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A Cue Imputation Bayesian Model of Information Aggregation
Jennifer S. Trueblood, George Kachergis, and John K. Kruschke

{jstruebl, gkacherg, kruschke}@indiana.edu
Cognitive Science Program, 819 Eigenmann, 1910 E. 10th St.

Bloomington, IN 47406 USA

Abstract

Decision makers are sometimes faced with aggregating ad-
vice from multiple advisers without knowing what informa-
tion is driving each adviser’s opinion. Following Budescu and
Yu (2006, 2007), we conducted an experiment in which par-
ticipants first learned to estimate the probability of a disease
based on multiple test results. Next, subjects made the same
judgments solely on the basis of probabilities given by multi-
ple advisers who may have only received partial information.
Experimental results confirm previous findings that decision
makers give extreme estimates when advisers are in agreement
and compromise estimates when advisors are in disagreement.
Unlike previously proposed models that can only account for
extreme or compromise estimates but not both, we develop a
new Bayesian model that explains both types of judgments.
This model provides a rational explanation of information ag-
gregation by assuming that decision makers use the probability
estimates of advisers to infer underlying data before making
probability judgments.
Keywords: information aggregation, decision making,
Bayesian model

Introduction
In many real world judgment problems, decision makers of-
ten make inferences by aggregating information from mul-
tiple outside sources. For example, a juror might be asked
to determine the probability that a defendant is guilty based
on the testimony of expert witnesses such as a medical ex-
aminer and a forensic scientist. In this paper, we discuss in-
ference problems in which a decision maker must aggregate
judgments from multiple expert advisers whose judgments
might be based on partial information. Our goal is to de-
velop a probabilistic framework that can account for the ag-
gregated judgments of decision makers. Specifically, we pro-
pose a new Bayesian model to explain aggregated judgments
and compare our model to a previously proposed Bayesian
model (Budescu & Yu, 2006, 2007) and a weighted averag-
ing model. The newly proposed Bayesian model is able to
account for both extreme and conservative judgments unlike
previous models of information aggregation.

The modeling and experimental work described in this pa-
per was motivated by a two stage study of information aggre-
gation conducted by Budescu and Yu (2006). In this experi-
ment, subjects first completed a learning stage in which they
learned to distinguish between two diseases (A and B) based
on a set of six cues (i.e., medical tests) with binary values (i.e,
positive or negative test results). Subjects were told that the
cues were equally valid, not perfectly diagnostic, and could
be correlated. In the second stage of the experiment, some
subjects were selected to be advisers and other subjects were
selected to be decision makers. The advisers provided the de-
cision makers with probability estimates of disease A based

on a set of cues. In some situations, the advisers saw only a
portion of the six cues. In these cases, not all advisers saw the
same subset of cues. Then, the decision maker was asked to
use the advisers’ judgments to provide a probability estimate
for disease A. The decision maker was told which binary cues
each adviser saw; however, the decision maker was not privy
to the cue values (i.e., positive or negative). The number of
advisers giving advice was either two or three.

The experimental results indicated that in some situations
decision makers gave estimates more extreme than both ad-
visers’ values. In general, when the advisers displayed a high
level of agreement, decision makers produced extreme an-
swers. On the other hand, when the advisers’ displayed dis-
agreement, the decision makers seemed to average the ad-
visers’ estimates. A simple Bayesian model presented by
Budescu and Yu predicts that decision makers will always
produce extreme estimates. Since this was not found to be
the case, Budescu and Yu (2006) claimed that decision mak-
ers are not always Bayesian. However, we hope to show that
a novel Bayesian model can account for compromise judg-
ments when there is a discrepancy among advisers’ probabil-
ity estimates and extreme judgments when advisers display a
high level of agreement.

Experiment
We conducted an experiment with a learning stage followed
by an information aggregation stage, similar to Experiment
2 in Budescu and Yu (2007). Participants first learned to di-
agnose, using the binary results of three tests, the probability
that a fictitious disease was present in a series of patients. The
probability of a disease given a set of test results was deter-
mined by a causal graph. Specifically, it was assumed that
a disease caused hidden intermediate states that determined
the test results. For simplicity, we assumed that the interme-
diate states were binary like the test results. For example,
lung cancer causes malignant tumors resulting in a positive
lung biopsy. Since Budescu and Yu allowed for tests to ei-
ther be correlated or not, we used the causal graph structure
to represent correlation among tests. We denoted diagnostic
tests that were driven by common underlying causes as corre-
lated. For example, a malignant tumor causes both a positive
lung biopsy and a positive PET scan. Diagnostic tests that
were driven by different causes were called uncorrelated. In
our lung cancer example, a malignant tumor causes a posi-
tive lung biopsy and a high white blood cell (WBC) count
produces a positive blood test.

After the training stage, participants were given a series of
trials on which two experts gave the participant the proba-
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bility a patient has the disease. Participants could see which
test results each expert was privy to, but could not see the re-
sults, themselves. The probability given by each expert was
produced from the causal graphs, and thus depends on the
number and values of test results they were privy to. Faced
with advice from two experts, participants may use a number
of strategies to aggregate this information. Given that the ad-
visers have overlapping information in cases when they saw
some of the same test results, and unique information in cases
when advisers saw disjunct (and perhaps conflicting) test re-
sults, a rational strategy would be for participants to infer the
union of the results that the advisers saw, and thence produce
a probability estimate as they did in the learning phase.

Subjects
71 undergraduates at Indiana University participated in the
experiment for course credit.

Stimuli & Procedure
Participants were instructed that they would be learning to
diagnose patients with a fictional disease (e.g., ‘nomitis’) on
the basis of results from three tests. As in Budescu and Yu
(2007), participants were told that each test is equally diag-
nostic, that the probability of the disease in the patient popu-
lation is 0.5, and that results of the medical test may be corre-
lated. A high prevalence of disease was used in order to match
the experimental paradigm of Budescu and Yu (2007). Sub-
jects were told that there was an epidemic in order to make
the high base rate of the disease seem plausible.

On each of 88 training trials, participants were shown the
binary results (‘+’ or ‘−’) of three tests (‘A’, ‘B’, or ‘C’), and
asked to indicate the probability (0-100) that a patient with
these test results has the disease. Probabilistic feedback was
provided on each trial: participants were told that this partic-
ular patient did or did not have the disease (proportional to
the predetermined disease probabilities), and were also told
whether or not a patient exhibiting these results would typi-
cally have the disease.

Appearing after the initial 88 trials, an additional 19 train-
ing trials showed only 0, 1, or 2 test results, and no feed-
back was given after participants responded. These trials in-
troduced the possibility that only a subset of the test results
may be seen, as is true in many of the information aggregation
trials.

For 36 of the participants, test results were uncorrelated,
whereas test results for the remaining 35 participants were
correlated.

In the second stage of the experiment, participants were
told that they had been promoted to a supervisory position
in which they would continue to judge the probability a pa-
tient has the same disease. However, instead of looking at
test results themselves, participants would see the probabil-
ities given by two advisers who have had the same training
they have had, but who may see only some of the test results
(e.g., Figure 1, left). Participants were instructed to keep in
mind that each adviser’s advice would be based on both the

number of results they were privy to, and the outcomes of the
results. As a reminder, for the first 12 adviser trials, decision
makers also saw the test results the advisers saw (e.g., Fig-
ure 1, right). These trials and the remaining 44 adviser trials
were identical for decision makers in both conditions, except
that the particular probabilities given as advice depended on
the condition (based on the two types of causal graphs: cor-
related and uncorrelated). The 44 trials included all combi-
nations of strength (i.e., number of agreeing test results) and
amount (i.e., number of test results seen: 0–3) of evidence
seen by an adviser, as well as various combinations of the
amount seen by both advisers.

Trials could vary by the amount of overlapping (i.e., re-
dundant) evidence seen by the two advisers: all of the results
seen by the advisers may overlap, none of them may over-
lap (e.g., Figure 1, right), or they may partially overlap (e.g.,
Figure 1, left). On a given trial, when advisers are privy to
non-overlapping test results (e.g., A and B in Figure 1, left),
and the two advisers agree on the diagnosis (both less than
50, or both greater), the decision maker, inferring what each
test result is, should normatively extremify. In other words,
the decision maker should respond further from 50 than ei-
ther adviser. The reason is that, by inferring the test results,
the decision maker has more information than either adviser,
and the decision maker knows that this inferred information
is stronger than the individual pieces of information seen by
each advisers. On other trials, when one adviser sees test
results that are a subset of the other adviser’s, the decision
maker should match the rating of the adviser who saw the
most, because the adviser who saw the subset of tests pro-
vides no additional information. Finally, in cases where ad-
visers saw non-overlapping results but disagree on the diag-
nosis (e.g., Figure 1, right), decision makers should compro-
mise, and give a rating somewhere between what the advisers
gave. Like the case of extremifying, the decision maker is
able to infer more information than either adviser. However,
in this scenario, the inferred information is contradictory and
leads to a compromising estimate.

Figure 1: Information given on adviser trials: partial over-
lap on which decision makers should extremify (left), and no
overlap on which decision makers should compromise (right).
Actual test results (+/-) were only given on the first 12 adviser
trials.
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Results & Discussion
The best theoretical accuracy during training is 0.68 for both
conditions, possible only if a participant gives a probability
rating in accord with the more likely outcome for the test re-
sults on all 88 complete trials. In the last half of training, ac-
curacy in the uncorrelated tests condition (M = .660) is higher
than accuracy in the correlated tests condition (M = .615).
In a Bayesian estimate of the difference between groups, the
mean of the posterior was 0.045, with the 95% highest den-
sity interval extending from 0.0283 to 0.0613, and with 100%
of the posterior distribution falling above 0.02 (Kruschke,
2011). Not surprisingly, correlated test results confuse learn-
ers somewhat. Since we are primarily interested in the way
that experts aggregate advice in the second stage, we chose to
exclude participants who did not become experts (i.e., those
who were more than a standard deviation below the group
mean of their condition). In the uncorrelated condition, this
criterion (M− σ = .57) excludes 6 participants, and in the
correlated condition (M−σ = .52) excludes 7 participants.

An additional participant was excluded from the correlated
condition because they responded ‘50’ on every adviser trial.
Thus, the adviser trials of 30 participants in the uncorre-
lated condition and 27 participants in the correlated condition
were analyzed. To evaluate aggregation performance, we ex-
amined the proportion of times each participant extremified,
compromised, and matched relative to the number of times
they should have shown each of these behaviors according to
our normative model of the task. We found that the graph
structure had no notable effect on these proportions, so Table
1 shows the aggregate performance of all 57 participants. For
each type of normative behavior, indicated by rows in Table
1, the most often observed behavior was the normative one.
For example, when the normative behavior was to extremify,
44% of responses were extremifications, which is more than
any other type of response.

Table 1: Adviser trial behavior by normatively correct behav-
ior. Each cell shows p(observed | normative).

Observed
Normative Extremify Compromise Match Other
Extremify .44 .12 .14 .29
Compromise .19 .68 .13 0
Match .32 .21 .40 .07
Overall .32 .34 .22 .12

Models
Using the data collected from the new experiment, we
compared three different aggregation models, a weighted
mean log-odds model (WMLO), a naively adjusted Bayesian
model, and the new cue imputation Bayesian model. Be-
fore we discuss the model comparison, we describe each of
the three models in detail. The WMLO and naively adjusted

Bayesian models were two of the many different models ex-
amined by Budescu and Yu (2006). We selected these models
to use in our comparison because the WMLO and adjusted
naive Bayesian model fit the data from Budescu and Yu well
from a global point of view. Thus, we consider these models
as good competitors for testing our new Bayesian model.

An Averaging Model
The weighted mean log-odds model is an averaging model
which accentuates differences between extreme probabili-
ties. By using log-odds, the high and low probabilities are
stretched out before they are averaged. Letting E be the tar-
get event (i.e., presence of a disease), we say that adviser j
provides a probabilistic forecast p j = p(E|C j) based on the
set of cues C j. The WMLO model is given by the following
formula

WMLO =
eβ

1− eβ
(1)

where

β =
1

∑
J
j=1 n j

·
J

∑
j=1

(n j · ln
p j

1− p j
) (2)

and where J is the number of advisers and n j is number of
cues seen by adviser j. This model can out perform a simple
averaging model because it can better account for extreme
judgments; however, it cannot extremify. In other words, the
model cannot respond further from 50 than either adviser.
Thus, if we compared the model predictions to the norma-
tively correct behavior as was done in Table 1 for the behav-
ioral data, the cell of the table indicating an extremifying pre-
diction when extremifying is the normatively correct behavior
would be 0. Also note that this is a parameter free model.

Naively Adjusted Bayesian Model
We begin our discussion of the two Bayesian models of
information aggregation by describing the naively adjusted
Bayesian model (Budescu & Yu, 2006). This model is an ex-
tension of a naive Bayesian model that calculates the poste-
rior probability of an event, E, assuming conditional indepen-
dence of the advisers’ forecasts. By the conditional indepen-
dence assumption and Bayes’ rule, the posterior probability
is given by

p(E |
⋂

C j) =
∏

J
j=1 p j/p(E)J−1

∏
J
j=1 p j/p(E)J−1 +∏

J
j=1(1− p j)/p(E)J−1

(3)
where J denotes the number of advisers and p j is defined as
above. As noted by Budescu and Yu, this is very similar to
the aggregation model by Bordley (1982) and the aggregation
rule by Genest and Schervish (1985).

This naive Bayesian model assumes that decision makers
treat the judgments from each adviser as perfectly reliable.
In order to allow decision makers to adjust their judgments
based on different assumptions of reliability, Budescu and Yu
incorporated a discounting function into the model. Specif-
ically, before the probability judgments are aggregated, they

1300



are discounted according to the model by Karmarkar (1978)
given by

p′j =
pλ

j

pλ
j +(1− p j)λ

(4)

where 0 < λ < 1 is a parameter associated with the level of
discounting. When λ = 1, no adjustment is made and the
probability judgment is considered perfectly reliable. How-
ever, when λ = 0, the probability is transformed into 0.5, and
the probability judgment is considered not diagnostic. The
overall effect of this model is shrinkage of extreme probabili-
ties before aggregation. The naively adjusted Bayesian model
can provide a better account of conservative probability es-
timates than the simpler naive Bayesian model; however, it
cannot compromise. In other words, the model cannot give a
rating somewhere between the advisers’ ratings. If we com-
pared the model predictions to the normatively correct behav-
ior as was done in Table 1 for the behavioral data, the cell of
the table indicating a compromise prediction when compro-
mising is the normatively correct behavior would be 0.

A Cue Imputation Bayesian Model

Because both the information aggregation study by Budescu
and Yu and our new experiment consisted of a learning stage
and an evaluation stage, we include in our Bayesian descrip-
tion of the task a model of the learning process. None of the
models considered by Budescu and Yu included a description
of the learning stage of the task.

Begin by letting Xt be the data seen on trial t. For our
purposes, Xt is a set of dichotomized test results related to
diagnosing the potential disease. For the case of three tests
as in the experiment described above, we might have Xt =
{+,+,−}. Let the hypothesis space, H, be the set of causal
graphs (or Bayesian networks) representing the relationship
between the disease and the test results. It is assumed that a
disease causes hidden intermediate states (labeled S below)
that drive the test results (labeled T below).

For simplicity, consider the case when there are only two
diagnostic tests. In this case, the correlated causal graph
shows that a disease causes a single intermediate state which
drives the results of the two tests (see Figure 2 left). On the
other hand, the uncorrelated causal graph shows that a disease
causes two intermediate states which each drive the results of
corresponding tests (see Figure 2 right). We can represent
causal graphs by conditional probabilities. For example, we
might purpose Table 2 for our uncorrelated causal graph.

The Learning Stage In the learning stage, the model learns
the probability that the tests are correlated. Let h ∈ H repre-
sent a causal graph. In the case with two tests, we might as-
sume that there are only two causal graphs as shown in Figure
2. Of course, a larger hypothesis space and more complicated
graphical structures can be used. By Bayes’ Rule, we define
the posterior probability of each hypothesis (i.e. causal struc-

T2

S

T2

D

T1 T2

S2S1

D

T1

Figure 2: Causal graphical models for two correlated tests
(left) and for two uncorrelated tests (right).

Table 2: Example of Conditional Probabilities for Uncorre-
lated Tests

Diseases Intermediate States Tests
p(D= +) = .5 p(Si= + | D= +) = .8 p(Ti= + | Si= +) = .9
p(D= −) = .5 p(Si= − | D= +) = .2 p(Ti= − | Si= +) = .1

p(Si= + | D= −) = .2 p(Ti= + | Si= −) = .1
p(Si= − | D= −) = .8 p(Ti= − | Si= −) = .9

ture) on trial t by

p(h|Xt) =
p(Xt |h) · p(h)

p(Xt)
. (5)

The likelihood is determined by the causal graph under con-
sideration,

p(Xt |h) = p(T1, ...,Tn|h) =
n

∏
i=1

p(Ti|parents(Ti),h) (6)

where n represents the number of cues (or tests) and Ti is a
random variable representing the result on test i. To model
learning, we define the posterior of one trial as the prior for
the next trial where the initial prior is 1/|H| where |H| is sim-
ply the number of elements or graphs in the hypothesis space.
Thus, the probability of the disease being present on trial t is
given by

p(D = +|Xt) = ∑
h∈H

p(D = +|Xt ,h) · p(h) (7)

where p(D = +|Xt ,h) is easily calculated from the causal
graph h. Please note that in the current formulation, only p(h)
is learned and not p(Ti|S j) or p(Si|D).

The Information Aggregation Stage Our approach to-
wards information aggregation differs from the one taken by
Budescu and Yu. Specifically, we assume that decision mak-
ers first attempt to reconstruct the data observed by advisers
before calculating the probability of a target event (e.g. the
presence of the disease). In this way, decision makers use
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both the advisers’ probability estimates along with informa-
tion about which cues the advisers saw, not merely how many
cues the advisers saw. In the Bayesian model presented by
Budescu and Yu, cue information was not inferred in the de-
cision maker’s aggregation process.

Suppose that there are J advisers reporting the probability
of the presence of the disease to a decision maker. Further,
assume that each adviser sees the results of a subset of all
possible binary tests (or cues). The decision maker knows
which tests each adviser saw, but not the results of the tests.
Let p j be the probability the disease is present reported by
adviser j. (The probability the disease is absent is 1− p j.)
The decision maker then infers a belief distribution over the
possible data that adviser j might have observed. Specifically,
we define the data space as the set of all possible complete
data vectors. Thus, for n cues, the data space has 2n elements
since the cues are assumed to be binary. In our experiment,
n = 3 and the data space has 23 = 8 elements. For simplicity,
let us index the elements of the data space as Xi where i ∈
{1,2,3, ...,2n}. Then, for adviser j we have that the posterior
probability of data vector Xi is

p(Xi|p j,h) =
p(p j|Xi,h) · p(Xi|h)

p(p j|h)
(8)

where p(p j|h) = ∑
2n

i=1 p(p j|Xi,h) · p(Xi|h) and where we de-
fine p(p j|Xi,h) = 1 if p(Xi|h) = p j and 0 otherwise. By ex-
amining the relationship between probabilities, p(Xi|h), from
the graphical structure and probabilities, p j, from the adviser,
we assume that the adviser only produces probabilities in ac-
cord with the graphical structure. By restricting p(p j|Xi,h) to
the set {0,1}, we also assume there is no noise in the adviser’s
stated value. The model can be altered to relax these assump-
tions, but we felt that this was not necessary for modeling the
current experiment. We acknowledge that the lack of variabil-
ity or bias in advisers’ ratings in unrealistic, but the assump-
tion that advisers produce probabilities in accordance with
the graphical structure is parsimonious. In the case where a
judge sees a partial set of cues X∗j such as {+,?}, we define
p(p j|Xi,h) = 1 if Xi ⊆ X∗j and p(Xi|h) = p j. For example,
in the case with two tests, suppose adviser j sees a positive
result on the first test and nothing on the second. In other
words, probability p j is based on the data X∗j = {+,?}. Since
we only want to define a probability distribution over com-
plete data, we consider both {+,+} and {+,−} as candidate
data vectors. By summing over all possible cue relationships,
we have

p(Xi|p j) = ∑
h∈H

p(Xi|p j,h) · p(h). (9)

Next, the decision maker creates a belief distribution over
all possible data by combining across advisers:

p(Xi|
⋂

j

p j) =
∏ j p(Xi|p j)/p(Xi)J−1

∑i ∏ j p(Xi|p j)/p(Xi)J−1 (10)

where p(Xi) = ∑h∈H p(Xi|h) · p(h). This formulation is iden-
tical to the one Budescu and Yu used to calculate the posterior

probability of the target event. However, we assume that the
aggregation process occurs when decision makers reconstruct
the possible data seen by advisers instead of when they eval-
uate the probability of a target event. Like Budescu and Yu,
we assume that the advisers’ forecasts, p j, are conditionally
independent.

Finally, the decision maker creates a Bayesian posterior us-
ing his or her own prior for cue correlations, p(h):

p(D = +|Xi) = ∑
h∈H

p(D = +|Xi,h)∗ · p(h). (11)

To allow for the fact that decision makers might not learn
the exact probabilities in the graphical models, we make the
following adjustment

p(D = +|Xi,h)∗ =
p(D = +|Xi,h)γ

p(D = +|Xi,h)γ +(1− p(D = +|Xi,h))γ

(12)
where p(D = +|Xi,h) is calculated directly from the graphi-
cal model h, and γ is allowed to freely vary. Thus, the proba-
bility the disease is present is given by

p(D = +) =
2n

∑
i=1

p(D = +|Xi) · p(Xi) (13)

where p(Xi) = p(Xi|
⋂

j pi).

Model Comparisons
Using the data collected in the experiment described above,
we evaluated the three models of interest: the WMLO model,
the naively adjusted Bayesian model, and our new Bayesian
inference model. Since the WMLO model and the naively
adjusted Bayesian model do not contain learning models, we
only used the information aggregation data in fitting the mod-
els and performing model comparisons. Because there was
no difference is aggregation performance for correlated ver-
sus uncorrelated tests, we fit the models to all 57 partici-
pants. We evaluated WMLO as a parameter free model and
fit the naively adjusted Bayesian model and our new Bayesian
model by minimizing the sum of the squared error (SSE) be-
tween the model predictions and the probability judgment
data from the experiment. Future work may use Bayesian
model comparison, but for current purposes the simpler point
estimates suffice to demonstrate qualitative differences be-
tween models. Both the naively adjusted Bayesian model and
our new Bayesian model contain one parameter (λ and γ re-
spectively). We fit the three models to the individual data for
the 44 information aggregation trials. Thus, we obtained three
model fits for each subject for 57 subjects. For each subject,
we compared the one parameter naively adjusted Bayesian
model with the one parameter cue imputation Bayesian model
and the parameter free weighted mean log-odds model. The
mean squared error (MSE) averaged over subjects for each
model is given in Table 3. From the table, we see that our
new Bayesian model has the smallest MSE.

We also computed a quantitative goodness-of-fit measure
to a qualitative partitioning of the data. For each subject,
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Table 3: MSE for Three Aggregation Models

Model MSE
WMLO 0.0182
Naive Adj Bayes 0.0700
Imputation Bayes 0.0149

we found the observed frequencies of responses in the four
categories (extremify, match, compromise and other) given
the normatively correct response. In other words, we com-
puted a table similar to Table 1 except the proportions were
replaced by frequencies. We then computed the same fre-
quencies for the three models using the best fit parameters to
each subject’s data. We calculated the SSE between the ob-
served frequencies and model frequencies for each subject.
This procedure is very similar to computing a chi-square test-
statistic except that we do not weight the differences between
observed frequencies and model frequencies by the recipro-
cal of the model frequencies. We felt that using such weights
placed too much emphasis on instances where models have
low frequencies, and we have no theoretical conviction that
these instances should be weighted heavily. Table 4 shows
several descriptive statistics for the SSE values. From the ta-
ble, we see that our new Bayesian model out performs the
other two models.

Table 4: Frequency SSE for Three Aggregation Models

model mean median std min max
WMLO 347 254 278 26 1154
Naive Adj Bayes 679 650 398 24 1512
Imputation Bayes 298 230 217 10 1014

We used a qualitative evaluation of the models to see how
closely the models were capturing ordinal trends in the data.
We calculated the Kendall rank correlation coefficient (or
Kendall’s τ ) for every subject to measure the association be-
tween the subject’s response proportions and the predicated
proportions from the models in the four categories (extremify,
match, compromise and other) given the normatively correct
response. Like the previous comparison, we used the best fit
model parameters for each subject. Table 5 shows descrip-
tive statistics for the τ values. A τ value of 1 implies perfect
agreement between the rankings and a τ value of −1 implies
perfect disagreement between the rankings. From the table,
we again see that our new Bayesian model performs better
than the other models.

Discussion
The cue imputation Bayesian model gives a more comprehen-
sive account of information aggregation than previously pro-
posed models. Whereas the naively adjusted Bayesian model
cannot account for compromising judgments and the WMLO

Table 5: Rank Correlation for Three Aggregation Models

model mean median std min max
WMLO 0.24 0.26 0.22 -0.32 0.64
Naive Adj Bayes 0.10 0.09 0.21 -0.29 0.53
Imputation Bayes 0.36 0.38 0.17 -0.09 0.64

model cannot account for extremifying judgments, the new
Bayesian model can account for both. The model provides a
rational explanation of information aggregation by assuming
that decision makers use the probability estimates of advisers
to infer the underlying data before calculating the probability
of an event. Thus, the model postulates that decision mak-
ers use all of the available information in an environment.
Decision makers do not merely use the number of cues advis-
ers saw, but they use this knowledge along with probability
estimates from the advisers to infer information. Often, the
information inferred by decision makers is more informative
than the information seen by either adviser.

Our goal was to illustrate that it is possible to provide an
account of probability judgments in situations of information
aggregation by using the axiomatic principles of probability
theory rather than heuristics. While heuristic models such
as WMLO provide an initial means for studying probability
judgment phenomena, these approaches lack a rational foun-
dation and only provide an ad hoc explanation for probability
judgment phenomena. However, probabilistic models such
as the Bayesian model introduced in this paper offer a more
coherent account of human probability judgments.
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