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Algorithms for quantifying the differences between two lattices are used for

Bravais lattice determination, database lookup for unit cells to select candidates

for molecular replacement, and recently for clustering to group together images

from serial crystallography. It is particularly desirable for the differences

between lattices to be computed as a perturbation-stable metric, i.e. as distances

that satisfy the triangle inequality, so that standard tree-based nearest-neighbor

algorithms can be used, and for which small changes in the lattices involved

produce small changes in the distances computed. A perturbation-stable metric

space related to the reduction algorithm of Selling and to the Bravais lattice

determination methods of Delone is described. Two ways of representing the

space, as six-dimensional real vectors or equivalently as three-dimensional

complex vectors, are presented and applications of these metrics are discussed.

(Note: in his later publications, Boris Delaunay used the Russian version of his

surname, Delone.)

1. Introduction

Andrews et al. (2019) discuss the simplification resulting from

using Selling reduction as opposed to using Niggli reduction.

Here we continue that discussion with information on the

space of unit cells and the subspace of reduced cells as the six-

dimensional space S6 of Selling inner products.

Algorithms for quantifying the differences among lattices

are used for Bravais lattice determination, database lookup

for unit cells to select candidates for molecular replacement,

and recently for clustering to group together images from

serial crystallography. For crystallography, there are many

alternative representations to choose from as a basis for

distance calculations. Andrews et al. (1980) discussed V7, a

perturbation-stable space in which, using real- and reciprocal-

space Niggli reduction, a lattice is represented by three cell

edge lengths, three reciprocal cell edge lengths and the cell

volume, which was proposed for cell database searches, but

which has difficulties when used for lattice determination.

Andrews & Bernstein (1988) discussed G6 that uses a modified

metric tensor and a search through 25 alternative reduction

boundary transforms (Gruber, 1973) to work in a satisfactory

manner both for database searches and for lattice identifica-

tion in the presence of experimental error. Andrews &

Bernstein (2014) discussed sewing together regions of the

fundamental region of G6 under Niggli reduction at 15

boundaries. Andrews et al. (2019) presented the simplest and

fastest currently known representation of lattices as the six

Selling scalars obtained from the dot products of the unit-cell
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axes in addition to the negative of their sum (a body diagonal).

Labeling these a; b; c and d (d ¼ �a�b�c), the scalars are

b � c; a � c; a � b; a � d; b � d; c � d

(where, e.g., b � c represents the dot product of the b and c

axes). For the purpose of organizing these six quantities as a

vector space in which one can compute simple Euclidean

distances, we describe the set of scalars as a vector, s, with

components, s1; s2; s3; . . . ; s6. The cell is Selling reduced if all

six components are negative or zero (Delone, 1933). Mini-

mizing among distances computed from alternate paths

between Selling-reduced cells with appropriate sewing at the

six boundaries of the Selling-reduced fundamental region of

S6 yields a computationally sound metric space within which to

do lattice identification, cell database searching and serial

crystallography clustering.

We define two equivalent spaces related to the Selling

reduction: the space of six-dimensional real vectors, S6, or

equivalently the space of three-dimensional complex vectors

C3:

½b � cþ ia � d; a � cþ ib � d; a � bþ ic � d�

or

½s1þ is4; s2þ is5; s3þ is6�:

Although S6 and C3 simply reorganize the same data, some

operations are simpler to visualize in one space than the

other. In some cases, we will choose to show only the simpler

one.

The objective of this paper is to explain how to compute the

distances between lattices using S6 and C3.

2. The space S6

For a Bravais tetrahedron (Bravais, 1850) with defining

vectors a, b, c, d (the edge vectors of the unit cell plus the

negative sum of them), a point in S6 is

½b � c; a � c; a � b; a � d; b � d; c � d�:

A simple example is the orthorhombic unit cell (10, 12, 20, 90,

90, 90) (a, b, c, �, �, �). The corresponding S6 vector is

½0; 0; 0;�100;�144;�400�: ð1Þ

The scalars in S6 are of a single type, unlike cell parameters

(lengths and angles) and unlike G6 (squared lengths and dot

products). Delone et al. (1975) state ‘The Selling parameters

are geometrically fully homogeneous’.

Because there is no crystallographic reason to favor one

ordering of a, b, c, d over another, for any given Selling-

reduced cell there are 24 fully equivalent presentations as S6

vectors generated by the 4� 3� 2� 1 ¼ 24 possible permu-

tations of a, b, c, d (Andrews et al., 2019). To compute a

distance between two different Selling-reduced cells, the least

we will need to do is to compute the minimum of the distances

between one of the cells and the 24 possible permutations of

the other (Andrews et al., 2019).

In addition, because Selling-reduced cells are defined as

having only zero or negative scalars, the space has boundaries

at the transitions to positive scalars. Therefore, if either of the

two different Selling-reduced cells is in the vicinity of a

boundary, we also need to consider the path changes that may

arise from the reduction steps at that boundary. Additional,

lower-dimension boundaries may be implied when scalars

have equal values, but explicit consideration of those in

addition to the permutations and sign-transition boundary

transformations does not appear to be needed.

Some of the properties of S6 are simple. The six base axes

are orthogonal, unlike those of G6 (Andrews & Bernstein,

2014). For example, the matrix projecting onto the s2 axis

is

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
6666664

3
7777775

ð2Þ

and the matrix projecting onto the five-dimensional polytope

(the ‘perp’) spanned by s1; 0; s3; s4; s5; s6 orthogonal to the s2

axis at s2 = 0 is

1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

2
6666664

3
7777775
: ð3Þ
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Table 1
The reflections in S6.

The 24 equivalent positions (Andrews et al., 2019) in S6 as matrices, given in
the same order as the reflections in Table 2.

[ 100000 / 010000 / 001000 / 000100 / 000010 / 000001 ]
[ 100000 / 001000 / 010000 / 000100 / 000001 / 000010 ]
[ 100000 / 000010 / 000001 / 000100 / 010000 / 001000 ]
[ 100000 / 000001 / 000010 / 000100 / 001000 / 010000 ]
[ 010000 / 100000 / 001000 / 000010 / 000100 / 000001 ]
[ 010000 / 001000 / 100000 / 000010 / 000001 / 000100 ]
[ 010000 / 000100 / 000001 / 000010 / 100000 / 001000 ]
[ 010000 / 000001 / 000100 / 000010 / 001000 / 100000 ]
[ 001000 / 100000 / 010000 / 000001 / 000100 / 000010 ]
[ 001000 / 010000 / 100000 / 000001 / 000010 / 000100 ]
[ 001000 / 000100 / 000010 / 000001 / 100000 / 010000 ]
[ 001000 / 000010 / 000100 / 000001 / 010000 / 100000 ]
[ 000100 / 010000 / 000001 / 100000 / 000010 / 001000 ]
[ 000100 / 001000 / 000010 / 100000 / 000001 / 010000 ]
[ 000100 / 000010 / 001000 / 100000 / 010000 / 000001 ]
[ 000100 / 000001 / 010000 / 100000 / 001000 / 000010 ]
[ 000010 / 100000 / 000001 / 010000 / 000100 / 001000 ]
[ 000010 / 001000 / 000100 / 010000 / 000001 / 100000 ]
[ 000010 / 000100 / 001000 / 010000 / 100000 / 000001 ]
[ 000010 / 000001 / 100000 / 010000 / 001000 / 000100 ]
[ 000001 / 100000 / 000010 / 001000 / 000100 / 010000 ]
[ 000001 / 010000 / 000100 / 001000 / 000010 / 100000 ]
[ 000001 / 000100 / 010000 / 001000 / 100000 / 000010 ]
[ 000001 / 000010 / 100000 / 001000 / 010000 / 000100 ]



2.1. The reflections in S6

The 24 equivalent positions (Andrews et al., 2019) in S6 have

corresponding matrices designed to act on S6 vectors to map

them into crystallographically equivalent vectors. For conve-

nience, they are all listed in Table 1. The structure of the set is

clearer in C3. See Table 2, which presents the reflections in the

same order.

The unsorted nature of Selling reduction implies that

distance calculations will need to consider the reflections.

Even if a usable sorting of points in the fundamental unit were

created, at least some of the reflections would still be required

for near-boundary cases.

2.2. Reduction in S6

Lattice reduction is quite simple in S6 (Andrews et al., 2019),

but it has a clearer structure in C3, so it will be treated there

(Section 3.2). Because of the simple nature of S6, the inverse of

each reduction operation is the same as the unreduction

operation, so we term them edge transforms. The matrices in

S6 are unitary, so the metric is the same in each region.

However, the transformation matrices are not diagonal, with

the result that the boundaries are not simple mirrors.

We present the edge transforms as matrices, two for each

scalar; the second line for each is the alternate choice of which

pair to exchange [copied from Andrews et al. (2019)].

For the b � c ¼ 0 boundary

½�1100000=110000=100010=�1100100=101000=100001�

or

½�1100000=100001=101000=�1100100=100010=110000�:

For the a � c ¼ 0 boundary

½110000=0�110000=010100=011000=0�110010=010001�

or

½010001=0�110000=011000=010100=0�110010=110000�:

For the a � b ¼ 0 boundary

½101000=001100=00�11000=011000=001010=00�11001�

or

½001010=011000=00�11000=001100=101000=00�11001�:

For the a � d ¼ 0 boundary

½100�1100=001100=010100=000�1100=000110=000101�

or

½100�1100=010100=001100=000�1100=000101=000110�:

For the b � d ¼ 0 boundary

½001010=0100�110=100010=000110=0000�110=000011�

or

½100010=0100�110=001010=000011=0000�110=000110�:

For the c � d ¼ 0 boundary

½010001=100001=00100�11=000101=000011=00000�11�

or

½100001=010001=00100�11=000011=000101=00000�11�:

2.3. The boundaries in S6

The first type of boundary in S6 is the polytope where one of

the six axes is zero. [Contrast this with G6 (Andrews &

Bernstein, 2014), which has 15 boundaries of several types.]

Obviously, the zeros correspond to unit-cell angles of 90�. In

S6, the zeros mark the regions where components change from

negative to positive, i.e. the place where cells become non-

Selling reduced. A second kind of boundary is where certain

‘opposite’ pairs of scalars are equal; this is more easily

visualized in C3 where those pairs are just the real and

imaginary parts of one complex scalar. These are handled as

‘reflections’ (see Sections 2.1 and 3.1).

The consequence for distance calculations will be that the

reduction operations will be involved in the distance compu-

tations.

3. The space C3

Alternatively, the space S6 can be as represented as C3, a space

of three complex axes. C3 has advantages for understanding

some of the properties of the space. When we compose S6 of

the scalars s1; . . . ; s6, the components of C3 are the pairs of

‘opposite’ (Delone et al., 1975) scalars. In terms of the

elements of S6, a unit cell in C3 is ½s1 þ is4; s2 þ is5; s3 þ is6� .
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Table 2
The reflections in C3.

The 24 equivalent positions (Andrews et al., 2019) in C3 as permuations and
real–imaginary exchanges (X), given in the same order as the equivalent
matrices in Table 1.

[ c1, c2, c3 ] ¼ ½s1; s2; s3� þi½s4; s5; s6�

[ c1, c3; c2 ] ¼ ½s1; s3; s2� þi½s4; s6; s5�

[ c1; Xðc2Þ; Xðc3Þ ] ¼ ½s1; s5; s6� þi½s4; s2; s3�

[ c1; Xðc3Þ; Xðc2Þ ] ¼ ½s1; s6; s5� þi½s4; s3; s2�

[ c2; c1; c3 ] ¼ ½s2; s1; s3� þi½s5; s4; s6�

[ c2; c3; c1 ] ¼ ½s2; s3; s1� þi½s5; s6; s4�

[ c2; Xðc1Þ; Xðc3Þ ] ¼ ½s2; s4; s6� þi½s5; s1; s3�

[ c2; Xðc3Þ; Xðc1Þ ] ¼ ½s2; s6; s4� þi½s5; s3; s1�

[ c3; c1; c2 ] ¼ ½s3; s1; s2� þi½s6; s4; s5�

[ c3; c2; c1 ] ¼ ½s3; s2; s1� þi½s6; s5; s4�

[ c3; Xðc1Þ; Xðc2Þ ] ¼ ½s3; s4; s5� þi½s6; s1; s2�

[ c3; Xðc2Þ; Xðc1Þ ] ¼ ½s3; s5; s4� þi½s6; s2; s1�

[ Xðc1Þ; c2; Xðc3Þ ] ¼ ½s4; s2; s6� þi½s1; s5; s3�

[ Xðc1Þ; c3; Xðc2Þ ] ¼ ½s4; s3; s5� þi½s1; s6; s2�

[ Xðc1Þ; Xðc2Þ; c3 ] ¼ ½s4; s5; s3� þi½s1; s2; s6�

[ Xðc1Þ; Xðc3Þ; c2 ] ¼ ½s4; s6; s2� þi½s1; s3; s5�

[ Xðc2Þ; c1; Xðc3Þ ] ¼ ½s5; s1; s6� þi½s2; s4; s3�

[ Xðc2Þ; c3; Xðc1Þ ] ¼ ½s5; s3; s4� þi½s2; s6; s1�

[ Xðc2Þ; Xðc1Þ; c3 ] ¼ ½s5; s4; s3� þi½s2; s1; s6�

[ Xðc2Þ; Xðc3Þ; c1 ] ¼ ½s5; s6; s1� þi½s2; s3; s4�

[ Xðc3Þ; c1; Xðc2Þ ] ¼ ½s6; s1; s5� þi½s3; s4; s2�

[ Xðc3Þ; c2; Xðc1Þ ] ¼ ½s6; s2; s4� þi½s3; s5; s1�

[ Xðc3Þ; Xðc1Þ; c2 ] ¼ ½s6; s4; s2� þi½s3; s1; s5�

[ Xðc3Þ; Xðc2Þ; c1 ] ¼ ½s6; s5; s1� þi½s3; s2; s4�



The C3 presentation of the vector (1) from Section 2 is

½�100i;�144i;�400i�.

3.1. The reflections in C3

The 24 reflections of the scalars correspond to 24 reflection

operations in C3. First, any pair of C3 coordinates may be

exchanged. The other reflection operation is the exchange of

the real and imaginary parts of each member of any pair of C3

coordinates. We use X (for ‘eXchange’) to denote this

operation. For example, c1 ¼ c1;r þ ic1;i and c3 ¼ c3;r þ ic3;i

can transform to Xðc1Þ ¼ c1;i þ ic1;r and Xðc3Þ ¼ c3;i þ ic3;r.

For complex numbers such an exchange can be effected by

taking the complex conjugate and multiplying by i, so

XðcÞ ¼ ic.

Combining the exchange operation with the coordinate

interchanges in all possible combinations gives the 24 reflec-

tions (including the identity).

Representing the operation of interchanging the real and

imaginary parts of a complex number by X, the 24 reflections

in C3 as permutations of ½c1; c2; c3� are given in Table 2.

3.2. Reduction in C3

In C3, reduction has a more ordered form than in S6.

Consider a general point in C3 with components ca; cn; cx. For

descriptive purposes, let us assume that the imaginary part of

cn is the sole positive scalar, the one we must reduce.

Step 1: subtract the imaginary part of cn from the real part

and change the imaginary part of cn to its negative value.

Step 2: add the original value of the imaginary part of cn to

the real and the imaginary parts of ca and cx.

Step 3: exchange the real part of ca with the imaginary part

of cx. (The alternative choice of exchanging the real part of ca

with the imaginary part of cx is also valid.)

The reduction operations do not commute, which will add

complexity to distance calculations (see Section 4 below). The

two choices are related by one of the reflection operations. For

distance calculations, all of the reflections must be considered,

so the choice will not matter in the end.

3.3. An asymmetric unit in C3

The fundamental unit in S6 and C3 is chosen to be the region

where all six scalars are zero or negative. However, there are

24 representations of a general point in that orthant. C3

provides the possibility of choosing a particular region of the

fundamental unit as the asymmetric unit where there is only a

single representation of the general point (similar to an

asymmetric unit in a space group).

The three components can be sorted by their magnitude.

The second step is to exchange the real and imaginary parts of

c1 so that the real part is less than or equal to the imaginary

part (if necessary); that requires also exchanging c2 or c3.

Finally, c2 has its real and imaginary parts exchanged if

necessary and of course those of c3 also. Note that the ordering

of the real and imaginary parts of c3 is not defined.

S6 does not provide a comparable simple suggestion for an

asymmetric unit with a single unique representation of each

lattice, except by converting to C3 and back.

4. Measuring distance

We require a distance metric that defines the shortest path

among all the representations of two points (lattices).

Common uses of a metric for lattices are searching in data-

bases of unit-cell parameters, finding possible Bravais lattice

types, locating possible suitable molecular replacement

candidates and, recently, clustering of the images from serial

crystallography.

A simple example of the complexity of the task is that we

must decide which of the 24 reflections of one of the points is

the closest to the other point. Using the reduction operations

so that other paths are examined is also required. That the

reduction operations do not commute means that the order of

operations may in some cases be important.

It is also important to note that the necessary examination

of reflections in calculating a distance may undo any time

savings achieved by identification of unique cells in an asym-

metric unit, so it is usually better to work in the full funda-

mental unit, rather than restricting our attention to the

asymmetric unit. In the current work, the full fundamental

unit is always considered.

The non-diagonal nature of reduction operations in this

space means that measuring the distance between points in

different regions of space is not as simple as finding the

Cartesian distance. The edge-transform matrices transform a

point in the fundamental unit to another, non-reduced unit,

one where one scalar is positive. (Continued applications of

the matrices will generate one or two more positive scalars.)

Because of the non-diagonal nature of the matrices, the metric

direction will change between each unit. The simple Euclidean

distance from a point in the fundamental unit to one in

another unit is not necessarily the minimal distance. A path

broken by reflections and reduction transformations may be

shorter. We present two alternative algorithms that do find a

valid minimal distance. See Sections 4.1 and 4.2.

4.1. Measuring distance: virtual Cartesian points (VCPs)

4.1.1. Creating virtual Cartesian points. For a point and a

chosen operator for the reduction, we separate the point into

two vectors: the projection onto the polytope for which the

reduction axis is zero and the perp, the projection onto the

reduction axis. The reduction operation is applied to the

boundary-projected vector, and then the negative of the perp

is added to that result. We call that resulting point the VCP

(see Fig. 1). The goal of creating a VCP is that in measuring

distances to points in the fundamental unit one can use the

Euclidean metric of the fundamental unit.

4.1.2. Using VCPs to determine distance. To begin, the six

VCPs (one for each boundary) are computed for the first of

the two input points. Then the 24 reflections are computed for

those six results plus the initial point itself. The desired
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distance is the minimum of the distances between the second

point and all of the 168 points created in the first step. This is a

one-boundary case. Monte Carlo experiments show that fewer

than 1% of the minimal distances can be improved by two-

boundary solutions and in most cases the difference is less

than 10% (see Fig. 2).

Two-boundary solutions are created by first generating

the same 168 points as in the-one boundary solution. Then

we generate the six VCPs of the second input point and find

the minimal distance between the 168 versus the first point

and the seven points consisting of the six VCPs and the first

point.

4.2. Measuring distance: tunneled mirrored boundaries

An alternative to computing VCPs outside the fundamental

unit is to compute mirror points in the boundaries and to

tunnel between them with the boundary transformations. Start

with points p1 and p2 and one boundary bd, with projector Pbd;

e.g. in Fig. 3 the bd is s1 ¼ 0. A simple mirror for a path from

p1 to bd and then to pd can be constructed from the hypo-

tenuses of the two right triangles with heights equal to the

distances from p1 to bd and p2 to bd, respectively, and legs

made by dividing the line from Pbdðp1Þ to Pbdðp2Þ in the same

proportions. Shorter paths may result by replacing the simple

mirror point mbd with its image mbd0 under a boundary

transformation and applying the 24 reflections both to the

mirror point and to its transformation.

More general tunneling of this type is possible using two

boundaries bddwn with projector Pbddwn
, and bdup with

projector Pbdup

4.3. Measuring distance: example

In order to verify the correctness and completeness of

the implementations of distance algorithms, the ‘Follower’

algorithm was developed. It is implemented in the program

PointDistanceFollower. Two points are chosen, a line

constructed between them and then distances are calculated

from each point along the line to the final point. One of the

choices in the program is to make the final point be the

reduced point of the starting point. The program also provides

timing for the various options (see Fig. 4). Several criteria for

quality control can be applied, such as: zero distance at both

research papers
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Figure 1
Example of a one-boundary virtual Cartesian point distance calculation.
Only the VCP operation is shown, no reflections. Both points p1 and p2

are Selling reduced. The image is the three-dimensional, all-negative
octant of the three S6 axes, s1, s3 and s5; the reduction is done along the s1

axis, and s3 and s5 are the two scalars that will be interchanged. The points
are shown above or below the s3/s5 plane, with their projections onto that
plane marked with a +. To compute the minimal distance between p1 and
p2, begin by computing the Euclidean distance between the two. The s1

reduction transforms p1 into p01, but the metric changes when going from
negative s1 to positive s1, so the simple Euclidean distance may not be
minimal. To generate p1ðVCPÞ to which the distance may be shorter,
project p1 onto the s3/s5 plane, transform that projected point, and
subtract s1 from that point. The distance from p1 to p1ðVCPÞ can now be
used to decide whether it is shorter than the p1 – p2 Euclidean distance.
The best distance for this case is the shorter of the distances between p1

and p2 as opposed to the distance between p1ðVCPÞ and p2.

Figure 2
In this figure, M represents the application of all 24 reflection matrices. V
represents the generation of six virtual Cartesian points from an input
point.

Figure 3
This an example of a one-boundary tunneled mirrored boundary distance
calculation. As with Fig. 1 the 24 reflections are not shown. Both points p1

and p2 are Selling reduced. The image is the three-dimensional, all-
negative octant of the three S6 axes, s1, s3, and s5; the reduction is done
along the s1 axis, and s3 and s5 are the two scalars that will be
interchanged. The points are shown above the s3/s5 plane, with their
projections onto that plane marked with a circled ‘X’. The Euclidean
distance from p1 to p2 is shown as a dotted line. Let mp be the mirror
point on the boundary going from p1 to p2 via the boundary. Then the
shortest distance from p1 to mp to p2 is also shown as a dotted line. The
transformed image of mp is mpx. The distance between p1 and mp is the
same as the distance between a transformed p1 and mpx. There is a no-
cost tunnel from mp to mpx. So the total alternative distance for this case
is the distance between p1 and mp plus the distance from mpx to p2

(shown as a dashed line).



ends of the scan, continuity and only occasional discontinuities

in slope (due to boundary crossings). This figure compares

results from four metrics: S6, G6, D7 and V7.

It can be observed that the V7 metric as seen in Fig. 4 is both

fast to compute and smooth, and that leads one to ask whether

V7 should not be the favored metric. The issue seems to have

not been described well in the literature. For crystallographic

purposes, a smooth metric is not sufficient. We also need

sensitivity to the differences among lattices, especially for

clustering.

The V7 metric (Andrews et al., 1980) was developed for the

purpose of searching databases of unit-cell parameters. It was

developed again by Rodgers & LePage (1992). The designa-

tion as V7 began in the work of Andrews & Bernstein (2014).

The elements of the V7 metric are: the reduced cell lengths, the

reciprocals of the edge lengths of the reduced reciprocal cell,

and the cube root of the volume of the primitive cell. Note that

this definition means that each element has the same units.

Because the edge lengths of reduced cells are stable to

pertubation (Andrews et al., 1980) and the primitive unit-cell

volume is an invariant of the lattice (Andrews & Bernstein,

1995), we can be assured that the V7 metric is stable to

perturbation. In fact, this stability has led to systems where

searches are only done using reduced cell edge lengths (and

perhaps volume) (Mighell & Karen, 1996); obviously such

searches have little to no sensitivity to angle differences.

The core problem with the V7 metric is that the sensitivity

to angles decreases as angles approach 90�. This issue appears

because of the definition of reciprocal cell parameters. For

example, the reciprocal cell parameter a* is defined as:

a� ¼ jbjjcj sinð�Þ=V, where V is the volume of the unit cell.

The issue that arises is that the sine function varies slowly in

the neighborhood of 90�. Sensitivity to angle (cosine, the

derivative of sine) approaches zero as the angle approaches

90�. Unfortunately for us, 90� angles are common in crystals,

rendering V7 an insensitive metric for important regions.

Three issues can be seen immediately. First, if the deriva-

tives are approaching zero, least-squares in V7 is likely to not

perform well in some cases. Second, in the case of database

searches, false-positive reports will be common. For example,

Byram et al. (1996) explicitly describe the problem:

‘Algorithms are designed to ensure that no known unit cells

are missed in the search. The output may sometimes present

numerous candidates for a match, but this can be screened

readily by the researcher and is not considered problematic

since the search is done only once per new crystal studied’.

Third, in clustering, the failure of V7 to distinguish lattices

near 90� can prevent us from creating reasonably homo-

geneous clusters that can be distinguished with S6, G6 or D7.

Of those three, S6 is the fastest.

5. Clustering

This is a time of disruptive change in the image-clustering

methods used in structural biology to understand polymorphs

and dynamics at X-ray free-electron lasers and at synchro-

trons. Serial crystallography is an essential technique at X-ray

free-electron laser (XFEL) light sources and has become an

important technique at synchrotrons as well (Rossmann,

2014), especially at newer high-brilliance beamlines. Methods

that distribute the many diffraction images into clusters that

likely represent crystals composed of proteins in similar states

allow one to separate polymorphs and to categorize their

dynamics. The inexorable increases in brilliance of these

sources drives us to seek continual improvement in our

algorithms and pipelines.

Clustering based on cell parameters is effective at the early

stages of clustering when dealing with partial data sets. Here

the Andrews–Bernstein NCDist cell-distance method

(Andrews & Bernstein, 2014) used by Zeldin et al. (2015) is

effective. One might investigate other criteria such as differ-

ences of Wilson plots to measure similarities of data (Foadi et

al., 2013). When the original data are complete (>75% today

for similar applications), or one wants to achieve higher levels

of completeness, one can cluster on correlation of intensities

(CC, which stands for ‘correlation coefficient’) (Bernstein et

al., 2017). Changing the space being used from G6 with

NCDist to S6 provides a significant performance improve-

ment.

While NCDist has been effective for clustering, the original

implementation is very demanding of computational

resources. The development of CS6Dist, a macro-based S6 cell

distance method, has improved cluster timing, both indirectly

for NCDist by first reducing with S6 before finishing with

Niggli reduction, and directly by computing S6 distances in

which only six boundaries need to be considered instead of G6

distances in which 15 boundaries need to be considered. Use

of S6 distances results in identical or qualitatively very similar

598 Lawrence C. Andrews et al. � Selling reduction Acta Cryst. (2019). A75, 593–599

research papers

Figure 4
Distance between points using the Follower algorithm. To verify the
distance algorithms, the ‘Follower’ algorithm has been developed.
Follower chooses two points and determines the distance between one
of them and all of the points on a line between the two original points.
Here, one unreduced point is chosen and the second point is the reduced
point of that point. So the distance between the original point and the
final point is zero. Distances are shown for the G6 metric (Andrews &
Bernstein, 2014), the V7 metric (Andrews et al., 1980), the D7 metric
(Andrews et al., 2019), and the two implementations in S6. Timing in ms:
G6 (NCDist) 4542, D7 676, V7 7, S6Dist 394, CS6Dist 14.



dendrograms of cluster candidates obtained using G6. For

example, the commonly used CCP4 clustering program Blend

(Foadi et al., 2013) has been modified to use S6 reduction and

CS6Dist distances and tested on a set of 71 lysozyme 5�

wedges from a slightly doped crystal, comparing NCDist and

CS6Dist timing, on a 12-core, 24-thread AMD Ryzen

threadripper system. The NCDist run took 28 s real time and

72 s user time. The CS6Dist run took 25 s real time and 40 s

user time. The results were identical. This example and more

challenging examples of the application of S6 in clustering will

be discussed in more detail in a subsequent paper.

6. Summary

We have presented representations of a space (parameterized

as S6 and C3) based on the Selling parameters and using the

Selling reduction. Geometrically, this represents a significant

simplification compared with the complex, non-convex asym-

metric unit of Niggli reduction and G6.

Conceptually, there is simplification due to the orthogonal

rather than inclined axes and single type of boundary of the

reduced cell fundamental unit. Reasoning is simpler in such a

Cartesian system. For one thing, there are fewer and simpler

boundaries to the fundamental unit.

Distance calculations are faster in S6 than in G6. This is due

to the simpler structure of the space which leads to simpler

algorithms. Niggli reduction sorts the cell parameters, elim-

inating the 24-fold ambiguity that remains in Selling reduction.

However, that advantage disappears when computing

distances because it is still necessary to examine the same edge

cases. Selling reduction saves time both for the reduction, and,

more importantly, for the calculation of distances among

lattices in lattice identification, in cell databases, and in cell

clustering.

7. Availability of code

The C++ code for distance calculations in S6 is available using

https://github.com/; for CS6Dist.h, use https://github.com/

yayahjb/ncdist; for PointDistanceFollower (Follower imple-

mentation), S6Dist.h and .cpp, use https://github.com/duck10/

LatticeRepLib.
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