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Abstract

Parallelism, Patterns, and Performance in Iterative MRI Reconstruction

by

Mark Murphy

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California, Berkeley

Professor Michael Lustig, Professor Kurt Keutzer, Chairs

Magnetic Resonance Imaging (MRI) is a non-invasive and highly flexible medical imag-
ing modality that does not expose patients ionizing radiation. MR Image acquisitions can
be designed by varying a large number of contrast-generation parameters, and many clin-
ical diagnostic applications exist. However, imaging speed is a fundamental limitation to
many potential applications. Traditionally, MRI data have been collected at Nyquist sam-
pling rates to produce alias-free images. However, many recent scan acceleration techniques
produce sub-Nyquist samplings. For example, Parallel Imaging is a well-established acceler-
ation technique that receives the MR signal simultaneously from multiple receive channels.
Compressed sensing leverages randomized undersampling and the compressibility (e.g. via
Wavelet transforms or Total-Variation) of medical images to allow more aggressive under-
sampling. Reconstruction of clinically viable images from these highly accelerated acqui-
sitions requires powerful, usually iterative algorithms. Non-Cartesian pulse sequences that
perform non-equispaced sampling of k-space further increase computational intensity of re-
construction, as they preclude direct use of the Fast Fourier Transform (FFT). Most iterative
algorithms can be understood by considering the MRI reconstruction as an inverse problem,
where measurements of un-observable parameters are made via an observation function that
models the acquisition process. Traditional direct reconstruction methods attempt to invert
this observation function, whereas iterative methods require its repeated computation and
computation of its adjoint. As a result, näıve sequential implementations of iterative recon-
structions produce unfeasibly long runtimes. Their computational intensity is a substantial
barrier to their adoption in clinical MRI practice.

A powerful new family of massively parallel microprocessor architectures has emerged
simultaneously with the development of these new reconstruction techniques. Due to funda-
mental limitations in silicon fabrication technology, sequential microprocessors reached the
power-dissipation limits of commodity cooling systems in the early 2000’s. The techniques
used by processor architects to extract instruction-level parallelism from sequential programs
face ever-diminishing returns, and further performance improvement of sequential processors
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via increasing clock-frequency has become impractical. However, circuit density and process
feature sizes still improve at Moore’s Law rates. With every generation of silicon fabrication
technology, a larger number of transistors are available to system architects. Consequently,
all microprocessor vendors now exclusively produce multi-core parallel processors. Addition-
ally, the move towards on-chip parallelism has allowed processor architects a larger degree of
freedom in the design of multi-threaded pipelines and memory hierarchies. Many of the inef-
ficiencies inherent in superscalar out-of-order design are being replaced by the high efficiency
afforded by throughput-oriented designs.

The move towards on-chip parallelism has resulted in a vast increase in the amount of
computational power available in commodity systems. However, this move has also shifted
the burden of computational performance towards software developers. In particular, the
highly efficient implementation of MRI reconstructions on these systems requires manual
parallelization and optimization. Thus, while ubiquitous parallelism provides a solution to
the computational intensity of iterative MRI reconstructions, it also poses a substantial
software productivity challenge.

In this thesis, we propose that a principled approach to the design and implementation
of reconstruction algorithms can ameliorate this software productivity issue. We draw much
inspiration from developments in the field of computational science, which has faced simi-
lar parallelization and software development challenges for several decades. We propose a
Software Architecture for the implementation of reconstruction algorithms, which composes
two Design Patterns that originated in the domain of massively parallel scientific computing.
This architecture allows for the most computationally intense operations performed by MRI
reconstructions to be implemented as re-usable libraries. Thus the software development
effort required to produce highly efficient and heavily optimized implementations of these
operations can be amortized over many different reconstruction systems. Additionally, the
architecture prescribes several different strategies for mapping reconstruction algorithms onto
parallel processors, easing the burden of parallelization. We describe the implementation of
a complete reconstruction, `1-SPIRiT, according to these strategies. `1-SPIRiT is a general
reconstruction framework that seamlessly integrates all three of the scan acceleration tech-
niques mentioned above. Our implementation achieves substantial performance improvement
over baseline, and has enabled substantial clinical evaluation of its approach to combining
Parallel Imaging and Compressive Sensing. Additionally, we include an in-depth description
of the performance optimization of the non-uniform Fast Fourier Transform (nuFFT), an
operation used in all non-Cartesian reconstructions. This discussion complements well our
description of `1-SPIRiT, which we have only implemented for Cartesian samplings.
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Chapter 1

Introduction

Magnetic Resonance Imaging (MRI) is a highly flexible and non-invasive medical imaging
modality. Many medical imaging methods expose patients to ionizing radiation, such as
Computed Tomography (CT), X-ray, and Positron Emission Tomography (PET). MRI relies
entirely on Nuclear Magnetic Resonance (NMR), a quantum-physical phenomenon by which
magnetically-polarized nuclei emit an electromagnetic signal. Producing an NMR signal
from a patient’s body requires exposure only to non-ionizing radio frequency electromagnetic
radiation. Additionally, MR scans are highly parametrizable. The flexibility of the NMR
phenomenon and the scanner hardware enables a vast array of clinical applications of MRI.
Depending on the scan parameters and the pulse sequence, MR Image contrast can be
sensitive to a number of physical properties, enabling extremely flexible imaging of soft-
tissue. Furthermore, MR image contrast can be made sensitive to fluid flow velocities,
diffusion, temperature, or blood oxygenation levels near active neurons. Consequently, MRI
is a highly desirable imaging modality for many clinical applications.

Unfortunately, MRI is much slower and more costly than other modalities. As a result,
MR accounts for only a small fraction of medical images in practice. MR systems’ high
cost is due to several factors. The electronics of the scanner are sensitive and complex, and
liquid-helium cooled superconducting magnets produce the extremely high magnetic fields
required for NMR. While the high cost of MR is one factor that limits its applicability in
some contexts, its inherently slow data acquisition is also a substantial barrier to wider
adoption. The slowness of acquisition makes it difficult to apply MRI to time-sensitive
clinical applications. For example, time-resolved imaging is more difficult in 3D than in 2D,
since volumetric scans are typically two orders of magnitude slower in both acquisition and
reconstruction.

From a computer science perspective, the costs associated with the physical system are
unavoidable and fixed. However, recent advances in sampling and reconstruction have sub-
stantially improved imaging speed. As we discuss in Chapter 2, a number of efficient sampling
schemes have been proposed to reduce the amount of data acquired during a scan. As MR
is able to sample the image point-by-point sequentially, a reduction in the amount of data
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acquired translates directly to scan acceleration. The need for magnetization recovery be-
tween readouts results in low duty-cycle of acquisition, and scan acceleration techniques are
crucial to expanding and improving the clinical applications of MRI. However, these tech-
niques sample the image far below the Nyquist rate, and images produced via traditional
reconstructions are dominated by noise and aliasing.

This thesis discusses the advanced reconstruction techniques required to produce clinical-
quality images from highly accelerated scans and the software optimization techniques re-
quired to achieve clinically feasible reconstruction runtimes. Many of these recently pro-
posed reconstructions are fundamentally iterative, as they leverage powerful signal process-
ing, numerical optimization, and linear algebra algorithms. These reconstructions are able
to remove aliasing from undersampling and regain lost signal-to-noise ratio (SNR). Despite
promising results, their adoption is limited by the intense computation they require. Näıve
implementations of these reconstructions run for hours, whereas an on-line clinical appli-
cation permits only a few minutes of runtime. A crucial component of any reconstruction
system is a fast implementation of the computationally intense reconstruction algorithm.

From the early 1980’s to the early 2000’s, little additional software development effort was
required for the performance benefits of Moore’s Law to be manifest in end-user applications.
The rapid advance of sequential microprocessor architectures and compiler technologies ac-
celerated most workloads by over 100× in this era. Over the past decade, however, the
performance of general-purpose workloads on single-core processors has all but stalled. In
recent years parallelism has become a ubiquitous component of general-purpose micropro-
cessor designs. The term manycore processors has been used to describe these architectures.
In prior generations of uniprocessor architectures, high clock rates and moderate degrees
of instruction-level parallelism were the primary mechanism by which processors increased
performance. In manycore processors, performance improvement from generation to gener-
ation is primarily provided by large-scale programmer-visible parallelism. For performance
to scale with Moore’s law, software must explicitly take advantage of the parallel execution
and memory resources that manycore processors provide. This additional optimization ef-
fort is a substantial burden on application developers, few of whom posses the necessary
expertise in computer architecture and low-level performance tuning. Furthermore, if near
peak performance is to be achieved, then substantial re-optimization and re-parallelization
may be necessary when migrating an application to a next-generation processor architecture.
Consequently, it is impossible for the majority of application developers to remain entirely
agnostic to all microarchitectural concerns. Fundamentally, the burden of performance is
shifting from the processor architect to the application developer. These facts pose a serious
software productivity problem: microprocessor architecture and silicon fabrication technolo-
gies alone are no longer capable of improving performance. Until compiler technology is able
to automate the implementation decisions discussed in this thesis, substantial programmer
intervention is the only way to increase computational performance.

In this thesis, we discuss the design of high-performance software systems for these com-
putationally intense MRI reconstructions. Many recently proposed reconstructions can be
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described via formulation as an inverse problem, where system parameters are to be esti-
mated from measurements made via a system transfer function. Much of the computational
intensity of iterative reconstructions lies in the application of the system transfer function
and its adjoint operator. The system function models the MRI data acquisition process
as a composition of primitive operations such as Fourier transforms and sensitivity encod-
ings. The iterative algorithms that solve these inverse problem require repeated application
of these operations, whereas traditional direct reconstructions typically compute them only
once. The software that implements these algorithms must be developed primarily by MRI
scientists and researchers, who do not necessarily have the prerequisite knowledge of com-
puter architecture to perform low-level performance optimization. Thus it is crucial that the
design of these software systems separate responsibility for these optimization issues from
the design of the inverse-problem formulations and reconstruction algorithms.

We propose a novel software architecture, the Supermarionation architecture, which
achieves this separation, and describe its application in the MRI reconstruction context.
The models of MRI acquisition used in various reconstructions rely on a single, small set of
primitive operations. Thus, they can be tuned for the important cases encountered in MRI
reconstruction and re-used as a library. The Supermarionation architecture is a combination
of several previously proposed Design Patterns. Patterns are a well-established technique of
describing software design issues. These patterns, Geometric Decomposition [58] and Pup-
peteer [70], are drawn from the well-developed field of massively parallel scientific computing,
which for decades has faced the same software productivity problems that we have described
here. Our proposed software architecture separates the low-level tuning and optimization
of the most performance-sensitive parts of the reconstruction system from the implemen-
tation of the iterative inverse-problem solver. However, it cannot hide all the implications
of low-level optimization decisions, because the researcher implementing the reconstruction
algorithm must be aware of the layout of data in memory. The data-partitioning scheme
drives the parallelization of all computations performed by the reconstruction, even ones
that cannot be performed by library functions and thus must be implemented by the MRI
scientist.

1.1 Outline

The remainder of this thesis is organized as follows:

• Chapter 2 provides necessary background on magnetic resonance imaging, reconstruc-
tion algorithms and high-performance computing.

• Chapter 3 describes the Supermarionation architecture and its application in the design
of high-performance MRI reconstructions. This chapter describes the elements of a re-
usable library to aid in the implementation of MRI reconstruction systems, and the
design of iterative algorithms based on ths library.
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• Chapter 4 is an in-depth description of a reconstruction system implemented according
to the aforementioned strategies. This system uses several of the library components
described in the previous chapter.

• Chapter 5 is an in-depth description of the optimization of one element of the library
described above: the Non-Uniform Fast Fourier Transform, known commonly as Grid-
ding in MRI reconstruction. In a complete library implementation, similar techniques
could be used for all of the computationally intense library elements.

• Chapter 6 includes a summary, discussion, and conclusion.
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Chapter 2

Background

2.1 Introduction

This chapter presents background material necessary to more completely understand the
chapters which follow. The topic of this thesis is a hybrid between two fields, Magnetic
Resonance Imaging (MRI) and High-Performance Computing (HPC). We present the back-
ground from these fields separately in Sections 2.2 and 2.3, respectively.

The scope of active research and clinical practice of MR imaging is far too broad for
us to hope to discuss in depth this thesis. The extreme flexibility of the Nuclear Magnetic
Resonance (NMR) phenomenon has produced many clinical diagnostic applications of the
technique, each of which warrants a PhD dissertation in its own right. The design of efficient
gradient and radio frequency pulse sequences for exciting and manipulating NMR spins is
an equally complex and rich field of study, which we cannot hope to discuss in depth. The
topic of this thesis is the computational performance of the algorithms used to produce
images from the NMR signal. As such, the goal of Section 2.2 is to bridge the gap from
a classical description of the physics underlying magnetic resonance to the algorithms that
fall within our scope. The goal of Section 2.3 is to describe the current state-of-the-art in
parallel computing systems, and to describe the difficulties of parallel software development
and performance optimization that MRI reconstruction systems must face.

2.2 Magnetic Resonance Image Reconstruction

Although Nuclear Magnetic Resonance (NMR) is fundamentally a quantum-mechanical phe-
nomenon, the behavior of atomic nuclei can be very well described using a simple classical
model. The classical model is sufficient for the purposes of describing the algorithms used
during image reconstruction, but we must take several quantum-mechanical properties ax-
ioms, for example the concepts of spin angular momentum and Larmor precession frequency.
In clinical imaging, the NMR signal is produced primarily by the protons – i.e. 1H atoms
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– in water molecules in the patient’s body. Other species present in the body are able to
produce an NMR signal, but 1H is by far the most abundant. Since they posses an odd
number of nucleons, 1H atoms exhibit the quantum spin angular momentum property. For
this reason, 1H atoms are commonly called spins in MRI parlance. Since protons also exhibit
a +1 electrical charge, we can model them as spinning charged spheres. The combination of
spin and charge results in a magnetic moment, of which MR imaging systems take advantage
to produce the NMR signal.

2.2.1 Electromagnetic Fields used in MRI

In clinical imaging, the NMR signal is produced by applying three different electromagnetic
fields to the spins in a patient’s body. The first field is a strong, static field used to align the
magnetic moments of the spins. This field is of constant magnitude and direction throughout
the field of view (FOV). By convention, its direction is defined as the ẑ axis, and it is called
the B0 = B0ẑ field. In typical clinical imaging systems, B0 is 1.5 to 3 Teslas – approximately
4 orders of magnitude stronger than the Earth’s magnetic field. The second type of field
used in MRI are short-lived time-varying radio frequency pulses, similar to the radiation
used in FM radio transmission. These pulses are conventionally referred to as B1 fields. The
B1 field’s carrier frequency is tuned to the resonant Larmor frequency ω = γB0, where γ
is a constant whose value depends on the specie to be imaged. For the common case of 1H
imaging γ = 267.52×106 radians per second per Tesla. The effect of the B1 pulse is to rotate
the spins, perturbing their alignment to B0. The strength, duration, and polarization of B1

are chosen precisely to control this perturbation. After perturbation, spins tend to re-align
with B0 at rates described by the T1 and T2 parameters which we’ll discuss momentarily
in terms of the Bloch equation. The final fields used in MR imaging are the time-varying

Gradient fields G(t) =
[
∂Bz

∂x
(t), ∂Bz

∂y
(t), ∂Bz

∂z
(t)
]T

, which vary the strength of the magnetic

field parallel to the ẑ axis. We have written G as a function of time only, rather than of
both time and space, since in MRI the gradient field is almost always linear and constant
throughout the FOV.

2.2.2 Bloch Equation

The Bloch Equation is the aforementioned classical model of the behavior of NMR spins in
the presence of electromagnetic fields. If we denote the spatial position and time variables
as x and t, the magnetization of spins in the FOV as M(x, t) = (Mx,My,Mz), and the total
magnetic field as B(x, t) = (Bx, By, Bz), then the Bloch Equation is

dM

dt
= M× γB− Mxx̂+Myŷ

T2

− (Mz −M0)ẑ

T1

(2.1)

where × denotes a vector cross product. The first term M × γB describes the precession
of spins about the ẑ axis which ultimately is the source of the NMR signal. A familiar
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Figure 2.1: Illustration of nuclear magnetic resonance under the influence of the fields used
in MRI. Three 1H spins are shown with the orientation of their magnetic dipoles. Due
to the gradient field G, the strength of the magnetic field in the ẑ direction varies across
the field of view. Accordingly, the Larmor precession frequencies vary as well. In this
diagram the field strength varies linearly, increasing with x, so that the precession frequencies
ω(x) = γB(x) = γ(B0 +Gx). As the spins precess at different rates, they accrue phase with
respect to each other.

analogy can be made to the child’s toy known as a “top”, which spins about a vertical axis
and is held upright by its angular momentum. When perturbed from exact verticality, the
force of Gravity causes precession via a similar cross-product force. The second and third
terms of the Bloch Equation describe the T2-decay of the transverse (i.e. in the x− y plane)
magnetization and the T1-recovery of the longitudinal (i.e. parallel to ẑ) magnetization. The
values of the T1 and T2 parameters vary according to the tissue in which the 1H lie. The
variance of these parameters across tissues is frequently used to generate image contrast.
By inserting appropriate delays into the pulse sequence between B1 excitation and signal
measurement, the strength of the signal is made to vary among the various tissues present
in the FOV.

2.2.3 Signal Equation

The NMR signal is received via Faraday’s Law, which states that a varying magnetic flux
through a closed conductive loop induces current. MR systems place conductive loops nearby
the sample containing spins whose magnetizations are evolving according to Equation 2.1.
In our context, the conductive loops are MRI receiver coil, tuned to resonate signals at
the Larmor frequency. As the spins precess, their magnetic fields oscillate. This oscillation
produces the varying magnetic flux though the receiver coils, resulting in a measurable
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Figure 2.2: Demonstration of the Fourier relationship in Nuclear Magnetic Resonance (NMR)
imaging. A spatial distribution of 1H atoms emits a radio frequency signal after excitation
via a radio frequency pulse. The field strength B(x) = B0 + Gx varies linearly across the
field of view, and thus the frequency of the signal emitted by each 1H atom depends linearly
on its position via the Larmor relationship ω(x) = γB(x). The received NMR signal is the
sum of the signals emitted by all protons, but its spectral components can be recovered via
a Fourier transform. Since the linear field strength variation produces a linear relationship
between position and frequency, the Fourier transform recovers the spatial distribution of
1H atoms.



CHAPTER 2. BACKGROUND 9

H1

Larmor
Precession

t

M

t

Mx,y z

M0

tRF tRF

T  decay2
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Figure 2.3: Illustration of T2 decay and T1 recovery. The magnetization vector M for a given
spin resolves into the x̂, ŷ, and ẑ components: M = (Mx,My,Mz)

′. We denote the magnitude
of the transverse magnetization Mx,y = ||Mxx̂ + Myŷ||. Precession is about the ẑ axis
only. The Mx and My components vary sinusoidally, but both Mx,y and Mz vary smoothly
according to the decay and recovery rates. We assume that at t = 0, the spin’s magnetization
is aligned with the B0 field along the ẑ axis. At some time tRF > 0 the radiofrequency B1

pulse rotates the magnetization away from the ẑ axis, causing the transverse magnetization
Mx,y to increase and the longitudinal magnetization Mz to decrease. After tRF, the transverse
magnetization Mx,y decays exponentially at the T2 rate and the longitudinal magnetization
recovers exponentially at the T1 rate.

voltage. Since the signal is received simultaneously for all spins in the FOV, we write the
signal as the integral

s(t) =

∫
FOV

Mxy(x, t)dx.

Inserting a solution to the Bloch Equation1 into this integral produces the MRI Signal
Equation:

s(t) =

∫
FOV

Mxy(x)e−t/T2(x)e−ıω0t exp

(
−ıγ

∫ t

0

〈x,G(τ)〉 dτ
)
dx (2.2)

where 〈·, ·〉 denotes inner (dot) product. Equation 2.2 is rather unwieldy, and it is appropriate
to make several simplifications. First, we can ignore the carrier-frequency term e−ıω0t, as
the NMR signal is demodulated at the Larmor frequency ω0 before processing. Second,
the length of time during which data is acquired is usually much shorter than the value of
T2, and in most cases the T2 decay term e−t/T2(x) can be ignored. Third, we define the k-
space coordinates to be k(t) = γ

2π

∫ t
0

G(τ)dτ . With these simplifications and the appropriate
algebraic manipulation, the signal equation reduces to

s(t) =

∫
Mxy(x)e−2πı〈k(t),x〉dx (2.3)

1Derivation of the Bloch Equation’s solution is beyond our scope
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From Equation 2.3 it is clear that the received time-domain signal is equivalent to a Fourier
transform of the transverse magnetization evaluated at spatial frequencies k(t), which are
determined by the Gradient pulse sequences applied during signal acquisition. Thus, the
task of reconstructing an image of the transverse magnetization Mxy from the samples of
s(t) is equivalent to computing an inverse Fourier transform.

The Fourier interpretation of the signal equation was a crucial development in the theory
of MRI. In practice the received time-domain signal s(t) is sampled at a discrete set of time-
points {t̄i}, which correspond to a set of spatial-frequencies {k(t̄i)}. The most commonly
used pulse sequence designs choose an equally-spaced set of sample locations {k(t̄i)} that
satisfy the Nyquist-Shannon sampling criteria for a desired image resolution and field-of-view.
The image can then be reconstructed very rapidly via the well-known Fast Fourier Transform
(FFT) algorithm. This acquisition technique is known as 2DFT or 3DFT, for 2D and 3D
imaging respectively, and is the standard clinical imaging practice for most applications.

2.2.4 MRI Reconstructions as Inverse Problems

In general, an Inverse Problem is any situation in which measurable quantities are related
to parameters of a system by some known (or theorized) relationship. One cannot directly
observe the values of the parameters but wishes to estimate them from the measurements.
We denote the values measured as y ∈ Cm, the parameters to be estimated as x ∈ Cn, and
the function that computes the relationship as F (x). In inverse problems, one has observed
some measurements y of a system represented by F (·), and desires to compute the values
x so that y = F (x). This is a very general framework that describes a wide variety of
scientific and engineering problems, and it has been studied extensively. Depending on the
particular properties of the system function F (·), a variety of very powerful methods exist
for estimating the parameters x.

In the above discussion of MRI physics, we described the acquired signal as a Fourier
transform of the transverse magnetization. To view this as an inverse problem, we can define
the parameters x to be estimated as a discretization of the transverse magnetization, and the
observed measurements y to be the samples of the NMR signal. The system function F is then
a linear operator that evaluates the (discrete) Fourier transform of x at the spatial frequencies
corresponding to the Gradient pulse sequence. In the common case of equispaced Nyquist-
Shannon sampling, the system function is simply the square Discrete Fourier Transform
matrix, which we denote F . Since this matrix is square and full-rank, the reconstruction
can be be performed via its inverse: x = F−1y. As noted above, this matrix-vector product
can be computed efficiently in O(n log n) time via the FFT.

The most common approach to accelerating MRI data acquisition is to acquire equispaced
k-space locations, but to sample one or more dimensions below the Nyquist rate. The system
matrix for the inverse problem formulation of this approach consists of a subset of the rows
of the DFT matrix, which we denote as Fu ∈ Cm×n, with m < n. The inverse problem in
this case is the under-determined linear system y = Fux, which has no unique solution x.
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The reconstruction must incorporate further knowledge of the system in order to resolve the
ambiguity.

In most clinical applications of MRI, the signal is acquired simultaneously from multiple
receiver coils. Typically 4-32 coils are used. This practice, known as Parallel Imaging, allows
the coils to be placed much closer to the patient’s body. Each coil will receive the NMR
signal with substantially higher signal-to-noise ratio (SNR), but with a spatial weighting.
The signal will be received much more strongly from spins nearby the coil. The effect on
the signal is partially due to electromagnetic coupling between the receiver coil and the
patient’s body, and it must be estimated separately for each patient. In the inverse-problem
formalism, we can model this spatial weighting as multiplication of the signal x by a diagonal
matrix Si for each of the c coils. The inverse problem becomes

y =

 y1
...
yc

 =

 Fu · S1
...

Fu · Sc

x (2.4)

where yi is the signal received from the ith receiver coil, and the matrix in square brackets
is the system matrix, composed of the diagonal matrices Si representing the coil spatial
sensitivities. The original SENSE [67] reconstruction solved this inverse problem by exploit-
ing the aliasing pattern that arises in regularly-subsampled imaging. Iterative SENSE [53]
reconstructions have solved this problem via numerical linear algebra algorithms [5] such as
Conjugate Gradients. These approaches typically assume that the sensitivities Si are known
explicitly or can be accurately estimated, for example from a prescan. Auto-calibrating
over-sample the center of k-space in order to re-estimate the sensitivies for each scan. The
approaches of Ying et al. [90] and Uecker et al. [79] attempt to estimate the sensitivities simul-
taneously with the estimation of the data x. This reconstruction problem is non-linear, and
Uecker et al. use an iteratively re-weighted Gauss-Newton algorithm. In general the sensitiv-
ities are difficult to estimate accurately and reliably, a fact which motivates reconstructions
that use sensitivity information implicitly. GRAPPA [37, 57] is an alternate approach to Par-
allel Imaging reconstruction does not require an explicit representation of the sensitivities,
instead estimating the sensitivity-weighted images xi = Six via linear algorithms.

Another approach to resolving the ambiguity arising from the under-determinedness of
sub-sampled reconstructions is motivated by the `0-`1 equivalence result of Compressive
Sensing [16, 26, 55]. Compressive Sensing relies on the existence of a sparse representation
of the data x via some change of basis α = Ψx. When such a sparse representation exists, the
signal x can be reconstructed from sub-sampled linear measurements y = Fux by minimizing
the convex `1 norm of α. The `1 norm is defined as the sum of absolute values (complex
moduli) of the components of a vector: ||x||1 =

∑
i |xi|. I.e. Compressive Sensing theory

prescribes that the desired image x is the solution of the numerical optimization:

min
x

||Ψx||1
s.t. y = Fux
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This problem can be reformulated as a Linear Program (LP), but the methods used to
solve LP generally do not scale to size of problems encountered in MRI reconstruction.
However, a number of highly scalable first-order algorithms have recently been proposed
[19, 22, 8, 77, 25, 29, 86].

The final scan acceleration approach that we discuss is non-Cartesian sampling of k-
space. Until now, we’ve assumed that Fu is related to the DFT matrix F via multiplication
by a subset of the Identity matrix: Fu = IuF . Fux and F−1

u y can both be computed
rapidly via the FFT. The discrete Fourier transform (DFT) can still be represented as an
m×n matrix, but the factorization of the DFT matrix that produces the FFT requires that
the sample locations be equispaced. Non-Cartesian pulse sequences remove the restriction
that k-space samples be equispaced, and instead acquire samples along trajectories k(t)
that are particularly convenient to generate with MRI gradient-generation hardware. As a
result data can be acquired much more rapidly, even without undersampling. However, the
inverse Fourier transform of the non-equispaced samples cannot be computed via the FFT.
Computation of the DFT directly requires O(mn) time and is unfeasibly long for many MRI
applications, however Chapter 5 of this thesis describes in detail the fast algorithm by which
MRI reconstructions approximate the non-equispaced DFT.

2.3 High Performance Computing

2.3.1 Asymptotic Analyses

Most scientists and engineers leveraging computational methods are familiar with the notion
of asymptotic complexity, commonly called “Big-Oh” notation. The statement

f(n) ∈ O (g(n))

is equivalent to the statement that there exists some constant C such that in the limit as
n→∞, the inequality

|f(n)| ≤ C|g(n)|

holds. Asymptotic complexity is a crucial tool in performance analysis, as it provides a
relative measure of the runtime of algorithms. Typically, one identifies a polynomial expres-
sion for the number of times an algorithm will perform some particular operation. All but
the terms with the largest exponent can be ignored for the purposes of asymptotic analy-
sis. Although asymptotics are crucial to understanding performance of an algorithm, more
analysis of the constant factors and lower-level architectural issues are necessary to guide
performance optimization decisions.

For example, consider the multiplication of two matrices A and B stored in column-
major order contiguously in memory. This operation is sometimes referred to as GEMM, short
for GEneral Matrix-Matrix multiplication, a name drawn from the Basic Linear Algebra
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Subroutines (BLAS) library as originally implemented in Fortran. Each entry ci,j of the
product C = AB is computed as the inner (dot) product of the ith row of A with the jth

column of B. If the matrices involved are all n × n, then the matrix product performs 2n3

floating-point operations. The näıve implementation of matrix-matrix multiplication consists
of three nested loops: over rows of A, columns of B, and over the dot product sum between
a given row/column pair. All implementations have the same O(n3) asymptotic complexity,
but this straightforward implementation can run over 1, 000× slower for large matrices than
the implementations provided in high-performance linear algebra libraries. The reasons for
this performance disparity are the low-level optimizations applied to the high-performance
library. These low-level optimizations are intended to exploit the low-level features of the
architecures we’ll describe in Section 2.3.3.

2.3.2 “Laws” of computing

There are several fundamental facts commonly referred to as “Laws” in computing parlance,
and are pertinent to our study of performance. The first, Moore’s Law, describes the evo-
lution of silicon fabrication technology over time. The second, Amdahl’s Law, describes the
effect of performance optimization for a single step of a multi-step algorithm. The third,
Gustafson’s Law, describes the scaling of performance with increasing input size.

Moore’s Law [59] is an empirical observation of the rapid pace of improvement in the
process technology by which microprocessors are manufactured. Moore’s original observation
was made based on only a few successive technology nodes in 1965, but it has held true
nearly to this day: the number of transistors per unit area of integrated circuit has doubled
approximately every two years for the past 40 years. In the present day, the trend of rapidly
increasing circuit density continues. State-of-the-art microprocessors in 2011 integrate up to
3 billion transistors in approximately 500 mm2 of silicon die. In the past 5 to 10 years, the
rapid increase in circuit density has reached a fundamental limitation in power dissipation. In
the 1990’s and early 2000’s, increases in circuit density were used to increase pipeline depths
and accompanied by increases in clock frequency beyond what normal technology scaling can
provide. Uniprocessor performance improved correspondingly. Dynamic power dissipation
increases linearly with clock frequency, and eventually power dissipation reached the limits of
the cooling systems used in commodity computer systems. Consequently, the microprocessor
industry now uses the Moore’s Law increase in circuit density to integrate larger number
of processor cores per die. Uniprocessor performance has stalled, but total computational
throughput continues to improve. A crucial result of this shift towards on-chip parallelism
is the growing importance of the memory system in performance-optimization. While the
circuit-density of microprocessors continues to improve, the area and diameter of physical
microprocessor packages remains approximately the same. The number of instructions-per-
second a processor can execute is roughly proportional to the number of transistors (i.e.
cores) on chip. DRAM is fabricated via different processes and must reside in separate
packages, and the rate at which data can transfer between processors and memory is limited
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by these physical packages. Thus memory-system performance is increasingly a limiting
factor in many numerical and scientific computing applications.

Amdahl’s Law [3] is the observation that most computations perform several different
sub-computations, and overall performance gain from improving a single sub-computation is
limited. For example, suppose that a particular computation consumes half of the runtime
of an algorithm. If one can improve the performance of that computation by 1, 000×, then
one has only improved the runtime of the algorithm by 2×. In general, the performance
improvement from optimization (e.g., parallelization) is limited by the fraction of total run-
time the optimized computation represents. If we denote that fraction as p, the performance
improvement from optimization as s, and the new and original total runtimes as r′ and r,
then Amdahl’s law can be stated as

r′ = r
(

(1− p) +
p

s

)
As the speedup s increases towards +∞, the relative runtime approaches r(1 − p). An
oft-quoted2 corollary to Amdahl’s law cautions against optimizing the wrong computations:
“Premature optimization is the root of all evil.” Performance optimization can be a very
labor-intensive process, consisting of much trial and error. It is undesirable to perform any
optimization until one knows where the performance bottlenecks are.

The final law, Gustafson’s Law, applies in many numerical and scientific computing ap-
plications. Gustafson [39] noted that in many cases, the quality of the result produced
by a computation can be improved by increasing the size of the input. For example in a
fluid-dynamics simulation, the accuracy of the computed result will be higher if a finer-scale
discretization of the volume is used. The finer discretization corresponds to a much larger
input size. Increasing the input size will lengthen runtime, but Gustafson noted that the
asymptotically more expensive computations in an algorithm will come to dominate runtime.
If these asymptotically more expensive operations are easier to optimize or parallelize than
the other computations, then one should certainly target them for performance improvement
before considering the other operations. Although in MRI reconstruction the size of input
is fundamentally limited by the amount of time the radiologist can afford to spend acquir-
ing data, Gustafson’s law provides a powerful insight: in deciding where to spend precious
programmer effort in performance optimization, it is crucial to first benchmark the recon-
struction algorithm for realistic problem sizes. Otherwise, our optimization efforts can easily
be misdirected at unimportant computations.

2.3.3 Modern Processor Architectures

There are two important components to modern processor architectures: memory systems
and instruction execution hardware. Much discussion of performance optimization for mod-
ern processing systems can be divided according to whether a particular optimization effects

2Attribution is disputed, and the truism is due either to Tony Hoare or Donald Knuth
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instruction-execution performance, or whether it effects memory-system performance. As
mentioned above, the trend of on-chip parallelism leads us to believe that most performance
optimizations will focus on improving memory-system performance. However, much of the
recent innovation in processor architecture that has stirred interest in high-performance
parallel programming lies in the mechanisms by which parallelism is exposed to the pro-
grammer. From a historical perspective, this resurgence in interest began when Graphics
Processing Units (GPUs) began to incorporate programmable processor cores. For much of
the 1990s, GPUs included only fixed-function hardware for performing the projective geom-
etry and texture interpolation required for rendering 3-D graphics. As graphics algorithms
became more diverse, however, GPU vendors began to integrate programmable cores into
their fixed-function graphics rendering pipelines. To this day, much of the die-area of GPUs
is devoted to non-programmable fixed-function circuitry (e.g. texture interpolation), but the
programmable cores execute Turing-complete instruction sets with the ability to read and
write arbitrary locations in memory. Note that much of the die-area of “general-purpose”
CPU processors is devoted to the out-of-order instruction execution hardware intended to op-
timize the sequential programs represented by the SPEC [40] benchmarks, which have helped
to drive CPU design for over two decades. Arguably, neither the texture-interpolation func-
tional units nor the out-of-order instruction execution circuitry are strictly necessary for the
efficient implementation of scientific and numerical software like MRI reconstructions, so
neither type of processor is at a clear disadvantage.

Many of the same micro-architectural mechanisms are used in the design of the memory
systems and execution pipelines of both programmable GPUs (i.e., descendants of the fixed-
function 3D rendering processors) and modern CPUs (i.e., descendants of the general-purpose
Intel 80386 and related processors). However, since the micro-architectural ancestors of
modern GPUs had very different programming models and workloads from those of modern
CPUs, the two systems are able to make different assumptions about program behavior.
Specifically, GPUs (both modern and original) assume a massively parallel workload with
many fine-grained operations to be performed independently and with little programmatic
specification of order among the individual operations. In graphics workloads, these fine-
grained operations are the projective-geometric or texture-interpolation computations used
to render 3-D scenes onto a 2-D screen. Contrarily, CPUs (modern and original) are designed
primarily to execute sequentially-specified programs. Until circuit density reached power
dissipation limits and forced multi-core designs as mentioned above, the only parallelism
exploited by CPUs was the implicit parallelism among instructions within a single instruction
stream. These different sets of assumptions have important consequences for the design
choices made in these two classes of processors. The remainder of our discussion of processor
architecture will describe processor design in general, but note the important differences in
CPU and GPU systems.

The memory systems of modern processors are deeply hierarchical. Dynamic Random
Access Memory (DRAM) is the highest level of the hierarchy that we consider in the design
of high-performance programs. In general, it is highly desirable to avoid using magnetic
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(hard disk) storage during program execution, either explicitly via file input/output or im-
plicitly via page-faulting. DRAM storage typically resides on different discrete silicon parts
from the processor cores, except in a few exotic architectures such as IBM’s BlueGene [45].
Consequently, DRAM access latency is very high – typically several hundred processor cy-
cles. DRAM access bandwidth is typically several tens of Gigabytes per second on CPU
systems, and several hundreds of Gigabytes per second on GPU systems. The difference is
primarily due to more aggressive memory-controller design and to the higher clock rates of
the Graphics DRAM. Also due to these higher clock rates, the capacity of DRAM on GPUs
is substantially lower than that of CPUs: 1-6 GB rather than 4-128 GB. The lower levels of
memory hierarchies are the caches, of which current-generation systems have 3 levels. Intel
CPU systems refer to these levels as L3, L2, and L1 caches. The L3 cache is shared by all
cores within a socket, and the L2 and L1 caches are private to each core. Nvidia’s GPU
systems [63] have a small L2 cache that is shared by all cores in a socket, and L1 caches that
are private to each core. Additionally, GPU register files are very large – approximately the
same size as the L1 cache. The Cuda [62] programming model allows much of a program’s
working set to be held in the register file, while large persistent data objects reside in DRAM.
An important difference in the design of CPU and GPU systems is that CPU caches are co-
herent, while GPU caches are not. Cache coherence refers to the ability of caches private
to different cores to automatically communicate data written by one core to the other. In
a coherent cache system, threads can communicate implicitly by writing data to memory.
When another thread reads the same memory location, the cache system will automatically
transfer the data to the reading thread’s cache. An incoherent cache system will not make
such transfers, and the programmer is responsible for coordinating communication by other
means.

The execution pipelines of CPUs and GPUs leverage similar micro-architectural tech-
niques to provide parallelism. Both types of processors can integrate multiple sockets with
preferentially accessible DRAM nodes (NUMA), and multiple processor cores are integrated
into the sockets of both types of systems. CPU systems integrate from 2 to 8 processor
cores per socket, while high-performance GPUs integrate as many as 30. Within each core
of both CPUs and GPUs, multiple simultaneous threads of execution are able to share
execution resources. Intel’s implementation of multi-threading is called Hyperthreading,
whereas Nvidia’s Cuda system somewhat confusingly calls these threads Thread Blocks. Each
core additionally includes many execution units, which are accessible in parallel via Single-
Instruction Multiple Data (SIMD): the core’s instruction fetch logic issues a single instruction
to all execution units simultaneously. SIMD is a very efficient mechanism to provide parallel
execution, as it allows amortization of expensive and complex instruction fetch and decode
logic over many execution units. However the implementation of SIMD in CPUs is rather in-
flexible, and it is difficult to speed up most codes with implementations like SSE or AVX. The
GPU implementation of SIMD is substantially more flexible, as GPU architectures provide
a multi-threading abstraction for programming SIMD hardware. Individual Cuda threads,
up to 1024 of which comprise a Thread Block, can execute arbitrarily different programs and
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access arbitrary memory locations. However, the SIMD hardware is heavily optimized for the
case that groups of 32 threads are executing the same instruction and accessing contiguous
blocks of memory. Nvidia refers to this architecture as Single-Instruction-Multiple Thread
(SIMT).
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Chapter 3

Software Design for High-Performance
MRI Reconstruction

3.1 Introduction

The inverse problem formulations of MRI reconstruction problems provide a convenient
mathematical framework in which to understand and formulate iterative reconstruction al-
gorithms. However, these formulations alone provide little guidance for the productive devel-
opment of efficient implementations for modern parallel processors. This chapter discusses
several aspects of the design of the software systems that implement these algorithms, using
the language of Design Patterns [2, 34, 58, 47]. Design Patterns provide a medium by which
to relate software design problems that arise in a variety of contexts. For example, the
patterns we discuss in this chapter originated in the context of massively parallel scientific
computing. Software implementation is as much art as science, and concrete comparisons
of software design strategies are difficult. Patterns are a medium by which to reason about
software design problems and to document and discuss their solutions. The space of poten-
tial MRI reconstruction algorithms spanned by the inverse problem formalism is very broad.
It is difficult to claim that any particular software framework can support every possible
reconstruction approach. However, the use of design patterns lends substantial generality
to our approach. The parallelization and implementation strategy described in this chapter
applies to algorithms throughout signal and image processing, and provides a clear approach
to extending our current implementation described in the following chapters.

The discussion in this chapter primarily applies to recently proposed iterative MRI re-
constructions, for example iterative SENSE [53], SPIRiT [57], and simultaneous sensitivity-
image estimation [79]. Traditionally, MRI reconstructions have used only direct algorithms,
which prescribe a finite sequence of operations for an exact (within machine precision) com-
putation. The Fast Fourier Transform (FFT) is a direct algorithm, in that it performs a
finite-length sequence of operations to compute its result. Iterative algorithms specify a
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finite-length sequence of operations to improve an approximate solution: one cannot say a
priori how many iterations are necessary for the procedure to converge to an exact solution.
Typically the estimate-update procedure is described in terms of direct algorithms such as
matrix multiplication or an FFT. Each iteration is thus at least as expensive as a direct
reconstruction. There are two types of software design issues that we address in this work.
Because the direct computations performed in each step of an iterative algorithm dominate
runtime, we are concerned with their efficient parallel implementation. Because iterative al-
gorithms are difficult to implement, debug, and test, we are concerned with their productive
development. In particular, we must allow the computationally-demanding operations to be
implemented and optimized in isolation from the numerically-sensitive iterative algorithms
to enable the use of high-performance libraries.

The primary contribution of this chapter is a software architecture composed of two de-
sign patterns in order to enable the most computationally intense operations to be performed
by highly optimized library routines. We call this strategy the Supermarionation software
architecture, and we describe it in Section 3.3. In Section 3.5, we describe the Geometric
Decomposition [58] pattern. Geometric Decomposition provides a strategy to parallelize the
computations, while the Puppeteer pattern [70], which we discuss in Section 3.4, provides
a strategy to decouple the iterative and direct algorithms. Our approach is similar to the
design of the Portable, Extensible Toolkit for Scientific computing (PETSc) [4]. Many of
the performance problems addressed by PETSc are specific to large-scale distributed mem-
ory systems. PETSc defines several fundamental objects that recur in scientific computing
applications, for example vectors and matrices. PETSc then provides libraries of highly op-
timized computations performed with these objects, such as vector scatter/gather, matrix
products, Jacobian computations, and linear solvers.

3.2 Design Patterns and Software Architecture

Software Design Patterns are general, re-usable solutions to common software design prob-
lems. In many cases it is impossible to describe these design issues in a formal mathematical
framework. Even in cases where formal descriptions are possible, their rigidity limits their
scope and applicability to real software systems. Patterns are natural-language descriptions
of problems, and thus cannot be manipulated or reasoned about via formal mathemat-
ics. However, this same informality is the source of design patterns’ generality, as patterns
typically assume very little about the particular computations being performed. Software
architectures are descriptions of the components of a software system, and the ways in which
these components interact. Frequently the design of these components can be guided by de-
sign patterns. The interactions between the components can also be described by patterns,
and these patterns are commonly called architectural patterns.

In the context of designing high-performance MRI reconstructions, we face two competing
design problems whose solution we describe via design patterns. First, we wish to leverage
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powerful iterative numerical algorithms to solve the inverse problem formulations of MRI
reconstruction tasks. These algorithms are typically much more computationally intense
than the direct, heuristic-based approaches that they seek to supplant. This computational
intensity results from the repeated application of the operations that compose the inverse
problem’s observation function and regularizers. Since routine clinical imaging requires that
reconstructions fit into the established radiology workflow, the software implementations
of reconstruction algorithms must be very efficient and heavily optimized. Section 3.5 will
discuss how the Geometric Decomposition [58] pattern can guide much of these lower-level
performance-relevant design decisions. Second, the flexibility of NMR has produced myriad
applications of these iterative reconstruction techniques, such as 4D-Flow reconstruction [42],
Diffusion-weighted imaging [10], and functional MRI via the BOLD signal [76]. MRI is a very
fertile ground for research and development of new diagnostic techniques: new applications
and reconstruction algorithms arise frequently. It is infeasible to expect that reconstruc-
tion software can be redeveloped for each new application individually. The researchers
developing the applications typically do not have software engineering expertise or software
development experience, and ensuring correctness in the implementation of numerical algo-
rithms is notoriously difficult. Thus the software used to implement reconstructions must
be flexible and modular to enable a high degree of software re-use. We discuss how the
Puppeteer design pattern guides the implementation of algorithms in a way to satisfy both
the desire for software re-use and the desire to optimize computationally intense operations.

These design problems are not specific to MRI reconstruction. Stated in these general
terms, nearly any computing application can fit the description above. Scientific computing
has faced these problems for decades, and has produced a large body of literature describing
solutions for performance and software design problems. In recent years, researchers in a
number of application areas have produced cutting-edge results with algorithms that bear
both theoretical and practical similarity to those used in iterative MRI reconstructions. The
goal of this section is to provide a detailed description of the MRI reconstruction software
design problems.

3.3 The Supermarionation Software Architecture

In this section, we describe our strategy for the parallel implementation of iterative MRI
reconstructions. We call this software architecture “Supermarionation.”1 The Supermarion-
ation architecture applies in any context where a reconstruction problem is to be formulated
as an inverse problem and solved via an iterative algorithm. As mentioned above, this class
of applications is very broad and extends to a variety of signal processing and scientific com-
puting tasks. For example, applications as diverse as image de-blurring and de-noising [27]

1The term Supermarionation describes the style of puppeteering used originally in the 1960’s British
television show “Thunderbirds,” and more recently in the satirical film “Team America: World Police Force.”
A common theme is a “race against time,” hence re-use of the term in our context is appropriate.
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Figure 3.1: (left) The Supermarionation Architecture, which combines the Geometric De-
composition strategy for parallelizing computationally-intense operations with the Puppeteer
strategy for implementing iterative algorithms. Each Puppet is parallelized according to the
Geometric Decomposition of the data with which it interacts. The Puppeteer is responsible
for ensuring the consistency of the Decompositions used for each puppet. (right) Example of
an end-to-end direct Fourier reconstruction flowchart, reproduced partially from Bernstein
et al. [10], Figure 13.8.
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and face recognition [89] use similar techniques. For concreteness, our description is tailored
towards the MRI reconstruction context.

Supermarionation is a composition of the two design patterns described in the following
sections of this chapter. Section 3.5 describes the partitioning of data that drives the par-
allelization of computationally intense operations, while Section 3.4 describes a strategy for
separating the parallelization of these operations from the implementation of the iterative
algorithms that use them. The primary function of these two patterns is to describe the
interactions between the important components of the software system that implements the
reconstruction. The most computationally intense components are typically implemented as
library routines, and the optimization of these routines are responsible for much of the high
performance achievable in MRI reconstructions. However, data layout decisions as described
by the Geometric Decomposition pattern have implications for all components in the system.
The particular data layout and partitioning strategy chosen is a crucial aspect of component
interactions. The modularization of sub-computations as described by the Puppeteer pat-
tern limits the number of interactions which must be considered, and makes clear the role
that library routines play in the overall system.

The Supermarionation architecture has several nice implications for the workflow of de-
veloping, debugging, and testing a reconstruction approach. The decoupling of the iterative
algorithm from the underlying matrix and vector computations allows for more productive
software development. The iterative algorithm can be developed and debugged entirely in
isolation from its MRI application. Debugging and testing can be performed on small, syn-
thetic problems for which a solution is analytically verifiable. Many theoretically provable
properties of the algorithms, such as convergence rates and numerical stability, can be veri-
fied in this way. These properties are central to debugging and testing strategies for iterative
algorithms. Similarly, each of the algorithm’s subcomputations can be implemented, tested,
and optimized independently. It may be desirable to implement multiple parallelizations,
corresponding to alternative data layouts and partitioning strategies, in order to optimize
for different data sizes or application contexts. Development of these implementations can
be performed in isolation from each other as well as from the iterative algorithms. More-
over, the same optimized implementations can be re-used as Puppets in multiple iterative
algorithms. Conversely, a single Puppeteer-driven implementation of an iterative algorithm
can potentially be re-used with multiple data partitioning strategies. Using the Composite-
Puppets implementation strategy as described in Section 3.6.6, the development of several
operators can be performed in isolation even when they are to be composed into a single
Puppet operation.

Typically, the end-to-end reconstruction software system will include several computa-
tional steps other than the solution of the reconstruction inverse problem. These steps may
estimate additional system parameters via separate inverse problem formulations, or they
may perform other image manipulations that solve particular medical imaging problems such
as registration, gradient warping, or receiver bias correction [10]. Although some of these
computations may in theory be incorporated into the inverse problem formulations, for prac-
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tical reasons they are usually performed separately. Many useful image processing steps do
not apply to all scans, and thus the desire for generality in a reconstruction system moti-
vates the separation of the inverse-problem solver from other algorithms. As a result, the
architecture of a reconstruction system to be deployed in a clinical setting is better described
in a flowchart, also referred to as a Pipe and Filter architecture, such as the right-hand side
of Figure 3.1.

For example, partial k-space acquisition [10] is a technique to accelerate scanning by
sampling k-space asymmetrically. In the limiting case, samples are only acquired in one
half-space. Homodyne reconstruction [10] is based on the assumption that the image of
magnetization is real-valued. In that case, the Fourier conjugate-symmetry property of real
signals can be used to estimate the missing half-space. In practice, MR images are not real,
but exhibit slowly varying phase. Therefore, the conjugate-symmetry assumption is only ap-
proximately valid, and some samples of the other half-space must also be acquired to estimate
this phase. The inverse problem formalism for reconstruction is general enough to include
arbitrary k-space sampling patterns, including those with partially-missing half-spaces. One
could regularize the solution with an approximate conjugate-symmetry assumption, and per-
form a simultaneous Homodyne/Compressive Sensing reconstruction. However, if one only
has access to separate implementations of Homodyne and Compressive Sensing algorithms,
then the reconstruction must perform them separately.

3.4 Puppeteer

As mentioned in Section 3.3, the Puppeteer pattern describes a strategy for decoupling
the implementation of the sub-computations in an iterative reconstruction. The Puppeteer
pattern [70] was originally used in multiphysics simulations to describe a strategy for de-
coupling sub-modules of a time-stepping numerical differential equation solver. The original
work describes a climate simulation consisting of separate models for atmosphere, ocean,
and land. The climate simulation implements a numerical solver for a differential equation
defined in terms of the states of the individual models. Additionally, each model’s state is
updated via a separate numerical solution algorithm. The Puppeteer pattern describes the
implementation of the interfaces between the climate-level simulator and the sub-models to
avoid defining interfaces between the individual modules. Implementation and data-layout
of the submodules are hidden behind the unified submodule interface. The term Puppeteer
describes the implementation of the climate-level simulator. The term Puppet describes the
submodules implementing the atmosphere, ocean, and land simulations. The role of the Pup-
peteer is to manipulate and control the Puppets and orchestrate any data transfers among
them. This pattern is similar to the Mediator [34] pattern which has been described in
more general object-oriented contexts. This approach is also very similar to that taken by
the Portable, Extensible Toolkit for Scientific Computation (PETSc) [4]. PETSc also has
re-usable, parallelized implementations of matrix, vector, and Jacobian operations.
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Figure 3.2: (top-right) General Puppeteer pattern. (left) The Orthogonal Matching Pursuit
(OMP) algorithm for finding a sparse approximate solution x to the underdetermined linear
system Ax = y. The set J contains indices of the columns of the measurement matrix A
for which the reconstructed solution x̃ has non-zero components, and we denote by AJ the
sub-matrix containing only the columns indicated by the set J . (bottom-right) The OMP
algorithm represented as a Puppeteer. The three steps of the algorithm each are implemented
independently, and the implementation of the OMP Puppeteer coordinates communication
between them.
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In our MRI reconstruction context, the Supermarionation architecture prescribes that the
iterative inverse-problem solver be implemented in a similar fashion. The sub-computations
of these solvers form the sequence of operations that update a solution estimate. Much as in
the time-stepping differential equation solvers described by the original Puppeteer pattern,
this sequence of operations will be computed repeatedly. The data objects accessed and
modified by the sub-computations will be partitioned among the available processor cores
according to one of the strategies described in Section 3.5.

For example, consider the implementation via the Puppeteer pattern of Conjugate Gra-
dients on the Normal Equations (CGNE). CGNE solves a linear system Ax = b in a least-
squares sense, and requires computation of several vector-vector operations (dot products
and scaled-additions) as well as the matrix-vector product Az (where z is a vector the same
size as x) and the conjugate-transpose product A∗y (where y is a vector the same size as
b). These computations should be encapsulated in Puppet objects in order to hide imple-
mentation details such as the strategy used to partition the vectors. Figure 3.2 describes
another example, the Orthogonal Matching Pursuit (OMP) algorithm. Like CG, OMP also
finds a solution to a linear system Ax = b. However, OMP finds a sparse solution, i.e. a
solution with a small number of non-zeroes. The OMP algorithm iteratively performs three
computations that update a solution estimate x̃t and a residual vector rt = Ax̃t − b. First,
OMP identifies the column of the measurement matrix A{j} with the highest correlation
to the residual. Next, OMP computes a value for the jth position in the solution estimate
while simultaneously updating the values for all previously identified nonzeros in x̃. OMP
achieves this by solving AJtx − b in a least-squares sense, where AJt is the matrix induced
by selecting only the columns of A for which x̃ has nonzeroes. Finally, OMP updates the
residual to reflect the updated solution estimate. If OMP is implemented via the Puppeteer
pattern, then these three subcomputations play the role of “Puppet”. The implementation
of the iterative OMP algorithm can be made agnostic of data layout, partitioning, and par-
allelization. However, the subcomputations operate directly on the data and must explicitly
account for its layout.

In an MRI reconstruction context, the linear operator A will be a composition of the
operations described in Section 3.6, such as Fourier and Wavelet transforms. When A is
composed only of such operations, it requires no storage. However, in the general case the
data structure representing A (or some sub-operation composed into A) must be partitioned
in a way compatible with the decomposition of the data. If possible, the Puppeteer must
be neither responsible for, nor aware of any distributed-memory communication required in
computing matrix-vector products and vector-vector operations. Otherwise, the Puppeteer
implementation cannot be re-used across different data decomposition strategies. However,
when incompatible decompositions are used in two Puppets that use the same data object,
it may be necessary for the Puppet to orchestrate the appropriate re-partioning.
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Figure 3.3: Illustration of the Geometric Decomposition pattern. Here, a 2-dimensional
array X is decomposed across a 4-node distributed memory machine with multi-core shared-
memory processors (depicted as blue boxes). The second dimension of X’s index space is
partitioned across the four nodes, so that Node i’s memory contains the ith column of X.

3.5 Geometric Decomposition

The Geometric Decomposition pattern describes parallelization of an algorithm via a par-
titioning of the underlying data on which the algorithm operates. In its original descrip-
tion [58], Geometric Decomposition primarily discussed distributed-memory parallelizations
of nearest-neighbor operations. The original work describes these operations as mesh com-
putations, and other scientific computing literature refers to these as stencil operations.
These computations typically arise in the scientific computing literature when computing
finite-differences in the iterative solution of differential equations. The relationship to MRI
reconstruction is made clear by interpreting the finite-difference operations as convolutions,
which arise frequently in signal-processing contexts like MRI. This same class of scientific
computing shares many other algorithms with MRI, for example Fourier transforms and
methods for solving linear systems.

The Geometric Decomposition pattern assumes the existence of a central object, set of
objects, or data structure on which the algorithm performs its most performance-critical
operations. In the finite-difference examples in the original pattern, this data structure is
the array over which the finite differences are to be computed. Multiple related operations
over these data structures contribute most to the computational complexity of the algorithm,
and tend to occupy most of its runtime. These data structures tend to be the largest in the
algorithm, as operations on small data structures rarely require substantial runtime. Per
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Amdahl’s law, performance-oriented software design should focus on these expensive opera-
tions first. While the algorithm may perform computations that do not involve the central
data structure, their optimization should be considered only after ensuring satisfactory per-
formance for the most expensive operations.

The Geometric Decomposition pattern prescribes that the implementation partition these
data structures among the available processing threads. Each thread is said to “own” a
partition, and is responsible for all computations that update (or produce) the values in that
partition. In most cases the data structure to be partitioned is an array accessed via a multi-
dimensional index: i = {i1, i2, . . . , iD} ∈ {1, . . . , N1} × . . . × {1, . . . , ND}. The Geometric
partitioning strategy is to divide one or more of the D index spaces. As discussed in the
following subsections, application context determines the choice of index space divisions that
are most convenient and provide the highest performance. This simple strategy has also been
described as an output-driven [36] parallelization, and typically simplifies synchronization:
when all threads are modifying disjoint memory locations, they do not need to use mutual-
exclusion primitives to ensure correctness.

In distributed-memory implementations, data resides in the same memory node as its
owning thread. Consequently, Geometric Decomposition incurs communication cost when
the update of one partition requires data from other partitions. Performance crucially de-
pends on the ability to perform this communication efficiently. Inter-node communication
is usually very expensive, as both the fixed per-message overhead and the per-byte transfer
times are high. Partitions should thus be chosen to minimize communication. In shared-
memory parallelizations, communication is manifest implicitly as cache and memory-system
traffic. Additionally, the data partitioning is entirely logical, and may not require any data
structure reorganization. Shared-memory communication typically requires substantially
less programmatic overhead than does distributed-memory communication, which must be
performed via explicit library calls. Distributed-memory communication also requires data
to be collected into contiguous buffers before transfer over the message-passing intercon-
nect. Thus there are substantial performance and software-productivity reasons to prefer
shared-memory communication over distributed-memory communication. The systems on
which MRI reconstructions are to be performed include both distributed- and shared-memory
parallelism, and implementation choices can in some cases avoid the more expensive message-
passing communication altogether.

We now discuss several ways in which the Geometric Decomposition pattern apply to MRI
reconstructions. The differences in the four cases discussed below arise from the different
scales of the classes of problems, and the resulting differences in the memory-system behavior
of reconstruction algorithms.

3.5.1 2D and Real-Time Reconstruction

Reconstruction of 2D static images typically does not present substantial performance opti-
mization problems. In most published reconstruction approaches, even prototype implemen-
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tations developed in inefficient, high-level languages (e.g. Matlab) require only a few seconds
of runtime for 2D static images. However, in real-time 2D imaging it is highly desirable that
images be available during scanning. This is especially true for interventional applications.
In these cases, the reconstruction algorithm must complete in the same time-frame as the
real-time data acquisition. With highly efficient non-Cartesian or echo-planar trajectories,
frame rates of 10–50 frames per second are possible [80]. If sophisticated iterative recon-
struction algorithms are to be applied in this case, then achieving real-time performance
can present a substantial implementation challenge. Nearly any proposed reconstruction
approach can be adapted for either 2D or 3D reconstructions, and much of the same perfor-
mance optimization discussion applies to both cases. The primary difference between the 2D
case and the 3D case is the magnitude of the data involved, and thus the data partitioning
strategies that are likely to improve performance will differ.

The amount of data involved in 2D reconstructions is substantially smaller than that
for 3D reconstructions. For example, 5122 is typically an upper bound to the image matrix
size at which the data is to be reconstructed. The same Parallel Imaging coils are used
in both 2D and 3D imaging, so the number of channels is 4–32 in both cases. With an
image matrix of 5122 each channel requires 2 MB of storage if computations are performed
in single-precision, as is common in high-performance reconstruction studies. A 32-channel
reconstruction would then require 64 MB per image matrix for which the algorithm must
allocate storage. It is common for the highest-level caches on modern multicore CPUs to
be several megabytes at least, and cache sizes continue to grow with Moore’s law in the
multi-core era. Approximately half of the die-area of high-performance microprocessors is
devoted to these last-level caches. Current generation Intel Nehalem-EX processors include
up to 24 MB of on-chip cache per socket, and shared-memory NUMA systems with up
to 4 sockets are available. Consequently it is feasible that appropriate data partitioning
for a shared-memory Geometric Decomposition parallelization to result almost entirely in
in-cache computation. Care must be taken when partitioning the unit-stride (most rapidly-
varying) dimension, as false-sharing of cache lines can substantially increase memory traffic
and degrade performance.

However, the relatively small working set sizes limit the scalability of 2D reconstruction
tasks. In particular, a distributed-memory partitioning of a 2D reconstruction is likely to
suffer from very high synchronization and communication overheads. Such a partitioning
may provide moderate performance gain, but a shared-memory parallelization allows inter-
thread communication at much lower overheads. Thus the scale of a practical parallelization
of a 2D reconstruction is limited by the size of shared-memory systems.

3.5.2 3D-Decoupled Reconstruction

Many k-space sampling trajectories can be designed to undersample in only one or two of
the three spatial dimensions. The reconstruction can then leverage the third, fully-sampled
dimension to extract additional parallelism and reduce overall computational complexity.
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The simplest approach to designing Compressive Sensing pulse sequences is to modify a
3DFT Cartesian sequence to acquire a randomized subset of the (y, z) phase encodes. The
sampling rate and receiver bandwidth in the readout direction x can be left unchanged.

Similarly, non-Cartesian sequences can be designed to provide irregular sampling in the
(y, z) plane only. These sequences are commonly called stack-of-spiral and stack-of-stars [10],
in contrast to fully 3-dimensional sampling trajectories that vary the sampling patterns
across (y, z) planes. By preceding each non-Cartesian pulse sequence with a DFT-style
phase encode in the x dimension, the same set of (ky, kz) sample locations can be acquired
for an equally-spaced set of kx values.

In these cases, the same set of (ky, kz) k-space locations are acquired for all values of
kx. The reconstruction can perform a Fourier transform along the fully-sampled dimension
to decouple the (y, z) slices. This approach may not be SNR-optimal, as each individual
reconstruction will have fewer samples over which to average noise. However it can have
substantial performance benefits. All iterative reconstruction algorithms will be at least
log-linear in the number of voxels in the reconstruction, due to the use of fast transform al-
gorithms like the FFT or Wavelet transforms. Decreasing the size of a transform will provide
a moderate decrease in computational complexity: the number of arithmetic operations per-
formed will decrease by a factor of logNx, where Nx is the reconstruction image matrix size
in the fully-sampled direction. Additionally this transformation reduces the size of the work-
ing set for a reconstruction, and the above discussion of efficient in-cache computation for
2D reconstruction applies. Moreover, decomposing the 3D reconstruction into independent
2D reconstructions for each of the (y, z) slices allows the 2D problems to be solved in par-
allel. Whereas the limited size of 2D reconstructions prevents efficient distributed-memory
parallelization, the decoupled-3D reconstruction provides additional Nx-way parallelism that
very naturally lends itself to distributed-memory systems. Geometrically Decomposing the
3D reconstruction by partitioning (y, z) slices among distributed-memory nodes is highly
efficient, since no communication is required among the individual 2D reconstructions.

3.5.3 Full 3D Reconstruction

In the more general volumetric imaging case, a fully-sampled dimension does not exist. 3D
sampling trajectories like cones [38] or kooshballs (radial) [10] do not permit decoupling
along any dimension as discussed above. Consequently the reconstruction must implement
a 3-dimensional parallelization of the operations performed by the iterative algorithm, such
as Fourier and Wavelet transforms.

Fully 3-dimensional reconstructions can potentially have much higher memory footprints
than the analogous readout-decoupled reconstruction described above. Containing this large
in-memory working set may require the memory capacity of multiple nodes of a distributed-
memory system. In a decoupled reconstruction, the number of 2D problems in flight can
be chosen to limit working set size. In a full-3D reconstruction, data structures used in
the algorithm must account for the entire data volume. For example, a 3D dataset may be
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as large as 5123 voxels in 32 separate parallel receiver channels. In single precision, each
such multi-channel volume occupies 32 GB of DRAM. These arrays store the vectors defined
by iterative algorithms, and most algorithms require storage for several vectors simultane-
ously. A typical distributed-memory cluster node may have 64 GB of memory capacity,
and many nodes may be necessary to hold the algorithm’s working set. Additionally, some
parallel imaging reconstructions require O(n2

c) storage, where nc is the number of parallel
imaging channels. The quadratic factor stems from all-to-all k-space interpolations that
GRAPPA [37]-like reconstructions perform. When these interpolations are performed in the
image domain, the storage requirement may be as high as O(n2

c ·nv), where nv is the number
of voxels to be reconstructed. If implemented in k-space, the memory requirement is negli-
gible but the computational complexity is substantially higher, since the interpolation must
be performed as a convolution rather than a point-by-point multiplication. Parallel imaging
coil arrays are growing in size over time, and techniques such as coil-compression [14] are
crucial to the feasibility of full-3D parallel imaging reconstructions. This is especially true
for GPU implementations, where memory capacity is substantially more limited.

There are two alternative data-partitioning strategies, and the optimal choice depends on
the data size, which determines the amount of communication, as well as on the relative cost
of communication on a particular reconstruction system. The Geometric Decomposition for
a full-3D reconstruction can choose to partition the data along the voxel-wise indices or along
the coil-wise indices. Since memory capacity demands that the data be partitioned among
distributed-memory nodes, either index-partitioning scheme will produce message-passing
communication. In cluster-scale parallelizations this message-passing will be performed over
the node-to-node interconnect, while in GPU implementations it will be performed over the
PCI-Express links between discrete graphics cards. These two types of inter-node links have
similar performance characteristics, and our discussion applies equally to both cases.

Partitioning the data spatially (along the voxel-wise indices) will allow cross-coil image-
domain interpolations to be performed without communication. When the voxels at a given
location from all coils are resident on a single distributed-memory node, the cross-coil in-
terpolation can compute weighted sums of them without accessing remote nodes. However,
this partitioning strategy will require substantial communication during Fourier and Wavelet
transforms, which are computed independently for each parallel imaging channel. Specifi-
cally, computing these transforms will require O(nc · nv) bytes to be communicated over the
inter-node links. On a bus architecture like PCI-Express, this can be prohibitively expensive.
On the other hand, partitioning the data along the coil dimension can potentially incur no
communication during Fourier and Wavelet transforms, since a single 3D volume can easily
fit in the several GB of memory at each node. Coil-partitioning will require O(n2

cnv) bytes
of communication during all-to-all cross-coil interpolation, however. If the reconstruction
uses reduced-rank implementations [51] of these cross-coil interpolations, communication is
reduced to O(ncnknv) bytes, where nk is the rank of the cross-coil interpolator.
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3.5.4 Multi-3D Reconstruction

The final case to discuss are reconstructions of multi-volume acquisitions. In these appli-
cations, several 3D multi-channel volumes have been acquired and some processing is to be
done that potentially requires computations across all the volumes. There are at least two
MRI applications that fit this description: 4D Flow and multi-contrast imaging. In 4D-flow
acquisitions, data is acquired continuously with prospective gating. Data are acquired with
motion-sensitizing gradients, and reconstruction attempts to reconstruct time-resolved dy-
namics within a volume. A reported application of 4D-flow to cardiac imaging [42] used
prospective cardiac gating to control the points in time during the cardiac cycle at which
data were acquired. In this application, the data were acquired using compressive sensing
acceleration. A number of individual time-point volumes are produced by interpolating the
acquired data. Reconstruction requires both estimation of non-acquired k-space samples
from each time-point via a Parallel Imaging/`1-minimization reconstruction, but also esti-
mation of flow information across the reconstructed volumes. Multi-contrast imaging [11]
exploits the fact that in most clinical diagnostic applications, multiple images of the same
object are acquired. Each image is weighted with different contrast mechanisms, for exam-
ple before and after the injection of a contrast agent such as Gadolinium, or for multiple
echo-times to produce different T2 weightings. Additionally each image is acquired with
acceleration, for example via randomized phase-encode undersampling. Multi-contrast re-
constructions assume that certain characteristics of the object do not change across imaging.
For example, typically in brain imaging the patient’s head is held immobile by the plastic
cage containing the receive coils. In this case the anatomy does not shift substantially during
the examination, and the locations of edges are consistent across the multiple images. Sev-
eral proposed reconstruction approaches exploit this similarity across images to reconstruct
each image with higher fidelity.

3.6 Algorithms

As discussed in Section 3.2, re-usable software is a crucial resource to the rapid development
of new reconstructions. Arguably, the most difficult and time-consuming software to develop
are the highly optimized library elements that perform the computationally expensive op-
erations in MRI reconstructions. This section describes several of the most commonly used
algorithms in MRI reconstructions, paying particular attention to the details of their im-
plementation that pertain to the design patterns discussion above. All of the computations
we describe here have applications in areas other than MRI reconstruction. For example,
Fourier transforms and linear algebraic operations permeate all of numerical computing, and
Wavelet transforms have many signal-processing applications – most notably in the JPEG
2000 standard for image compression [75].
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3.6.1 Fourier Transforms

The Fast Fourier Transform is one of the most widely used and most well-known algorithms
in numerical computing. It is frequently said to have had a larger impact on computa-
tional science than any other development. A number of freely available libraries provide
high-performance implementations, and its efficient implementation has been well-studied
in prior literature. Since the FFT is so well understood, our discussion of it will be brief.
In the MRI reconstruction context, the Fourier transform is used to model data acquisition.
In particular, one can show from the classical Bloch equation that the received NMR signal
is equivalent to Fourier transform of the spatial distribution of transverse magnetization.
Consequently, the simplest reconstruction methods rely on the ability to rapidly perform
an inverse Fourier transform to recover the image. When the scan is not accelerated via
undersampling, a single inverse Fourier transform is sufficient. In general, undersampled ac-
quisitions require additional processing to remove aliasing, but all MRI reconstructions will
require computation of a Fourier transform. For example, a Parallel Imaging reconstruction
may estimate missing data directly in k-space. Subsequently, each channel’s image is com-
puted via a Fourier transform, and the multi-channel data combined with some other method
(for example, sum-of-squares). If the Parallel Imaging reconstruction removes aliasing in the
image-domain, then it must first compute the aliased images via the FFT.

Geometric Decomposition The FFT algorithm performs a series of “butterfly” opera-
tions, which perform a complex multiply-accumulate per sample. In the kth step of the FFT,
an butterfly is defined for a pair xi and xj as the updates x′i ← xi +xj ·ωk, x′j ← xi−xj ·ωk,
where ω = e2πı/n is the nth root of unity. Every element in the n-vector is updated in each
step. The stride i − j depends on k, and in many formulations of the FFT i − j = 2k. If
the vector is partitioned among multiple processing threads, then the threads must synchro-
nize between each butterfly step. However, in a multi-dimensional transform the FFT is
performed along each dimension independently. For example, in a 2-dimensional transform
the FFT is first performed for each row, and subsequently for each column. Since the FFT
requires synchronization/communication between subsequent butterfly operations, it is usu-
ally more efficient to parallelize a multi-dimensional FFT over rows/columns, rather than
within a single 1D FFT. Most available libraries include APIs for both parallelization strate-
gies. In a distributed memory parallelization, a multi-dimensional FFT of Geometrically
Decomposed data requires a data-exchange step. This data-exchange is is frequently called
a “corner turn,” and is equivalent to transposing a matrix whose rows have been distributed
among memory nodes.

3.6.2 Gridding

Gridding refers to the application of the non-Uniform Fast Fourier Transform (nuFFT)
algorithm in MRI reconstructions. Another chapter of this thesis describes the performance
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optimization of the nuFFT in much greater detail, so our discussion here will also be brief.
While MRI data are always acquired in the Fourier domain, the extreme flexibility of MRI
allows for an arbitrary set of sample locations. In particular there is no restriction that
the spacing of samples be uniform. Such samplings are called non-Cartesian, and enable
highly efficient pulse-sequence design. Since the Cooley-Tukey decomposition requires an
equispaced sampling, non-Cartesian acquisitions cannot be reconstructed via standard Fast
Fourier transform libraries. The computation of the Fourier transform as a direct sum
is unfeasibly expensive, and non-Cartesian reconstructions employ the nuFFT algorithm
instead. The nuFFT computes a resampling of k-space onto the equispaced grid, enabling
the subsequent use of an FFT. For computational feasibility, the interpolation kernel is
truncated to a small window.

Geometric Decomposition Most of our discussion of data-driven parallelization has been
agnostic of the particular index space which is to be partitioned. In most cases in MRI
reconstruction, the data to be decomposed represents an equispaced sampling of a signal.
For example, the multi-dimensional images produced in MRI reconstruction are frequently
interpreted as equispaced sampling of mxy(r), the transverse magnetization over the field of
view. In multichannel data, the final index is an integral index over receiver coils and the
magnetization is written as mxy(r, c) : Rd × Z → C. The integer indices i = {i1, . . . , ik}
correspond to the spatial positions directly: r = δ · i, where δ = diag({δx, δy, δz}) is the
spatial resolution of the scan. In the case of non-Cartesian samplings of k-space, the indices
do not correspond directly to spatial locations. Typically, non-Cartesian k-space data are
stored in readout-order. The least-significant index i1 corresponds to the position in a
readout, the middle indices i2, . . . , ik−1 correspond to the readout in which a sample was
taken, and the last index ik corresponds to the channel index. Care must be taken in the
Geometric Decomposition of the Gridding operation, as a partitioning of one of the index
spaces (Cartesian vs. non-Cartesian) does not guarantee a disjoint partition of the other
space during resampling. This fact necessitates synchronization or use of processor-specific
instructions that guarantee atomicity of read-modify-write updates to the grid samples.
Chapter 5 will also discuss performing the re-sampling as a matrix-vector multiplication,
an implementation strategy that requires the storage of a large sparse matrix. The same
sparse matrix is used across all parallel imaging channels, and must be replicated in all
distributed-memory nodes if the k-space data is partitioned over channels.

Relation to N-Body Problems A recent performance study due to Obeid et al. [64]
attempted to optimize the resampling step by noticing a superficial similarity to the N-Body
problem, which arises in astrophysical and biological simulation. The N-Body problem is
defined as the computation of interactions among a large number of point objects. In most
applications the interaction is defined for all pairs of objects, and the number of objects is
very large. The näıve approach to computing these interactions requires O(n2) time with
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n point objects, although O(n log n) approximations exist. In some applications, one is
willing to truncate the interaction and only compute interactions between pairs of a limited
distance. Pre-sorting the point objects into spatially-contiguous “bins” allows one to identify
nearby points, and avoid all-to-all distance computations. By analogy, Obeid et al. pre-sort
the non-Cartesian sample locations into spatially-contiguous bins. The gridding resampling
does not require computation of interactions among the non-equispaced sample locations,
but rather between the non-equispaced locations and the equispaced grid locations. Obeid’s
motivation is to identify the set of grid locations each sample will affect in order to obviate
synchronization in a parallel implementation.

3.6.3 Wavelet Transforms

The Wavelet transform is widely used in modern signal processing, and has a number of well
known applications. Wavelets are frequently used as sparsifying bases in compressive sensing
or de-noising applications, as Wavelet bases are well known to represent natural images
compactly. Much like the Fourier transform, the Wavelet transform can be understood
as a change of basis that can be computed rapidly via a fast algorithm. Even when the
chosen Wavelet is not orthonormal, the log-linear algorithms can efficiently compute the
Wavelet-domain coefficients of a signal. Orthogonality is necessary for the existence of an
inverse transform. However, one can easily define the adjoint operator for non-orthogonal
Wavelets. The same log-linear algorithm can be used to compute either the adjoint or the
inverse. A single-level Wavelet decomposition separates the spectral content of the a 1-D
signal x into two components containing the “details” (i.e. high-frequency information) and
the “approximation” (i.e. low-frequency information). This separation is typically achieved
via convolution with a quadrature-matched pair of high-pass and low-pass filters. Since each
component contains half of the spectral information of the signal, they are sub-sampled by a
factor of two after filtering. A 2D signal is decomposed into four components, containing the
vertical/horizontal detail/approximation coefficients, and a generalD-dimensional signal into
2D components. Typically, a Wavelet transform performs multiple levels of decomposition.

Geometric Decomposition: The above discussion of Fourier transform parallelization
applies similarly to the Wavelet transform. The fundamental operation in a Wavelet trans-
form is not a butterfly operation, but rather the decimated convolution with the quadrature-
pair of high-pass and low-pass filters. Different Wavelet bases differ only in the design of
these filters. These filters are applied separably along each dimension of a multi-dimensional
signal, providing a synchronization-free source for parallelism. However, synchronization is
necessary between the multiple levels of Wavelet decomposition, just as synchronization was
necessary between Butterfly steps of the Fourier transform.
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3.6.4 Convolutions:

Convolutions arise in many MRI reconstruction tasks. We have seen one un-common case
in the resampling step of the Gridding algorithm. This case is un-common in that the two
signals to be convolved are sampled differently. In most cases the two signals are both sam-
pled at equispaced locations, and the convolution is computed via a simple doubly-nested
summation. Convolutions are very computationally intense when both signals have large
support. The well-known Fourier-convolution identity, however, allows the implementation
of convolutions as element-wise multiplication in the Fourier domain. In many MRI re-
construction applications, Fourier-implementation of convolutions is the highest performing
option, as the Fourier transform of the signal may need to be computed for other reasons,
for example to subsequently compute a Wavelet transform. In this case, use of the Fourier
transform substantially reduces the computational complexity of the convolution, as the cost
of the FFT is amortized over the Convolution and Wavelet transform.

Geometric Decomposition As discussed in Section 3.5 the original Geometric Decompo-
sition pattern was primarily concerned with finite-difference operations, which are equivalent
to convolutions with small-support kernels containing −1 for all values other than the central
point. Thus the discussion of ghost-zone exchange in distributed memory parallelizations
applies wholesale to the implementation of convolutions. However, ghost-zone exchange is
unnecessary when the convolution is implemented via Fourier transforms.

3.6.5 Element-wise Operations

Although the other algorithms described in this section tend to consume most of the runtime
of iterative MRI reconstructions, they are not the only operations for which parallelization
are necessary. The geometric decomposition of the core data structures affects the imple-
mentation of all operations that access them, even ones that Amdahl’s law might otherwise
encourage us to ignore. Indeed, the operations that are asymptotically less expensive may
become disproportionately expensive if an implementation fails to parallelize them. These
operations include vector-vector operations, such as dot products, re-scalings, sums and dif-
ferences – the well-known BLAS-1 operations. Additionally, many compressive sensing and
de-noising algorithms call for thresholding operations which typically operate element-wise
to set vector elements with small value to zero. Another important class of element-wise
operations are the Data Parallel [41] computations, which includes the well-known Map-
Reduce [23] parallel operations. In some contexts, external tools may aid in the paralleliza-
tion of these operations. For example, the Copperhead compiler [17] is able to translate
purely functional data parallel Python programs into highly efficient Cuda implementations.
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3.6.6 Composite Operators

In most MRI applications, the inverse problem F (x) = y that describes the reconstruction
is defined in terms of an observation function F (x) that is a composition of some of the op-
erations above. For example, in Parallel Imaging reconstruction the system matrix performs
an element-wise weighting of the data by the coil sensitivities, and them Fourier transforms
each coil’s data independently. The corresponding system matrix is then a composition of
several element-wise operations and Fourier operators. The previous chapter of this thesis
includes similar discussion for a variety of other reconstruction formulations, describing the
system matrices for each case. The algorithms described in 3.6.7 are typically defined in
terms of the inverse problems with composite system matrices. Hence the re-usability of
the optimized implementations of Fourier, Wavelet, and Convolution operators in the Su-
permarionation architecture requires a small layer of “glue” to flexibly paste together the
low-level operations into the system-matrices prescribed by the reconstruction formulations.
The implementation of the compositing-layer may need to allocate additional buffers when
the operator is a composition, rather than a “stacking” as in the Parallel Imaging case.

3.6.7 Iterative Algorithms

Here we discuss several iterative algorithms that can be implemented according to the Pup-
peteer pattern and used to solve certain inverse-problem formulations of MRI reconstruction.
We choose to describe the three algorithms that arise in the examples we’ll discuss in Sec-
tion 3.7.

Projection Over Convex Sets (POCS): The POCS algorithm is a very simple algo-
rithm to describe and implement, although due to its simplicity and generality it has no
theoretically analyzable convergence rate. The POCS algorithm is defined in terms of a
number of convex sets S1, . . . , Sk, each with a defined projection operator Π1, . . . ,Πk, and
with a non-empty intersection ∩iSi in which it is assumed the solution lies. That is, given
an approximate solution x to the inverse problem, the projection Πi(x) is the element y ∈ Si
with minimum distance ||y−x||. In the ith iteration, the POCS algorithm updates a solution
estimate by projecting onto each of the sets: x(i+1) = (Π1 ◦ · · · ◦ Πk) (x(i)). Any fixed point
of this iteration is guaranteed to reside in the intersection of the sets. The implementation
of POCS as a Puppeteer is simple: each projection operator must be defined as puppet,
and the interface must simply support the application to an approximate solution x. Some
projections can be implemented in a purely functional side-effect-free manner, in which case
the puppeteer need not apply them in any particular order. However, in general they cannot
be applied in parallel: all parallelization must be performed within the projection operators.
In some cases, it may be desirable to re-use storage to minimize memory footprint. In this
case, care must be taken to avoid conflicts when multiple projection operators use the same
buffers.
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Conjugate Gradients (CG): The well-known conjugate gradients algorithm has many
variations, for example Conjugate-Gradients on Normal Equations (CGNE) or the Least-
Squares QR (LSQR) algorithm. These algorithms rely on the Krylov-subspace of the system
matrix to ensure conjugacy of a series of search directions {zi}. In the ith iteration, the
solution estimate x(i) in the direction of zi: x

(i+1) = x(i) +αzi. CG can be applied either to a
linear system Ax = y, in which case there is an analytical expression for α, or to non-linear
systems, in which case CG is used to minimize a quadratic objective ||Ax−y||2 that approx-
imates the behavior of the non-linear function. The implementation of CG as a Puppeteer
bears much similarity to the implementation of many Krylov-subspace solvers, and also to
the implementation of the PETSc library as described above. CG performs a number of
vector-vector (BLAS-1) operations in addition to the matrix-vector product Ax. Iterative
linear solvers for non-symmetric systems also must perform the conjugate-transpose prod-
uct A∗y. The implementations of the vector-vector and matrix-vector operations should be
parallelized according to the appropriate Geometric Decomposition, and the interfaces de-
fined accordingly. In object-oriented languages that allow operator overloading, particularly
elegant implementations of CG can be achieved via overloading the multiplication, addi-
tion, and subtraction operators. In C++, these correspond to implementing the operator*,
operator+, and operator- methods.

Iteratively-Reweighted Gauss-Newton (IRGN): IRGN is a general method for solv-
ing non-linear systems. Similar to the non-linear CG mentioned above, IRGN minimizes
a quadratic approximation to an arbitrary nonlinear function. Given a non-linear system
F (x) = y, IRGN solves a linearized equation ∂F

∂xn
dxn + F (xn) = y for the step-size dxn,

where ∂F
∂xn

denotes the Jacobian matrix of the nonlinear function F . The solution estimate
is updated as xn+1 = xn + dxn, and the linearized system solved iteratively until the orig-
inal non-linear system is solved within satisfactory tolerance. The discussion of IRGN’s
implementation as a Puppeteer is very similar to the discussion for CG, since the major-
ity of IRGN’s computational intensity lies within the method chosen for solving the linear
equation. Indeed CG could be used to solve this system in a least-squares sense, and the
discussion would be made identical.

3.7 Examples

In this section, we discuss how the Supermarionation architecture applies to several example
MRI reconstruction formulations. These applications are drawn from the MRI reconstruction
literature, and were chosen to be representative of the variety of iterative reconstruction
approaches that have been proposed.
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Figure 3.4: Supermarionation architecture of the Projections Onto Convex Sets (POCS)
algorithm for solving the `1-SPIRiT reconstruction as described in Section 3.7.1. The three
projection operators (Wavelet sparsity, k-space data consistency, and calibration-consistency)
are shown as Puppets to the Puppeteer implementing the POCS algorithm. The Geometric
Decomposition of the SPIRiT consistency projection, implemented as a Power Iteration, are
shown. Individual channels of the image estimates X and Y and rows of the SPIRiT matrix
G are distributed among four memory nodes.
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3.7.1 POCS Algorithm for `1-SPIRiT

An in-depth performance analysis of our first example is described in much more detail in
Chapter 4 of this thesis. However that discussion lacks an analysis of the software architecture
used to design the implementation, opting instead to focus on the details of the performance
optimization for current cutting-edge parallel hardware. Here, we focus on the description
of `1-SPIRiT in terms of the Supermarionation software architecture.

Solving the `1 SPIRiT combined Parallel Imaging and Compressive Sensing reconstruc-
tion of Lustig et al. [57] requires finding an image x that simultaneously satisfies three
constraints. First, x must be acquisition-consistent – i.e. it must be a solution to Fx = y,
where F is a coil-by-coil subsampled Fourier transform operator, and y is the data acquired
during the MRI scan. Second, x must be consistent with the SPIRiT Parallel Imaging cal-
ibration – i.e. it must solve Gx = x for a matrix G that is computed prior to the POCS
iterations. Finally, x must be Wavelet-sparse in an `1 sense as prescribed by Compressive
Sensing theory.

To motivate the application of the POCS algorithm to this problem, we define three sets
corresponding to the three constraints:

S1 = {x : Fx = y}
S2 = {x : ||Gx− x||2 < ε2}
S3 = {x : ||Wx||1 < ε3}.

An exact projection onto S1 is achieved by replacing the subset of Fourier coefficients of the
estimate x corresponding to acquired samples with the values acquired during acquisition.
A projection onto S2 is defined by noting that Gx = x is equivalent to requiring that x
be a sum of eigenvectors of G with eigenvalues 1. Thus performing some iterations of an
eigendecomposition algorithm such as the Power method [24] will serve as an approximate
projection onto S2. We can interpret the well-known soft-thresholding operation [27] used
in de-noising and `1 minimization algorithms as a projection onto a set of wavelet-sparse
images.

The Puppeteer implementation of the POCS algorithm must simply apply these three
projections in some order. The geometric decomposition of the image data x drives the
parallelization of all the operators that must be computed: Fourier transforms, multiplication
by the G matrix, and Wavelet transforms. The less-expensive vector-vector operations that
must be parallelized in the same manner are the soft-thresholding operation and the Fourier-
space projection, which consists only of replacement of a subset of the Fourier coefficients
with the acquired data. Computation of the G matrix is performed via a least-norm least-
squares solver in a separate step. It can also be interpreted as the solution to an inverse
problem, solved in a separate Pipe-and-Filter/flowchart stage.
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Figure 3.5: Supermarionation architecture of the Gauss-newton solver for the Parallel Imag-
ing reconstruction described in Section 3.7.2. The forward and adjoint Jacobian operators
are depicted as Puppets, and the formulae for their application shown. These operators are
Composites of Fourier and element-wise operations, as discussed in Section 3.6.6

3.7.2 IRGN Algorithm for Non-Linear Parallel Imaging Recon-
struction

The non-linear parallel imaging reconstruction of Uecker et al. [79] formulates the simultane-
ous estimation of the image and the coil sensitivity profiles as a non-linear inverse problem.
The parameters to be estimated are x = (ρ, c1, · · · , cn)′, where ρ is the transverse magneti-
zation and xi is the sensitivity profile of the ith coil. The non-linear operator F (x) computes
the subsampled Fourier transform of the element-wise product of each ci with ρ, and the in-
verse problem estimates x given the acquired samples y via inversion of F (x) = y. Uecker et
al. solve this problem via the IRGN algorithm described above. Similarly to the `1-SPIRiT
case, the Geometric Decomposition of the data x drives the parallelization of the operations
that must be performed. Specifically, the algorithm must solve for the step-size dx via the
linearized system. An iterative Krylov-subspace method can be used to solve this system,
requiring application of the Jacobian operator and its adjoint. The Jacobian and its adjoint
are compositions of element-wise and Fourier operations.
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3.8 Conclusion

We have presented the Supermarionation software architecture to guide the parallel im-
plementation of the inverse problems that arise in MRI reconstruction. This architecture
provides a strategy for parallelizing the operations in a reconstruction algorithm based on a
Geometric Decomposition of the underlying data, and a strategy for decoupling the imple-
mentation of the performance-optimized computationally-intense operators from the iterative
algorithm chosen to solve the inverse problem. We described a set of algorithms that are
used in both aspects of the architecture (performance-optimized operators and iterative al-
gorithms), and several examples of reconstruction algorithms described as Supermarionation
instances.
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Chapter 4

`1-SPIRiT: Scalable Parallel
Implementation and Clinically
Feasible Runtime

4.1 Introduction

In Chapter 3, we discussed several software design issues inherent in the implementation
of high-performance MRI reconstructions. One of the example reconstructions we men-
tioned was a Projections Over Convex Sets (POCS) algorithm for `1-SPIRIT, which com-
bines Compressive Sensing and Parallel Imaging reconstruction approaches into a single
iterative framework. We discussed the implementation of this reconstruction system using
the Supermarionation software architecture, which composes a Puppeteer [70] strategy for
implementing iterative algorithms with a Geometric Decomposition [58] strategy for par-
allelizing computationally intense operations. In this chapter, we focus on the lower-level
implementation issues necessary for achieving clinically-feasible runtimes for `1-SPIRiT.

Imaging speed is a major limitation of MR Imaging, especially in comparison to compet-
ing imaging modalities such as Computed Tomography (CT). MR allows much more flexible
contrast-generation and does not expose patients to ionizing radiation, and hence does not
increase risk of cancer. However, other imaging modalities are substantially more popular,
because MR scans are slow, expensive, and in some cases less robust. Patient motion during
long scans frequently causes image artifacts, and for uncooperative patients, like children,
anesthesia is a frequent solution. Acquisition time in MRI can be reduced by faster scanning
or by subsampling. Parallel imaging [71, 67, 37] is a well-established acceleration technique
based on the spatial sensitivity of array receivers. Compressed sensing (CS) [16, 26, 55] is
an emerging acceleration technique that is based on the compressibility of medical images.
Attempts to combine the two have mostly focussed on extensions of iterative SENSE [66]
with SparseMRI [55]. In [12] Block et al., added total-variation to a SENSE reconstruction
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from radial sampling, Liang et al., in [52] showed improved acceleration by first perform-
ing CS on aliased images and then applying SENSE to unfold the aliasing, Otazo et al.
used compressed sensing with SENSE to accelerate first-pass cardiac perfusion [65]. More
recently [78, 87] have presented some improvements, again, using an extension of SENSE.
The difficulty in estimating exact sensitivity maps in SENSE has created the need for auto-
calibrating techniques. One class of autocalibrating algorithms extends the SENSE model
to joint estimation of the images and the sensitivity maps [90, 79]. Combination of these
approaches with compressed sensing have also been proposed. Knoll et al. [49] proposed a
combination with Uecker’s non-linear inversion and Huang et al. [43] proposed a self-feeding
SENSE combined with compressed sensing.

A different, yet very popular class of autocalibrating techniques are methods like GRAPPA
[37] that do not use the sensitivity maps explicitly. In [57] we proposed an optimized iter-
ative method, SPIRiT, and demonstrated the combination with non-linear regularization.
In [54] we presented and extension, `1-SPIRiT, that synergistically combines SPIRiT with
compressed sensing and in [82, 81] we presented more details and clinical results in pediatric
patients.

The combination of compressed sensing with parallel imaging has the advantage of im-
proved image quality, but it comes at a cost. These algorithms involve substantially more
computation than direct or iterative linear reconstructions.

In this chapter we discuss the `1-SPIRiT reconstruction. `1-SPIRiT solves a constrained
non-linear optimization over the image matrix. The non-linearity of this optimization neces-
sitates an iterative reconstruction, and we describe our simple and efficient POCS algorithm
in Secion 4.3.

A recent trend in MRI has been to accelerate reconstructions by implementing and opti-
mizing them for massively parallel processors. Silicon manufacturing technology has recently
experienced the end of a trend that produced the incredible pace of comptuational speed dur-
ing the 1990’s [30]. In the past decade, all major microprocessor vendors have increased the
computational throughput of their designs by introducing programmer-visible parallelism.
Intel and AMD provide 4-16 CPU cores per socket, and GPGPUs typically have 16-32 mas-
sively multithreaded vector cores per socket. In each case, the computational throughput
of the processor is proportional to the number of cores, and future designs will have larger
numbers of cores.

This chapter discusses the massively parallel implementation of `1-SPIRiT on these pro-
cessors. The resulting sub-minute runtimes demonstrate that computational expense is not a
substantial obstacle to clinical deployment of `1-SPIRiT. Many previous works have demon-
strated substantial improvement in reconstruction runtime using GPUs and multi-core CPUs
as parallel execution platforms. Chang and Ji [18] demonstrated multi-channel acceleration
by solving SparseMRI reconstruction separately for each channel and reporting 1.6-2.0 ac-
celeration using 4 cores. More recently Kim et al. [48] present a high-performance imple-
mentation of a SENSE based compressive sensing reconstruction, describing many low-level
optimizations that apply for both CPU and GPU architectures.
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Stone et al. [74] describe the implementation of an iterative reconstruction using the Con-
jugate Gradient (CG) algorithm to solve regularized linear reconstructions for non-cartesian
trajectories. Their implementation relies on a highly optimized GPU implementation of a
non-uniform Fourier transform (NDFT) to perform sub-minute non-Cartesian reconstruc-
tions. Wu et al. [88, 93] have generalized this work to model other acquisition effects in
the NDFT, such as off-resonance and sensitivity encoding. Several other works have dis-
cussed the GPU implementation of Gridding [7], a highly accurate NDFT approximation.
Sørensen et al. [73] describe an algorithm for obviating potentially expensive synchroniza-
tion in a GPGPU implementation of Gridding. Following their approach, Gregerson [36]
discusses the performance trade-offs of different parallelization strategies for the gridding
interpolation. Obeid et al [64] use a spatial-partitioning approach to optimize gridding in-
terpolation, and reporting 1-30 second runtimes. Nam et al. [1] describe another gridding
implementation achieving sub-second interpolations for highly undersampled data. Several
other works have presented GPU implementations of Parallel Imaging (PI) reconstructions
with clinically-feasible runtimes. Roujol et al. [69] describe GPU implementation of temporal
sensitivity encoding (TSENSE) for 2D interventional imaging. Sorenson et al. [72] present
a fast iterative SENSE implementation which performs 2D gridding on GPUs. Uecker [79]
describes a GPU implementation of a non-linear approach to estimate PI coil sensitivity
maps during image reconstruction.

This work presents the parallelization of an autocalibrating approach, `1-SPIRiT, via
multi-core CPUs and GPUs and the resulting clinically-feasible reconstruction runtimes.
Moreover we discuss the approach taken to parallelizing the various operations within our
reconstruction, and the performance trade-offs in different parallelization strategies. Addi-
tionally, we discuss the data-size dependence of performance-relevant implementation deci-
sions. To our knowledge, no previous works have addressed this issue.

4.2 iTerative Self-Consistent Parallel Imaging Recon-

struction (SPIRiT)

SPIRiT is a coil-by-coil autocalibrating parallel imaging method and is described in detail
in [57]. SPIRiT is similar to the GRAPPA parallel imaging method in that it uses auto-
calibration lines to find linear weights to synthesize missing k-space. The SPIRiT model is
based on self-consistency of the reconstructed data with the acquired k-space data and with
the calibration.

SPIRiT is an iterative algorithm in which in each iteration non-acquired k-space values
are estimated by performing a linear combination of nearby k-space values. The linear
combination is performed using both acquired k-space samples as well as estimated values
(from the previous iteration) for the non-acquired samples. If we denote xi as the entire k-
space grid of the ith coil, then the consistency criterion has a form of a series of convolutions
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with the so called SPIRiT kernels gij. The SPIRiT kernels are obtained by calibration
from auto calibration lines similarly to GRAPPA. If Nc is the total number of channels, the
calibration consistency criterion can be written as

xi =
Nc∑
j=1

gij ∗ xj.

The SPIRiT calibration consistency for all channels can be simply written in matrix form as

x = Gx,

where x is a vector containing the concatenated multi-coil data and G is an aggregated
operator that performs the appropriate convolutions with the gij kernels and the appropriate
summations. As discussed in [57], the G operator can be implanted as a convolution in k-
space or as multiplication in image space.

In addition to consistency with the calibration, the reconstruction must also be consistent
with the acquired data y. This can be simply written as

y = Dx,

where D is an operator that select the acquired k-space out of the entire k-space grid. In
[57] two methods were proposed to find the solution that satisfies the constraints. Here
we would like to point out the projection over convex sets (POCS) approach which uses
alternate projections that enforce the data consistency and calibration consistency. In this
chapter we extend the POCS approach to include sparsity constraints for combination with
compressed sensing.

As previously mentioned, the convolution kernels gi,j are obtained via a calibration from
the densely sampled auto-calibration region in the center of k-space, commonly referred to as
the Auto-Calibration Signal or ACS lines. In the reconstruction we would like to find x that
satisfies x = Gx. However in the calibration x is known and G is unknown. We compute
the calibration in the same way as GRAPPA [37], by fitting the kernels g to the consistency
criterion x = Gx in the ACS lines. Due to noise, data corruption, and ill-conditionedness, we
solve this fit in an `2-regularized least-squares sense. We compute the calibration once, prior
to image reconstruction. Calibration could potentially be improved via a joint estimation of
the kernels and images, as has been presented by Zhao et al. as Iterative GRAPPA [92] and
in SENSE-like models by Ying et al. [90] and Uecker et al. [79]. Joint estimation is more
computationally expensive, but its runtime could be improved with techniques similar to
those discussed in this thesis.

We can therefore solve for the gij’s by reformatting the data x appropriately and solving
a series of least-squares problems to calibrate gij. This procedure is similar to calibrating
GRAPPA kernels.



CHAPTER 4. CLINICALLY-FEASIBLE `1-SPIRIT RECONSTRUCTION 46

4.3 `1-SPIRiT Reconstruction

Variations of the `1-SPIRiT reconstruction have been mentioned in several conference pro-
ceedings [54, 60, 51, 82]. More detailed descriptions are given in [57] and in [81]. But for the
sake of completeness and clarity we include here a detailed description of the variant that is
used in this chapter.

`1-SPIRiT is an approach for accelerated sampling and reconstruction that synergisti-
cally unifies compressive sensing with auto-calibrating Parallel imaging. The sampling is
optimized to provide the incoherence that is required for compressed sensing yet compatible
to parallel imaging. The reconstruction is an extension of the original SPIRiT algorithm
that in addition to enforcing consistency constraints with the calibration and acquired data,
enforces joint-sparsity of the coil images in the Wavelet domain. Let y be a the vector of
acquired k-space measurements from all the coils, F a Fourier operator applied individually
on each coil-data, D a subsampling operator that chooses only acquired k-space data out
of the entire k-space grid, G an image-space SPIRiT operator that was obtained from auto-
calibration lines, Ψ a wavelet transform that operates on each individual coil separately.
`1-SPIRiT solves for the multi-coil images concatenated into the vector x which minimizes
the following problem:

minimizex Joint`1(Ψx) (4.1)

subject to DFx = y (4.2)

Gx = x (4.3)

The function Joint`1(·) is a joint `1-`2-norms convex functional and is described later
in more detail. Minimizing the objective (4.1) enforces joint sparsity of wavelet coefficients
between the coils. The constraint in (4.2), is a linear data-consistency constraint and in
(4.3) is the SPIRiT parallel imaging consistency constraint. The Wavelet transform [13] Ψ
is well-known to sparsify natural images, and thus used frequently in Compressive Sensing
applications as a sparsifying basis. Just as the Fourier transform, it is a linear operation
that can be computed via a fast O(n log n) algorithm.

As previously mentioned, in this work we solve the above problem via a an efficient
POCS algorithm, shown in Figure 4.1. It converges to a fixed-point that satisfies the above
constraints, often within 50-100 iterations. This algorithm does not solve the constrained
minimization exactly, but instead minimizes the related Lagrangian objective function.

4.3.1 Joint-Sparsity of Multiple Coils

We perform soft-thresholding on the Wavelet coefficients to minimize the `1-objective func-
tion (4.1). The soft-thresholding function Sλ(x) is defined element-wise for x ∈ C as:

Sλ(x) =
x

|x|
·max(0, |x| − λ)
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POCS Algorithm for `1-SPIRiT

xk - image estimate after kth iteration
y - acquired data
F - multi-coil Fourier transform operator
G - SPIRiT operator
Ψ - multi-coil Wavelet transform operator
D - subsampling operator choosing acquired data
Sλ - Joint Soft-thresholding

G← AutoCalibrate(y)
Initialize x0 ← F−1DTy
for k = 1, 2, . . . until convergence:

(A) mk ← Gxk−1

(B) wk ← Ψ−1Sλ {Ψmk}
(C) xk ← F-1

[
(I −DTD) (Fwk) +DTy

]

Figure 4.1: The POCS algorithm. Line (A) performs SPIRiT k-space interpolation, im-
plemented as voxel-wise matrix-vector multiplications in the image domain. Line (B)
performs Wavelet Soft-thresholding, computationally dominated by the forward/inverse
Wavelet transforms. Line (C) performs the k-space consistency projection, dominated by
inverse/forward Fourier transforms.

where |x| is the complex modulus of x. The parameter λ estimates the amplitude of noise
and aliasing in the Wavelet basis, and the soft-thresholding operation is a well-understood
component of many de-noising [27] and compressive sensing algorithms [22]. As pointed
out in prior works [82], we approximate translation-invariance in our Wavelet transforms.
Translation invariance reduces block-like artifacts [32], but a translation invariant Wavelet
transform is very computationally expensive. The approximation we use is effective at re-
moving the artifacts, but has a negligible computational overhead.

The individual coil images are sensitivity weighted images of the original image of the
magnetization. We assume that coil sensitivities are smooth and do not produce spatial shift
of one coil’s image relative to another. Edges in these images appear in the same spatial

position, and therefore coefficients of sparse transforms, such as wavelets, exhibit similar
sparsity patterns. To exploit this, we use a joint-sparsity model[82, 81]. In compressed
sensing, sparsity is enforced by minimizing the `1-norm of a transformed image. The usual
definition of the `1-norm is the sum of absolute values of all the transform coefficients,∑

c

∑
r |wcr| =

∑
c

∑
r

√
|wrc|2 , where c is the coil index and r is the spatial index. In a
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joint-sparsity model we would like to jointly penalize coefficients from different coils that are
at the same spatial position. Therefore we define a joint `1 as:

Joint`1(w) =
∑
r

√∑
c

|wrc|2

In a joint `1-norm model, the existence of large coefficient in one of the coils, protects the
coefficients in the rest of the coils from being suppressed by the non-linear reconstruction.
In the POCS algorithm joint sparsity is enforces by soft-thresholding the magnitude of the
wavelet coefficients across coils, at a particular position.

4.3.2 Computational Complexity

If nc is the number of PI channels and v is the number of voxels per PI channel, the compu-
tational complexity of our algorithm is:

O
(
CC · n3

c + T · ((CW + CF ) · ncv log v + CS · n2
cv)
)

where T is the number of iterations the POCS algorithm performs. The algorithm often
converges with sufficient accuracy within 50-100 iterations. The constants CW , CF , CS,
and CC indicate that the relative computational cost of the Wavelet transforms, Fourier
transforms, and SPIRiT interpolation and calibration are heavily dependent on input data
size. Section 4.7 presents more detailed runtime data.

The n3
c term represents the SPIRiT calibration, which performs a least-norm, least-

squares fit of the SPIRiT model to a densely sampled autocalibration region in the center of
k-space. Solving each of these systems independently leads to an O(n4

c) algorithm, which is
prohibitively expensive for large coil arrays. However, the nc linear systems are very closely
related and can be solved efficiently with only a single Cholesky decomposition of a square
matrix of order O(nc), hence the O(n3

c) complexity of our method. See Section 4.5 for a
complete derivation of the algorithm. This derivation can potentially be used to accelerate
the computation of GRAPPA kernels as well.

The ncv log v term represents the Fourier and Wavelet transforms, and the n2
cv term rep-

resents the image-domain implementation of the k-space SPIRiT interpolation. This k-space
convolution is implemented as multiplication in the image domain, hence the linearity in
v of this term. Due to the O(n2

cv) complexity, SPIRiT interpolation is asymptotically the
bottleneck of the POCS algorithm. All other operations are linear in the number of PI
channels, and at worst log-linear in the number of voxels per channel. There are several
proposed approaches that potentially reduce the complexity of the SPIRiT interpolation
without degrading image quality. For example, ESPIRiT [51] performs an Eigen decomposi-
tion of the G matrix, and uses a rank-one approximation during POCS iterations. Also, coil
array Compression [15, 91] can reduce the number of parallel imaging channels to a small
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constant number of virtual channels. Our software includes implementations of both of these
approaches, and in practice the `1-SPIRiT solver is rarely run with more than 8 channels.

One could solve the `1-SPIRiT reconstruction problem (Equations 4.1-4.3) via an algo-
rithm other than our POCS approach, for example non-linear Conjugate Gradients (NLCG).
The computational complexity of alternate algorithmic approaches would differ only in con-
stant factors. The same set of computations would still dominate runtime, but a different
number of iterations would be performed and potentially a different number of these oper-
ations would be computed per iteration. End-to-end reconstruction times would differ, but
much of the performance analysis in this work applies equally well to alternate algorithmic
approaches.

4.4 Fast Implementation

The POCS algorithm is efficient: in practice, it converges rapidly and performs a minimal
number of operations per iteration. Still, a massively parallel and well-optimized implemen-
tation is necessary to achieve clinically feasible runtimes. A sequential C++ implementation
runs in about ten minutes for the smallest reconstructions we discuss in this chapter, and
in about three hours for the largest. For clinical use, images must be available immediately
after the scan completes in order to inform the next scan to be prescribed. Moreover, time
with a patient in a scanner is limited and expensive: reconstructions requiring more than a
few minutes of runtime are infeasible for on-line use.

In this section, we discuss the aspects of our reconstruction implementation pertinent
to computational performance. While previous works have demonstrated the suitability of
parallel processing for accelerating MRI reconstructions, we provide a more didactic and
generalizable description intended to guide the implementation of other reconstructions as
well as to explain our implementation choices.

4.4.1 Parallel Processors

Many of the concerns regarding efficient parallel implementation of MRI reconstructions
are applicable to both CPU and GPU architectures. These two classes of systems are pro-
grammed using different languages and tools, but have much in common. Figure 4.2 estab-
lishes a four-level hierarchy that one can use to discuss parallelization decisions. In general,
synchronization is more expensive and aggregate data access bandwidth is less at “higher”
levels of the hierarchy (i.e., towards the top of Figure 4.2). For example, Cuda GPGPUs can
synchronize threads within a core via a syncthreads() instruction at a cost of a few pro-
cessor cycles, but synchronizing all threads within a GPU requires ending a grid launch at a
cost of ≈ 5µs, or 7,500 cycles. CPU systems provide less elaborate hardware-level support for
synchronization of parallel programs, but synchronization costs are similar at corresponding
levels of the processor hierarchy. On CPUs, programs synchronize via software barriers and
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Figure 4.2: The four-level hierarchy of modern parallel systems. Nodes contain disjoint
DRAM address spaces, and communicate over a message-passing network in the CPU case,
or over a shared PCI-Express network in the GPU case. Sockets within a node (only one
shown) share DRAM but have private caches – the L3 cache in CPU systems and the L2
cache in Fermi-class systems. Similarly Cores share access to the Socket-level cache, but
have private caches (CPU L2, GPU L1/scratchpad). Vector-style parallelism within a core
is leveraged via Lanes – SSE-style SIMD instructions on CPUs, or the SIMT-style execution
of GPUs.

task queues implemented on top of lightweight memory-system support. With respect to
data access, typical systems have ≈ 10 TB/s (1013 bytes/s) aggregate register-file bandwidth
but only ≈ 100 GB/s (1011 bytes/s) aggregate DRAM bandwidth. Exploiting locality and
data re-use is crucial to performance.

In this work, we do not further discuss cluster-scale parallelization (among Nodes in Fig-
ure 4.2). The CPU parallelization we’ll describe in this section only leverages the parallelism
among the multiple Sockets/Cores a single Node. As indicated by Figure 4.2, parallelization
decisions at this level are analogous to decisions among the multiple GPUs in a single system,
but we leave more detailed performance analysis of cluster-parallelization to future work.

4.4.2 Data-Parallelism and Geometric Decomposition

The computationally intense operations in MRI reconstructions contain nested data par-
allelism. In particular, operations such as Fourier and Wavelet transforms are performed
over k-dimensional slices through the N-dimensional reconstruction volume, with k < N .
In most cases the operations are performed for all k-dimensional (k-D) slices, providing
another source of parallelism to be exploited for accelerating the reconstruction. The k-D
operations themselves are parallelizable, but usually involve substantial synchronization and
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Figure 4.3: Hierarchical sources of parallelism in 3D MRI Reconstructions. For general
reconstructions, operations are parallelizable both over channels and over image voxels. If
there is a fully-sampled direction, for example the readout direction in Cartesian acquisitions,
then decoupling along this dimension allows additional parallelization.

data-sharing. Whenever possible, it is very efficient to exploit this additional level of paral-
lelism. For the purposes of software optimization, the size and shape of the N-dimensional
(N-D) data are important. The Geometric Decomposition (GD) design pattern [58] discusses
the design of parallel programs in which the data involved have geometric structure. GD
suggests the parallelization should follow a division of the data that follows this structure,
in order to achieve good caching and inter-thread communication behavior.

Recall from Figure 4.2 that modern processor architectures provide four levels at which
to exploit parallelism. An efficient parallel implementation must decide at which levels of
the processor hierarchy to exploit the levels of the nested parallelism in MRI reconstruction.

In volumetric MRI reconstructions, all of these operations are applied to the 4-D array
representing the multi-channel 3D images. Figure 4.3 illustrates that the exploitable par-
allelism of operations over these arrays is two-level: operations like Fourier and Wavelet
transforms applied to the individual channels’ images exhibit massive voxel-wise parallelism
and require frequent synchronization; but the transforms of the 4-32 channels can be per-
formed independently and in parallel.

In cartesian acquisisions, the readout direction is never randomly subsampled. Similarly
in stack-of-spirals or stack-of-radial acquisitions, the same non-cartesian sampling of x − y
slices is used for every z position. In these cases, the 3D reconstruction can be decoupled into
independent 2D reconstructions for each undersampled slice. The resulting reconstruction
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is unable to exploit cross-slice Wavelet-domain sparsity, and is potentially less noise-optimal
than a fully 3-dimensional reconstruction. However, decoupling can provide a substantial
performance benefit. Parallelizing over independent 2D reconstructions is very efficient, as
the decoupled 2D reconstructions require no synchronization. Our Cuda `1-SPIRiT solver is
able to run multiple 2D problems simultaneously per GPU in batch mode. Large batch sizes
require more GPU memory, but expose more parallelism and can more effectively utilize the
GPU’s compute resources.

4.4.3 Size-Dependence and Cache/Synchronization Trade-off

One can produce several functionally equivalent implementations by parallelizing at different
levels of the hierarchy in Figure 4.2. These different implementations will produce identical
results1 but have very different performance characteristics. Moreover, the performance of
a given implementation may differ substantially for different image matrix sizes and coil
array sizes. In general, the optimal implementation is a trade-off between effective use of
the cache/memory hierarchy and amortization of parallelization overheads.

For example, one may choose to exploit the voxel-wise parallelism in an operation only
among the vector lanes within a single processor core. The implementation can then exploit
parallelism over multiple channels and 2D slices over the multiple cores, sockets, and nodes
in the system. Utilizing this additional parallelism will increase the memory footprint of
the algorithm, as the working set of many 2D slices must be resident simultaneously. This
consideration is particularly important for GPU systems which have substantially less DRAM
capacity than CPU systems.

On the other hand, one may leverage voxel-wise parallelism among the multiple cores
within a socket, the multiple sockets within the system, or among the multiple nodes. In
doing so the implementation is able to exploit a larger slice of the system’s processing and
memory-system resources while simultaneously reducing memory footprint and working-set
size. The favorable caching behavior of the smaller working set may result in a more effi-
cient implementation. However, it is more expensive to synchronize the higher levels of the
processing hierarchy. Furthermore, for problems with smaller matrix sizes, voxel-wise par-
allelism may be insufficient to fully saturate the processing resources at higher levels. Even
when caching behavior is more favorable, this over-subscription of resources may degrade
performance.

Which implementation provides better performance depends both on the size of the input
data and on the size of the processor system. When the image matrix is very high-resolution
(i.e. has a large number of voxels) or the processing system is relatively small (i.e. a small
number of processor cores), then one can expect a high degree of efficiency from exploiting
voxel-wise parallelism at higher levels of the hierarchy. If the image matrix is relatively

1Identical up to round-off differences in floating point arithmetic, which is not always associative or
commutative
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Figure 4.4: (a) Flowchart of the `1-SPIRiT POCS algorithm and the (b) SPIRiT, (c) Wavelet
joint-threshold and (d) data-consistency projections

small or the processor system is very large, then one should expect that parallelism from
the Channel and Decoupled-2D levels of Figure 4.3 is more important. As the number of
processing cores per system and the amount of cache per core both continue to increase over
time, we expect the latter case to become more common in the future.

4.4.4 Parallel Implementation of `1-SPIRiT

In the case of `1-SPIRiT, there are four operations which dominate runtime: SPIRiT auto-
calibration, Fourier transforms during the k-space consistency projection, Wavelet transforms
during the joing soft-thresholding, and the image-domain implementation of SPIRiT inter-
polation. Figure 4.4 depicts the overall flow of the iterative reconstruction. Note that PI
calibration must be performed only once per reconstruction, and is not part of the iterative
loop.

SPIRiT Auto-Calibration Our `1-SPIRiT implementation performs auto-calibration by
fitting the SPIRiT consistency model to the densely sampled Auto-Calibration Signal (ACS),
which requires solving a least-squares least-norm problem for each PI channel. Note that
while we perform the POCS iterations over decoupled 2D slices, we perform calibration in
full 3D. The SPIRiT interpolation kernels for the 2D problems are computed via an inverse
Fourier transform in the readout direction.

As discussed in Section 4.5, the auto-calibration is computationaly dominated by two
operations: the computation of a rank-k matrix product A∗A and a Cholesky factorization
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A = LL∗, which itself is dominated by rank-k products. Numerical linear algebra libraries
for both CPUs and GPUs are parallelized via an output-driven scheme that requires very
little inter-thread synchronization. For example, when computing a matrix-matrix product
C = AB each element ci,j is computed as an inner product of a row ai of A with a column bj
of B. All such products can be computed independently in parallel and are typically blocked
to ensure favorable cache behavior.

The SPIRiT Operator in Image Space Figure 4.4 (b) illustrates the image-domain
implementation of SPIRiT interpolation Gx. Gx computes a matrix-vector multiplication
per voxel – the nc (# PI channels) length vector is composed of the voxels at a given location
in all PI channels. For efficiency in the Wavelet and Fourier transforms, each channel must
be stored contiguously. Thus the cross-channel vector for each voxel is non-contiguous. Our
implementation of the interpolation streams through each channel in unit-stride to obviate in-
efficient long-stride accesses or costly data permutation. The image-domain implementation
is substantially more efficient than the k-space implementation, which performs convolution
rather than a multiplication. However, the image-domain representation of the convolution
kernels requires a substantially larger memory footprint, as the compact k-space kernels
must be zero-padded to the image size and Fourier transformed. Since SPIRiT’s cross-coil
interpolation is an all-to-all operation, there are n2

c such kernels. This limits the applicability
of the image-domain SPIRiT interpolation when many large-coil-array 2D problems are in
flight simultaneously. This limitation is more severe for the Cuda implementation than the
OpenMP implementation, as GPUs typically have substantially less memory capacity than
the host CPU system.

Enforcing Sparsity by Wavelet Thresholding Figure 4.4 (c) illustrates Wavelet Soft-
thresholding. Similarly to the Fourier transforms, the Wavelet transforms are performed
independently and in parallel for each channel. Our Wavelet transform implementation
is a multi-level decomposition via a separable Daubechies 4-tap filter. Each level of the
decomposition performs low-pass and high-pass filtering of both the rows and columns of
the image. The number of levels of decomposition performed depends on the data size: we
continue the wavelet decomposition until the approximation coefficients are smaller than
the densely sampled auto-calibration region. Our OpenMP implementation performs the
transform of a single 2D image in a single OpenMP thread, and parallelizes over channels
2D slices.

We will present performance results for two alternate GPU implementations of the
Wavelet transform. The first parallelizes a 2D transform over multiple cores of the GPU,
while the second is parallelized only over the vector lanes within a single core. The former is
a finer-grained parallelization with a small working set per core, and permits an optimization
that greatly improves memory system performance. As multiple cores share the transform
for a single 2D transform, the per-core working set fits into the small l1-cache of the GPU.
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Multiple Cuda thread blocks divide the work of the convolutions for each channel’s image,
and explicitly block the working data into the GPU’s local store. Parallelism from multiple
channels is exploited among multiple cores when a single 2D transform cannot saturate the
entire GPU. The latter parallelization exploits all voxel-wise parallelism of a 2D transform
within a single GPU core, and leverages the channel-wise and slice-wise parallelism across
multiple cores. The working set of a single 2D image does not fit in the l1 cache of the GPU
core and we cannot perform the explicit blocking performed in the previous case.

Enforcing k-space acquisition consistency Figure 4.4 (d) illustrates the operations
performed in the k-space consistency projection. The runtime of this computation is domi-
nated by the forward and inverse Fourier transforms. As the FFTs are performed indepen-
dently for each channel, there is nc-way communication-free parallelism in addition to the
voxel-wise parallelism within the FFT of each channel. FFT libraries typically provide APIs
to leverage the parallelism at either or both of these levels. The 2D FFTs of phase-encode
slices in `1-SPIRiT are efficiently parallelized over one or a few processor cores, and FFT
libraries can very effectively utilize voxel-wise parallelism over vector lanes. We will present
performance results for the GPU using both the Plan2D API, which executes a single 2D FFT
at a time, and the PlanMany API which potentially executes many 2D FFTs simultaneously.
The latter approach more easily saturates the GPU’s compute resources, while the former
approach is a more fine-grained parallelization with potentially more efficient cache-use.

4.5 O(n3) SPIRiT Calibration

As discussed in Section 4.3, our `1-SPIRiT calibration solves a least-norm, least-squares
(LNLS) fit to the fully-sampled auto-calibration signal (ACS) for each channel’s interpolating
coefficients. As each channel’s set of coefficients interpolates from each of the the nc channels,
the matrix used to solve this system has O(nc) columns. Solving the nc least-squares systems
independently requires O(n4

c) time, and is prohibitively expensive. This section derives our
algorithm for solving them in O(n3

c) time using a single matrix-matrix multiplication, single
Cholesky factorization, and several inexpensive matrix-vector operations.

We construct a calibration data matrix A from the calibration data in the same manner
as GRAPPA [37] and SPIRiT [57] calibration: each row of A is a window of the ACS the
same size as the interpolation coefficients. This matrix is Toeplitz, and multiplication Ax
by a vector x ∈ Cnc·nk computes the SPIRiT interpolation: y =

∑nc

i=1 xi ∗ ACSi.
The LNLS matrices for each channel differ only by a single column from A. In particular,

there is a column of A that is identical to the ACS of each coil. Consider the coil corre-
sponding to column i of A, and let b be that column. We define N = A− be′i – A with the
ith column zeroed out. We wish to solve Nx = b in the least-norm least-squares sense, by
solving (N∗N + εI)x := Ñx = N∗b. The runtime of our efficient algorithm is dominated
computing the product N∗N and computing the Cholesky factorization LL∗ = Ñ .
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Our derivation begins by noting that:

Ñ = N∗N + εI

= (A− be′)∗(A− be′) + εI

= A∗A+ εI − A∗be′ − (be′)∗A+ (be′)∗be′

= A∗A+ εI − (A∗b)e′ − e(A∗b)∗ + (be′)∗be′

= A∗A+ εI − b̃e′ − eb̃∗

Where we have defined b̃ = A∗b with entry i multiplied by 1
2

to avoid adding eb∗be′. If
we have a Cholesky factorization LL∗ = A∗A+ εI:

Ñ = LL∗ − b̃e′ − eb̃∗

= LL−1(LL∗ − b̃e′ − eb̃∗)L−∗L∗

= L(I − L−1b̃e′L−∗ − L−1eb̃∗L−∗)L∗

= L(I − (L−1b̃)(L−1e)∗ − (L−1e)(L−1b̃)∗)L∗

= L(I − b̂ê∗ − êb̂∗)L∗

Where we’ve defined b̂ = L−1b̃ = L−1A∗b, and ê = L−1e. These vectors can be computed
with BLAS2 triangular solves and matrix-vector multiplications. In fact, we can aggregate
the b’s and e’s from all parallel imaging channels into matrices and compute all b̂’s and ê’s
with highly efficient BLAS3 solves. Now, to solve the system of equations Ñx = b̃:

x = Ñ−1b̃

= (L(I − b̂ê∗ − êb̂∗)L∗)−1b̃

= L−∗(I − b̂ê∗ − êb̂∗)−1L−1b̃

It remains to compute the inverse of (I − b̂ê∗ − êb̂∗). We can define two matrices

B̂, Ê ∈ Cn×2, where B̂ = −
(
b̂, ê
)

, and Ê =
(
ê, b̂
)

. Using the Sherman-Morrison-Woodbury

identity:
(A+ UCV )−1 = A−1 − A−1U(C−1 + V A−1U)−1V A−1

where in our case A = C = I, U = B̂, and V = Ê∗:

(I − b̂ê∗ − êb̂∗)−1 = (I + B̂Ê∗)−1

= I − IB̂(I + Ê∗IB̂)−1Ê∗

= I − B̂(I + Ê∗B̂)−1Ê∗

Note that I + Ê∗B̂ is a 2× 2 matrix that is very inexpensive to invert. Thus we have our
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Dataset nx ny nz nc
A 192 256 58 8, 16, 32
B 192 256 102 8, 16, 32
C 192 256 152 8, 16, 32
D 192 256 190 8, 16, 32
E 320 260 250 8, 16, 32
F 320 232 252 8, 16, 32

Table 4.1: Table of dataset sizes for which we present performance data. nx is the length of
a readout, ny and nz are the size of the image matrix in the phase-encoded dimensions, and
nc is the number of channels in the acquired data. Performance of SPIRiT is very sensitive
to the number of channels, so we present runtimes for the raw 32-channel data as well as
coil-compressed 8- and 16- channel data.

final algorithm:

L ← chol(A∗A+ εI)

b̂ ← L−1A∗b

ê ← L−1e

B̂ ← −
(
b̂, ê
)

Ê ←
(
ê, b̂
)

x ← L−∗(I − B̂(I + Ê∗B̂)−1Ê∗)b̂

x ← L−∗(I − B̂(I + Ê∗B̂)−1Ê∗)L−1b̃

4.6 Methods

Section 4.7 presents performance results for a representative sample of datasets from our
clinical application. We present runtimes for a constant number of POCS iterations only,
so the runtime depends only on the size of the input matrix. In particular, our reported
runtimes do not depend on convergence rates or the amount of scan acceleration. We present
performance results for six datasets, whose sizes are listed in Table 4.1.

We present several performance metrics of interest. First, we shall discuss the end-to-end
runtime of our reconstruction to demonstrate the amount of wall-clock time the radiologist
must wait from the end of the scan until the images are available. This includes the PI
calibration, the POCS solver, and miscellaneous supporting operations. To avoid data-
dependent performance differences due to differing convergence rates, we present runtime
for a constant (50) number of POCS iterations.
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To demonstrate the effectiveness of our O(n3) calibration algorithm, we compare its
runtime to that of the “obvious” implementation which uses ACML’s implementation of
the Lapack routine cposv to solve each coil’s calibration independently. The runtime of
calibration does not depend on the final matrix size, but rather on the number of PI channels
and the number of auto-calibration readouts. We present runtimes for calibrating 7× 7× 7
kernels averaged over a variety of ACS sizes.

We also present per-iteration runtime and execution profile of the POCS solver for several
different parallelizations, including both CPU and GPU implementations. The per-iteration
runtime does not depend on the readout length or the rate of convergence. Since we decouple
along the readout dimension, POCS runtime is simply linear in nx. Presenting per-iteration
runtime allows direct comparison of the different performance bottlenecks of our multiple
implementations.

Additionally, we explore the dependence of performance on data-size by comparing two
alternate implementations parallelized for the GPU. The first exploits voxel-wise paral-
lelism and channel-wise parallelism at the Socket-level from Figure 4.2 and does not exploit
Decoupled-2D parallelism. This implementation primarily synchronizes by ending Cuda grid
launches, incurring substantial overhead. However, the reduced working-set size increases
the likelihood of favorable cache behavior, and enables further caching optimizations as de-
scribed in Section 4.4.4. Fourier transforms are performed via the 2D API, which expresses
a single parallel FFT per grid launch. Fermi-class GPUs are able to execute multiple grid
launches simultaneously, thus this implementation expresses channel-wise parallelism as well.
The second implementation exploits voxel-wise parallelism only within a core of the GPU,
and maps the channel-wise and Decoupled-2D parallelism at the Socket-level. This imple-
mentation is able to use the more efficient within-core synchronization mechanisms, but it
has a larger working set per core and thus cannot as effectively exploit the GPU’s caches. It
also launches more work simultaneously in each GPU grid launch than does the first imple-
mentation, and can more effectively amortize parallelization overheads. Fourier transforms
are performed via the “Plan Many” API, which expresses the parallelism from all FFTs
across all channels and all slices simultaneously.

All performance data shown were collected on our dual-socket × six-core Intel Xeon
X5650 @2.67GHz system with four Nvidia GTX580s in PCI-Express slots. The system
has 64GB of CPU DRAM, and 3GB of GPU DRAM per card (total 12 GB). We leverage
Nvidia’s Cuda [62] extensions to C/C++ to leverage massively parallel GPGPU processors,
and OpenMP 2 to leverage multi-Core parallelism on the system’s CPUs. Additionally, mul-
tiple OpenMP threads are used to manage the interaction with the system’s multiple discrete
GPUs in parallel. We leverage freely available high-performance libraries for standard oper-
ations: ACML 3 for linear system solvers and matrix factorizations, FFTW 4 and CUFFT 5

2http://www.openmp.org
3http://www.amd.com/acml
4http://www.fftw.org
5http://developer.nvidia.com/cuda-toolkit-40
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for Fourier transforms.

4.7 Performance Results

Figures 4.5-4.10 present performance data for our parallelized `1-SPIRiT implementations.
Figure 4.5 shows stacked bar charts indicating the amount of wall-clock time spent during
reconstruction of the six clinical datasets, whose sizes are listed in Section 4.6. The POCS
solver is run with a single 2D slice in flight per GPU. This configuration minimizes memory
footprint and is most portable across the widest variety of Cuda-capable GPUs. It is the
default in our implementation. The stacked bars in Figure 4.5 represent:

• 3D Calibration: The SPIRiT calibration that computes the SPIRiT G operator from
the ACS data as described in Section 4.3. Figure 4.9 presents more analysis of this
portion.

• POCS: The per-slice 2D data are reconstructed via the algorithm described in Fig-
ure 4.1. Figure 4.6 presents a more detailed analysis of the runtime of this portion.

• other: Several other steps must also be performed during the reconstruction, including
data permutation and IFFT of the readout dimension.

Figures 4.6 and 4.7 show the contribution of each individual algorithmic step to the
overall runtime of a single iteration of the 2D POCS solver. In Figure 4.6, the solver is
parallelized so that a single 2D problem is in-flight per GPU. In Figure 4.7, a single 2D
problem is in flight per CPU core. The stacked bars in Figure 4.6 and Figure 4.7 are:

• FFT: The Fourier transforms performed during the k-space consistency projection.

• SPIRiT Gx: Our image-domain implementation of the SPIRiT interpolation, which
performs a matrix-vector multiplication per voxel.

• Wavelet: The Wavelet transforms performed during wavelet soft-thresholding.

• other: Other operations that contribute to runtime include data movement, joint
soft-thresholding, and the non-Fourier components of the k-space projection.

Figure 4.8 compares the runtime of the Parallel GPU and CPU POCS implementations
to the runtime of a sequential C++ implementation. The reported speedup is computed as
the ratio of the sequential runtime to the parallel runtime.

Figure 4.9 demonstrates the runtime of the efficient Cholesky-based SPIRiT calibration
algorithm described in Section 4.5. The left graph compares the runtime of of our efficient
O(n3) calibration to the näıve O(n4) algorithm. The right plot shows what fraction of
the efficient algorithm’s runtime is spent in the matrix-matrix multiplication, the Cholesky
factorization, and the other BLAS2 matrix-vector operations.
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4.8 Discussion

Figures 4.5 and 4.6 present performance details for the most portable GPU implementation
of the POCS solver which runs a single 2D slice per GPU . As shown in Figure 4.5, our
GPU-parallelized implementation reconstructs datasets A-D at 8 channels in less than 30
seconds, and requires about 1 minute for the larger E and F datasets. Similarly, our re-
construction runtime is 1-2 minutes for all but the 32-channel E and F data, which require
about 5 minutes. Due to the O(n3

c) complexity of calibration, calibration requires a sub-
stantially higher fraction of runtime for the 32-channel reconstructions, compared to the 8
an 16-channel reconstructions. Similarly, Figure 4.6 shows that the O(n2

c) SPIRiT interpo-
lation is a substantial fraction of the 32-channel POCS runtimes as well. Figures 4.5 and
4.6 demonstrate another important trend of the performance of this GPU implementation.
Although dataset D is 4× larger than dataset A, the 8-channel GPU POCS runtimes differ
only by about 10%. The trend is clearest in the performance of the Fourier and Wavelet
transforms, whose runtime is approximately the same for datasets A-D. This is indicative
of the inefficiency of the CUFFT library’s Plan2D API for these small matrix sizes. In a
moment we’ll discuss how an alternate parallelization strategy can substantially improve
efficiency for these operations.

Figures 4.7 presents the averaged per-iteration execution profile of the OpenMP-parallelized
CPU POCS solver, which uses an #pragma omp for to perform a single 2D slice’s recon-
struction at a time per thread. The relative runtimes of the Fourier and Wavelet transforms
are more balanced in the CPU case. In particular, the CPU implementation does not suffer
from low FFT performance for the small data sizes. The FFT is run sequentially within a
single OpenMP thread, and it incurs no synchronization costs or parallelization overhead.

Figure 4.8 presents the speedup of the multi-GPU solver and the multicore CPU solver
over a sequential C++ implementation. Note that the 4-GPU implementation is only about
33% faster than the 12-CPU implementation for the smallest data size (dataset A at 8
channels), while for the larger reconstructions the GPU implementation is 5×–7× faster. The
OpenMP parallelization consistently gives 10×–12× speedup over sequential C++, while the
multi-GPU parallelization provides 30×–60× speedup for most datasets.

Figure 4.9 demonstrates the enormous runtime improvement in SPIRiT calibration due
to our Cholesky-based algorithm described in Section 4.3 and derived in Section 4.5. The
runtime of our calibration algorithm is dominated by a single large matrix-matrix multi-
plication, Cholesky decomposition, and various BLAS2 (Matrix-vector) operations. For 8
channel reconstructions, the O(n3) algorithm is faster by 2 − 3×, while it is 10× faster for
32 channel data. In absolute terms, 8-channel calibrations require less than 10 seconds when
computed via either algorithm. However, 32 channel calibrations run in 1–2 minutes via the
Cholesky-based algorithm, while the O(n4) algorithm runs for over 15 minutes.

Figure 4.10 provides a comparison of alternate parallelizations of the POCS solver and
the dependence of performance on data size. The “No Batching” implementation exploits
the voxel-wise and channel-wise parallelism within a single 2D problem per GPU Socket. The
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remaining bars batch multiple 2D slices per GPU Socket. The top bar graph shows runtimes
for a small 256× 58 image matrix, and the bottom graph shows runtimes for a moderately
sized 232 × 252 matrix. Both reconstructions were performed after coil-compression to 8
channels.

Fourier transforms in the No Batching implementation are particularly inefficient for the
small data size. The 256× 58 transforms for the 8 channels are unable to saturate the GPU.
The “Batched 1x” bar uses the PlanMany API rather than the Plan2D API. This change
improves FFT performance, demonstrating the relative ineffectiveness of the GPU’s ability
to execute multiple grid launches simultaneously. Performance continues to improve as we
increase the number of slices simultaneously in-flight, and the FFTs of the small matrix
are approximately 5× faster when batched 32×. However, for the larger 232× 252 dataset,
32× batching achieves performance approximately equal to the non-batched implementation.
That the 1× batched performance is worse than the non-batched performance likely indicates
that the larger FFT is able to exploit multiple GPU cores.

Our Wavelet transforms are always more efficient without batching, as the implemen-
tation is able to exploit the GPU’s small scratchpad caches (Cuda shared memory) as
described in Section 4.4.4. The wavelet transform performs convolution of the low-pass and
high-pass filters with both the rows and the columns of the image. Our images are stored
in column-major ordering, and thus we expect good caching behavior for the column-wise
convolutions. However, the row-wise convolutions access the images in non-unit-stride with-
out our scratchpad-based optimizations. Comparing the runtimes of the “No Batching” and
“Batched 1x” Wavelet implementations in Figure 4.10 shows that our cache optimization
can improve performance by 3×–4×. This is a sensible result, as we use 4-tap filters and
each pixel is accessed 4 times per convolution. The cache optimization reduces the cost to a
single DRAM access and 3 cached accesses.

Note that performance could be improved by choosing different parallelization strategies
for the various operations. In particular, the best performance would be achieved by using
a batched implementation of the Fourier transforms, while using the un-batched implemen-
tation of the Wavelet transforms. Such an implementation would still require the larger
DRAM footprint of the batched implementation, as multiple 2D slices must be resident in
GPU DRAM simultaneously. However it could achieve high efficiency in the Wavelet trans-
form via the caching optimization, and also in the Fourier transforms via higher processor
utilization. Although our current implementation does not support this hybrid configura-
tion, the rightmost graph in Figure 4.10 shows that it could perform up to 2× faster for
the 256 × 58 dataset. Moore’s Law scaling will result in higher core counts in future ar-
chitectures. Per Gustafson’s law [39], efficient utilization of future architectures will require
increased problem size. In our context, we can increase problem size via larger batch sizes.
Per-batch reconstruction time will remain constant, but total reconstruction time will be
inversely proportional to batch size. Thus batching potentially provides linear performance
scaling with increased core counts.

We also anticipate that as Moore’s Law scaling will result in in higher numbers of pro-
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cessor cores per socket in the future, this type of parallelization may become increasingly
important: relative to larger processors, the majority of clinical datasets will appear smaller.

4.9 Image Quality

We present more comprehensive evaluation of image quality in prior works [81]. Figure 4.11
presents a clinical case demonstrating the image quality advantage that our reconstruction
can provide. Our 3-Dimensional Compressed Sensing pulse sequence is a modified 3DFT
spoiled gradient-echo (SPGR) sequence which undersamples in both of the phase-encoded
dimensions (y) and (z). Acquisitions are highly accelerated, with 4×–8× undersampling of
phase encodes. Our clinical imaging is performed using 3T and 1.5T GE systems with a
with 32-channel pediatric torso coil. Typical accelerated scan times are 10–15 seconds. We
perform reconstructions both via our `1-SPIRiT implementation and the GE Autocalibrating
Reconstruction for Cartesian imaging (ARC) [6], which is capable of reconstructing arbitrary
Cartesian k-space subsamplings. Typical ARC reconstruction times are 30-60 seconds. In
some cases, we perform partial k-space acquisition in the readout direction. The `1-SPIRiT
solver is still able to decouple the 2D reconstructions as described in Section 4.4.2, using
only the acquired portion of the readout. Subsequently, we perform Homodyne reconstruc-
tion [61] to estimate the missing portion of readout. Although we could achieve potentially
higher image quality by incorporating the conjugate-symmetry assumption as a projection
in the POCS algorithm, our current approach is effective at preventing blur and phase from
appearing in the final images [55]. Our reconstruction is performed on-line with coil compres-
sion, producing sub-minute runtimes for matrix sizes typically acquired in the clinic. Total
latency from scan completion to image availability is 2–5 minutes, 20-70 seconds of which
are the `1-SPIRiT solver. The remainder of the reconstruction time is spent performing
Grad-Warp [35] and Homodyne processing steps on the CPUs, in addition to file transfers
between the scanner and our reconstruction system.

4.10 Conclusion

We have presented `1-SPIRiT, a compressive sensing extension to the SPIRiT parallel imag-
ing reconstruction. Our implementation of `1-SPIRiT for GPGPUs and multi-core CPUs
achieves clinically feasible sub-minute runtimes for highly accelerated, high-resolution scans.
We discussed in general terms the software implementation and optimization decisions that
contribute to our fast runtimes, and how they apply for the individual operations in `1-
SPIRiT. We presented performance data for both CPU and GPU systems, and discussed
how a hybrid parallelization may achieve faster runtimes. Finally, we present an image qual-
ity comparison with a competing non-iterative Parallel Imaging reconstruction approach.

In the spirit of reproducible research, the software described in this chapter is available
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at: http://www.eecs.berkeley.edu/~mlustig/Software.html.
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R
u

n
ti
m

e
 (

s
)

A B C D E F
0

10

20

30

40

50

60

70
calib

pocs
other

Reconstruction Time (GPU POCS), 16 channels

R
u

n
tim

e
 (

s)

A B C D E F
0

20

40

60

80

100

120

140
calib

pocs
other

x2 scale

Reconstruction Time (GPU POCS), 32 channels
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Figure 4.5: Reconstruction runtimes of our `1-SPIRiT solver for 8-, 16-, and 32-channel
reconstructions using the efficient Cholesky-based calibration and the multi-GPU POCS
solver.
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Figure 4.6: Per-iteration runtime and execution profile of the GPU POCS solver.
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Figure 4.7: Per-iteration runtime and execution profile of the multi-core CPU POCS solver.



CHAPTER 4. CLINICALLY-FEASIBLE `1-SPIRIT RECONSTRUCTION 67

OpenMP vs. Cuda, 8 channels

S
p

e
e

d
u
p

 v
s.

 S
e

q
. 
C

+
+

A B C D E F
0

20

40

60
OpenMP

Cuda

OpenMP vs. Cuda, 16 channels
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OpenMP vs. Cuda, 32 channels
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Figure 4.8: Speedup of parallel CPU and GPU implementations of the POCS solver over
the sequential C++ runtime.
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ARC (left) vs. SPIRiT (right)

Figure 4.11: Image quality comparison of GE Product ARC (Autocalibrating Reconstruction
for Cartesian imaging) [6] reconstruction (left images) with our `1-SPIRiT reconstruction
(right images). Both reconstructions use the same subsampled data, and require similar
runtimes. These MRA images of a 5 year old patient were acquired with the 32-channel
pediatric torso coil, have FOV 28 cm, matrix size 320 × 320, slice thickness 0.8 mm, and
were acquired with 7.2× acceleration, via undersampling 3.6× in the y-direction and 2× in
the z-direction. The pulse sequence used a 15 degree flip angle and a TR of 3.9 ms. The
`1-SPIRiT reconstruction shows enhanced detail in the mesenteric vessels in the top images,
and and the renal vessels in bottom images.
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Chapter 5

nuFFTWC: The Fastest Non-Uniform
FFT from the West Coast

5.1 Introduction

From the discussion of the Supermarionation architecture in Chapter 3, it is clear that the
productive development of high-performance MRI reconstructions depends crucially on the
availability of highly optimized libraries of commonly used computations. The variety of
MRI applications necessitates that reconstructions will differ greatly in the overall sequence
of computations performed and in the iterative algorithms used to solve MRI inverse prob-
lems. However, due to the fundamental commonalities of these applications, for example
sampling in k-space and Wavelet-domain sparsity, much of the computational expense of
MRI reconstructions lies in a small set of algorithms. This chapter describes in depth the
performance optimization of a non-unform fast Fourier transform algorithm known as Grid-
ding in MRI reconstruction literature. While Chapter 4 described the implementation of a
reconstruction algorithm relying on multiple highly optimized operations, this chapter pro-
vides more insight into the techniques used to achieve efficiency in the low-level operations
that contribute most to the computational expense of iterative reconstructions.

In Magnetic Resonance Imaging (MRI), data are acquired as samples in the Fourier do-
main (k-space). The sample locations are determined by the sequence of radio frequency
pulses and magnetic field gradients applied during imaging. Reconstruction of images from
k-space data is typically posed as a Fourier-inversion problem, and require computation
of the inverse Fourier transform of the sampled data. Most clinical imaging is performed
via pulse sequences that sample k-space at equispaced locations, and images can be recon-
structed via the well-known Fast Fourier Transform (FFT). The FFT of N samples requires
O(N logN) arithmetic operations, whereas a direct computation of the Discrete Fourier
Transform (DFT) would require O(N2) operations. Computational feasibility of MRI recon-
struction depends heavily on the use of FFTs, especially in iterative reconstructions where
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the Fourier transform must be computed at least once in each iteration. When the k-space
sample locations do not lie on a Cartesian grid, a non-Uniform Fast Fourier Transform
(nuFFT) is used instead of a standard FFT. The Gridding algorithm (with density compen-
sation) is an implementation used in MRI [10] to approximate an inverse Fourier transform
of non-equispaced k-space samplings. Due to the efficiency and image quality achievable by
Gridding, it is the most commonly used algorithm for non-Cartesian reconstructions. As
we’ll discuss in detail in Section 5.2, the nuFFT approximates the NDFT by re-sampling the
data at equispaced locations on an over-sampled grid. The FFT is then used to compute
the Fourier transform of the grid. Re-sampling k-space produces aliasing in the image do-
main, and over-sampling increases the field of view (FOV) of the reconstructed image. The
interpolation kernel and degree of over-sampling are chosen so that aliasing artifacts appear
in the extended FOV, rather than the central region containing the reconstructed image.

The accuracy and image quality of the nuFFT in MRI applications has been well-studied
in prior literature. Jackson et al. [44] evaluate a number of different interpolation kernels
to be used during the re-sampling, determining that Kaiser-Bessel windows (with appropri-
ate free-parameter selection) achieve very close to optimal reconstruction quality. Fessler et
al. [31] propose a min-max criterion for nuFFT optimality that provides a closed-form solu-
tion for the optimal re-sampling interpolation kernel. Their kernel exhibits several desirable
properties, including several options for partial precomputation to reduce memory footprint
and runtime. Beatty et al. [7] discuss the selection of nuFFT parameters to substantially re-
duce memory footprint and runtime, while maintaining clinical-quality images. Additionally
they propose the maximum aliasing amplitude metric, which provides a data-independent
measure of nuFFT accuracy.

The accuracy of the nuFFT is well-understood, but its efficient implementation on mod-
ern parallel processors has been a topic of much recent study. These works focus on the
resampling interpolation, and differ primarily in the amount of precomputation they per-
form. Sørensen et al.[73] describe a clever parallelization of resampling that pre-computes
the set of non-equispaced samples nearby each equispaced grid location in order to obviate
synchronization among parallel threads of execution. As their work was implemented on
an early General-Purpose Graphics Processing Unit (GPGPU), this precomputation step
was necessary for correctness. More recently Obeid et al. [64] describe a spatial “binning”
step which sorts the non-Cartesian samples by their k-space coordinates, also to obviate
inter-thread synchronization in a GPGPU implementation. Their approach permutes the
non-equispaced samples, and potentially improves cache performance as well. In the same
conference proceedings, Nam et al. [1] present a substantial GPGPU speedup for gridding
of a 3D radial trajectory.

We rely heavily on the existence of highly optimized libraries for the FFT and sparse ma-
trix operations, which have been well-studied in the scientific computing literature. Modern
processor architectures are highly complex, and it is difficult to model performance accu-
rately. For FFTs and sparse matrix operations, empirical search over a space of functionally
equivalent implementations has proven a fruitful approach for designing high-performance
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libraries. These “self-tuning” libraries determine the optimal set of optimization parameters
via a combination of benchmarking and heuristics. The ATLAS [84] (Automatically Tuned
Linear Algebra Software) library is a self-tuning library for the Basic Linear Algebra Subrou-
tines (BLAS) used heavily in most numerical applications. The well-known Fastest Fourier
Transform in the West1 (FFTW) [33] generates high-performance implementations of FFTs
by evaluating alternative Cooley-Tukey factorizations, among a number of other implementa-
tion parameters. The Optimized Sparse Kernel Interface (OSKI) [83] is a self-tuning library
for several common sparse matrix operations, including the matrix-vector multiplication we
use in this work. The NFFT 3.0 library [46] is a very flexible implementation of the non-
uniform FFT, suitable for use in a variety of numerical computing applications, including
MRI reconstruction [50, 28]. The NFFT library provides a split plan/execute interface, sim-
ilar to that of the FFTW library [33]. NFFT’s planner provides a variety of precomputation
options, including full precomputation of the matrix we define as Γ in Section 5.2, although
their planner performs no empirically-driven performance optimization.

FFTW was the first library to perform performance optimization in a separate “plan-
ner” routine. Transforms are computed via a separate “execute” routine. The existence of
a planning phase greatly simplifies the design and use of high-performance libraries. The
optimizations that auto-tuning libraries perform require specification of some properties of
thr operation to be computed, such as FFT size or the locations of nonzeros in a sparse
matrix. The planner phase takes as input only the specification of the operation, and re-
turns an opaque “plan” object. Applications can re-use the same plan to perform multiple
transforms, and amortize any time spent determining the optimal plan.

In this work, we propose an implementation of the Gridding nuFFT that uses a self-tuning
optimization strategy to ensure high performance on modern parallel processing platforms.
Our strategy permits a split plan/execute programming interface, similar to those used
by other self-tuning libraries. The transform is specified to the planner as a pattern of
non-uniform samples, a final image matrix size, and a desired level of Fourier transform
approximation accuracy. We note that if appropriate data structures are precomputed, all
of the expensive computations in the nuFFT can be performed via extant highly optimized
libraries. Much of the efficiency of our implementation is due to these libraries. We evaluate
our approach using a variety of transforms drawn from the application of the Gridding
nuFFT in MR Image reconstruction.

5.2 Gridding nuFFT Algorithm

Let f(x) be a signal that we have sampled at M locations {xm}. The signal is often complex-
valued, and our index space is usually multi-dimensional. We denote by F (k) the Fourier
transform of f . The Fourier transform of f evaluated at a spatial frequency kn is defined as

1The title of our work, nuFFTWC, is a tribute to FFTW
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the inner product with the appropriate Fourier basis function:

Fn =
1√
M

M∑
m=1

fme
−2πı(xm·kn) (5.1)

where we define fm , f(xm), Fn , F (kn), and ı =
√
−1 as the imaginary number. Applica-

tions typically require evaluation of the Fourier transform at a set of N different frequencies
{kn}. In general, M 6= N and we cannot define a unique inverse of the linear transformation
described by Equation (5.1). However we can easily define its adjoint operator as

fm =
1√
M

N∑
n=1

Fne
2πı(xm·kn). (5.2)

Normalization by
√
M is motivated by the case of M = N and equispaced sampling. In this

case, the Fourier transform is the well-known Discrete Fourier Transform (DFT) and the ad-
joint is an inverse DFT. Our work is motivated by the Fourier inverse problems that arise in
MRI reconstruction. Computation of the adjoint is required by some algorithms for the solu-
tion of these problems, for example the bi-Conjugate Gradient (BiCG) method [5] for solving
non-symmetric linear systems. Historically in MRI literature, the term “Gridding” has been
used to describe the reconstruction of images from non-equispaced Fourier-domain samples
(i.e. the adjoint Fourier transform), and the terms “re-Gridding” or “inverse-Gridding” have
been used to describe the computation of non-equispaced Fourier coefficients.

When both the spatial samples {xm} and the frequency samples {kn} lie at evenly-
spaced positions, the well-known Fast Fourier Transform (FFT) algorithm can evaluate the
Fourier transform very efficiently. In many applications, including the non-Cartesian MRI
reconstructions that motivate our work, at least one of the the sample-point sets {xm}
or {kn} is not equispaced. The discrete Fourier transform in this context is commonly
known as a Non-uniform DFT (NDFT), and no log-linear algorithm exists for its exact
evaluation. Computing the NDFT directly requires O(MN) arithmetic operations, and for
many applications is unfeasibly expensive.

Instead, these applications rely on a class of fast approximation algorithms referred to as
Non-Uniform Fast Fourier Transforms (nuFFT). Most nuFFT algorithms re-sample the data
onto an equispaced grid, enabling the use of the FFT to compute the Fourier transform. If
both sets {xm} and {kn} are non-equispaced, then the output of the FFT must be re-sampled
as well. Resampling is defined as the convolution of f(k) with some real-valued interpolation
kernel g(k):

(f ∗ g)(k) =

∫
||k−κ||2< 1

2
W

f(κ)g(k − κ)dκ. (5.3)

For computational feasibility, the convolution kernel is defined to be of finite width W – i.e.
g(k) = 0 if ||k||2 ≥ 1

2
W . The window function is usually chosen to be spherically symmetric



CHAPTER 5. NON-UNIFORM FAST FOURIER TRANSFORM 74

g(k) = gs(||k||2) or separable g(k) = gx(kx) · gy(ky) · gz(kz). The convolution (5.3) is to be
evaluated at an evenly spaced set of locations {k̃p}, while f(k) is only known at the sample
locations {km}. Hence, the convolution is evaluated as the summation:

(f ∗ g)(k̃p) =
∑

m∈NW (k̃p)

fm · g(k̃p − km) ·∆km (5.4)

where we define the neighbor sets NW (k̃p) , {m : ||km− k̃p||2 < 1
2
W} so that the summation

is evaluated only over the kernel support window. The terms ∆km are the discrete repre-
sentation of the differential dκ in (5.3), and are frequently called the density compensation
factors (DCFs) in MRI applications. After computing the FFT of the equispaced samples
(f ∗ g)(k̃p), the desired equispaced samples of the approximate DFT of f are recovered by
de-convolving by g. Via the Fourier-convolution identity, the de-convolution is computed as
an inexpensive division by the Fourier transform of g(k). This de-convolution step is also
known as deapodization or roll-off correction.

The nuFFT achieves the log-linear arithmetic complexity of the FFT at the expense of
accuracy. The re-sampling step can be understood as multiplication of the function (f ∗g)(k)
by a pulse-train function

∑
j δ(k − j ·∆k̃), where ∆k̃ is the spacing of the grid samples k̃p

and δ(k) is the Dirac delta. Again via the Fourier-convolution identity, this is equivalent to a
convolution in the Fourier domain with a pulse train with spacing 1

∆k̃
. This operation results

in aliasing, as the nth sample produced by the FFT is the sum
∑∞

j=1(F · G)(kn − j · 1
∆k

),
where G is the Fourier transform of the truncated resampling kernel g(k). This aliasing is the
source of NDFT approximation error. To reduce the effect of aliasing and increase NDFT
approximation accuracy, the grid spacing must be finer than the Nyquist-rate of the signal
f . If the FFT is computed at size Ñ > N , then aliasing of the side-lobes of F ·G achieves its
maximum intensity in the margins rather than in the central N samples of the reconstructed
signal. Thus the accuracy of the nuFFT is determined by a third parameter in addition
to the two already mentioned (g(·) and W ), usually defined as the grid oversampling ratio
α = Ñ/N .

All three steps of the nuFFT (resampling, FFT, and de-convolution) are linear and can
sensibly be written as matrix-vector products. Let D be an N×Ñ diagonal matrix containing
the deapodization weights, F be an Ñ×Ñ DFT matrix, and Γ be an Ñ×M matrix containing
the weights used during re-sampling for each grid/non-equispaced sample pair k̃p, km:

Γp,m =

{
g(k̃p − km)∆km ||k̃p − km||2 < W

2

0 otherwise
(5.5)

With f̃ ∈ CM a vector of the non-uniform samples of the signal f and y ∈ CN a vector
of the pixels in the approximated DFT of f , the nuFFT is equivalent to computing the
matrix-vector product:

y = DFΓ f̃ (5.6)
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The adjoint nuFFT is equivalent to multiplication by the conjugate transpose, Γ′ F∗D.
The deapodization is very inexpensive, consisting of a single multiplication per grid point.

The FFT is expensive, but highly efficient library implementations are widely available. Thus
much of the difficulty in the efficient implementation and performance optimization of the
nuFFT lies in the resampling step, or equivalently of the matrix-vector product Γ f̃ .

5.2.1 Algorithmic Complexity

The following sections will discuss the implementation and performance optimization of the
nuFFT. To motivate the discussion, it is useful to discuss the asymptotic runtime of the
algorithm. We assume that the input is a non-equispaced sampling of f and that the desired
result is an equispaced sampling, so that the resampling must only be performed once.
The number of arithmetic operations to be performed depends on the input size M and
output size N , but also on the parameters that control NDFT approximation accuracy: the
kernel function g(·), the convolution truncation width W , and the grid oversampling ratio α
(equivalently, the oversampled grid size Ñ).

With d-dimensional coordinates (typically 2-D or 3-D), the resampling convolution per-
forms approximately W d kernel evaluations and multiplications per input sample, so the
number of arithmetic operations performed by the the nuFFT is

CRMW d + CF Ñ log Ñ + N (5.7)

where CR and CF are constant factors associated with the implementation of resampling and
the FFT, respectively. The resampling constant CR depends on the method by which the
implementation evaluates g(·), which may require evaluation of transcendental or trigono-
metric functions. CR also depends on the dimensionality d, as the formula for the size of the
convolution window differs for 2D and 3D. CR also depends on the amount of precomputation
the implementation performs as described in Section 5.5.

The linear deapodization cost – the third term in (5.7) – is negligible, and the majority of
the nuFFT’s runtime is spent in performing the resampling and FFT. However, it is unclear
from Equation (5.7) which of these two operations will dominate the nuFFT’s runtime. A
well-known property of the nuFFT is that an implementation can effectively trade runtime
between the two, and force either to dominate. To achieve a given level of accuracy, one can
choose to make the window width W very large. This tends to decrease the amplitude of
the sidelobes of G, and consequently a smaller grid size Ñ is tolerable. Alternately, a small
window W produces large sidelobes and necessitates a larger grid. Section 5.3 describes our
strategy for identifying the tradeoff between W and α that minimizes the total runtime.
This strategy will also allow us to decide several other implementation options for which the
asymptotic analysis provides no guidance.
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5.3 Empirical Performance Optimization

Section 5.2.1 discusses the inherent runtime tradeoff between the resampling convolution and
the Fourier transform. However, the asymptotic analysis is unable to suggest a strategy for
selecting the parameters that guarantee the best performance. Many possible values of the
nuFFT’s parameters are able to achieve any given level of NDFT approximation accuracy,
but this space of error-equivalent implementations will exhibit very different balances of
runtime between resampling and the FFT. The actual runtime an implementation achieves
is a complicated function not only of the nuFFT parameters, but also of the microarchitecture
of the target platform and the non-uniform sampling pattern, which determines the pattern of
memory access during resampling. The execution pipelines and memory systems of modern
processors are highly optimized for particular types of instructions and patterns of memory
access. Cache behavior in particular is very sensitive to the order in which data is accessed
by a program, and cache performance is notoriously difficult to model or predict.

We propose empirical performance measurement as a strategy to resolve the ambiguity
in nuFFT parameter selection. This approach has been called auto-tuning in other contexts,
as it has been successfully applied to a number of other important numerical algorithms [85,
83, 21, 20, 33, 68]. In all these cases, one can enumerate a number of functionally-equivalent
implementations of an algorithm but cannot a priori determine which will provide optimal
performance. Auto-tuning approaches benchmark a number of the alternate implementations
in order to make performance optimization decisions. This benchmarking phase is commonly
called planning, a term first used by the well-known and widely used FFTW library [33].
In cases where the performance of the algorithm is input-dependent, planning may need to
be performed on-line. In the case of the nuFFT, auto-tuning must be performed for each
pattern of non-uniform sampling. However, the resulting auto-tuned implementation can be
reused for multiple signals sampled at the same set of locations.

We design the planning phase for the Gridding nuFFT to take into account the size of
the final signal N , the non-equispaced sample locations {km}Mm=1, and the desired level of
NDFT accuracy measured via the metric discussed in Section 5.4.1. Section 5.6 discusses the
motivation of this decision by the application of the nuFFT in MRI reconstruction. How-
ever, the FFT and Sparse Matrix libraries on which we build our implementation also have
planning phases, thus it is natural that we require a planner as well. Our functionally equiv-
alent implementations differ in their choices of the resampling kernel g(·), the convolution
window width W , and the size of the oversampled grid Ñ . Additionally, Section 5.5 will
discuss several approaches of implementing the resampling convolution on parallel systems.
The optimality of one approach over the others depends on characteristics of the microarchi-
tecture: cost of interthread synchronization, effective memory bandwidth, and floating-point
execution rates.

Much of the efficiency of nuFFT algorithms is due to the use of the FFT for computing
the Fourier transform. Similarly, Section 5.5 discusses the resampling can be implemented
very efficiently as a matrix-vector multiplication. High-performance auto-tuning libraries are
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available for computing both the FFTs and matrix-vector products. The nuFFT planner
for the nuFFT must invoke the planner for these libraries as well. The FFTW library [33]
produces highly efficient FFTs by searching over possible Cooley-Tukey factorizations of the
transform size. To avoid an exhaustive search over this space of implmenetations, FFTW
relies on a very effective dynamic programming heuristic that avoids benchmarking a par-
ticular problem size more than once. When considering all possible recursive Cooley-Tukey
factorizations of a problem size, the FFTW planner will encounter smaller transform sizes
many times. Each time the planner encounters a particular transform, it will be performed
at possibly different input and output strides. Although memory-system behavior depends
on these strides, the dynamic programming heuristic provides close to optimal performance.

Similarly, the Optimized Sparse Kernel Interface (OSKI) [83] library provides a heuris-
tically auto-tuned implementation of sparse matrix operations such as the matrix-vector
multiplication that can be used to implement resampling in the nuFFT. Many of the op-
timizations that OSKI can perform involve modifying the sparse matrix data structure to
achieve higher memory system performance during matrix products. For example, general-
purpose matrix data structures such as Compressed Sparse Row (CSR) generally store at
least one integer index per nonzero entry in the matrix. However, many matrices exhibit
patterns of local density, and indexing overhead can be reduced by storing a block of nonzeros
in a small dense matrix. Rather than storing a single integer per nonzero, the sparse matrix
data structure can store an integer per dense block. Using this more parsimonious data
structure reduces memory traffic and increases the length of unit-stride memory accesses
during matrix-vector products, potentially improving performance.

5.4 Parameter Selection

Selection of the three nuFFT algorithmic parameters – interpolation kernel g(·), convolution
width W , and grid oversampling factor α – determines the balance between NDFT approx-
imation accuracy and runtime, and the balance of complexity between resampling and the
FFT. Per Equation (5.7), the asymptotic complexity depends on W and α, but only con-
stant factors are affected by the choice of g(·). Moreover most implementations pre-sample
the kernel function and estimate its value during resampling by linear interpolation, so the
choice of g(·) is of little import for the purposes of performance optimization. Consequently,
for the remainder of this work we’ll assume that g(·) is the Kaiser-Bessel window:

g(k) =
Ñ

W
I0(β

√
1− (2Ñk/W )2) (5.8)

Where β is a scalar parameter, I0(·) is the zero-order modified Bessel function of the first
kind, and Ñ is the oversampled grid width. The inverse Fourier transform of Equation (5.8)
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to be used during deapodization is computed as:

G(x) =
sin
√

(πWx/Ñ)2 − β2√
(πWx/Ñ)2 − β2

.

Previous works [44, 7] have determined this gridding function (with appropriate selection of
β) to provide near optimal image quality results. In this work, we use the β from Beatty

et al. [7]: βα,W = π
√

W 2

α2

(
α− 1

2

)2 − 0.8. This expression is derived by positioning the first

zero-crossing of G(x) at Ñ −N/2 as a heuristic to control aliasing behavior.

5.4.1 Aliasing Amplitude

Our auto-tuning approach requires that the desired NDFT approximation accuracy be spec-
ified to the planner, so that we can enumerate a set of values for α and W that explore the
error-equivalent complexity tradeoff between resampling and the FFT. The most natural
metric by which to measure NDFT approximation accuracy is the difference between the
output of the nuFFT and the direct computation of the NDFT via (5.1). However, this
metric is expensive to compute and dependent on the signal to be reconstructed. It is highly
desirable to evaluate image reconstruction quality as a function only of the selected algorith-
mic parameters g(·), α, and W , especially since our planning approach does not require the
sample values to be known. Also we desire a metric with a closed-form analytic expression
which we can more easily use to constrain the space of parameters our planner must evaluate.

Beatty et al. [7] proposed the aliasing amplitude metric, which achieves these desired
properties. Rather than measuring the reconstruction error for any particular signal, the
aliasing amplitude metric estimates the amount of energy this aliasing produces at each
pixel in the image:

ε(xi) =

√
1

G(xi)2

∑
p6=0

[G(xi +mp)]2 (5.9)

In the MRI application that motivates this work, our primary accuracy-concern is the absence
of reconstruction artifacts. Thus the maximum aliasing amplitude ε∗ = maxxi ε(xi) is a
fitting metric. Figure 5.1 demonstrates the relationship between this quality metric and
the parameters W and α, using the Kaiser-Bessel kernel. Given a desired accuracy, fixing
either one of W of α specifies a bound on the value of the other. E.g. one can read from
Figure 5.1 the minimum kernel width necessary to achieve a given error tolerance with a given
oversampling ratio. For the purposes of planning an nuFFT implementation, the aliasing
amplitude metric allows us to easily enumerate an arbitrarily large set of error-equivalent
choices for W and α. The planner can evaluate as many (W,α) pairs as are feasible in the
time allotted for planning.
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Figure 5.1: Plot of max aliasing amplitude vs. kernel width for a variety of α. Plots are
generated by evaluating equation (5.9) in 1 spatial dimension for a variety of values of α and
W . The infinite sum is truncated to |p| ≤ 4.
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{fm, km} : Non-equispaced samples of f(x)
∆km : Density Compensation Factors
g(k) : Resampling kernel

{hp, k̃p} : Equispaced samples of (f ∗ g)(k)

Evaluation at equispaced locations
(1) for m = 1, . . . ,M
(2) for p ∈ NW (km)

(3) hp ← hp + fm · g(k̃p − km) ·∆km

Evaluation at non-equispaced locations
(4) for m = 1, . . . ,M
(5) for p ∈ NW (km)

(6) fm ← fm + hp · g(k̃p − km) ·∆km

Figure 5.2: Pseudocode of the precomputation-free resampling, which implements the
matrix-vector multiplication h ← Γf without storage besides the source data f and the
output grid h. The sets NW (km) are the indices of equispaced samples within radius 1

2
W of

the sample location km, and are enumerated by iterating over the volume whose bounding
box is (bkm − 1

2
W c, dkm + 1

2
W e). Shared-memory parallel implementations distribute iter-

ations of the m-loop on line (1) among threads. Since the set of grid locations updated in
line (3) by a given non-equispaced sample are not known a priori, parallel implementation
must protect the grid updates on line (3) via hardware-supported mutual exclusion. Note
that the update in line (6) does not require mutual exclusion.

5.5 Resampling Implementation

In this section we discuss the implementation of the convolution summation in Equation (5.4),
or equivalently the multiplication by the matrix Γ defined in Equation (5.5). We’ll review
several previously proposed approaches from the MRI literature, and describe them via their
relation (explicit or implicit) to the matrix Γ. We organize this discussion according to the
amount of precomputation performed by each approach. All precomputation approaches
perform off-line analysis of the non-equispaced sample locations, and can be performed be-
fore the actual sample values are available. If the nuFFT is to be performed for multiple
signals that have been sampled at the same set of locations, then the precomputation need
only be performed once. The cost of the precomputation is amortized, and its performance
benefit multiplied, over the multiple nuFFT executions.
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5.5.1 Precomputation-free Resampling

One can directly translate Equation (5.4) into an algorithm for performing the resampling as
a convolution, and pseudocode of this approach appears in Figure 5.2. The primary benefit
of this approach is its lack of additional storage beyond the input and output data. To
reduce runtime in many practical applications, the interpolation kernel g(k) is pre-sampled
in the range −1

2
W < ||k||2 < 1

2
W and the values stored in a table. The size of this table is

negligible compared to the samples of f . During resampling, values of g(k) are estimated via
linear interpolation between adjacent table entries. This linear interpolation requires only a
few arithmetic operations, whereas many commonly used interpolation kernels are transcen-
dental and relatively expensive to evaluate. Shared-memory parallel implementations of this
approach partition the non-equispaced samples among processing threads. If the resampling
is to be evaluated at the non-equispaced locations, then this parallelization requires no syn-
chronization among threads. However, when resampling onto the equispaced grid it is not
known a priori which grid locations hp will be updated by a given sample fm. If two threads
are concurrently computing grid updates for sample locations whose distance is less than
the kernel width W , then their grid updates will overlap. The memory systems of modern
parallel processors cannot guarantee correct behavior in this case unless the grid updates
are protected by mutual exclusion. The grid updates are very frequent, and primitives such
as spin-locks and semaphores incur much too high a performance penalty to be used. In-
stead, low-level processor-specific read-modify-write operations must be used. Several prior
works have described this implementation on GPGPU systems, and it is equally applicable
in multi-core CPU systems. In the case of a Cuda [62] implementation, the AtomicAdd()

library function enables efficient parallelization. For x86 CPU implementations, equivalent
functionality is provided by the cmpxchg instruction with a LOCK prefix inside of an execute-
retry loop. Most compilers provide intrinsic functions to simplify use of these instructions.

5.5.2 Fully-Precomputed Resampling

Another implementation option provided by several previous nuFFT libraries [31, 46] is to
perform the re-sampling as a multiplication of the Γ matrix defined in Equation (5.5) by the
vector containing the sample values fm. The values of the entries of Γ depend only on the
locations {km}, of the non-equispaced samples, the density compensation factors {∆km},
and the nuFFT algorithmic parameters g(·), W , and α as defined in Section 5.2. Computing
and storing all MN entries of Γ is unnecessary, since the kernel width W is typically much
smaller than the size of the equispaced grid and the majority of entries Γp,m are zero – i.e. Γ
is a sparse matrix. Typically in MRI applications W is chosen to be 2-10 times the spacing
of grid samples, whereas the grid is 200-500 samples wide. Sparse matrices are used widely
in numerical computing applications, and can be stored parsimoniously in data structures
that permit efficient, synchronization-free implementation of matrix-vector products.

The potential benefit of the precomputed-matrix implementation over the precomputation-
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free implementation is two-fold. First, the widespread use of sparse matrices in scientific
applications has produced a number of very efficient libraries of matrix-vector operations.
While a detailed discussion of the performance optimization of sparse matrix operations is
out of the scope of this work, several pertinent features of these libraries deserve our atten-
tion. These libraries typically support several storage formats, such as the general-purpose
Compressed Sparse Column (CSC) and Compressed Sparse Row (CSR) that we use in our
implementation. Additionally some libraries include storage formats optimized for particular
patterns of nonzero locations, for example explicitly storing some zeros in order to store sub-
matrices densely and reduce indexing overhead. Just as we rely on highly optimized extant
implementations of the FFT algorithm, we can rely on highly optimized implementations of
matrix-vector products. The existence of these libraries greatly simplifies implementation of
the nuFFT, as all low-level performance optimization issues are managed by the FFT and
sparse matrix libraries.

Second, sparse matrix-vector multiplication (SpMV) performs substantially fewer arith-
metic operations than does the convolution-based implementation of the resampling de-
scribed in Figure 5.2. Each nonzero entry Γp,m corresponds to a pair of samples, (fm, km)
from the non-equispaced data and (hp, k̃p) from the equispaced grid, whose distance is less
than the resampling kernel radius. A sparse matrix-vector multiplication performs a sin-
gle multiplication and addition per nonzero entry in the matrix. On the other hand, the
precomputation-free implementation must perform that same multiply-accumulate after enu-
merating the neighbor sets NW (·), evaluating the interpolation kernel g(·), and multiplying
by the density compensation ∆km. The number of arithmetic operations required depends
on the implementation of g(·), but the commonly used approach is to linearly interpolate
samples of a spherically symmetric function gs(·). This approach requires 15 arithmetic eval-
uations (9 in computing the distance ||km− k̃p||2 and 6 in the linear interpolation) as well as
evaluation of the transcendental square root. An implementation that uses a separable in-
terpolation kernel, rather than a spherically symmetric kernel, would perform slightly fewer
arithmetic operations during convolution, but would still benefit from precomputation.

While precomputation of Γ decreases arithmetic operation count, the matrix datatsruc-
ture has a large memory footprint. Since each nonzero entry in this data structure must
be accessed during resampling, the matrix-vector product incurs a large volume of mem-
ory traffic. As has been noted by recent literature on the optimization of sparse matrix
operations [85], this memory traffic is the performance-limiting factor of SpMV on modern
shared-memory parallel processors. Thus, the performance benefit of precomputation is con-
tingent upon the ability of the processor’s memory system to satisfy the memory traffic of
SpMV faster than its floating-point pipelines can perform the convolution.

5.5.3 Partially Precomputed Resampling

Several previous works have presented approaches that perform some pre-analysis in order to
more efficiently compute the resampling, but do not precompute the entire matrix Γ. We do
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not include these approaches in the performance evaluation in Section 5.7, however the em-
pirical search strategy we describe in Section 5.3 can easily accommodate them. We describe
two relevant GPGPU implementations that have attempted to obviate the inter-thread syn-
chronization needed by the precomputation-free implementation described in Section 5.5.1.
A simple way to achieve this goal is to precompute only the locations of the nonzeros in
Γ, i.e. the pairs (p,m) for which Γp,m 6= 0. The implementation of resampling would need
to re-evaluate the values of the nonzeros. While this approach disambiguates grid-update
conflicts, it does not achieve any performance gain: the size of the data structure required
is almost as large as Γ, and this approach still incurs the runtime cost of evaluating the
non-zeros.

The approach presented by Sørensen et al. [73] achieves a synchronization-free implemen-
tation of the convolution in Figure 5.2 by precomputing the locations of all the nonzeros in Γ,
but reducing the size of the data structure with two crucial transformations. First, they parti-
tion the grid samples k̃p (equivalently, partition the rows of Γ) among the processing threads.
By taking the union of column indices m in a partition, they find non-disjoint subsets of
the non-equispaced samples from which each thread interpolates onto the grid. Second, they
sort and run-length-encode the resulting column-index sets to further reduce their memory
footprint. This approach is a highly attractive alternative to the precomputation-free con-
volution on systems that lack the highly efficient read-modify-write instructions mentioned
in Section 5.5.1. This was the case for the early GPGPU system targeted by Sørensen et al..

The “spatial binning” approach of Obeid et al. [64] is inspired by algorithms for molecular
dynamics problems that compute with spatially-local interactions among points at arbitrary
locations in Rd. In MRI applications, the samples are usually stored in readout-order. Obeid
et al. propose to partition the grid samples into contiguous rectangular regions (bins), and
to permute the non-equispaced samples so that all samples within a given bin are stored
contiguously. From this re-ordering, which is equivalent to a radix sort, one can infer the
interacting grid/sample pairs (i.e. locations of nonzeros in Γ).

The approach of Fessler et al. [31] achieves some of the arithmetic-operation reduction
provided by the sparse matrix precomputation, rather than attempting to reduce inter-thread
synchronization costs. Fessler et al. describe a particular choice of the resampling kernel
g(·) that can be partially precomputed in one of several options, reducing the number of
arithmetic evaluations that must be performed during resampling. Some of these options
impact NDFT approximation accuracy.

5.6 Planning and Precomputation in MRI Reconstruc-

tion

Our work is primarily motivated by Gridding reconstruction in MRI, where the nuFFT is
used to compute the adjoint NDFT defined in Equation (5.2). Our auto-tuning approach is
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highly applicable in this context, as the information required by the planner is known far in
advance of the values of the samples. Additionally, it may be possible to perform much of
the tuning during installation of the reconstruction system. For example, the auto-tuning
of the equispaced FFT can be performed independently of the auto-tuning of the sparse
matrices. The FFT can potentially be auto-tuned for all possible image matrix sizes to be
used during clinical imaging, and the resulting plans saved in “wisdom” files [33]. In many
clinical applications it may also be possible to enumerate the set of non-Cartesian trajectories
that will be used, since the meaningful FOVs and resolutions are limited by patient anatomy.
Sparse matrices can be precomputed for these trajectories and also stored in the file system.

If a pre-existing plan for a trajectory is not available, it may be possible to entirely
hide the cost of planning and precomputation by performing it simultaneously with data
acquisition. During an MRI scan, samples Fn are acquired in the Fourier domain (k-space) at
a set of locations {kn} defined by the Gradient pulse sequence. The locations {kn} are known
when the scan is prescribed, but the sample values Fn are not known until after the scan
completes. MRI data acquisition is inherently slow, and the interval between prescription
and completion allows ample time for precomputation. For example, data acquisition in high-
resolution, physiologically gated/triggered 3D imaging can take several tens of minutes. Even
in real-time 2D imaging applications, where the acquisition of each signal to be reconstructed
can take only a few tens of milliseconds, the same trajectory is used for continuous data
acquisition over a much longer period of time.

Any performance benefit provided by planning and precomputation will be multiplied
by the number of nuFFT executions to be performed during reconstruction. Most MRI
applications use Parallel Imaging, where the k-space samples are acquired simultaneously
from multiple receiver channels. Each channel acquires the same set of k-space sample
locations, but the signals are modulated by the spatial sensitivity profiles of the receiver
coils. The nuFFT must be computed for each channel individually. Additionally, many
recently proposed MRI reconstructions use iterative algorithms to solve linear systems that
model the data acquisition process. These algorithms typically must compute two nuFFTs
(a forward and an adjoint) per iteration for each Parallel Imaging channel. State-of-the-art
parallel imaging systems utilize up to 32 channels, and iterative reconstructions can perform
10-100 iterations. Thus even moderate performance improvement can substantially decrease
reconstruction runtimes.

5.7 Performance Results

We demonstrate the effectiveness of our implementation strategy via a number of sampling
trajectories representative of non-Cartesian MRI reconstruction workloads. Figures 5.3, 5.4,
and 5.5 describe in detail the results of performance tuning for three types of MRI sampling
trajectories, and Figures 5.6, 5.7, and 5.8 describe the performance achieved for a wider
range of trajectories.
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All performance results are collected on our test system, which has dual-socket × six-core
Intel Westmere CPUs at 2.67 GHz with 64 GB of system DRAM. GPU performance results
are collected on an Nvidia GTX580 GPU with 3 GB of high-speed Graphics DRAM. We
are not evaluating hybrid CPU-GPU implementations, and reported runtimes include no
PCI-Express transfer overhead. Sparse matrices are represented in Compressed Sparse Row
(CSR) format, and matrix-vector multiplications are performed via optimized libraries. Our
CPU implementation uses the Optimized Sparse Kernel Interface version 1.01h (OSKI) [83],
and our GPU implementation uses the CUSparse library [9] distributed with Cuda version
4.0. OSKI only provides sequential implementations, and we parallelize the matrix-vector
multiplication by partitioning the rows of Γ among the 12 CPU cores. For load balance, we
choose the partition to approximately equalize the number of non-zeros in each CPU’s set.
We use the FFTW 3.0 library [33] for computing FFTs on the CPUs, and tune with the
FFTW MEASURE flag. The sequential baseline against which we report speedups also uses tunes
FFTs with FFTW MEASURE. We use the CUFFT [62] library for the GPU implementation.

Performance Tuning Experiments Figure 5.3 shows nuFFT performance for a 3D
cones [38] trajectory, and has M = 14,123,432 sample points and a maximum readout
length of 512. Figure 5.4 shows performance for a very large radial trajectory [10] with
M = 26,379,904 sample points. Figure 5.5 shows results for a 2D spiral [56] trajectory with
M = 38,656 sample points. All three trajectories are designed for 25.6 cm field of view with
1 mm resolution, isotropic, and the final image matrix size N is 256d. In all three cases, we
set the maximum aliasing amplitude to be 1e-2. These figures show four panels each. The
top-left panels show performance achieved on the CPUs in our test system. The top-right
panels show performance achieved on a GPGPU in the test system.

Both of these panels plot the runtime required by two implementations of the resampling
(as a convolution and precomputed sparse-matrix), and the time required for the FFT. These
runtimes are plotted versus a range of values for the grid oversampling ratio α between 1.2
and 2.0, and total nuFFT runtime is the sum of resampling runtime, FFT runtime, and
the negligible deapodization runtime. The bottom-left panel shows the memory footprint
required by both the sparse matrix and the oversampled grid, also plotted versus α. We
use the same CSR matrix data structure in both our CPU and GPU implementations, so
the memory footprint is the same in both cases. The bottom-right panel compares the best
performance achieved by the four types of implementations (convolution/sparse-matrix on
CPU/GPU) to a baseline: a single-threaded convolution-based CPU implementation with
the value of α that maximizes performance.

Figure 5.3 demonstrates several trends that correlate well with our expectations. Smaller
values of α result in small grid sizes, but large sparse matrices and long convolution run-
times. Conversely, large values of α increase grid size but decrease resampling runtime. The
CPU-parallelized convolution implementation consistently achieves approximately 10× per-
formance improvement over the sequential baseline, while the sparse-matrix precomputation
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provides a substantial 5× further speedup. Interestingly, the precomputed sparse matrix
provides performance comparable to the GPU-based convolution, and matrix precomputa-
tion provides a 2× speedup on the GPU. That the precomputation provides a relatively
smaller benefit on the GPU verifies our claim that the relative memory bandwidth and in-
struction throughputs of a processor determine the usefulness of this optimization. GPUs
have substantially higher arithmetic throughput than CPUs (relative to the memory band-
widths of the two systems), and thus trading memory traffic for floating-point computation
is less beneficial on GPUs. FFT performance is highly sensitive to grid size. Most impor-
tantly, it is not monotonic: FFT libraries perform better when the grid size factors into
small prime numbers. The anomalously bad performance of the GPU FFT in the second-
and third- highest values of α correspond to matrix sizes of 491 (prime) and 502 (almost
prime – 2× 251).

The same trends are visible in Figure 5.4. However the Radial trajectory’s sampling
density is much higher in the center of k-space, and consequently the trajectory has almost
twice as many samples as the Cones trajectory. The memory footprint of the sparse matrix
is correspondingly larger than that of the Cones trajectory, and overflows the GPU’s 3GB
memory capacity for all values of α that we evaluated. Since the CSR data structure requires
an integer to be stored for each grid point, the size of the sparse matrix begins to increase as α
grows further. Hence, the sparse-matrix implementation of this radial trajectory is infeasible
for our GPUs. Note that even in Figure 5.3 the sparse matrix implementation is infeasible
for small values of α. However, the much larger memory capacity of the CPUs in the system
permits the fully-precomputed implementation in most cases. Thus CPU performance for
this trajectory is about 15% better than the GPU performance.

Performance for a Range of Trajectories In Figures 5.6, 5.7, and 5.8, we have bench-
marked the performance achieved by our nuFFT implementation for a number of 3D Cones
trajectories with isotropic FOV varying from 16 cm to 32 cm. These figures show perfor-
mance results for tuning on the CPUs of the system described above, using all 12 available
processor cores. All these trajectories are designed for 1 mm isotropic resolution. Thus,
as the FOV increases, the sizes of the trajectory and final image matrix also increase. For
each FOV, we evaluate oversampling ratios in the range of 1.2 to 2.0. Just as above, all
nuFFTs are computed at 1e-2 maximum aliasing amplitude. Figure 5.6 plots three data
series describing the performance-optimal precomputation-free implementations chosen by
our approach. The blue points display the runtime of the FFT, the red points display the
runtime of the resampling convolution, and the magenta points display the total runtime of
the nuFFT. Figure 5.7 plots the runtimes achieved using a precomputed Sparse Matrix to
perform the resampling. Similarly, the blue data series represents the runtime of the FFT
for the chosen image matrix size, the green series shows the runtime of the corresponding
matrix-vector multiplication, and the magenta series shows the total nuFFT runtime. Figure
5.8 compares the oversampling ratios that achieve optimal performance for the convolution-
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based and sparse matrix-based nuFFTs shown in Figures 5.6 and 5.7. The red points show
the oversampling ratios chosen for the convolution-based nuFFT, and the green points show
the ratios chosen for the sparse matrix nuFFT.

From Figure 5.6 it is clear that in a precomputation-free nuFFT implementation, the
runtime of the convolution dominates that of the FFT. The performance-optimal oversam-
pling ratio is very high, as shown in Figure 5.8, because it is beneficial to increase the image
matrix size and FFT runtime while decreasing the convolution runtime. Still, the convolu-
tion runtime grows much more rapidly than the FFT runtime, and runtimes can be greatly
improved by precomputing the sparse matrix. Figure 5.7 shows that all of the trajecto-
ries examined can reap the benefit of sparse matrix precomputation. Figure 5.8 shows that
the tuning phase consistently selects a much smaller grid oversampling ratio for the sparse
matrix implementation. Consequently, the runtime is much more evenly balanced between
the FFT and the matrix-vector multiplication. Consistent with the results shown above in
Figures Figures 5.3, 5.4, and 5.5, a precomputed sparse matrix enables substantially faster
implementation of the nuFFT’s resampling.

Heuristic Tuning In some applications, the time spent in exhaustive evaluation of a wide
range of grid oversampling ratios is prohibitive. Note that evaluating each oversampling
ratio requires the computation of the sparse matrix, which requires computing, storing, and
sorting all nonzeros by row-index to convert to CSR format. Computing many such matrices
can be time-consuming, and it is desirable to have simple heuristics to prune the search space.
Since precomputing the sparse matrix shifts much of the computational burden onto the FFT,
we propose a simple heuristic that selects the oversampling ratio that minimizes the FFT
runtime. This heuristic does not take into consideration the runtime of the corresponding
matrix-vector multiplication. Since the FFT can be benchmarked during system installation,
this heuristic requires no computation during planning except for precomputation of a single
sparse matrix. The blue data series in Figure 5.8 plots the oversampling ratios chosen by
this heuristic, and Figure 5.10 compares the nuFFT runtimes resulting from this heuristic to
those resulting from exhaustive evaluation of a range of grid oversampling ratios. In many
cases, the heuristic chooses the minimum ratio evaluated – in our case, 1.2. However, due
to the pathologically poor performance of the FFT for some transform sizes, this heuristic
occasionally chooses a larger grid size. In some cases, the heuristic chooses the same grid
size as the exhaustive search strategy. As shown in Figure 5.10, performance is comparable
between the two approaches.

Memory-Limited Heuristic Some applications may wish to limit the memory footprint
of the Gridding algorithm. In this case, one can use a modified heuristic that chooses the
grid oversampling ratio to minimize FFT runtime subject to a specified limit on matrix size.
This will force a larger grid oversampling ratio to be used and degrade performance relative
for larger trajectories, as demonstrated by the cyan series in Figure 5.10. Note that the size
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of the grid and sparse matrix can both be computed in O(1) time, and this heuristic incurs
very little cost during planning. However, we note that even for the largest trajectories
we evaluate here, this memory-limited heuristic can achieve superior performance to the
precomputation-free nuFFT when 2 GB of memory usage is allowed. In applications where
memory is more severely restricted, sparse matrix precomputation may be infeasible. In these
cases, a memory-limited heuristic can still be used to provide acceptable runtimes. In Figure
5.11, we demonstrate the runtime achieved for our range of 3D Cones trajectories when
matrix memory footprint is limited to 1 gigabyte. For all trajectories with FOV 24 cm or
larger, none of the evaluated grid oversampling ratios produces a sparse matrix that satisfies
this severe memory limit, and the nuFFT must rely on a convolution-based implementation
of resampling. Figure 5.11 evaluates a heuristic that chooses oversampling ratio in the range
1.5–2.0 to minimize FFT runtime when sparse matrix precomputation is infeasible.

5.8 Discussion and Conclusion

We have discussed the Gridding non-uniform Fourier transform approximation used in MRI
reconstruction of non-Cartesian data, and described the runtime tradeoff between resampling
and the FFT. This tradeoff, combined with the several methods of resampling implemen-
tation, motivates an auto-tuning approach to performance optimization. Following similar
approaches used by other numerical libraries, we perform optimization in a planner routine
that requires only the specification of the non-uniform sampling trajectory and desired level
of Fourier transform approximation accuracy. The resulting optimized implementation can
be re-used for the Fourier transforms of many signals sampled at the same set of locations.
On modern processors, highest performance is always acheived by precomputing a sparse
matrix whose matrix-vector multiplication performs the resampling. In this case, most of
the arithmetic operations performed during resampling can be computed during the planner
routine, although the data structure storing the matrix has a sizeable memory footprint.
However, performing the nuFFT via a precomputed sparse-matrix is over 50× faster than
an optimized, sequential baseline. A GPU implementation can be over 100× faster than
baseline if the GPU’s memory capacity permits storage of the sparse matrix. To guaran-
tee optimal performance, matrices corresponding to a range of oversampling ratios must be
evaluated. In some applications, it may be undesirable to perform this exhaustive evalua-
tion. We have presented an inexpensive heuristic that achieves near-optimal performance
and requires evaluation of only a single matrix.

A number of other implementation strategies and optimizations can readily be incorpo-
rated into the auto-tuning strategy. For example, we did not evaluate the performance of the
partial-precomputation approaches discussed in Section 5.5.3. Moreover the implementation
of resampling as a sparse matrix permits other optimizations as well, for example batching of
multiple resampling instances into a single sparse-matrix/dense-matrix multiplication. Such
strategies may improve performance beyond what we report here, and we leave their evalua-
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tion to future work. The high degree of flexibility afforded by the empirical-optimization, or
auto-tuning, approach additionally future-proofs our library: empirical search will be able to
account for microarchitectural changes in future processor generations that radically change
the implementation parameters that achieve optimal performance. Thus, we can sensibly
call our implementation the fastest nuFFT.
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Figure 5.3: nuFFT auto-tuning performance for the 14M-sample 3D Cones trajectory. The
top-left and top-right panels show runtimes vs. grid oversampling ratio α separately for
convolution-based resampling (red), matrix-vector resampling (green), and FFT (blue). The
top-left panel shows multi-core CPU runtime, while the top-right panel shows GPU runtime.
The bottom-left panel shows the memory footprint of the oversamped grid (glue) and the
sparse matrix (green). Memory footprint is identical for CPU and GPU systems. The
bottom-right panel shows nuFFT speedup over optimized baseline of four implementations:
on CPU with convolution-based resampling, on CPU with matrix-vector resampling, on
GPU with convolution, and on GPU with matrix-vector. All four implementations and
baseline use a performance-optimal oversampling ratio. For the GPU implementation, note
that oversampling ratios below 1.4 produce matrices larger than the memory capacity of the
GPU used in our evaluation. Also note that the CPU implementation with matrix-vector
resampling achieves performance nearly equal to that of the GPU with convolution-based
resampling.
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Figure 5.4: nuFFT auto-tuning performance for the 26M-sample 3D Radial trajectory. For
description of the plots in the four panels, see Figure 5.3. Note that the sparse matrix imple-
mentation is infeasible on the GPU for this large trajectory due to the 3 GB memory capacity
of the GPU used in our evaluation. Consequently, the highest-performing implementation
uses the CPUs with resampling via matrix-vector multiplication.
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Figure 5.5: nuFFT performance for the 36K-sample 2D Spiral trajectory. For description of
the plots in the four panels, see Figure 5.3. Note that runtimes are reported in milliseconds
and memory footprints reported in megabytes, whereas in Figures 5.3 and 5.4 they were
reported in seconds and Gigabytes.



CHAPTER 5. NON-UNIFORM FAST FOURIER TRANSFORM 93

Convolution Gridding Runtime
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Figure 5.6: Tuned multi-core CPU runtime for Convolution-based nuFFT, for a range of 3D
Cones trajectories with isotropic Field-of-View (FOV) varying from 16 cm to 32 cm, all with
isotropic 1 mm spatial resolution. In all cases the convolution dominates the overall nuFFT
runtime, even though oversampling ratio is typically chosen to be very large, as demonstrated
in Figure 5.8.
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SpMV Gridding Runtime
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Figure 5.7: Tuned multi-core CPU runtime for Sparse Matrix-based nuFFT, for a range of
3D Cones trajectories with isotropic Field-of-View (FOV) varying from 16 cm to 32 cm, all
with isotropic 1 mm spatial resolution. Runtime is well-balanced between the matrix-vector
product and the FFT, as relatively low oversampling ratios are chosen by the tuning process
(see Figure 5.8). The matrix-vector implementation is consistently much faster than the
convolution-based implementation shown in Figure ??.
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Performance-Optimal Oversampling Ratios
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Figure 5.8: Performance-optimal oversampling ratios for the Convolution-based (red points)
and Sparse Matrix-based (green points) multi-core CPU implementations of the nuFFTs
shown in Figures 5.6 and 5.7, respectively. The blue line shows the alphas selected via
a simple heuristic that minimizes FFT runtime, without evaluating sparse matrix-vector
runtime. In most cases, the heuristic selects the minimum oversampling ratio considered.
However, in some cases FFT performance is pathologically bad for the minimum image
matrix size, and FFT performance is improved by choosing a slightly larger grid size.
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Heuristic Precomputation Runtime
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Figure 5.9: Runtime of sparse matrix precomputation for the matrices chosen by the heuristic
described in Figure 5.10. Precomputation requires enumerating and sorting all the nonzeros
in the sparse matrix. Our current implementation is not optimized, and relies on C++
Standard Template Library (STL) container classes for memory management and sorting
routines. Although further performance improvement is desirable for this phase, it can be
performed off-line as described in Section 5.6. The 1–2 minute runtimes shown here can
easily be overlapped with data acquisition in many MRI contexts.
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Runtime Comparison: Heuristically-Tuned and Exhaustively-Tuned
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Figure 5.10: Comparison of multi-core CPU nuFFT runtimes resulting from exhaustive
tuning (magenta series) and from the inexpensive heuristic (blue series). This heuristic
chooses oversampling ratio to minimize FFT runtime and requires computation of only a
single sparse matrix during planning. In some applications it may be desirable to limit the
size of the sparse matrix, thus restricting the nuFFT to higher oversampling ratios. The
heuristic can be modified to choose a ratio only when the resulting sparse matrix would
fit within a specified amoutn of memory. The cyan series plots the performance achieved
by choosing the fastest FFT runtime subject to a 2 Gigabyte restriction on sparse matrix
footprint.
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1GB Memory-Limited Runtime
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Figure 5.11: Multi-core CPU runtime of heuristically-tuned nuFFT when sparse matrix
precomputation is infeasible for some trajectories. In this experiment, memory footprint
is limited to 1 gigabyte, which prohibits storing the sparse matrix for all trajectories with
FOV larger than 24 cm. When sparse matrix storage is infeasible, grid oversampling ratio
is chosen in the range 1.5–2.0 to minimize FFT runtime. The green plot (measured via the
left axis) shows nuFFT runtimes for the trajectories whose matrix can be stored in the 1
GB limit, and the red plot (right axis) shows runtimes for the larger trajectories for which
no grid oversampling ratio produces a matrix smaller than 1 GB. The magenta line shows
the performance achieved by optimal, exhaustive tuning.
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Chapter 6

Summary, Conclusion, and Future
Work

In this thesis, we have discussed the design and implementation of MRI reconstructions
on modern massively parallel processors. Recently proposed iterative algorithms for re-
construction are substantially more computationally intense than their direct predecessors.
Although the iterative approaches can enable highly accelerated acquisition and improved
image quality, long runtimes resulting from computational intensity are a barrier to their
widespread adoption. Modern parallel processing systems, which consist of deeply hierar-
chical many-core processors and typically combine shared-memory and distributed-memory
parallelism, have in recent years become the de-facto standard platform for computationally-
intense computing applications. Their widespread adoption has forced a much larger set of
application developers to deal with the software development problems of parallelization and
performance optimization, problems which had previously only been faced in the domain
of scientific computing. In this highly specialized domain, the high cost of the comput-
ing platform justifies large software development effort for parallelization and optimization.
However, manycore systems have become ubiquitous and inexpensive. It is impractical for
all application developers to have expertise simultaneously in their application domain and
in computer architecture and performance optimization. This thesis describes a strategy of
software development that separates responsibility for low-level performance optimization
from higher-level application development.

The Supermarionation architecture, which we described in Chapter 3, composes two de-
sign patterns that prescribe implementation strategies for MRI reconstruction algorithms.
These algorithms rely on massively parallel implementations of the computationally intense
system functions that model the MRI acquisition process. The Geometric Decomposition
pattern and the Puppeteer pattern provide solutions to two complementary software develop-
ment challenges. The Geometric Decomposition pattern describes the several parallelization
strategies that can be used to map MRI reconstruction algorithms onto manycore platforms.
The Puppeteer pattern prescribes a strategy to decouple the implementation of iterative
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reconstruction algorithms from the optimization of the operations that compose the sys-
tem function. While the optimization of these operations can be left to the implementors of
high-performance libraries, the implications of parallelization and data partitioning decisions
percolate throughout the software system. The MRI scientist implementing the reconstruc-
tion must be aware of these implications, and the software system myst be implemented
accordingly.

Our description of the `1-SPIRiT reconstruction system in Chapter 4 provides a broad-
scope view of the application of the Supermarionation architecture. `1-SPIRiT reconstruction
exemplifies the computational difficulties encountered in modern iterative MRI reconstruc-
tions. The POCS algorithm estimates the system parameters (i.e. wavelet coefficients of the
image) from measurements (samples of k-space) via a system function (composed Wavelet,
Fourier, and coil sensitivities). Computation of the operations which compose the system
function dominate runtime, and their high-performance implementation is crucial to clinical
feasibility of the technique. As a result of our optimization efforts, the `1-SPIRiT reconstruc-
tion has been in deployment for long enough to perform substantial clinical experimentation
and evaluation.

The detailed optimization study of the Non-Uniform Fast Fourier Transform (nuFFT)
in Chapter 5 provides an in-depth look at one element of the high-performance library for
MRI reconstruction. The nuFFT, also called Gridding in MRI applications, is a crucial
component of reconstructions for non-Cartesian k-space samplings. The same techniques
used to optimize the nuFFT can similarly be used to optimize other computations. For
example, the technique of empirical search has successfully been used for the FFT and
related signal-processing transforms, sparse matrix-vector multiplication, and dense linear
algebra operations.

We have shown that the performance improvements achieved by application of our
performance-optimization techniques are sufficient to achieve clinically-feasible runtimes for
advanced, iterative MRI reconstructions. Furthermore, our performance-optimized imple-
mentation has enabled substantial evaluation of the `1-SPIRiT reconstruction in a clinical
setting [81, 82]. Our reconstruction has been deployed in this setting for over 1.5 years,
and used in concert with standard reconstructions in daily clinical diagnostics. Our end-to-
end `1-SPIRiT system requires only a few minutes to reconstruct clinically-sized volumetric
datasets, even when using large parallel imaging coil arrays. Our nuFFT implementation
vastly improves Gridding runtimes, and by precomputing most information essentially re-
moves the performance problem posed by the resampling convolution. Thus we claim that
using the Supermarionation architecture and a well-optimized library of computationally-
intense operations, a wide variety of MRI reconstruction approaches can successfully be
mapped to manycore reconstruction platforms.

Future work will focus on increasing the generality of the software we have described in
this thesis, in order to facilitate further algorithmic innovation in MRI reconstruction. The
Supermarionation architecture is broad enough to encompass a wide variety of reconstruction
algorithms running on any type of modern high-performance computing system. However,
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the implementations we have produced for this thesis are of much narrower scope. For the
most part, we have focused on the performance problems inherent in the shared-memory
parallel systems that have emerged in the past decade. Our `1-SPIRiT implementation
described in Chapter 4 leverages the distributed memory architecture of multi-GPU systems.
However, multi-GPU systems are of much smaller scale than massively parallel distributed
memory clusters, the largest of which include tens of thousands of distributed memory nodes.
Although very few MRI reconstruction tasks can leverage machines of this scale, in many
contexts the limitations of GPU architectures and programming environments prohibit their
use. Instead, a distributed memory cluster of moderate scale is more desirable. In this case,
the Geometric Decomposition strategy can still guide implementation decisions, although
distributed memory data partitioning will require substantial additional programmatic effort.
Additionally, our instantiations of the components of Supermarionation software systems
are not optimally re-usable. Future work can take advantage of the many opportunities
to hide optimization and data-layout decisions via appropriate object oriented language
features. In this way, implementations of iterative algorithms and computationally intense
operations can be made much more flexible and re-usable. The combination of distributed-
memory parallelization and re-usable implementation according to the Supermarionation
architecture will greatly ease future research in algorithms for and applications of iterative
MRI reconstructions.
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