
UC Irvine
UC Irvine Previously Published Works

Title
Phycodnavirus Potassium Ion Channel Proteins Question the Virus Molecular Piracy 
Hypothesis

Permalink
https://escholarship.org/uc/item/02f9k34w

Journal
PLoS ONE, 7(6)

ISSN
1932-6203

Authors
Hamacher, Kay
Greiner, Timo
Ogata, Hiroyuki
et al.

Publication Date
2012-06-07

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License, 
availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/02f9k34w
https://escholarship.org/uc/item/02f9k34w#author
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


Phycodnavirus Potassium Ion Channel Proteins Question
the Virus Molecular Piracy Hypothesis
Kay Hamacher1, Timo Greiner2, Hiroyuki Ogata3, James L. Van Etten4, Manuela Gebhardt2,

Luis P. Villarreal5, Cristian Cosentino6, Anna Moroni6, Gerhard Thiel2*

1 Computational Biology Group, Technische Universität Darmstadt, Darmstadt, Germany, 2 Membrane Biophysics Group, Technische Universität Darmstadt, Darmstadt,

Germany, 3 Structural and Genomic Information Laboratory, Aix-Marseille University, Marseille, France, 4 Department of Plant Pathology and Nebraska Center for Virology,

University of Nebraska, Lincoln, Nebraska, United States of America, 5 Center of Virus Research, University of California Irvine, Irvine, California, United States of America,
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Abstract

Phycodnaviruses are large dsDNA, algal-infecting viruses that encode many genes with homologs in prokaryotes and
eukaryotes. Among the viral gene products are the smallest proteins known to form functional K+ channels. To determine if
these viral K+ channels are the product of molecular piracy from their hosts, we compared the sequences of the K+ channel
pore modules from seven phycodnaviruses to the K+ channels from Chlorella variabilis and Ectocarpus siliculosus, whose
genomes have recently been sequenced. C. variabilis is the host for two of the viruses PBCV-1 and NY-2A and E. siliculosus is
the host for the virus EsV-1. Systematic phylogenetic analyses consistently indicate that the viral K+ channels are not related
to any lineage of the host channel homologs and that they are more closely related to each other than to their host
homologs. A consensus sequence of the viral channels resembles a protein of unknown function from a proteobacterium.
However, the bacterial protein lacks the consensus motif of all K+ channels and it does not form a functional channel in
yeast, suggesting that the viral channels did not come from a proteobacterium. Collectively, our results indicate that the
viruses did not acquire their K+ channel-encoding genes from their current algal hosts by gene transfer; thus alternative
explanations are required. One possibility is that the viral genes arose from ancient organisms, which served as their hosts
before the viruses developed their current host specificity. Alternatively the viral proteins could be the origin of K+ channels
in algae and perhaps even all cellular organisms.
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Introduction

In recent years several virus-encoded proteins with ion channel

activity have been described [1–4]. These proteins show few

common features at the sequence level, except that most of them

are short, approximately 100 amino acid residues, and their

membrane-spanning domains are predicted to be a-helices [1].

The majority of these viral-encoded channel proteins have no

recognizable sequence similarity to bacterial or eukaryotic

proteins. One exception is the channel forming protein Vpu from

the Human immunodeficiency virus type 1 (HIV-1), which slightly

resembles the first transmembrane domain of eukaryotic TASK

channels; thus this gene might have been acquired from its host via

molecular piracy [5].

A different situation occurs with ion channel proteins encoded

by the virus family Phycodnaviridae. These viruses, which infect algae

[6], have gene products with the structural and functional

hallmarks of eukaryotic and prokaryotic K+ channels [4]. The

best-studied viral K+ channel is Kcv from Paramecium bursaria

chlorella virus 1 (PBCV-1) (genus Chlorovirus) [7]. Like complex

eukaryotic channels this channel functions as a tetramer [8,9].

Compared to other K+ channel proteins, the monomer is small,

consisting of only 94 amino acid residues [4,7]. The monomer

forms a structure with two transmembrane domains, which are

linked by a pore helix including a selectivity filter [10] present in

all known K+ channels [7]. Hence, Kcv essentially corresponds to

the pore module part of larger K+ channels. Kcv has the basic

properties of K+ channels such as ion selectivity, gating and

sensitivity to blockers [7,8,9,11]. Circumstantial evidence suggests

that an active Kcv channel is required for PBCV-1 infection

[4,12]. The channel is probably located in the internal membrane

of the virus particle. During the early phase of infection the viral

internal membrane presumably fuses with the host plasma

membrane. This fusion process initiates rapid depolarization of

the host plasma membrane [13], which results in a rapid loss of K-

salt from the host [14]. As a consequence the internal turgor

pressure of the host alga decreases, which makes it easier for the

virus to eject its DNA into the host cell [4,15].

Subsequently, K+ channels have been discovered in three other

members of the Phycodnaviridae that infect different hosts [16–22].

Like PBCV-1, these viruses [e.g. Acanthocystis turfacea chlorella virus

1 (ATCV-1) and chlorovirus MT325] infect different algal species
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with a strict host specificity [20–21]. Although, the K+ channels in

these viruses are similar to PBCV-1 Kcv (KcvPBCV-1), they have

major structural differences. The most obvious difference is their

size as well as the organization of their cytoplasmic domains [4].

Differences also exist in their physiological properties when

expressed in heterologous systems. For example, KcvPBCV-1 has

a much lower open probability than its homolog from ATCV-1

(KcvATCV-1). Also, KcvPBCV-1 conducts rubidium (Rb+) better than

K+ whereas the situation is reversed in KcvATCV-1 [18].

Another K+ channel protein, Kesv, is encoded by Ectocarpus

siliculosus virus 1 (EsV-1), also a member of the Phycodnaviridae

family, but distantly related to the chloroviruses [23,24]. EsV-1 has

a different life cycle than the chloroviruses; it infects the marine

filamentous brown macro-alga Ectocarpus siliculosus and it has a

lysogenic life cycle. The chloroviruses are lytic and infect

unicellular fresh water green algae [23,25]. Chlorella (Viridiplan-

tae, Chlorophyta) and Ectocarpus (Stramenopiles) are distantly

related [26] and their last common ancestor probably dates back

500 million years [27].

The chloroviruses and the Ectocarpus virus are not closely

related although they both have large genomes of 280 to 370 Kb

[23–25]. The prototype chlorovirus PBCV-1 has ,405 protein

encoding sequences (CDS), approximately 35% of them encode

proteins of known function. A genome comparison indicates that

only 10% of the proteins are shared between PBCV-1 and EsV-1

[23]. Among their common gene products is a K+ channel protein

[16]. The EsV-1 channel protein, Kesv, is slightly larger (124

residues) than those from the chloroviruses [28,29]. On a sequence

basis, however, Kesv resembles the chlorovirus channel proteins

and under certain conditions is functional in heterologous

expression systems [29]. The major difference between Kesv and

the Kcv channels is the sorting of the proteins within cells [29]. In

heterologous expression systems the Kcv channels sort into the

secretory pathway and finally move to the plasma membrane. In

contrast, the Kesv channel is targeted to the mitochondria. This

difference in sorting probably reflects different functional roles of

these channels due to the different lifestyles of the viruses.

These findings prompted us to examine the origin and evolution

of the viral K+ channel proteins and the hypothesis that viruses

acquire genes from their hosts. The fact that K+ channels from all

eukaryotes contain a common pore structure that resembles the

viral K+ channels is consistent with the traditional assumption that

viruses are mere ‘gene pick pockets’ [30] and frequently acquire

genes from their host via molecular piracy. If the viral channel

proteins are simplified versions of cellular proteins recently

acquired from their hosts, then we would expect to see a high

level of sequence similarity between the viral and host homologs.

However, this traditional view of virus evolution has been

challenged by recent phylogenetic studies of genes in large

eukaryotic viruses and prokaryotic viruses [31,32]. Comparative

genomics studies further suggest that virus evolution can best be

understood in terms of reticulated ‘trees’ and mosaic evolution

[33]. This means that large DNA viruses fundamentally have a

network-based history that does not trace back to a single gene or

set of genes. Hence their ancestor probably exchanged vast pools

of genetic elements horizontally and generated a reticulated

network of genes at an early stage of their evolution. This view is

consistent with the genetics of phycodnavirus evolution as these

viruses have both prokaryotic and eukaryotic homologs in addition

to many other genes with no cellular homologs.

To investigate the evolution of the viral K+ channels and to test

the ‘molecular piracy hypothesis’ in the Phycodnaviridae, we

analyzed a small set of sequences, including host homologs, that

recently became available (see Fig. 1). Our sequence data set

contains seven K+ channels from phycodnaviruses. These viruses

can be distinguished according to their host specificity. Six viruses

replicate in different species of unicellular green algae. Two of

these six viruses, PBCV-1 and NY-2A, specifically infect Chlorella

variabilis (formerly Chlorella NC64A), two, ATCV-1 and TN603

infect Chlorella heliozoae (formerly Chlorella SAG 3.83) and two infect

Micractinium conductrix (formerly Chlorella Pbi). The seventh

phycodnavirus EsV-1 infects E. siliculosus, whose genomic infor-

mation is also available [26]. The viral channels were compared to

the K+ channels from these viral hosts and related non-host

species. If gene piracy explains the presence of the viral channel

genes the Kesv channel should be closely related to the EsK

channels from Ectocarpus and KcvPBCV-1 and KcvNY-2A should be

close to the C. variabilis channels.

Figure 1. Minimal sequence set to test molecular piracy
hypothesis. Seven sequences of K+ channels are from different
phycodnaviruses. Six of them replicate in specific species of green
algae. C. variabilis is a host for two of these viruses. The seventh
phycodnavirus infects E. siliculosus, a brown alga, which is only distantly
related to the green algae. The viral channels are compared to putative
K+ channels from hosts and non-hosts. The host channels include all 7
K+ channels from C. variabilis and all 12 K+ channels from E. siliculosus. A
K+ channel sequence from the green alga C. reinhardtii, a non-host of
phycodnaviruses and a close relative of Chlorella served as a negative
control.
doi:10.1371/journal.pone.0038826.g001

Viral K+ Channel Evolution

PLoS ONE | www.plosone.org 2 June 2012 | Volume 7 | Issue 6 | e38826



Results

Virus sequence analysis
The sequences for 7 virus-encoded channel proteins are shown

in Fig. 2. For six of them have already been shown to function as

K+ channels in heterologous systems [7,17–19]. The amino acid

sequences of the viral K+ channel proteins vary among each other

and this variability is apparent even within the same species. For

example, a genomic analysis of 40 virus isolates from a single

species, all of which replicate in C. variabilis, revealed that the

channel proteins differed by as many as 16 amino acids from the

reference channel KcvPBCV-1 [19,35]. The channel protein from

C. variabilis virus NY-2A (KcvNY-2A) is also included in the

alignment in Fig. 2. Ortholog channel proteins from viruses that

replicate in either C. heliozoae or M. conductrix are also each

represented by two viruses.

The alignment indicates the 7 viral channel proteins have

,23% amino acid sequence identity and 60% similarity. Notably,

all of the channel proteins have the canonical selectivity filter

sequence TxxTxGF/YG, which is typical for all K+ channel

proteins from prokaryotes and eukaryotes. The 6 channels from

the chloroviruses are more similar to each other than to the K+

channel protein from EsV-1. Hence, the diversity between the

viral channels correlates with the classification of the host species.

K+ channel proteins from C. variabilis and E. siliculosus
Recent sequencing of the C. variabilis [34] and the E. siliculosus

genomes [26] allowed us to address the question of whether the

viral K+ channels are more closely related to their host homologs

or to each other. C. variabilis is the host for viruses PBCV-1 and

NY-2A, while E. siliculosus is the host for EsV-1. We searched the

two host genomes for putative K+-channel proteins using the

following parameters:

1) All the host gene products were screened for the highly

conserved motifs in the selectivity filter region (motifs: GYG,

GFG and GLG), which exist in all known K+-channel

proteins [36,37].

2) The sequences of all known K+-channels and the structurally

related cyclic nucleotide gated channels (CNG) from

Arabidopsis thaliana plus additional members of other K+-

channel families (Kir, Kv, TPA and Tandem channels from

animals plus some typical microbial channels KcsA, MthK,

KvAP, KvLm, KirBac1.1) were compared to the C. variabilis

and E. siliculosus genomes using BLAST [38].

All genes that were detected by these methods and that had $2

predicted transmembrane domains were then used as queries for

BLAST searches against the NCBI protein database. This search

identified 7 CDSs with the hallmarks of K+-channels in the C.

variabilis genome, designated CvK1-7, and 12 CDSs in the E.

siliculosus genome, designated EsK1-12. One of them, EsK1, was

nearly identical to the viral Kesv from EsV-1. However, the EsV-1

genome is incorporated into the host genome by lysogeny and so

the viral channel was expected to be in the E. siliculosus genome

[26].

We restricted our phylogenetic analyses to the pore module of

these proteins, which comprises two transmembrane domains, a

pore helix and the canonical selectivity filter sequence [4]. To

identify the pore modules of the putative host channel proteins, all

Figure 2. Multiple sequence alignment of K+ channel proteins from different phycodnaviruses. The genes that code for these proteins,
originate from viruses with different host specificities. KcvPBCV-1 and KcvNY-2A are from viruses that replicate in C. variabilis, KcvMT325 and KcvCVM-1 from
viruses that replicate in M. conductrix, and KcvATCV-1 and KcvTN603 from viruses that replicate in C. heliozoae. The channel Kesv is from virus EsV-1,
which replicates in E. siliculosus. The selectivity filter sequence is in black; aromatic amino acids upstream of the filter are marked in grey and the
transmembrane domains are underlined.
doi:10.1371/journal.pone.0038826.g002

Viral K+ Channel Evolution
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amino acid sequences were subjected to bioinformatics methods

for transmembrane domain prediction (see Materials and Meth-

ods). A consensus of the predictions for the pore modules from C.

variabilis and E. siliculosus are shown in Fig. 3 and Fig. 4,

respectively. Several two-pore K+-channels were identified in E.

siliculosus. Each pore is listed individually and the pores are indexed

as x.1 or x.2 for the N- and C-terminal pores, respectively.

The alignments indicate that the pore module sequences in the

C. variabilis and E. siliculosus channels are highly divergent.

However, it is important to note that all the proteins have the

typical architecture of K+ channels namely: the selectivity filter

domain comprising the K+ channel consensus sequence and the

pore helix. The latter are flanked flanked by $2 transmembrane

domains; canonical aromatic amino acids are found upstream of

the consensus sequence.

Phylogentic analysis of K+ channel proteins
For a phylogenetic comparison of the viral and algal channels

we only included the pore modules. A disadvantage of this analysis

is that it only considers a small part of protein sequences; however

this disadvantage is compensated by the fact that the pore module

is the functional core domain of all K+ channels [4].

First we estimated the phylogenetic relationship of the channels

by a maximum likelihood method. It should be noted that this

analysis does not provide an in depth phylogenetic analysis of the

channels. The goal was to address the question: are the viral

channels descendents of host channels or do they form a separate

clade? The resulting tree in Fig. 5 shows a clade containing all viral

homologs that is separate from the cellular homologs, albeit with

relatively low sequence similarities between viral homologs. In the

tree, one of the E. siliculosus K+ channels (EsK1) was closely placed

with the viral K+ channel Kesv. As mentioned above this result is

expected since the entire genome of the lysogenic virus EsV-1 is

contained in the genome of the infected host [26]. The paralogs

from the two algae and CrK (C. reinhardtii) are more similar to each

other than to the viral homologs, even though the last common

ancestor between the green alga Chlorella and the brown alga

Ectocarpus probably dates back more than 500 million years [27].

Apart from the similarity to EsK1, Kesv is well separated from the

putative E. siliculosus channels. Likewise all channels from the

chloroviruses form a distinct clade from the algal homologs in the

tree; the channels from PBCV-1 and NY-2A, i.e., the C. variabilis

viruses, are clearly separated from the C. variabilis channel

sequences. The same separation of viral channels from the host

channels was also observed in trees produced with a parsimony

method and a neighbor-joining algorithm (Figs S1, S2).

Next we analyzed the phylogenetic relationship of the channels

from C. variabilis and viruses using Bayesian estimates. Fig. 6 shows

the consensus tree of phylogenies obtained by Bayesian estimation

from nucleotide and amino acid sequences, as well as by a protein

maximum parsimony method. This analysis indicated that the

viral channels form a clade, which is clearly separate from the

second clade containing the algal channels. A K+ channel (CrK)

from another unicellular green alga, C. reinhardtii, grouped with a

Figure 3. Multiple sequence alignment of pore modules of K+ channel proteins from C. variabilis. For comparison a K+ channel protein
CRK from the alga C. reinhardtii is also included. The pore-forming unit begins with the transmembrane domain, prior to the selectivity filter and it
finishes at the end of the transmembrane domain after the filter. The locations of transmembrane domains were predicted based on different
methods. The selectivity filter sequence is in black; aromatic amino acids upstream of the filter are marked in grey; the transmembrane domains are
underlined. Worth noting is the K+ channels conserved selectivity filter sequence and an otherwise overall low degree of similarity between the
channels.
doi:10.1371/journal.pone.0038826.g003

Viral K+ Channel Evolution
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homolog from C. variabilis. The clear separation between the viral

K+ channels and the algal channels occurs even when the amino

acid or nucleotide sequences were analyzed individually; this

separation is evident in spite of the large diversity on the

nucleotide level (Fig. S3). Furthermore, the same results are

obtained using different statistical methods (see Materials and

Methods).

Collectively, these data suggest that the viral channels have a

long evolutionary history, which is independent from their hosts

(i.e. gene duplications) and also from the deep host speciation

events (i.e. Chlorella/Chlamydomonas and green/brown algae diver-

gences).

Search for the ancestor of the viral K+ channels
The fact that all of the viral K+ channel proteins group together

in a common clade prompted us to identify a consensus sequence

(Fig. 7A) from the viral channels using the standard procedure in

the Biopython software (http://biopython.org/wiki/Main_Page)

that could be used in a BLAST search to hunt for similar channel

proteins. The search resulted in one hit, albeit with only moderate

significance, to a protein (labeled LPA) from the marine

Figure 4. Multiple sequence alignment of pore modules of K+ channel proteins from E. siliculosus. The pore-forming unit begins with the
transmembrane domain, prior to the selectivity filter and it finishes at the end of the transmembrane domain after the filter. The selectivity filter
sequence is in black; aromatic amino acids upstream of the filter are marked in grey; the transmembrane domains are underlined.
doi:10.1371/journal.pone.0038826.g004

Viral K+ Channel Evolution
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proteobacterium Labrenzia alexandrii DFL-11 (GenBank:

NZ_EQ973121).

Fig. 7B shows an alignment of LPA from L. alexandrii DFL-11

and KcvATCV, the viral channel that is most similar to LPA. The

alignment reveals many identical or similar residues in the

transmembrane domains. However, LPA from L. alexandrii DFL-

11 lacks the canonical sequence of K+ channels [36,37] and

probably does not function as a K+ channel.

We tested the functionality of LPA as a K+ channel by cloning

and expressing its gene in mutants of yeast that are devoid of K+

uptake systems. These mutants only grow in a medium with high

K+ (100 mM). Growth on a medium with low K+ can only occur

by expressing a heterologous K+ channel [29]. The data in Fig. 8

show that all yeast mutants grow on medium with high K+.

Growth on medium with low K+ only occurred when cells are

transformed with the functional KcvPBCV-1. This result is

consistent with the previous observation that functional viral K+

channels can rescue the yeast mutants under selective conditions

[29]. However, LPA from L. alexandrii DFL-11 did not rescue the

mutant defect. Although this result does not provide definitive

proof that LPA is not a K+ channel protein, it indicates that it

probably does not form a functional channel in yeast. Together,

these results indicate it is unlikely that the viral channels came

from proteobacteria.

Discussion

The viral K+ channels are small and basically consist of the pore

module shared by all K+ channels [4,10]. Our analyses indicate

that viral-encoded K+ channel proteins do not have a close

phylogenetic relationship with their host-encoded K+ channel

proteins. A similar scenario was recently discovered for a

chlorovirus encoded cation transporter which occurs in different

virus species independent of their host [39]. The diversity of the

phylogenetic methods used in this study, which produced similar

results, reduces the likelihood that our conclusions are due to

phylogenetic artifacts. Different phylogenetic approaches also

indicate that the viral K+ channels are relatively closely related

to each other in spite of the large sequence divergence between

some of the virus gene pairs [23]. Clearly, our results contradict

the ‘molecular piracy hypothesis’ where viral genes are assumed to

be transferred from their hosts; thus alternative explanations are

required. The present data are consistent with two possibilities.

First, the viral genes were recently transferred from unidentified

hosts of the viruses. Given the remarkable diversity of K+ channel

proteins in eukaryotes and their underrepresentation in the current

sequence databases, eukaryotic homologs similar to the viral

channel genes may be found in the future. Based on the large

distances between the viral and host homologs in our phylogenetic

trees, we predict that such unidentified hosts would be distantly

related to Chlorella and Ectocarpus. This explanation is a modified

version of the ‘molecular piracy hypothesis’. This scenario,

however, requires a drastic recent change of host types (or a

capacity to infect totally different hosts) for these viruses. Another

scenario is that viral channel homologs evolved prior to or at the

time of the divergence of eukaryotic algae. The viral K+ channels

could arise from an ancient cellular organism, which served as a

host for these viruses before they developed their present host

specificity, or they might directly originate from the ancient virus

world. The latter hypothesis of a viral origin for K+ channels is not

that surprising, when one considers that many other viruses code

for very simple and viral specific proteins with ion channel

functions [1–4,40]. In these examples, some or all K+ channels in

cellular organisms might be derived from ancestral viral proteins.

Figure 5. Maximum likelihood tree of K+ channel acid sequences from phycodnaviruses and host cells C. variabilis and E. siliculosus.
Alignment was constructed with the use of MUSCLE [45]. The phylogenetic tree was constructed using PhyML [47] available at Phylogeny.fr [48] using
WAG matrix and gamma distribution. Branch labels indicate bootstrap percentages ($50%) after 100 replicates. The tree is essentially an unrooted
tree. Viral K+ channels are indicated in blue, channels from green algae C. variabilis and C. reinhardtii in red. The channels from viruses, which replicate
in C. variabilis or E. siliculosus are highlighted by a grey or yellow background respectively.
doi:10.1371/journal.pone.0038826.g005

Viral K+ Channel Evolution
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Since viruses typically have high mutation and recombination

rates as well as very high reproduction rates relative to their hosts,

a relaxed selection due to complementation, for instance, may be

an evolutionary mechanism that enhances the creation of new

genes in viral genomes. This is consistent with the occurrence of

many small genes of unknown function in viral genomes (ORFans)

[41,42] including numerous small membrane proteins [43]. The

functions of the viral channels with respect to their pharmacology

and voltage dependency can be quite different [17–19]. The

forces, which determine this structural and functional diversity of

channel proteins among viruses, may be assigned to virus-virus

competition. The activity of the channels from the chloroviruses is

probably essential for infection and in a later step also important in

preventing hyper-infection [12–14]. Since the viral channels

presumably contribute to depolarization of the host plasma

membrane and since some virus species seem to out-compete

others in an experimental setting by the speed with which they

depolarize their host [12], it is reasonable to assume that this

competition is a driving force for channel diversification. The fact,

that the virus EsV-1 channel is associated with the mitochondria

[29], suggests that this channel protein acquired domains that sort

the protein to this organelle. The competition for the right

molecular sorting machinery must have affected the evolution of

this protein. Since the EsV-1 protein is in the mitochondria, this

channel might be part of an early anti-apoptotic system important

for viral persistence.

Materials and Methods

Sequences
Six Kcv type K+ channel proteins from chloroviruses PBCV-1,

NY-2A, MT325, CVM-1, ATCV-1, TN603, and one Kesv

channel from virus EsV-1 were analyzed. We also identified 7 K+

channel protein sequences in C. variabilis (see results), the host for

viruses PBCV-1 and NY-2A and 12 K+ channel proteins in E.

siliculosus. The sequence of a putative K+ channel from the non-

host green alga Chlamydomonas reinhardtii was also included in the

analyses. Sources for the genes are provided in Table S1. With this

set of channels we derived a set of sequences to test the molecular

piracy hypothesis.

The sequences were aligned with CLUSTALW2 [44] and/or

Muscle [45], using standard parameters that produced a seed file

for all further phylogenetic computations.

Sequence analysis
Four independent approaches were used in the phylogenetic

experiment:

1) Maximum likelihood estimation.

2) Bayesian estimation of phylogeny from the nucleotide

sequences.

Figure 6. Consensus, unrooted tree obtained by Bayesian
estimates of phylogenies for the amino acid and nucleotide
sequences, as well as for a protein parsimony approach. All
clades showed a statistical support of 1 ( = 100%) with reference to the
six independent trees computed (Bayesian estimate). The same holds
for the statistical support with reference to the 1,000 replicas fed into
the protpars program (protein parsimony). The branch length in this
tree is arbitrary. The only difference between these is a weaker support
in one of the clades (50% support, as indicated by the red star). Note
that all phylogenetic approaches resulted in the same tree. Red entries
indicate algae channels, while blue entries are viral channels.
doi:10.1371/journal.pone.0038826.g006

Figure 7. The consensus sequence of viral K+ channel pore is similar to protein LAP from proteobacterium Labrenzia alexandrii DFL-
11. (A) Consensus sequence of viral K+ channels. (B) Alignment of K+ channel KcvATCV-1 with protein LAP from L. alexandrii DFL-11 (data bank
ZP_05113853). Identical amino acids are indicated by (*), conserved or semi-conserved amino acids are indicated by (:) and (.) respectively. Note that
the consensus sequence of K+ channel selectivity filter (grey box) is only partially conserved in the bacterial protein.
doi:10.1371/journal.pone.0038826.g007

Viral K+ Channel Evolution
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3) Bayesian estimation of phylogeny from the translated amino

acid sequences.

4) Protein Sequence Parsimony Methods as implemented in

protpars of the phylip package [46] were applied to the

translated amino acid sequences.

For the maximum likelihood estimates we used PhyML [47]

available at Phylogeny.fr [48] using WAG matrix and gamma

distribution as default parameters. For the derivation of amino

acid phylogenies by Bayesian estimation we used the MrBayes

package [49,50] with default parameters. We made six indepen-

dent trees with 70,100,000 iterations each. Here the standard

deviation of split frequencies reached 1023. For the final trees we

obtained a consensus tree by the consensus program of the phylip

package Version 3.67 [46].

For the Bayesian estimation of phylogeny of the nucleotide

sequences we again used MrBayes, and reached good convergence

after 3,600,000 iterations with the same convergence limit as for

the protein sequences. We performed five independent runs and

computed a consensus tree as above. The protein parsimony was

performed on 1,000 randomized replicas by the protpars program

of Phylip. Randomization was done by the internal routine of the

protpars program. From the resulting 1,000 trees we computed a

consensus tree as above. The consensus sequence of the viral K+

channels was obtained from an alignment of the pore modules of

these channels and calculated with a tool in the Biophyton

software. The pore module comprises the amino acid sequences

from the beginning of the first transmembrane domain to the end

of the second transmembrane domain. The pore model of all

channels was identified from the primary amino acid sequences

using the following transmembrane region prediction algorithms:

DAS, HMMTOP, SOSUI, TMpred, TMHMM, TopPred,

MPEx. We used a consensus result for the prediction of the

TMDs.

Saccharomyces cerevisiae complementation assays
Selection experiments were performed as reported previously

[29]. Viral K+ channel encoding genes or their mutants were

transformed into SGY1528 yeast strain (Mat a ade2–1 can1–100

his3–11,15 leu2–3,112 trp1–1 ura3–1 trk1::HIS3 trk2::TRP1), which

is deficient in endogenous K+ uptake systems. Yeasts from the

same stock were grown in parallel under nonselective conditions

on plates containing 100 mM KCl and on selective conditions on

agar containing 1 mM KCl or 0.5 mM KCl. Growth experiments

were conducted at 30uC.
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