
Λ
(
T
r
i |Xi,Zi

))
δIi

+
∂2

∂bj∂γj′
Λ (Li|Xi,Zi) +

(
∂2

∂bj∂γj′
Λ (Li|Xi,Zi)− ∂2

∂bj∂γj′
Λ (Ri|Xi,Zi)

)
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

+

eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)
(

∂
∂bj

Λ (Li|Xi,Zi)− ∂
∂bj

Λ (Ri|Xi,Zi)
)

(
1− eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

)2

×
(

∂

∂γj′
Λ (Li|Xi,Zi)−

∂

∂γj′
Λ (Ri|Xi,Zi)

)]
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∂2

∂bj∂ζj′
`p

(
θ;σ

2
b

)
=

∂2

∂bj∂ζj′
`0

(
θ;σ

2
b

)

=
n∑
i=1

− ∂2

∂bj∂ζj′
Λ
(
T
r
i |Xi,Zi

) (
δOi + δRi

)
+

∂2

∂bj∂ζj′
Λ
(
T li |Xi,Zi

)
e
Λ
(
Tl
i
|Xi,Zi

)
− 1

δLi

−
e
Λ
(
Tli |Xi,Zi

)
∂
∂bj

Λ
(
T li |Xi,Zi

)
∂

∂ζ
j′

Λ
(
T li |Xi,Zi

)
(
e
Λ
(
Tl
i
|Xi,Zi

)
− 1

)2
δLi

−
∂2

∂bj∂ζj′
Λ
(
T
l
i |Xi,Zi

)
δIi

−

(
∂2

∂bj∂ζj′
Λ
(
T li |Xi,Zi

)
− ∂2

∂bj∂ζj′
Λ
(
Tri |Xi,Zi

))
e
Λ
(
Tr
i
|Xi,Zi

)
−Λ

(
Tl
i
|Xi,Zi

)
−1

δIi

−
e
Λ
(
Tri |Xi,Zi

)
−Λ

(
Tli |Xi,Zi

) (
∂
∂bj

Λ
(
T li |Xi,Zi

)
− ∂
∂bj

Λ
(
Tri |Xi,Zi

))
(
e
Λ
(
Tr
i
|Xi,Zi

)
−Λ

(
Tl
i
|Xi,Zi

)
− 1

)2

×
(

∂

∂ζj′
Λ
(
T
l
i |Xi,Zi

)
−

∂

∂ζj′
Λ
(
T
r
i |Xi,Zi

))
δIi

+
∂2

∂bj∂ζj′
Λ (Li|Xi,Zi) +

(
∂2
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The final equation for each derivative is better computationally and comes from multiplying

by a form of 1 on certain terms. For example, for the second left censor term we multiplied

by

(
e
−Λ(Tli |Xi,Zi)

e
−Λ(Tli |Xi,Zi)

)2

.
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Appendix D

Derivation of Marginal

Loglikelihood

D.1 Background and Short Derivation of Marginal Loglike-

lihood

In order to estimate the smoothing parameter, we use the restricted maximum

likelihood (REML) since Harville (1974) showed that the REML for Gaussian models is the

same as the marginal likelihood when the regression parameters are integrated with a flat

prior. Thus, we find that the marginal loglikelihood is:

`marg
(
σ2
b

)
= −K

2
log
(
σ2
b

)
+ log

∫
R2+K+p+q

exp
[
`p
(
θ;σ2

b

)]
dθ.
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Since the likelihood of the function is given by:

L
(
θ;σ2

b

)
= exp

{
`
(
θ;σ2

b

)}
=

(
1

σ2
b

)K
2

exp
{
`p
(
θ;σ2

b

)}
,

where θ =
(
αT , bT ,γT , ζT

)T
and α = (α0, α1)T , plugging in we see that:

`marg
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)
= log
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)K
2
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)}
dαdbdγdζ
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2
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)
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∫
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exp
{
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(
θ;σ2

b

)}
dθ.

We apply Laplace’s method as stated in Laplace (1986), which states that:

∫ b

a
eMf(x)dx ≈

√
2π

M |f ′′ (x) |
eMf(x0),

where M is a constant, f ′′ is the 2nd derivative of f , and x0 is the maximum of f . Therefore,

the approximation of `marg
(
σ2
b

)
is:
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)
' −K

2
log
(
σ2
b
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{
θ̂
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σ2
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)
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b

}
− 1

2
log
∣∣∣−Q{θ̂ (σ2
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)
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}∣∣∣ ,
where θ̂

(
σ2
b

)
is the solution to Q

(
θ;σ2

b

)
= 0. Additionally, Q is the (2 +K + p+ q) ×

1 vector of first-order partial derivatives of `p
(
θ;σ2

b

)
and Q is the (2 +K + p+ q) ×

(2 +K + p+ q) matrix of the second-order partial derivatives of `p
(
θ;σ2

b

)
.
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D.2 Detailed Derivation of Marginal Loglikelihood

We start with the fact that L
(
θ;σ2

b

)
=
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1
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b

)K
2
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θ;σ2

b

)}
, where
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with α = (α0, α1)T . We also know that the Taylor series expansion
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(θ − θ̂). Now using a similar argument as the derivation of PQL,

we find:
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2 |Σ|−
1
2 exp

{
1

2
(θ − θ̂)TQ

{
θ̂
(
σ2
b

)
;σ2
b

}
(θ − θ̂)

}
dθ

= (2π)
2+K+p+q

2 |Σ|
1
2

(
1

σ2
b

)K
2

exp
{
`p

(
θ̂;σ2

b

)}
= (2π)

2+K+p+q

2

∣∣∣−Q{θ̂ (σ2
b

)
;σ2
b

}∣∣∣− 1
2

(
1

σ2
b

)K
2

exp
{
`p

(
θ̂;σ2

b

)}
.

The second step uses the Taylor series approximation. The third step uses that fact the in-

tegral of a N
(
θ̂,Σ

)
over the whole space is 1 and that the Hessian matrix Q

{
θ̂
(
σ2
b

)
;σ2

b

}
=

−Σ−1 or Σ = −Q
{
θ̂
(
σ2
b

)
;σ2

b

}−1
. Taking the log of both sides and removing the constant

we get:

`marg
(
σ2
b

)
' −K

2
log
(
σ2
b

)
+ `p

{
θ̂
(
σ2
b

)
;σ2

b

}
− 1

2
log
∣∣∣−Q{θ̂ (σ2

b

)
;σ2

b

}∣∣∣ .
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Appendix E

Derivations of 1st and 2nd

Derivatives of Marginal

Loglikelihood

E.1 Derivation of 1st Derivative of Marginal Loglikelihood

We know that

`marg
(
σ2
b

)
' −K

2
log
(
σ2
b

)
+ `p

{
θ̂
(
σ2
b

)
;σ2

b

}
− 1

2
log
∣∣∣−Q{θ̂ (σ2

b

)
;σ2

b

}∣∣∣ .
Additionally, `p

(
θ;σ2

b

)
= `0 − bT b

2σ2
b

and `0 does not have any dependence on σ2
b . Lastly,

Jacobi’s formula states that d
dx (detA (x)) = detA (x) · tr

(
A−1 (x) d

dxA (x)
)
. Therefore, the
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first derivative is found as follows:

d

dσ2
b

`marg
(
σ2
b

)
' − K

2σ2
b

+
1

2
(
σ2
b

)2bTb− 1

2
∣∣∣−Q{θ̂ (σ2

b

)
;σ2

b

}∣∣∣ ·
∣∣∣−Q{θ̂ (σ2

b

)
;σ2

b

}∣∣∣
· tr
(
−Q−1

{
θ̂
(
σ2
b

)
;σ2

b

} d

dσ2
b

(
−Q

{
θ̂
(
σ2
b

)
;σ2

b

}))
= − K

2σ2
b

+
1

2
(
σ2
b

)2bTb− 1

2
tr

(
Q−1

{
θ̂
(
σ2
b

)
;σ2

b

} d

dσ2
b

Q
{
θ̂
(
σ2
b

)
;σ2

b

})
.

E.2 Derivation of 2nd Derivative of Marginal Loglikelihood

Before we find the second derivative, we first state that the derivative of the trace of

a matrix is the same as the trace of the derivative of the matrix, thus d
dx tr (A) = tr

(
d
dxA

)
.

Secondly, we derive that d
dxA

−1 = −A−1
(
d
dxA

)
A−1, where A is a square matrix whose

inverse exists.

Derivation:

I = AA−1

d

dx
I =

d

dx

(
AA−1

)
0 =

(
d

dx
A

)
A−1 +A

d

dx

(
A−1

)
A
d

dx

(
A−1

)
= −

(
d

dx
A

)
A−1

d

dx

(
A−1

)
= −A−1

(
d

dx
A

)
A−1.
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Now, the second derivative of the marginal loglikelihood, using the first derivative

is:

d2

d
(
σ2
b

)2 `marg (σ2
b

)
' K

2
(
σ2
b

)2 − 1(
σ2
b

)3bTb
− 1

2
tr

(
d

dσ2
b

(
Q−1

{
θ̂
(
σ2
b

)
;σ2

b

} d

dσ2
b

Q
{
θ̂
(
σ2
b

)
;σ2

b

}))
=

K

2
(
σ2
b

)2 − 1(
σ2
b

)3bTb
+

1

2
tr

(
Q−1

{
θ̂
(
σ2
b

)
;σ2

b

} d

dσ2
b

Q
{
θ̂
(
σ2
b

)
;σ2

b

}
×Q−1

{
θ̂
(
σ2
b

)
;σ2

b

} d

dσ2
b

Q
{
θ̂
(
σ2
b

)
;σ2

b

})
− 1

2
tr

(
Q−1

{
θ̂
(
σ2
b

)
;σ2

b

} d2

d
(
σ2
b

)2Q{θ̂ (σ2
b

)
;σ2

b

})
.
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Appendix F

Formulas and Derivations for

Results

F.1 Formulas for Results

We use θ here as a general parameter we are estimating.

RBias Equal to θ−θ
θ , where θ =

∑r
i=1 θ̂i
r , θ is the true parameter

value, and r is the number of replicates.

ECP Equal to
∑r
i=1 I(Ui>θ>Li)

r , where Ui = θ̂i + zα/2σ̂θ̂i and

Li = θ̂i − zα/2σ̂θ̂i . Now σ̂
θ̂i

is the estimated standard error

from each of the r runs and zα/2 is the confidence level,

in our case zα/2 = 1.96.
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MESE Denoted by σ
θ̂

and equal to σ
θ̂

=

∑r
i=1 σ̂θ̂i
r .

ESE Denoted by σ̂
θ̂

and equal to σ̂
θ̂

=

√∑r
i=1(θ̂i−θ)

2

r−1 .

Specification Rate Equal to
∑n
i=1

∑C
c=1 I(vic=1∩τic=max(τ i))

n . The numerator states

that in order to count towards the specification rate, an

individual must have come from cluster c and be identified

as belonging to cluster c.

F.2 Derivation of Standard Errors

In order to calculate empirical coverage probabilities (ECP) or mean estimated

standard errors (MESE), we need to calculate the covariance-variance matrix for θ =(
αT , bT ,γT , ζT

)T
with α = (α0, α1)T . The covariance-variance matrix of θ̂ − θ is:

cov





α̂−α

b̂− b

γ̂−γ

ζ̂−ζ



|σ2
b



= cov





α̂

b̂− b

γ̂

ζ̂



|σ2
b



,

158



since only b depends on σ2
b . Before finding the estimate for the covariance-variance matrix

of θ̂ − θ, we first present the Taylor series approximation for the first derivatives of the

loglikelihood, or score function, denoted by Q (θ) and centered at θ. It is:

∂

∂θ
l
(
θ̂
)

= Q
(
θ̂
)

= 0

Q
(
θ̂
)
≈ Q (θ) + Q (θ)

(
θ̂ − θ

)
(
θ̂ − θ

)
= −Q−1 (θ)Q (θ) ,

where Q (θ) is the second derivatives of the loglikelihood or Hessian matrix. The other piece

we need to remember is that Var(AX) = AXAT .

With this background, we find that the approximate covariance-variance matrix

of θ̂ − θ given σ2
b is:

cov
(
θ̂ − θ|σ2

b

)
= cov

(
−Q−1 (θ)Q (θ) |σ2

b

)
=
{
−Q

(
θ;σ2

b

)}−1
Var

{
Q
(
θ;σ2

b

)} {
−Q

(
θ;σ2

b

)}−1

= −Q
(
θ;σ2

b

)−1
,

since for likelihood functions the Var
{
Q
(
θ̂;σ2

b

)}
= −Q

(
θ̂;σ2

b

)
. Now using the above

results, the estimated covariance-variance matrix of θ̂ − θ given σ2
b is:

ĉov
(
θ̂ − θ|σ2

b

)
= −Q

(
θ̂;σ2

b

)−1
.
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Appendix G

Derivations of τ i and ω for EM

Algorithm

G.1 Derivation of τ i

Given that vic is unknown, we have to estimate it by its expected value, therefore,

τic = E
[
vic|T li , T ri , Li, Ri, δOi , δRi , δLi , δIi ,Xi,Zi

]
. Therefore,

τic = E
[
vic|T li , T ri , Li, Ri, δOi , δRi , δLi , δIi ,Xi,Zi

]
= 1 · Pr (i ∈ c) + 0 · Pr (i /∈ c)

= Pr (i ∈ c) .

Now, the probability that the individual, i, belongs to cluster c is equal to the

density value of cluster c of the individual weighted by the probability of the cluster times

a normalizing constant. In our case, this is the sum of the probability that the individual
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belongs in each of the C clusters. This can be written as:

τ̂ic =
ωcSic (Θ)∑C

c′=1 ωc′Sic′ (Θ)
,

where

Sc (Θ) =

n∏
i=1

Sic (Θ) =

n∏
i=1

Sc
(
Θ;T li , T

r
i , Li, Ri, δOi , δRi , δLi , δIi ,Xic,Zi

)
=

n∏
i=1

(
λc (T ri |Xic,Zi) e

−Λc(T
r
i |Xic,Zi)

e−Λc(Li|Xic,Zi) − e−Λc(Ri|Xic,Zi)

)δOi ( e−Λc(T
r
i |Xic,Zi)

e−Λc(Li|Xic,Zi) − e−Λc(Ri|Xic,Zi)

)δRi

×

(
1− e−Λc(T li |Xic,Zi)

e−Λc(Li|Xic,Zi) − e−Λc(Ri|Xic,Zi)

)δLi (
e−Λc(T li |Xic,Zi) − e−Λc(T

r
i |Xic,Zi)

e−Λc(Li|Xic,Zi) − e−Λc(Ri|Xic,Zi)

)δIi
.

We let Θ = (α0, α1, b,γc, ζc, ωc) where c = 1, . . . , C be the estimates of the parameters of

interest.

G.2 Derivation of ω

Solving for ωc, we start with the fact that we have the constraint that
∑C

c=1 ωc = 1

and the expected value of the likelihood is E
(
`
(
Θ;T l,T r,L,R, δO, δR, δL, δI ,Z,V

))
=∑n

i=1

∑C
c=1 [τic log (ωc) + τic log (Sic (Θ))]. We now use a Lagrange multiplier, which is

where we maximize a function subject to a contraint. In its general form, it is written

as L (x, λ) = f (x) +λ (K − g (x)), where g (x) = K and K is a constant. More background

can be found in section 14.8 of Stewart (2008). With this background, we now solve the
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Lagrange multiplier with the constraint
∑C

c=1 ωc = 1, leading to:

` (ω, λ) =
n∑
i=1

C∑
c=1

[τic log (ωc) + τic log (Sic (Θ))] + λ

(
1−

C∑
c=1

ωc

)
.

Taking the derivative of ` (ω, λ) with respect to ωc and setting it equal to 0, we get:

∂

∂ωc
` (ω, λ) =

n∑
i=1

τic
ωc
− λ

λ =
n∑
i=1

τic
ωc

ωc =
n∑
i=1

τic
λ
.

Now, we need to find λ. Therefore, we use the fact that
∑C

c=1 τic = 1 and
∑C

c=1 ωc = 1,

and find that:

C∑
c=1

ωc =
n∑
i=1

C∑
c=1

τic
λ

1 =
1

λ

n∑
i=1

C∑
c=1

τic

λ =
n∑
i=1

C∑
c=1

τic

λ =
n∑
i=1

1

λ = n.

Therefore,

ω̂c =

∑n
i=1 τic∑n

i=1

∑C
c′=1 τic′

=

∑n
i=1 τic
n

.
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Appendix H

Derivations of Λ (t|Xi,Zi) and

Loglikelihood Involving βjk′

Since every term from before that does not involve βjk′ is solved for in the general

setting in Section C of the Appendix, we do not present them here. Therefore, we will

only be looking at terms involving βjk′ when giving the first and second derivatives of

Λ (t|Xi,Zi) and the loglikelihood in this section. They will be presented as given in Section

C of Appendix, without clustering or Monte Carlo replicates.
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H.1 1st and 2nd Derivatives of Λ (t|X i,Zi)

The 1st derivative Λ (t|Xi,Zi) with respect to βjk′ , k
′ = 1, . . . , J is:

∂

∂βjk′
Λ (t|Xi,Zi) = eZ

T
i ζ

k∗t−1∑
k=0

∫ κk+1

κk

γjBjk′ (u) eα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γdu

+ eZ
T
i ζ

∫ t

κk∗t

γjBjk′ (u) eα0+α1u+
∑K
l=1 bl(u−κl)++XT

i (u)γdu.

The 2nd derivatives of Λ (t|Xi,Zi) with respect to βjk′ , k
′ = 1, . . . , J is:

∂2

∂α0∂βjk′
Λ (t|Xi,Zi) =

∂

∂βjk′
Λ (t|Xi,Zi)

∂

∂α1∂βjk′
Λ (t|Xi,Zi) = eZ

T
i ζ

k∗t−1∑
k=0

∫ κk+1

κk

uγjBjk′ (u) eα0+α1u+
∑K
l=1 bl(u−κl)++XTi (u)γdu

+ eZ
T
i ζ

∫ t

κk∗t

uγjBjk′ (u) eα0+α1u+
∑K
l=1 bl(u−κl)++XTi (u)γdu

∂

∂bj∂βj′k′
Λ (t|Xi,Zi) = eZ

T
i ζ

k∗t−1∑
k=0

∫ κk+1

κk

(u− κj)+ γj′Bj′k′ (u) eα0+α1u+
∑K
l=1 bl(u−κl)++XTi (u)γdu

+ eZ
T
i ζ

∫ t

κk∗t

(u− κj)+ γj′Bj′k′ (u) eα0+α1u+
∑K
l=1 bl(u−κl)++XTi (u)γdu

∂

∂γj∂βj′k′
Λ (t|Xi,Zi) = eZ

T
i ζ

k∗t−1∑
k=0

∫ κk+1

κk

(
ψj (u) γj′ + I

(
j = j′

))
Bj′k′ (u) eα0+α1u+

∑K
l=1 bl(u−κl)++XTi (u)γdu

+ eZ
T
i ζ

∫ t

κk∗t

(
ψj (u) γj′ + I

(
j = j′

))
Bj′k′ (u) eα0+α1u+

∑K
l=1 bl(u−κl)++XTi (u)γdu

∂

∂ζj∂βj′k′
Λ (t|Xi,Zi) = Zije

ZTi ζ

k∗t−1∑
k=0

∫ κk+1

κk

γj′Bj′k′ (u) eα0+α1u+
∑K
l=1 bl(u−κl)++XTi (u)γdu

+ Zije
ZTi ζ

∫ t

κk∗t

γj′Bj′k′ (u) eα0+α1u+
∑K
l=1 bl(u−κl)++XTi (u)γdu

∂

∂βjk′∂βj′k′′
Λ (t|Xi,Zi) = eZ

T
i ζ

k∗t−1∑
k=0

∫ κk+1

κk

γjBjk′ (u) γj′Bj′k′′ (u) eα0+α1u+
∑K
l=1 bl(u−κl)++XTi (u)γdu

+ eZ
T
i ζ

∫ t

κk∗t

γjBjk′ (u) γj′Bj′k′′ (u) eα0+α1u+
∑K
l=1 bl(u−κl)++XTi (u)γdu.
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H.2 1st Derivative of Loglikelihood

The first derivative of the complete data loglikelihood with respect to βjk′ is:

∂

∂βjk′
log (L (Θ)) =

n∑
i=1

B
T
jk′ (Y ij −Xij)

σ2
Yj

+
∂

∂βjk′
`p
(
θ;σ2

b

)
.

Now each element of Xij equals Xij (t) = ψj (t) +
∑J

k′=1 ξijk′Bk′ (t), where ψj (t) is the

jth mean trajectory function and is given by ψj (t) =
∑J

k′=1 βjk′Bk′ (t). Remembering that

`p
(
θ;σ2

b

)
= `0 − bT b

2σ2
b

, where `0 =
∑n

i=1

[
η0 (T ri ) δOi +

(
XT

i (T ri )γ +ZT
i ζ
)
δOi−

Λ (T ri |Xi,Zi) (δOi + δRi) + log
(

1− e−Λ(T li |Xi,Zi)
)
δLi − Λ

(
T li |Xi,Zi

)
δIi+

log
(

1− eΛ(T li |Xi,Zi)−Λ(T ri |Xi,Zi)
)
δIi + Λ (Li|Xi,Zi)− log

(
1− eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

)]
,

the first derivative of `p
(
θ;σ2

b

)
with respect to βjk′ is:

∂

∂βjk′
`p
(
θ;σ2

b

)
=

∂

∂βjk′
`0
(
θ;σ2

b

)
=

n∑
i=1

[(
γjBjk′ (T

r
i )
)
δOi −

∂

∂βjk′
Λ (T ri |Xi,Zi)

(
δOi + δRi

)

+
e
−Λ
(
T li |Xi,Zi

)
∂

∂βjk′
Λ
(
T li |Xi,Zi

)
1− e−Λ(T li |Xi,Zi)

δLi −
∂

∂βjk′
Λ
(
T li |Xi,Zi

)
δIi

−
e
Λ
(
T li |Xi,Zi

)
−Λ(Tri |Xi,Zi)

(
∂

∂βjk′
Λ
(
T li |Xi,Zi

)
− ∂
∂βjk′

Λ
(
T ri |Xi,Zi

))
1− eΛ(T li |Xi,Zi)−Λ(Tri |Xi,Zi)

δIi

+
∂

∂βjk′
Λ (Li|Xi,Zi)

+

eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)
(

∂
∂βjk′

Λ (Li|Xi,Zi)− ∂
∂βjk′

Λ (Ri|Xi,Zi)

)
1− eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)


=

n∑
i=1

(Bjk′ (T ri ) γj
)
δOi −

∂

∂βjk′
Λ (T ri |Xi,Zi)

(
δOi + δRi

)
+

∂
∂βjk′

Λ
(
T li |Xi,Zi

)
eΛ(T li |Xi,Zi) − 1

δLi

−
∂

∂βjk′
Λ
(
T li |Xi,Zi

)
δIi −

(
∂

∂βjk′
Λ
(
T li |Xi,Zi

)
− ∂
∂βjk′

Λ
(
T ri |Xi,Zi

))
eΛ(Tri |Xi,Zi)−Λ(T li |Xi,Zi) − 1

δIi

+
∂

∂βjk′
Λ (Li|Xi,Zi) +

(
∂

∂βjk′
Λ (Li|Xi,Zi)− ∂

∂βjk′
Λ (Ri|Xi,Zi)

)
eΛ(Ri|Xi,Zi)−Λ(Li|Xi,Zi) − 1

 .
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The final equation is better computationally and comes from multiplying by a form of 1 on

certain terms. For example, for the left censor term we multiplied by e
Λ(Tli |Xi,Zi)

e
Λ(Tli |Xi,Zi)

.

H.3 2nd Derivative of Loglikelihood

Since every second derivative of βjk′ , except of βjk′ with itself, only involves the

penalized loglikelihood of the survival model, `p
(
θ;σ2

b

)
, we are only going to be at that

term. Remembering that `p
(
θ;σ2

b

)
= `0 − bT b

2σ2
b

, where `0 =
∑n

i=1 [η0 (T ri ) δOi+(
XT

i (T ri )γ +ZT
i ζ
)
δOi − Λ (T ri |Xi,Zi) (δOi + δRi) + log

(
1− e−Λ(T li |Xi,Zi)

)
δLi−

Λ
(
T li |Xi,Zi

)
δIi + log

(
1− eΛ(T li |Xi,Zi)−Λ(T ri |Xi,Zi)

)
δIi + Λ (Li|Xi,Zi)−

166



log
(
1− eΛ(Li|Xi,Zi)−Λ(Ri|Xi,Zi)

)]
, the second derivatives are:

∂2

∂α0∂βjk′
`p

(
θ;σ

2
b

)
=

∂2

∂α0∂βjk′
`0

(
θ;σ

2
b

)

=
n∑
i=1

− ∂2

∂α0∂βjk′
Λ
(
T
r
i |Xi,Zi

) (
δOi + δRi

)
+

∂2

∂α0∂βjk′
Λ
(
T li |Xi,Zi

)
e
Λ
(
Tl
i
|Xi,Zi

)
− 1

δLi

−
e
Λ
(
Tli |Xi,Zi

)
∂
∂α0

Λ
(
T li |Xi,Zi

)
∂

∂β
jk′

Λ
(
T li |Xi,Zi

)
(
e
Λ
(
Tl
i
|Xi,Zi

)
− 1

)2
δLi

−
∂2

∂α0∂βjk′
Λ
(
T
l
i |Xi,Zi

)
δIi

−

(
∂2

∂α0∂βjk′
Λ
(
T li |Xi,Zi

)
− ∂2

∂α0∂βjk′
Λ
(
Tri |Xi,Zi

))
e
Λ
(
Tr
i
|Xi,Zi

)
−Λ

(
Tl
i
|Xi,Zi

)
−1

δIi

−
e
Λ
(
Tri |Xi,Zi

)
−Λ

(
Tli |Xi,Zi

) (
∂
∂α0

Λ
(
T li |Xi,Zi

)
− ∂
∂α0

Λ
(
Tri |Xi,Zi

))
(
e
Λ
(
Tr
i
|Xi,Zi

)
−Λ

(
Tl
i
|Xi,Zi

)
− 1

)2

×
(

∂

∂βjk′
Λ
(
T
l
i |Xi,Zi

)
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The second derivative of the complete data loglikelihood with respect to βjk′ and βj′k′′ is:
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where the second derivative of `p
(
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)
with respect to βjk′ and βj′k′′ is:
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The final equation for each derivative is better computationally and comes from multiplying

by a form of 1 on certain terms. For example, for the second left censor term we multiplied

by

(
e
−Λ(Tli |Xi,Zi)

e
−Λ(Tli |Xi,Zi)

)2

.
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Appendix I

Derivation of σ2
Yjc

and Σξjc

We need to estimate all σ2
Yjc

’s that are part of σ2
Y along with each Σξjc, where

c = 1, . . . , C and j = 1, . . . , p. Below we work through finding the maximum likelihood

estimate for one σ2
Yjc

and one Σξjc below.

I.1 Derivation of σ2
Yjc

We know that Y ij is the ith individual’s jth longitudinal vector of measures of

length mij . Also, we know that Y ij ∼ Nmij

(
Xijc, σ

2
Yjc

)
. Now, for each cluster c, each

Xij (t) = ψj (t) +
∑J

k′=1 ξijk′Bk′ (t) where ψj (t) is the jth mean trajectory function and is

given by ψj (t) =
∑J

k′=1 βjk′Bk′ (t). Therefore, the part of the loglikelihood that depends
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on σ2
Yjc

is:

`
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=
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Taking the derivative with respect to σ2
Yjc

, setting it equal to 0, and solving, we get:
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I.2 Derivation of Σξjc

Now we work through finding the maximum likelihood estimate of Σξjc below.

The part of the loglikelihood that depends on Σξjc is:
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We know that the trace of a square matrix is equal to the sum of the diagonals. Therefore,

the 2nd to last line above is due to the fact that
(
ξ
T (r)
ij Σ−1

ξj
ξ

(r)
ij

)
is a 1 × 1 matrix and

therefore it is equal to its trace. The trace also does not change under cyclic permutations,

meaning tr (ABC) = tr (BCA) = tr (CAB), which we used in the last line. To find the

derivative with respect to Σ−1
ξj

, we use Jacobi’s formula, which states that d
dx (detA (x)) =

detA (x) · tr
(
A−1 (x) d

dxA (x)
)
. We also use the fact that the derivative of the trace is equal

to the trace of the derivative, d
dAtr (A) = tr

(
d
dAA

)
. Taking the derivative with respect to
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Σ−1
ξj

, setting it equal to 0, and solving, we get:
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This derivative is only 0 if the trace is 0. Thus, solving for Σξjc within the trace gives:
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