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ABSTRACT OF THE DISSERTATION 

 

Chromosomal Position Effects  

on Gene Expression Variability and Epigenetic Drug Sensitivity 

 

by  

 

Thanutra Zhang 

 Doctor of Philosophy in Molecular, Cellular and Integrative Physiology 

University of California, Los Angeles, 2019 

Professor Roy Wollman, Chair 

Chromosomal position effect, also known as position effect variegation, has been extensively 

studied for almost a century. A systematic approach to study positional effect is to isolate genetic 

from epigenetic factors specifically to measure the expression of the same gene positioned in 

different chromatin contexts. Current strategies to target a reporter gene at multiple genomic 

locations are not capable of increasing both the sensitivity and throughput of data.  Here, we 

developed a new massively parallel method to create and identify isogenic reporter clones. This 

method allowed us to interrogate the effect of chromatin environment on gene expression 

variability and epigenetic drug sensitivity as well as identify their underlying mechanisms. In 

human cells, we found that the protein expression mean and noise significantly are varied by the 

genomic location of the gene. By mapping our measurements of reporter expression at different 

genomic loci with epigenetic profiles of the transcription factor enrichment and the distance to 

chromatin states, we identified the factors that impact gene regulation. Some factors are involved 
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in mediating both gene expression mean and noise, while other only control one of these features. 

Moreover, we discovered wide-spread loci-specific sensitivities to epigenetic drugs for three 

distinct chemical compounds that target histone deacetylase, DNA methylation and bromodomain 

proteins. By leveraging ENCODE data on chromatin modification, we identified features of 

chromatin environments that are most likely to be affected by these epigenetic drugs. 
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CHAPTER 1  

Introduction 

Chromosomal position effect 

Eukaryotic transcriptional cpntrol is a complex process with multiple layers of regulation 

orchestrating a sophisticated network of signals and responses. It involves the coordination of 

sequence specific transcription factors, chromatin remodelers, epigenetic modifiers and long-range 

chromatin interactions between promoters and enhancers through chromatin looping factors [1–3]. 

Moreover, non-coding RNAs, such as enhancer RNAs and long non-coding RNAs [4,5], have also 

been implicated in regulation of transcription. Our understanding of the interplay between these 

regulatory players is still far from completed. One powerful tool to explore the effects of regulatory 

elements and local chromatin context on gene expression is to insert reporter genes into different 

genomic regions as a sensor. It has been long observed that the behavior of integrated reporters 

varies greatly depending on their positions in the genome and this phenomenon is called 'position 

effect' [6–9]. 

 Currently, there are two main strategies to study chromosomal position effect. One is to 

either target reporter genes to selected genomic loci or randomly insert the reporters into host 

genome using stable transfection, or transposon- and viral-based delivery [10–15]. The bottleneck 

of this method comes from the process of validating targeted insertions or establishing clonal cell 

line and characterizing the integrated location of reporters, making this approach laborious and not 

scalable. Another strategy is to combine the traditional transgene reporter assay with synthetic 
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barcoding technology and next generation sequencing to circumvent the need of isolating clonal 

cell lines. The examples of this advanced approach include Thousands of Reporters Integrated in 

Parallel (TRIP) [16], Barcoded HIV ensembles (B-HIVE) [17], and parallel targeting of 

chromosome positions by massively parallel reporter assay (patchMPRA) [18]. The advantage of 

these methods is the throughput since they can probe the influence of chromatin environment on 

multifaceted aspects of gene regulation at hundreds to thousands of genomic sites. However, there 

is a trade off from using this strategy such as the ability to generate single-cell data. As a result, 

our understanding of chromosomal position effects on several aspects of gene regulation, such as 

the stochasticity in gene expression, remains elusive. 

 

Next Generation Sequencing and its application 

Early DNA sequencing technologies were developed in the late 1970s by Maxam and 

Gilbert [19,20] and Sanger and colleagues [21] using a method known as fragmentation or 

wandering-spot analysis and the chain termination, respectively. Since then, Sanger sequencing 

which is less toxic than Maxam and Gilbert's method has remained the most commonly used DNA 

sequencing technique to date and revolutionized biology by providing the tools to decipher 

complete genes and, later, entire genomes [22]. Lately, the Sanger method has been gradually 

superseded by several “next-generation” sequencing technologies that offer significant increases 

in cost-effective sequence throughput. The well-known next-generation technologies available 

nowadays include the 454 pyrosequencing based instrument [23] (Roche Applied Science), Solexa 

[24,25] (Illumina), SOLiD and Agencourt [26,27] (Applied Biosystems), Heliscope [28,29] 

(Helicos) and Ion Torrent (founded by Rothberg).  
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The applications of next generation sequencing (NGS) are beyond simple genome 

sequencing. Two of the highest impact areas are transcriptome analysis and genome-wide mapping 

of epigenetic markers and DNA regulatory elements at high resolution. The NGS-based RNA seq 

has transformed our view of the complex and dynamic nature of the transcriptome. It provides a 

more detailed and quantitative aspect of gene expression, alternative splicing, and allele-specific 

expression [30,31]. Deep sequencing when integrated with Chromatin Immunoprecipitation (ChIP) 

has become a powerful tool to reveal the location of chromatin modifications, transcription factor-

bound sites and open region of genome. ChIP–seq has enabled tremendous progress in epigenetic 

research [32].  

In this dissertation 

 Given that currently available tools to study chromosomal position effect are not capable 

of measuring single cell data in massive and parallel manner, we were motivated to develop a 

novel tool to massively establish and characterize clonal lines of reporters by integrating multiple 

advanced high-throughput technologies, such as synthetic barcode, next generation sequencing 

and high throughput flow cytometry, into a single pipeline. Furthermore, we aimed to use this tool 

to examine chromosomal position effects on gene expression variability and epigenetic drug 

sensitivity and identify their underlying molecular mechanisms.   
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CHAPTER 2 

Identifying chromatin features that regulate gene 

expression distribution 

 

Abstract 

 Gene expression variability is ubiquitous across diverse organisms with broad impacts on 

multiple levels of biological system from affecting the function of transcriptional regulatory 

networks to originating phenotypic variations. However, the underlying mechanisms that modulate 

expression noise in higher eukaryotic cells are still poorly understood. Here we addressed this 

problem through a systematic investigation of molecular contributors to fluctuation in gene 

expression. Using DNA barcoding and split pool decoding, we created a large library of isogenic 

reporter clones and identified reporter integration sites in a massive and parallel manner. By 

mapping our measurements of reporter expression at different genomic loci with multiple 

epigenetic profiles including the enrichment of transcription factors and the distance to different 

chromatin states, we identified key factors that impact regulation of gene expression 

distributions.     
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Introduction 

Fluctuation in gene expression, also termed gene expression noise, is prevalent across 

multiple organisms ranging from bacteria to mammalian cells [1,2]. Expression noise within 

genetically identical cells drive phenotypic variation which is important for many biological 

processes including multicellular development, cell differentiation and lineage decisions, viral 

decision making as well as bacteria and cancer cell survival during environmental stress [3–9]. 

Factors contributing to cell-to-cell variability are generally classified into intrinsic and extrinsic 

noise [10,11]. Lately, our understanding of the molecular regulatory mechanisms underlying the 

stochasticity in gene expression is increasing. Several lines of evidence support significant roles 

in expression noise for  the presence of TATA-box [12–15], nucleosome occupancy and chromatin 

remodeling [11,16–18], transcriptional pausing [19,20], chromatin epigenetics [21–25] and 

concentration of transcription factors [26,27]. Nonetheless, the lack of systematic interrogating the 

contribution of genomic location to expression variability limits our understanding of the 

underlying molecular factors.  

The influence of local chromatin environment on gene regulation or position-effect 

variegation has been extensively studied since the classical work in Drosophila eyes in 1930s [28–

32]. Although, previous studies mostly examined such effects on averaged mRNA or protein 

productions, positional effects on the heterogeneity of expression is understudied. The pioneering 

work that addresses this question in a systematic manner was done by Chen and Zhang in 

Saccharomyces cerevisiae and suggests the association between expression noise and three histone 

modifications, H3K4me1, H3K4me3 and H3K79me3 [33]. Even though yeast and mammals share 

several features of transcription regulatory mechanisms, there are substantial differences in the 
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complexity of genomes between these two [34–36]. The yeast genome, which consists of ~12 Mb, 

is extremely compact while human genome is much bigger, or about 275 times the size of the 

genome of yeast and contains large amounts of noncoding DNA [37–39]. Considering additional 

differences in large-scale chromatin dynamics such as long-range chromatin interactions and 

higher-order chromatin structure, using yeast as a model system to study expression variability 

may hinder the finding of underlying mechanisms specific to complex genome structure in higher 

eukaryotes. For example, CTCF, a transcription factor conserved from fly to human but absent 

from yeast [40,41], is a critical regulator who creates boundaries between topologically associating 

domains (TAD) and regulates gene expression variability through mediating enhancer-promoter 

interaction [42–44]. Recently, Dar et al and Dey et al addressed the question of the control of 

expression noise at different genomic loci in human cell line. However, the genomic positions 

where reporters integrated were not identified, thus limited the study of the mechanisms behind 

the observed position effects [18,45] 

To specifically investigate positional effects on both expression average and variability, 

controlling of genetic sequence as well as the measurement at single-cell resolution are required. 

Two traditional approaches including targeted integration of reporters at selected genomic 

locations or random insertion of reporters from transposon- or virus-based transfection, followed 

by reporter mapping can be used [33,46–50]. However, both methods are very laborious and not 

easy to scale up. Over the last few decades, advances in DNA synthesis and next-generation 

sequencing technologies (NGS) offer novel and rapid ways to interrogate chromosomal position 

effects on the scale of thousands of positions [51,52]. Nevertheless, these methods only allow the 

measurement of populational mRNA average from each location but do not provide information 

about expression variability, another important feature of gene regulation.  
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In this study, we utilized a high-throughput method to build and characterize a library of 

isogenic clones as a platform to study the positional effects on gene expression and heterogeneity 

at a large number of genomic loci. Significant levels of positional effects on both expression mean 

and variability were observed across human K562 cells. By leveraging publicly available data of 

the K562 epigenomic mapping to our reporter measurement, we identified and decomposed the 

factors that control gene expression mean and noise. Our findings provide a deeper understanding 

of the mechanisms underlying the stochasticity in gene expression and shed light on novel 

therapeutic strategy for expression-noise related diseases in humans. 

 

Result 

High-throughput generation and identification of isoclonal reporter clones  

To obtain genomic scale data on the effect of chromatin environment on gene expression 

variability, a new high-throughput method was developed to facilitate the creation and 

identification of isogenic reporter clones in a massively parallel and highly scalable manner. The 

overview of our method is visualized in Figure 2.1. Briefly, the principle of this method involves 

tagging individual genomic location with the reporter cassette that contains a unique 16-nucleotide 

DNA barcode and fluorescent reporter mClover driven by CMV promoter. These barcodes serve 

as molecular identifiers for mapping the genomic location of the reporter in individual isogenic 

clones. The barcoded reporters were introduced into K562 cells through lentiviral transduction 

with low multiplicity of infection (MOI) to ensure single integration of reporter per cell. The 

founder cells were sorted by fluorescence activated cell sorter (FACS) and expanded for two weeks 
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and then split into two groups. The first group was used to establish isogenic clones and identify 

their corresponding barcodes through combinatorial pooled sequencing [53–55]. Particularly, 

clonal identity is transformed into unique pooling pattern. Each signature when matched with the 

appearance pattern of a specific barcode, demultiplexed from sequencing reads of pooled samples, 

will reveal DNA sequence of the barcode belonging to that clone. Once clonal lines were 

established, the measurements of reporter expression were performed by high-throughput flow 

cytometry, providing the information of gene expression distribution of each barcoded reporter. 

The other half of the founder cells was used for parallel mapping of reporter integration sites by 

applying Thousands of Reporters Integrated in Parallel (TRIP) method [51] which is based on 

inverse PCR [56] coupled with next generation sequencing. After matching detected location of 

barcodes with the database of K562 epigenetic profiles, information about local chromatin 

landscape surrounding each barcode was obtained. We confirmed the accuracy of our method 

through analysis of randomly picked 5 clones of barcoded cells, extracted genomic DNA, 

performed targeted PCR and Sanger sequenced. As expected, all revealed barcodes from Sanger 

sequencing matched with those deconvoluted from combinatorial pooled sequencing. We coupled 

these two measurements to generate large scale data for investigating the effect of chromatin 

environment on gene expression variability and interrogating the underlying molecular 

mechanisms.  
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Figure 2.1 Protocol for scalable and parallel measurement of expression distribution and genomic 

position of reporter genes. 

Two high-throughput methods were connected by incorporating random 16-bp DNA barcodes in the 

reporter cassette containing identical CMV promoter and a gene coding for fluorescent protein Clover. 

Synthetic reporter was introduced into K562 cells through low m.o.i. lentiviral transduction. Pooled 

identification of the genomic position of reporter genes based on the unique DNA barcode using TRIP 

method. Extracted genomic DNA of mixed founder cells was digested with MspI and followed by inverse 

PCR and deep sequencing. The creation of isogenic cell line, the identification of the DNA barcode 

sequence unique to each cell line using combinatorial pooled sequencing and the measurement of reporter 

expression distribution by high-throughput flow cytometry. The coupling of these two measurements allow 

the generation of large-scale data on the effect of chromatin environment on gene expression variability 
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Positional effects on multiple features of gene expression 

In order to achieve sufficient statistical power to predict the molecular contributors 

underlying each feature of gene expression, we generated a library of reporter cells on the scale of 

hundreds of isogenic clones. About thirty percent of cell lines that we established lost reporter 

expression after two weeks of clonal expansion suggesting their insertions into heterochromatic 

environments [57]. Since we focus on gene expression variability, these non-expressing clones 

were excluded from future analysis yielding a total of 90 isogenic clones with confidently mapped 

reporters.  

Established isogenic clones were next profiled for reporter expression at single-cell 

resolution by high-throughput flow cytometry. Specifically, three measurements were performed 

on three different experimental dates for each clone. We monitored and controlled batch effects 

between measurement by co-culturing control cells expressing both Clover and IRFP protein with 

experimental clones.  Forward scatter (FSC), side scatter (SSC), Clover signal and IRFP signal of 

50,000 lived cells were collected. To minimize extrinsic noise from differences in cell size, volume 

and cycle, a very conservative gating on the FSC versus SSC for a subset of live cells was applied. 

Such conservative gate approach is a validated method previously used in several studies to 

attenuate extrinsic noise [58–61]. Clover intensity of experimental clones was isolated from 

internal control cells by IRFP gating and calculated for expression average and noise (Figure2.2A). 

We chose to quantify protein expression noise by the squared coefficient of variation (CV2), which 

is defined as the ratio of variance over the mean squared, as it was widely used in several 

experimental systems and studies of gene expression noise [58,62–65].  
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(Legend on next page) 

Figure 2.2: Gene expression distribution of a library of isogenic cell lines expressing CMV driven 

mClover fluorescent reporter shows dramatic gene expression variability. 
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Figure 2.2: Gene expression distribution of a library of isogenic cell lines expressing CMV driven 

mClover fluorescent reporter shows dramatic gene expression variability.  

(A) Reporter expression at the single-cell level was measured by high-throughput flow cytometry for three 

replicates. A very conservative gate controlling cell size,volume and cycle was applied to 50,000 live cells 

collected from each isogenic clone to minimize extrinsic noises. Gene expression variation can be 

quantified by CV2 which is a measure of noise independent of gene expression levels. (B) Stacked 

probability density function of log10 expression of mClover in 90 cell lines.  Each row in the heatmap 

represents a single histogram with the probability density function colorcoded. (C) Examples of the 

histogram of 30 cell lines from the top (red), middle (yellow), and bottom (green) of the stack in B. By 

comparing these histograms, it clearly shows dramatic difference in expression distribution across different 

genome positions. (D-E)  The mean (D) and noise (E) of Clover levels in 90 isogenic clones. Each point 

represents averaged fluorescence intensity(D) or the intrinsic noise CV2 (E) of Clover of a single reporter 

clone representing the data from one specific genome location.  (F-G) The mean(F) and noise(G) of Clover 

expression of each isogenic clone is plotted for two measurement replicates (Spearman's rank-order 

correlation coefficient is 0.98 for expression mean (F) and 0.82 for expression noise (G); both axes are in 

logarithmic scale). Each measurement was performed independently on different experimental setup and 

dates.  

 

A direct comparison of reporter expression across 90 clones show dramatic variability in 

the distribution of Clover protein (Figure 2.2B and 2.2C). We observed ~1000-fold difference in 

mean reporter protein level between the dimmest and the brightest clone (Figure 2.2D). 

Importantly, our data demonstrates that the stochasticity in gene expression is also position 

dependent (Figure 2.2E). Reporter expression noise from CMV promoter is altered more than 300 

times by their positions. The CV2 of the most variable clone is ~ 85 while the quietest one is only 

~0.25. Expression data are highly correlated between independent measurements (Figure 2.2F and 

2.2G) suggesting that extrinsic noise factors cannot explain such positional difference. Moreover, 

expression distributions of internal control cells are highly consistent across 90 clones discounting 

the possibility that observed effects arise from technical noises due to culture condition.    

Our data show comparable level of the positional variation in expression average and 

variability when compared with other studies using higher eukaryotes as a model system [45,51]. 

However, much smaller chromosomal position effects were suggested in other studies carried out 
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in bacteria or yeast [31,33,50]. This discrepancy may come from their large and complex genome 

organization. However, we cannot rule out the possibility that come from differences in 

experimental design and techniques. Overall, our data suggests significant contribution of position 

effects on multiple features of gene control. 

Integrative analysis of transcription factors on differential control of expression mean and 

noise  

To better understand the molecular mechanisms underlying the position effects on 

expression level and noise, we integrated publicly available high-quality ChIP-seq data from 

ENCODE [66,67] with our measurement data. Specifically, a window of 50 kilobases surrounding 

the position of each barcode was calculated for the enrichment of transcription factor (TF) (Figure 

2.3A). The Spearman rank correlation coefficient between TF enrichment and expression mean 

and noise measured by our assay was calculated. From about two hundred tested transcription 

factors, only a small number of them showed moderately positive or negative correlation with 

expression mean and noise (Figure 2.3B).   

To identify a subset of TFs that play a role in gene expression, we used a multivariate linear 

regression analysis with stepwise procedure to determine the terms in the model to integratively 

identify the most likely candidate transcription factors linked to our reporter activities. Model 

selection approach was essential due to the large number of TFs with high quality ChIP-seq data 

publicly available. This approach identified a set of transcription factors that statistically explain 

the reporter expression average and noise, with an estimate of their relative contribution to the 

predictive power of the model (Figure 2.3C, 2.3D). Interestingly, we found transcription factors 
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controlling reporter expression average do not always mutually regulate expression noise (Figure 

2.3D) and suggests specific factors that orthogonally control two features of gene regulation. 

Many of the identified contributing transcription factors have functions involved in 

chromatin remodeling and transcriptional activation or repression. For example, GATAD2B is one 

of the factors contributing to the level of reporter expression average. Higher enrichment of this 

TF is correlated with lower mean of reporter expression.  GATAD2B, encoded from the human 

GATA zinc finger domain containing 2B is beta‐subunit of the transcription repressor complex 

MeCP1‐Mi2/nucleosome remodeling and deacetylase complex that involved in chromatin 

modification and transcription activity [68–70]. TRIM24, on the other hand, has an opposite effect 

on reporter expression average. Higher enrichment of this TF is associated with increased reporter 

expression. Previous studies have reported TRIM24 as a transcriptional activator in various 

signaling pathways [71–73].  

Moreover, our results also suggest the role of pioneer transcription factor in gene 

expression noise. For instance, FOXA1, forkhead box protein A, significantly correlates with the 

variability of reporter expression. This transcription factor is postulated to have unique properties 

that allow them to interact with closed nucleosome arrays, initiate epigenetic switch and thereby 

open condensed chromatin structures [74–77]. Additionally, we found POU5F1, also known as 

OCT4, is related with high expression noise. POU5F1 possess DNA binding domain that differ 

from that of FoxA, but also preferentially target silent sites enriched for nucleosomes. As a result, 

its pioneer activity can initiate cell-fate changes [78,79]. Accordingly, a previous study found 

genes with super-enhancers that are densely occupied by POU5F1 have unusually high cell-to-cell 

expression variation [80]. 
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Figure 2.3 Identification of key transcription factors associated with reporter expression levels and 

noises using multivariate linear regression analysis 
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Figure2.3: Identification of key transcription factors associated with reporter expression levels and 

noises using multivariate linear regression analysis 

(A) View of the barcode 29 locus on chromosome 1. Genome coordinate of each barcode was obtained 

from conducting TRIP experiment. Six examples of normalized ChIP-seq signal profile of transcription 

factor surrounding the integration site of the barcode 29 were visualized for a domain of 50 kb. (B) The 

heatmap showing the correlation between the enrichment of transcription factors and reporter expression 

mean and noise. Transcription factors with Spearman's rank-order correlation coefficient more than 0.25 

were selected from over 200 tested transcription factors. (C-D) To understand the relationship between the 

enrichment of TF and the expression levels(C) and noise(D) of reporter in an integrative way, we selected 

transcription factors showing significant correlation in B to fit multivariate linear regression model. 

Features with significant level above the threshold or dashed line (p<0.05) contributed significantly to the 

model. (E) A Venn diagram listing transcription factors contributing to reporter expression mean (green) 

and noise (red).  

 

Distance to chromatin states influences expression mean and CV2  

K562 cell line is a well-established model for studies of chromatin regulation and has the 

largest number of publicly available datasets generated mainly by the ENCODE project [81]. 

Although the individual data track of epigenetic mark and regulatory element is informative, the 

systematic annotations derived from their interrelations contain higher level information and 

provide deeper insight into the functional element of genome. Therefore, we examined the 

influence of chromatin states on reporter expression level. Chromatin states of K562 used in our 

analysis were learned by computationally integrating ENCODE ChIP-seq, DNase-seq, and 

FAIRE-seq data using a Hidden Markov Model (HMM) [82]. Whole genome of K562 were 

segment into twenty-five states according to the combination of multiple epigenetic marks and 

these states were then classified into ten predicted functional elements including active promoter 

(Tss,TssF), promoter flanking (PromF), inactive promoter (PromP), candidate strong enhancer 

(Enh, EnhF), candidate strong enhancer or DNase (EnhWF, EnhW, DNaseD, DNaseU, FaireW), 

distal CTCF or candidate insulator (Ctcf, CtcfO), transcription associated (Gen5’, Elon, ElonW, 
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Figure 2.4 Distance to specific chromatin states influences expression mean and variance 

Gen3’, Pol2, H4K20), low activity proximal to active states (Low), polycomb repressed (ReprD, 

Repr, ReprW) and heterochromatin (Quies, Art) [83].  

 

(A) Nearest distance from the barcode location to each chromatin state segmented by ChromHMM 

method was calculated. (B) The correlation plot between distance to specific chromatin state and 

reporter expression mean or noise. (C) Multivariate linear regression model was used to determine 

significant chromatin states influencing reporter expression mean and noise. 
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We calculated the nearest distance between reporter location to each chromatin state 

(Figure 2.4A) and applied multivariate linear regression to collectively investigate the contribution 

of the distance of chromatin state to reporter expression (Figure 2.4C). We found reporter 

expression average was significantly associated with the distance to the following states: H4K20, 

PromP, Quies, EnhWF, Low, CtcfO, ReprW, Repr, EnhW, ReprD, Gen5p, FaireW, and Gen3p 

respectively. Only a subset of these chromatin states displayed their connection with reporter 

expression noise. The significant contributors to expression noise include chromatin state Gen3p, 

Low, PromP, ReprD, EnhWF, Pol2, Quies, FaireW, TssF and Repr successively. We found the 

distance to chromatin state H4K20 and CtcfO is highly associated with gene expression mean but 

not the noise. Reporter genes located closer to CtcfO trend to have higher averaged gene expression. 

CtcfO is highly enriched in CTCF, PolymeraseII, H3K4me1 and a marker of opened chromatin 

(DNase). Oppositely, closer distance to H4K20 is likely to decrease expression mean (Figure 2.4B). 

This relationship is in agreement with several studies previously found the role of H4K20 

methylation in transcriptional repression and gene silencing [84–86].    

Interestingly, two chromatin states that are highly associated with expression noise 

detected by our assays (Figure 2.4B) are linked with bivalent chromatin structure. PromP is ‘poised 

promoter’ and associated with both the active H3K4me3 mark and the polycomb-repressed 

H3K27me3 modification. ChromHMM state ReprD has a relatively high frequency of H3K27me3 

and DNase sensitivity. Recently, two research groups have reported conflicting chromatin states 

as one of the determinants of high noise in gene expression [20,80]. Therefore, our results are 

consistent with previous studies. Moreover, we also found highly significant contribution of the 

distance to chromatin state Pol2 and Gen3p to gene expression noise exclusively. Although these 

two states possess similar profiles of high Polymerase II enrichment and relatively open chromatin 
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structure, the contrasting effects on expression noise were observed. Gen3p state is associated with 

high expression noise and Pol2 state is vice versa. The key differences of epigenetic marks between 

these two states are H3K36me3 and H4K20me1 suggesting their roles in enhancing noise in gene 

expression.        

 

Discussion 

Here, we developed a new method to investigate the underlying factors controlling gene 

expression mean and variability in the human genome (Figure 2.1). We showed that the insertion 

site affects both features of gene expression (Figure 2.2). Mechanistic insights related to the factors 

underlying expression mean and variance noise were gleaned by leveraging multiple epigenetic 

profiles with our measurement data (Figure 2.3 and 2.4). Overall, our results provide new insights 

into chromatin factors that contribute to regulation of gene expression and highlights 

the importance of chromosomal context in gene regulation.  

Our results illustrate the power of combining two high throughput sequencing based tools. 

TRIP has high capacity of revealing several thousands of barcodes in a single run of deep 

sequencing while the use of combinatorial pooled sequencing eliminates the process of individual 

genomic extraction and PCR amplification per clones which significantly decreases both the cost 

and time for sequencing preparation. Moreover, our approach is highly scalable. Identification of 

thousands of clones can be achieved by only tens of genomic extraction and PCR through encoding 

clone identity in a format of pooling pattern. For instance, 24-choose-4 or 10,626 cell lines can be 

pooled into 24 flasks in a specific combinatorial pattern such that each cell line is combined into a 

unique subset of exactly four flasks out of the 24 flasks. Therefore, the only limit of scale is 
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pipetting time to pool cell lines and measure gene expression. This bottleneck can be overcome by 

more advanced robotic pipettor [87].  

  The discovery of DNA methylation and histone post-translational modifications has led to 

extensive studies on the impact of epigenetic modifications on gene regulation. Although, earlier 

studies generally considered each modification as a simple code, further exploration revealed 

complex patterns of their combinations. Recently, the concept of chromatin state, defined by the 

combinatorial presence and absence of multiple marks, has been introduced into epigenetic field 

to facilitate the functional interpretations of distinctive genome characteristics. Intuitively, local 

chromatin environment can be viewed as a unique combination of these basic building blocks. Yet 

how diversifying the organization of these blocks affect gene expression remains elusive. By 

directly quantifying the relationship between the distance to chromatin states and gene regulation, 

we are able to provide functional annotation to chromatin state in a way that is not influenced by 

the underlying DNA sequence. Our analysis recapitulates the previously reported roles of bivalent 

chromatin on gene expression variability. Additionally, we found that the distance to chromatin 

states CtcfO and H4K20 independently control reporter expression mean, while the distance to 

chromatin states Pol2 and Gen3P solely control reporter expression noise. Further investigation 

should focus on the mechanistic roles of H3K36me3 and H4K20me1 in gene expression variability. 

Since previous studies have observed that these two marks could regulate RNAPII-catalyzed 

transcription elongation by recruiting specific elongation inhibitors and enabling dynamic change 

in chromatin compaction [88–91], it is possible that modifying these histone marks could control 

gene expression noise through adjusting transcriptional elongation rate.  

Chromatin regulation of gene expression is a highly complex process that is tightly 

coordinated with a numerous number of transcription factors. It is now widely accepted that 
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transcription factors modulate gene expression through multiple modes of mechanism that are not 

restricted to their co-binding at enhancers, suppressors and promoters. They also play architectural 

roles, activate chromatin remodeling and block nucleosome repositioning [92]. However, there is 

still limited understanding of the link between transcription factor and stochasticity in gene 

expression. Our result showing the contribution of various transcription factors on gene expression 

distribution provide important data to this fundamental question. Interesting, we found several 

pioneer transcription factors underlie expression noise observed in our study.  A better 

understanding of genetic characteristics and genomic domain that favor the binding of those 

pioneer factors will shed light on detailed mechanisms of how chromatins connect with 

transcription factors to modulate gene expression. 

We noted that transcription factors found to influence reporter expression mean and noise 

in our study might be specific to CMV promoter. Future work that generalizes our findings to other 

promoters is an important next step.  The methodological advantages in the creation of scalable 

assays we describe will be key to addressing these issues.  Another key limitation of our results is 

that they are only based on correlation without direct establishment of causation. It is possible that 

fluctuations in gene expression cause specific recruitment of histone. Specific manipulation of 

chromatin state followed by functional assessment of change in reporter gene expression will be 

needed to address this question. Nonetheless, given the complexity of chromatin states and the 

technical challenges associated with their manipulation the initial step of establishment of 

correlation is vital first step in this path.   

Overall, our studies provide unprecedented genome-wide information of position effect on 

gene expression distribution in human genome and uncover the molecular and mechanistic basis 

of the position effects. New results in this study not only deepen our understanding of the 
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regulation of gene expression noise in higher eukaryotes genome, but also have potential 

implications for the development of novel method to tune transcriptional stochasticity.  
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Material and methods 

Cell Lines 

K562 cells were maintained in RPMI media (Gibco) supplemented with 10% FBS (Gibco), 1% 

GlutaMAX(Gibco) and 1% Penicillin Streptomycin. Cells were grown at 37 °C in an incubator 

with 5% CO2. HEK 293T cells for viral packing were grown under the same conditions in DMEM 

(Gibco) supplemented with 10% FBS (Gibco), 1% GlutaMAX(Gibco) and 1% Penicillin 

Streptomycin. 

Library construction of barcoded reporter plasmid  

The master plasmid excluding barcode was first constructed to contain the following 

essential elements. Lentiviral production units include HIV-1 truncated 5’ LTR, HIV-1 packaging 

signal, HIV-1 Rev response element (RRE), HIV-1 truncated 3’ LTR and Central polypurine tract 

(cPPT). These components allow proper viral packaging and viral integration into host cells. As a 

transcription unit, we used cytomegalovirus promoter (CMV) to drive expression of the reporter 

gene encoding yellow-green fluorescent protein (mClover). Woodchuck hepatitis virus 

posttranscriptional regulatory element (WPRE) is placed after mClover to enhances mRNA 

stability and protein yield. Ampicillin resistance gene (β-lactamase) is included for selection of 

plasmid in bacterial cells.  

To generate barcoded plasmid libraries, based lentiviral plasmid was cut upstream of the 

CMV promoter by ClaI restriction enzyme and purified by ethanol precipitation. The inserted 

cassette of 127-bp-long oligonucleotide containing a random 16-bp-long barcode sequence 

(repeats of A,T and G), MspI site, primer priming site and homology arms, were synthesized by 

Integrated DNA Technology. The assembly reaction of 1:5 vector:insert ratio was carried out for 
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1 hour at 50 °C using NEBuilder HIFI DNA assembly kit (New England Biolabs, NEB). Assembly 

products were electroporated into NEB Turbo Competent E.Coli (NEB) and then plated on 

ampicillin-containing medium. Ampicillin resistant colonies were collected and extracted for 

plasmids using Maxiprep kit (Invitrogen). Ten sampling clones from the agar plate were analyzed 

by PCR with forward primer, GATCCTGTAGAACTCTGAACCT, and reverse primer, 

AGTCGGTGTCTTCTATGGAG, and Sanger sequencing to verify successful cassette insertion 

and barcode diversity.  

Generation of reporter cell lines 

The lentiviral library carrying the barcoded reporter cassettes was used to transduce into K562 

cells at a multiplicity of infection of 0.01 by culturing cells with barcoded virus in media 

supplemented with 5 μg/ml polybrene and 20mM HEPES for 2 hours of spinoculation and 24 

hours of incubation. Afterwards, cells were collected by gentle centrifugation and the media was 

replaced with fresh cultured media. Cells were expanded for 72 hours and then subjected to FACS 

to isolate Clover-positive founder cells. Founder cells were expanded for 14 days and split into 

two pools. One was used for genomic mapping of barcoded reporter and the other was used for 

establishing isogenic reporter clones by single cell sorting.  

Measurement of reporter protein expression 

A million cells were passed through a 35μm mesh filter (Corning 352235) and placed on ice prior 

to FACS separation. Cells are resuspended in FACS buffer consisting of 96% PBS, 2% fetal bovine 

serum, 1% 100X Pen/Strep, and 1% 0.5M EDTA (pH 7.4). 50k live cells were collected from each 

well for FSC-A, SSC-A, the Clover intensity and IRFP intensity using the BD FACSCelesta flow 

cytometer. Data were analyzed with custom Matlab scripts. A very conservative gating for a live 
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subset of ~3k cells of similar size, volume, and state, was applied on the FSC versus SSC to reduce 

extrinsic noise contributions. 

Identification of genuine barcodes and genomic integration sites 

A library of genuine barcodes in founder cells was first listed. Briefly, barcode region was 

amplified in first nested PCR from 5 µg of genomic DNA in 50 ul of 20 cycle PCR reaction using 

Titanium Taq, forward primer: TATGGATCCTGTAGAACTCTG, and reverse primer: 

GCTCTGCTTATATAGACCTCCCAC. Barcode amplicons were enriched from genomic DNA 

using SPRI beads (Beckman Coulter) and further amplified in the second nested PCR for 20 cycles 

using forward primer: TGTAGAACTCTGAACCTAGCT and reverse primer: 

CGTAAGTTATGTAACGCGGA. Illumina adapter was attached to final amplicon, amplified and 

sequenced on Illumina HiSeq 3000 platform (1x50bp). Sequencing reads were filtered and 

analyzed using Matlab Bioinformatics Toolbox. To identify genuine barcode, we used the 

following algorithm. First, we sorted barcodes according to their counts from most frequent to 

least frequent. Then, mutant versions of each   barcode, defined as barcodes within a Hamming 

distance of 2, were sequentially removed. We consider remaining sequences as ‘‘genuine’’ 

barcodes. We recovered 756 genuine barcodes from 3,000 sorted founder cells.  

Mapping of reporter integration sites was done by inverse PCR coupled with high-

throughput sequencing. Briefly, founder cells were collected and splitted into two replicates. For 

each replica, 2 µg of genomic DNA was digested with 20 units of MspI (NEB) overnight at 37°C 

in a volume of 100 µl. Subsequently, three sets of ligation reactions were set up by incubating 600 

ng of purified digested DNA with 2 µl of high-concentration T4 DNA ligase (NEB, M0202T) 

overnight at 4°C in a volume of 400 µl. The ligation reactions were purified by phenol-chloroform 
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isoamyl alcohol extraction and ethanol precipitation. DNA pellets were dissolved in 30 µl of water. 

Two rounds of PCR were performed to amplify and enrich fragments containing both the barcodes 

and flanking genomic DNA regions. For the first round of nested PCR, five sets of 25-cycle 

reaction in a volume of 50 µl were performed using 5 µl of ligated products as templates, forward 

primer: TATGGATCCTGTAGAACTCTG, reverse primer: 

GCTTCAGCAAGCCGAGTCCTGCGTCGAG and Phusion Hot Start Flex 2X Master Mix 

(NEB). Amplicon was pooled together, cleaned by DNA Clean & Concentrator kit (Zymo), and 

diluted in 50 ul of water. For the second round of nested PCR, four sets of 15-cycle reaction in a 

volume of 50 ul were done with 5 ul of cleaned amplicon from first PCR, forward 

primer:TGTAGAACTCTGAACCTAGCT, reverse primer:GCTTTCAGGTCCCTGTTCGG. 

Purified sample was further ligated with Illumina adapter, amplified and sequenced on Illumina 

HiSeq 3000 platform (2x150bp). Sequencing reads were filtered and analyzed using Matlab 

Bioinformatics Toolbox. The genomic regions associated with genuine barcodes were extracted 

from mapping reads and aligned against the human genome (hg38) using STAR [93].  Detected 

integration sites from each replicate were compared and assigned to each genuine barcode only if 

top candidate site from both replicates are identical. Genome coordinate of reporter integration site 

was converted to human reference genome(hg19) using UCSC liftOver tool [94] for comparison 

to ChIP-Seq data.   

Combinatorial pool sequencing  

To simultaneously reveal the identity of reporter cell lines linked by DNA barcodes in a 

single run, combinatorial pooled sequencing was used. Specifically, clonal numbers were encoded 

in a form of pooling pattern and DNA barcodes were decoded from such known pattern. To 

increase decoding accuracy, we designed pooling signature to be unique four selected pools out of 

https://paperpile.com/c/sZhidk/wgwtw
https://paperpile.com/c/sZhidk/CgUs
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total eighteen pools. Cells from each clone were split into four selected pools according to the 

design.  Sequentially, genomic DNA from individual pool of mixed clones was extracted and used 

as templates for PCR to amplify barcode using same procedure described in the method of 

identification of genuine barcode list. Forward primers of second nested PCR contain 6-bp index 

DNA to label PCR products from each pool, which allow high-throughput multiplex sequencing. 

Sequences were filtered and demultiplexed using Matlab Bioinformatics Toolbox. Genuine 

barcodes from all pools were first listed. For each detected barcode, normalized counts per pools 

were calculated and pools showing high reads above the threshold were identified. Barcodes with 

four detected pools were first assigned to the clone showing matched pooling design. Some 

barcodes were found in more than four pools when sister cells, expanded from one founder cell, 

were sorted into multiple wells during single-cell sort. A list of merged pooling signature of two 

unassigned clones was matched with barcodes showing complexed readout. Clones with two 

inserted barcodes (~2% of the population) were excluded from the library of reporter cell lines. 

Validation of Combinatorial pool sequencing  

For the validation of combinatorial pool sequencing, 5 clones were randomly chosen and 

extracted for genomic DNA using PureLink Genomic DNA Mini Kit (Invitrogen). 200ng of 

purified genomic DNA was used as a template for PCR amplification with a set of validation 

primers, forward:TAGTGAACGGATCTCGACG, 

reverse:GCTCTGCTTATATAGACCTCCCAC. PCR products were cleaned by DNA Clean & 

Concentrator kit (Zymo) and Sanger sequenced to verify the barcode sequences.  
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Sequencing, quality control and demultiplexing 

Libraries were sequenced on Illumina Hiseq3000 sequencing systems by UCLA 

technology center for genomics & bioinformatics. Low quality sequences were filtered out by 

mismatched read length and low-quality scores (>25% of base with score <20) using Matlab 

Seqfilter. Sample indexes were trimmed with Matlab Seqtrim and reads from different samples 

were demultiplexed by Matlab Seqsplit. 

Multivariate linear regression analysis 

Fluorescence data of each reporter cell line was collected in triplicate from different 

experimental setup. The mean and CV2 of Clover intensity were calculated from a population of 

more than 3,000 cells with stringent control of size, volume and state. To understand the 

relationship between TF enrichment and reporter expression, Spearman's rank-order correlation 

coefficient between Clover mean or CV2 and averaged transcription factor enrichment within a 

window of 50 kb was first assessed. We used K562 ChIP-Seq datasets of transcription factor in 

the format of fold change over control, uniformly processed from two replicates, from the 

ENCODE database (Michael Snyder,Stanford) at https://www.encodeproject.org. Transcription 

factors with correlation coefficient of more than 0.2 were selected for multivariate linear regression 

analysis using Matlab. The analysis of nearest distance to chromatin state and Clover expression 

was processed in the same procedure but without the preselection step based on the Spearman 

rank-order correlation coefficient. Chromatin state data was obtained from Genome Segmentations 

from ENCODE (ChromHMM Segmentations) at UCSC (Data version: ENCODE Jan 2011 

Freeze)  

  

 

https://www.encodeproject.org/
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CHAPTER 3 

Loci specific epigenetic drug sensitivity  

Abstract 

Therapeutic targeting of epigenetic modulators offers a novel approach to the treatment of 

multiple diseases. The cellular consequences of chemical compounds that target epigenetic 

regulators (epi-drugs) are complex. Epi-drugs affect global cellular phenotypes and cause local 

changes to gene expression due to alteration of a gene chromatin environment. Despite increasing 

use in the clinic, the mechanisms responsible for cellular changes are unclear. Specifically, to what 

degree the effects are a result of cell-wide changes or disease related locus specific effects is 

unknown. Here we developed a platform to systematically and simultaneously investigate the 

sensitivity of epi-drugs at hundreds of genomic locations by combining DNA barcoding, unique 

split-pool encoding and single cell expression measurements. Internal controls are used to isolate 

locus specific effects separately from any global consequences these drugs have. Using this 

platform, we discovered wide-spread loci specific sensitivities to epi-drugs for three distinct epi-

drugs that target histone deacetylase, DNA methylation and bromodomain proteins. By leveraging 

ENCODE data on chromatin modification, we identified features of chromatin environments that 

are most likely to be affected by epi-drugs. The measurements of loci specific epi-drugs 

sensitivities will pave the way to the development of targeted therapy for personalized medicine. 
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Introduction 

The location of a gene on the chromosome is known to affect its expression. Position effect 

was first observed in Drosophila by Muller in 1930 [1,2] and intensively investigated afterward 

[3–5]. Many years after the original work in Drosophila, it is now well documented that gene 

expression levels are influenced by chromatin environment [2,6–10]. Chromatins play a key role 

in the regulation of gene expression and are responsible for cell maintenance and differentiation. 

Chromatin regulation is complex and is an area of active research. The three-dimensional structure 

of the chromatins plays an important role in gene regulation by controlling accessibility of 

transcriptional machinery and the spatial proximity of a gene from cis regulatory elements such as 

enhancers. In addition, the specific three-dimensional folding will change the spatial distribution 

of transcription factors and other regulatory molecules such as lncRNAs. The spatial proximity of 

these regulatory molecules then plays a key role in controlling gene expression patterns. The three-

dimensional structure itself is highly correlated with specific histone and DNA modification 

patterns.  Overall, the complex multi-layered regulation of chromatin on gene expression pattern 

causes each gene to exist in a unique chromatin environment that plays an important role in 

determining gene expression distribution, i.e. both its average level as well as population 

variability [6,9,11].   

The proper regulation of gene expression is vital for health and dysregulation of gene 

expression is associated with a large number of pathologies. Advances in DNA sequencing allow 

the classification of the specific disease based on the underlying changes of gene expression, the 

basis of large parts of precision medicine approaches. Given the large knowledge that is 

accumulating on what changes in gene expression are associated with disease conditions, it is only 
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natural to attempt to correct these pathologies by modification of underlying gene expression 

patterns. This quest has long history with initial attempts related to antisense oligos [12]. Similarly, 

the discovery of RNA interference (RNAi) sparked many attempts to develop therapies based on 

RNAi with the goal of manipulating gene expression [13]. However, despite the conceptual 

simplicity, translating these concepts into therapy was challenging [14–16].   

Given the influence of local chromatin environment on gene expression, strategies that 

target epigenetic regulators are being investigated. Two main strategies are the pharmacological 

use of epi-drugs to influence gene expression and targeted approaches for epigenetic editing. 

Pharmacological approach uses inhibitors to the readers/writers/erasers of epigenetic marks. The 

pharmacological approach that is being developed to address a wide range of diseases is 

continuously expanding [17–23]. Multiple targeting strategies for epi-drugs are being explored 

including specific loss and gain of function [24–31], synthetic lethality [32–35], and to overcome 

drug resistance [35–37].  A common theme across these strategies is the use of epi-drugs to 

manipulate gene expression patterns e.g. suppress oncogenes or activate tumor suppressor genes 

[38]. However, the precision of epi-drugs induced gene expression targeting, i.e. the fraction of 

overall changes to gene expression that are desired for therapy, is currently very low. This low 

precision limits the usability of epi-drugs [39–41]. The alternative strategy is based on targeted 

recruitment of epigenetic modulators into specific sites. CRISPR mediated sequence specific 

targeting of epigenetic regulators is used to cause changes in gene expression pattern of specific 

loci. [42–44] The key advantage of epigenetic engineering is their precision. However, many 

challenges have to be addressed before these approaches can be translated into the clinics.     

Despite the popularity of the use of epi-drugs to cause changes in gene expression patterns, 

there are many unknowns resulting from gaps in existing measurement capabilities of the effect of 
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epi-drugs on gene expression. Epi-drugs change gene expression due to direct, locus-dependent 

changes, and indirect or nonspecific effects [38]. Existing approaches to identify direct effects of 

epi-drugs rely on a combination of RNAseq and multiple ChIPseq to show that gene expression 

changes are coupled to changes in local histone modification [45]. However, the reliance on 

ChIPseq makes this approach limited as these measurements are only semi-quantitative [46], it is 

often hard to interpret their functional effects on gene expression [47], and they are challenging to 

scale to large numbers of samples [48]. Therefore, it is currently impossible to rigorously identify 

changes to gene expression that are due to specific modifications to the chromatin environment 

and not a result of non-specific or indirect effects. Therefore, there is a gap in current capabilities 

of mapping the specific and local impact of drug manipulating chromatin modifiers on gene 

expression.  

Here we developed new measurement technology for the Massive And Parallel 

Measurement of Epigenetic Drug Sensitivity (MAPMEDS). MAPMEDS is based on comparison 

of drug effect at specific locus compared to the drug effect of hundreds of other loci. Statistical 

comparison of the drug effects on expression of a reporter fluorescent protein allows the 

deconvolution of global effects and locus specific sensitivities. MAPMEDS utilizes DNA barcodes 

to pool together the time-consuming step of genomic position identification of the reporters. Split-

pool approach enables mapping of DNA barcodes to individual reporter cell lines. Using 

MAPMEDS we demonstrate the widespread existence of loci specific sensitivities for three epi-

drugs that target histones acetylation, DNA methylation and proteins with bromodomains. By 

leveraging ENCODE data on the chromatin environment in each location, we show what types of 

environments are more susceptible to the different epi-drugs.  Overall, these results shed light on 
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how epi-drugs cause changes in gene expression, the information that can be used for development 

of more precise targeting strategies.   

 

Result 

Overview of MAPMEDS 

MAPMEDS is based on two key innovations: 1) A split-pool strategy for the creation of 

cell lines that uses DNA barcodes to identify what DNA labeling each cell line has and what is the 

genomic integration position of that barcode (Fig. 3.1a-d). Each expression reporter incorporates 

unique DNA barcode into reporter cassette that contain identical promoter and fluorescent reporter. 

These barcodes serve as unique identifiers for mapping the genomic locations of reporters and 

revealing clonal identities without the need of individual genomic extraction. The use of split-pool 

encoding allows the mapping between isoclonal line expression and the DNA barcode and thereby 

connecting genomic information with expression measurements. 2) A new strategy that uses in-

well controls and statistical tools enables the separation of gene expression changes into locus-

specific and global non-specific (Fig. 3.1ef). The use of in-well controls minimizes batch effects 

and is a key to identify locus specific sensitivities. Collectively, these two steps allow the parallel 

creation of large number of reporter cell lines and their use to identify loci specific epigenetic drug 

sensitivities.  

MAPMEDS utilizes DNA barcoded expression reporters integrated as single copy per cell. 

In order to generate founder cells with one copy of barcoded reporter, lentiviral transduction at 

low multiplicity of infection (MOI) was used. In short, we first created a library of lentiviral 

plasmids containing barcode, MspI restriction site, cytomegalovirus (CMV) promoter and GFP 
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variant, mClover [49] (Fig. 3.1a). The barcodes are 16-bp sequences of random Adenosine, 

Thymine and Guanine. Cytosine is excluded to keep barcode intact for future application to 

examine DNA methylation through bisulfite conversion. Barcoded lentiviruses were packed and 

transduced at MOI of ~0.01 into K562 cells, leukemia cell line with abundant available epigenetic 

profiles [50] (Fig. 3.1b). Reporter K562 cells were selected at 72 hours post-transduction by 

fluorescent activated cell sorter (FACS) to establish a pool of 3,000 founder cells. Founder cells 

were expanded for 2 weeks and split into two pools (Fig. 3.1c). One half was used to identify the 

genomic location using inverse PCR [6]. The other half was used to establish individual isoclonal 

lines through single cell sorting. Once the cell lines were established, we utilized a combinatorial 

pooling approach to combine all the cell lines into a small number of pooled samples that were 

used to identify the barcode identity, and hence the genomic integration site, of the ORFs for all 

cell lines (Fig. 3.1d). The result of this procedure is a library of clonal cell lines that can be used 

as a powerful resource to examine drug sensitivity at diverse epigenetic environments.  

In order to isolate locus-specific changes from any global changes in gene expression 

patterns, we implemented a new strategy using in-well controls and statistical tools. A reference 

“non-specific” cell population was created by using a polyclonal population of multiple integration 

cells so that the overall population has thousands of integration sites of same reporter cassettes. 

Far-red fluorescent protein iRFP670 [57] was used to mark this reference population. We split 

these control cells and co-cultured with each target cell line in multi-well plates. 
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 (a) Schematic structure of barcoded lentiviral constructs. The library vector contains short barcode, CMV 

promoter and mClover fluorescent protein as a reporter. The barcode is random 16-bp-long DNA with 

repeats of A,G and T.  MspI restriction site is integrated upstream CMV promoter for genomic location 

mapping. (b) Barcoded lentivirus was packed and transduced into K562 cells at low MOI to create founder 

cells with singly integrated reporter. (c-d) Barcoded founder cells, selected by flow cytometry, were 

expanded for two weeks and split into two pools. Cells in the first pool were collected for locating reporter 

integration site. Founder cells in the second pool were sorted into 96-well plates to establish clonal cell 

lines. Barcode of each clone was simultaneously identified by split-pool encoding and deep sequencing. 

Library of characterized reporter clones is a useful resource to examine loci specific epigenetic drug 

sensitivity. (e) Loci specific effects were decoupled from global effects through mixing individual barcoded 

clones of interests with control cells expressing mClover and IRFP from multiple integration sites. Co-

cultured cells were treated with TSA, JQ1 and 5’AZA for 24 hours. Expression of reporter proteins were 

measured by flow cytometers. Distribution of mClover expression in control cells was used to remove 

global effects of drugs. (f) A cartoon illustrating known mechanisms of actions of Trichostatin A, JQ1 and 

5-Azacytidine.  

 

 

 

Figure 3.1 An overview of MAPMEDS 



 

48 

Integration landscapes of reporters 

To map the integration sites of reporters, we split half of founder cells into three sub-pools 

and further expanded the population. The first pool was used to reveal a list of genuine barcodes. 

We detected 756 candidate genuine barcodes after two weeks of culture. Two other sub-pools are 

technical replicates for locating reporter integration sites by an inverse PCR method coupled to 

paired-end high-throughput sequencing (Fig. 3.2a). In short, genomic DNA from each pool was 

isolated, digested with MspI enzyme and self-ligated. Barcodes and adjacent genomic DNA were 

amplified and deep sequenced. After barcode demultiplexing, genomic sequence was mapped to 

human genome assembly GRCh38. Genomic coordinate was assigned to corresponding barcode 

when mapped results from two replicates are matched. We observed reporter integration 

throughput the genome (Fig. 3.2b, Fig. 3S1a) with enriched pattern similar to previous study (Fig. 

3S1b) [8]. Reporters were integrated at various genomic environments serving as diversified 

resources to study epigenetic drug sensitivity. 

 

Scalability and Robustness of MAPMEDS 

Pooled-sample sequencing is a cost-effective and practical strategy for many studies, 

especially the ones related to the discovery of rare mutation and single nucleotide polymorphism 

associated diseases [51–53]. Combinatorial pooled sequencing is an extension of standard pooled 

sampling where each sample exists in a few pools creating a many to many mappings between 

experimental conditions and samples. Combinatorial pooling improves the sensitivity and 

robustness of pooled sequencing since it includes built in error corrections. It reduces the cost and 

time for library preparation exponentially [54–56].  
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Figure 3.2: Diverse insertion landscapes of barcoded reporter 
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Figure 3.2: Diverse insertion landscapes of barcoded reporter 

(a) Reporter mapping by inverse PCR. Genomic DNA of founder cells was extracted, digested with 

restriction enzyme MspI and self-ligated to stitch barcode with its neighboring genome. Ligated product 

was amplified and followed by next generation sequencing. (b) Ideogram plot displaying reporter 

integration sites of individual clones in the library. Centromere position is indicated in red and stalk is 

marked in light blue.  Heterochromatic region, which tend to be rich with adenine and thymine and 

relatively gene-poor, is represented by black and variation of grey. R-band in white on the ideogram is less 

condensed chromatin that is transcriptionally more active. 

 

Conceptually, in combinatorial pooled sequencing, the identity of each sample is encoded 

in the composition of pools and this pooling pattern serves as a reference for decoding sequences 

belonging to corresponding sample (Fig. 3.3a). Clonal lines are mixed into few pools according to 

a predefined design. Each individual pool is genomic DNA extracted, barcode amplified, and index 

tagged using nested PCR. Amplicons from all pools are mixed together and sequenced. 

Subsequently, sequencing data is sorted by barcodes and their appearance patterns determined by 

the well indexes. The measured patterns are compared with the design pooling signatures to match 

barcodes with clone numbers.     

The use of combinatorial pooling circumvents the need for individual genomic extraction 

and PCR per clones which significantly reduces the cost of reagents and hands-on time for 

sequencing preparation. In our design, each clone is mapped into 4 selected pools from total of 18 

pools and this set-up allows up to 18-choose-4 or 3060 sample identification. This approach is 

highly scalable because sample size can be easily increased by adjusting number of pool and bit 

of code. We checked the accuracy of barcode identification using combinatorial pool sequencing 

by targeted PCR and Sanger sequencing. For 5 randomly chosen clones, the barcode deconvolution 

was all corrected which confirm the robustness of our method. 
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(a) The combinatorial pooled sequencing involves encoding and decoding steps. Each individual clone was 

split into 4 out of 18 pooled samples according to the designs. Genomic DNA from each pooled sample 

was extracted and barcodes were amplified and labeled with 6-bp sample index. Amplicons from all 

samples were mixed together and prepared for NGS. Detected barcodes were deconvoluted to match 

barcode ID with clone ID. (b) The expression distribution of mClover protein was measured by high-

throughput flow cytometer and displayed by stacked probability density function. Each row in the heatmap 

represents a single histogram from a single clonal line with the probability density function color-coded. (c) 

A scatter plot of reporter expression noise, measured as log‐transformed squared coefficient of variation 

(CV2), and mClover mean across all examined positions affirms unique chromatin environments across the 

genome.   

Figure 3.3: Combinatorial pooling massively and parallel identify barcode of individual clones. 
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Chromosomal Position Effects on Protein Expression Distribution 

To support the notion that each integration site exists in a different chromatin environment, 

we examined the positional effect of our expression reporters. Across nearly a hundred positions, 

we observed variable expression distribution of mClover protein (Fig. 3.3b). Some clones are 

completely silent while many are highly expressed with expression average of approximately 

1000-fold higher than the lowest-expressing cells (Fig. 3.3c). This variation range is comparable 

to a study that measured averaged mRNA expression across mouse genome [6], but higher than 

other studies carried out in bacteria or yeast [7,9,10]. Broader magnitude of positional effect in 

expression level detected in mammalian genomes may come from their large and complex genome 

organization and the discrepancy in experimental design and techniques.   

Our observation on variable expression distribution confirms that the location where 

reporter gene inserted affects its expression and differences in genomic landscapes and epigenetic 

profiles are suggested to explain such differential expression in several studies. For example, 

lamina-associated domain and chromatin compaction significantly attenuates transcriptional 

activity [6] and certain histone marks, including H3K36me3, are correlated with expression level 

of the reporters [9,10]. Intuitively, epigenetic drugs that target chromatin regulator should also be 

impacted by distinct genomic environments. However, such loci specific sensitivity has not been 

previously measured and this motivates us to systematically measure positional effects on the 

sensitivity of epigenetic drug using our library of isogenic clones established and characterized by 

MAPMED.  
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Epigenetic drugs show position-dependent sensitivity 

As a proof of concept, we chose three epigenetic drugs representing three mechanisms of 

inhibition. Trichostatin A (TSA) is histone deacetylases (HDACs) inhibitor [58,59] and effective 

in the treatment of several types of cancer including promyelocytic leukemia [60], lung cancer 

[61], breast cancer [62] and also enhancing the response of chemotherapy of multiple cancers 

[63,64]. JQ1 is a small-molecule inhibitor of BRD2 and BRD4, members of the bromodomain and 

extra-terminal domain (BET) protein family. JQ1 competitively blocks the binding of 

bromodomain proteins and acetylated chromatin which results in transcriptional attenuation 

[65,66]. JQ1 has been reported as a promising cancer therapeutic strategy in several cancers [67–

69]. Azacytidine is a cytidine analogue that inhibits DNA methylation through loss of DNA 

methyltransferase (DNMT) activity [70]. Azacitidine was approved by the U.S. Food and Drug 

Administration (FDA) for the treatment of all subtypes of myelodysplastic syndrome (MDS) since 

2004 [71]. These three drugs were added to co-cultured cells and incubated for 24 hours before 

sample collection and fluorescent quantification.  

The expression level of mClover and iRFP was measured using high throughput sampler 

(HTS) flow cytometer. Cells from each sample were separated into reference and target cells based 

on iRFP gating. To quantify the site-specific effect, we normalized the expression levels of the 

sample cells by the average change between the drug and DMSO in the control population. After 

correction, the site-specific effect of a drug that are not captured by reference population were 

quantified by the Kolmogorov–Smirnov (KS) statistics that compares distribution similarity 

between sample cells under drug and sample cells with DMSO (Fig 3.4a). Any effects that are 

only site specific are effectively measured as changes beyond those also occur in the reference 

polyclonal population. Differential magnitudes of drug sensitivity were observed across examined 
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locations. Some loci, such as clone 224 and clone 260, show indifferent distribution of mClover 

in all conditions, but many positions are either hyposensitive or hypersensitive to at least one of 

epigenetic drugs (Fig.4b).  These non-uniform responses indicate unique chromatin environment 

at each genomic location. 

 

 

 

 

 

  

 

 

 

(a) A bar graph of calculated the test statistic of two-sample Kolmogorov–Smirnov test between epigenetic 

drug treatment and DMSO. (b) Histogram plot showing mClover distributions of selected clones after 24-

hour treatment of DMSO (Black), TSA (Orange), JQ1 (Green) and 5’Azacytidine (Blue).   

 

The distributions of KS statistics in control cells fall within the three standard deviation 

limits.   (Fig. 3S2). Therefore, we used this criterion to identify the number of ‘hits’ per drug as it 

provides a non-parametric estimate of our false discovery rate to be <0.015. Our drug screening 

shows ~16% and ~13% of the positions that have down-regulated and up-regulated reporter 

expression after TSA treatment. The number of hits in TSA screen is lower than those in JQ1 and 

5-Azacytidine. The percentage of down-regulated and up-regulated loci are 64% and 30% in JQ1 

and 40.6% and 29.7% in 5-Azacytidine respectively. Smaller fraction of TSA-sensitive sites 

Figure 3.4 Chromosomal position effects influence magnitudes of epigenetic drug effects. 
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observed in our data agrees with other studies findings that HDAC inhibitors only target less than 

10% of the genome [72–74].   Overall, our data demonstrates a chromosomal position effects on 

epigenetic drug sensitivity.  

Analysis of histone modification profiles identifies chromosomal environments susceptible to 

JQ1 sensitivity 

We compared our maps of epigenetic drug sensitivity to a collection of available 

epigenomic map from K562 cells focusing on histone modifications. ChIP-seq signals, expressed 

by fold change over control, in a window of 10 kb around barcodes of interest were considered. 

We note that histone modification profiles were mapped in K562 cells without any genetic 

engineering. Insertion of reporters potentially change the pre-existing epigenetic landscape or 

cause sequence-specific or protein-specific interactions between regional chromatin and synthetic 

ORF. However, previous studies suggest that integrated reporters generally do not perturb the 

chromatin landscape but adopt the local chromatin state [10,75]. Complex sequence- or protein-

specific interactions between local chromatin and synthetic reporters were not observed in 

previous study as well [11].  

After selecting top JQ1-sensitive clones with distinct downregulation and upregulation of 

reporter expression (Fig. 3.5a), we compared their epigenetic profiles. Interestingly, we found JQ1 

sensitivity is associated with certain histone modifications (Fig. 3.5b). Structural study reveals the 

binding of JQ1 to the acetyl-lysine binding pocket of BET bromodomains [65]. Such competitive 

binding disrupts bromodomain/acetyl histone interaction and therefore transcriptional activation. 

Genomic regions enriched in acetylated histones were hypothesized to display higher magnitude 

of reporter downregulation. Indeed, we observed that clones with lower expression after JQ1 

treatment show higher enrichment of H3K9ac and H3K27ac. Moreover, we also found that these 
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clones have significantly higher enrichment of H2A.Z. This data supports previous studies 

demonstrating that BRD2 interacts with H2A.Z to mediate transcription initiation [76,77] and thus 

suggests that our assay recapitulated well-established results.   

 

 

Figure 3.5: H2A.Z influences sensitivity of bromodomain inhibitor to expression alteration 

(a) Examples of mClover distribution from clones showing significant reduced (top row) and increased 

(bottom row) mClover expression to JQ1 drug. (b) Bar graph shows histone enrichments for comparison 

of positions displaying reporter down-regulation (light green) versus those exhibiting up-regulation (dark 

green) after JQ1 treatment. Fold change over control of each histone mark was averaged within a window 

of 10 kb. The p-values were determined by two-sample t-test. 
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Differential sensitivity to 5-AZA treatment happened through DNA methylation-

independent mechanism 

Considering Azacytidine as a well-known inhibitor of DNA methylation, it is likely that 

genomic regions with hypermethylated promoter will response to such epigenetic drug the most. 

Moreover, CMV promoter used in our reporter is highly enriched in CpG sites which should be 

susceptible to DNA methylation. Therefore, we hypothesized that reporters inserted at diverse 

genomic environments will have different DNA methylation level and result in differential drug 

sensitivity. To test this hypothesis, we examined DNA methylation at CMV promoter, which 

contain 30 CG sites, using target bisulfite sequencing (Fig. 3.6a).   

Surprisingly, even in cases where we observed distinct reporter downregulation and 

upregulation in two groups of top sensitive clones (Fig. 3.6b), their CMV promoters are mostly 

unmethylated and indistinguishable (Fig 3.6c). Our data suggests that differential sensitivity to 5-

Azacytidine treatment may not result from the direct inhibition of promoter methylation but instead 

reflect changes in cell regulatory machinery that has stronger effects on these loci than average. 

This observation agrees with previous studies that report 50-60% of induced genes by 5-Aza-CdR 

did not have CpG islands within their 5’region [78,79] 
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Figure 3.6: Chromosomal position effects 5 Azacytidine sensitivity through DNA methylation-

independent mechanism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (a) DNA methylation profiles of selected clones were simultaneously revealed by bisulfite conversion, 

targeted PCR and deep sequencing. (b) Examples of mClover distribution from clones with reduced 

expression (top row) and induced (bottom row) to 5 Azacytidine. (c) Locus-specific bisulfite sequencing of 

the CMV promoters of representative clones exhibiting hyposensitivity and hypersensitivity to 5 

Azacytidine. 
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Discussion 

Here we developed a new method MAPMEDS that can identify loci specific drug 

sensitivity in a robust and scalable manner. The method uses DNA barcoding to generate cell lines 

with known integration position of an expression reporter at genome scale and includes a statistical 

procedure to quantify the locus specific effect that a drug has on gene expression. We used 

MAPMEDS to evaluate the position specific effects of three common epi-drugs. We found that up 

to 60% of positions change in a manner that is different than average including both hyper and 

hypo sensitivity. Through analysis of the chromatin features that are enriched in sites with 

hyper/hypo drug sensitivities we were able to characterize what aspects of chromatin environment 

make it more (or less) sensitive to a specific drug. The development of MAPMEDS have both 

translational and basic science implications. 

Locus-specific sensitivity measurements will support the development of new treatment 

strategies that use existing drugs and the development of new, more precise drugs. Identification 

of correct dosage of epi-drugs is challenging [80–82]. Comparison of the dose-response curve of 

the overall change in gene expression to the dose-response changes in gene expression that are due 

to locus-specific modification will help identifying drug concentrations that maximally impact 

target genes while limiting non-specific effects. Similarly, it will be possible to improve the 

precision of drug combinations [19,83]. New drugs and lead compounds could be identified based 

on predefined desired locus-specific changes in expression patterns. For example, in breast cancer 

that develops resistance to PI3K therapy, it was shown that co-treatment with a bromodomain 

inhibitor JQ-1 helps mitigate drug resistance since it silences the compensatory upregulation of 

RTKs [84]. The use of JQ-1 to achieve such desired effect is limited by the fact that JQ-1 has very 
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broad effects on expression changes across the genome. The tools we propose to develop will 

allow screening for new compounds and JQ-1 derivatives that maximizes the effects on the desired 

genes such as EGFR and INSR while limiting other undesirable changes.  

Precision medicine is based on stratification of patients and assigning specific therapies 

based on the molecular information often associated with the key aberrant pathways. Therefore, in 

many cases, the nature of needed changes in gene expression are known. Treatment is limited due 

to the lack of therapies that can cause such desired changes in gene expression. Current 

manipulations of gene expression patterns using epigenetic targeting drugs such as JQ-1 are 

imprecise [39,40]. The new measurement technology developed here will support the future 

development of more precise epigenetic drug-mediated gene expression targeting. The reduction 

in side effects and the ability to screen for locus-specific changes in gene expression will lead to a 

large array of new therapies.   

From basic science perspective, our understanding of chromatin regulation of gene 

expression is far from complete. MAPMEDs has the capacity to generate large datasets that look 

at changes across many positions and epigenetic drugs. Such large dataset will provide key insights 

into how changes in the local chromatin environment can affect gene expression in a manner 

isolated from any global changes. The use of DNA barcodes as part of MAPMEDS enables the 

pooled measurement of changes to local chromatin environment at scale. These data will provide 

invaluable insight into chromatin regulation.   

MAPMEDS have two unique aspects that set it apart from other measurement approaches 

such as TRIP and BHIV [6,8] that aimed at measuring positional effects at scale. Unlike other 

approaches, MAPMEDS is based on the library creation of cell lines. The use of library of cell 

lines provides single cell data on changes in expression variability. Indeed, many of the locus 
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specific drug effects we saw did not simply shifted the population but changes the shape of the 

distribution. These effects would have been missed with bulk population measurements. 

Additionally, once the initial work in creating the cell line library was invested, the measurement 

of the drug effects is straightforward and can be scaled to large drug libraries. Other approaches 

such as TRIP and BHIV will require full RNA sequencing for each drug tested. The downside of 

the cell line library approach is that it is hard to scale it to more than a few hundred sites. However, 

recent advances in in-cell barcodes make it possible to generate the cell line library in pooled 

format, opening the way to a few orders of magnitude increase in the number of positions that can 

be measured. Future development of MAPMEDS to include these in-cell barcodes will further 

increase its utility as a platform for the discovery of more precise and useful epi-drugs.   
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Methods 

Cell Lines and cell culture 

The human K562 cells (Sigma-Aldrich) were grown at 37 °C in RPMI 1640 medium 

(Gibco) supplemented with 10% FBS (Gibco), 1% penicillin-streptomycin (Gibco) and 1% 

GlutaMAX (100x) (Gibco) under a 95% air and 5% CO2 atmosphere.  

Construction of library reporter plasmid  

The based plasmid without barcode was first constructed to contain the following elements. 

Lentiviral production units include HIV-1 truncated 5’ LTR, HIV-1 packaging signal, HIV-1 Rev 

response element (RRE), HIV-1 truncated 3’ LTR and Central polypurine tract (cPPT). These 

components allow proper viral packaging and viral integration into host cells. As a transcription 

unit, we used cytomegalovirus promoter (CMV) to drive expression of the reporter gene encoding 

yellow-green fluorescent protein (mClover). Woodchuck hepatitis virus posttranscriptional 

regulatory element (WPRE) is placed after mClover to enhances mRNA stability and protein yield. 

Ampicillin resistance gene (β-lactamase) is included for selection of plasmid in bacterial cells.  

To generate barcoded plasmid libraries, based lentiviral plasmid was cut upstream of the 

CMV promoter by ClaI restriction enzyme and purified by ethanol precipitation. The inserted 

cassette of 127-bp-long oligonucleotide containing a random 16-bp-long barcode sequence 

(repeats of A,T and G), MspI site, primer priming site and homology arms, were synthesized by 

Integrated DNA Technology. The assembly reaction of 1:5 vector:insert ratio was carried out for 

1 hour at 50C using NEBuilder HIFI DNA assembly kit (New England Biolabs, NEB). Assembly 

products were electroporated into NEB Turbo Competent E.Coli (NEB) and then plated on 

ampicillin-containing medium. Ampicillin resistant colonies were collected and extracted for 
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plasmids using Maxiprep kit (Invitrogen). Ten sampling clones from the agar plate were analyzed 

by PCR and Sanger sequencing to verify successful cassette insertion and barcode diversity 

(Primer details in Table S1).  

Generation of founder cell library and cell lines  

Barcoded reporter and third generation lentiviral packaging plasmids were transfected into 

HEK 293T cells to generate a library of barcoded lentivirus. Viral supernatant was collected and 

concentrated by Lenti-X-concentrator (Takara) at 48-hour post transfection. K562 cells were 

transduced with barcoded virus in cultured media supplement with 5 μg/ml polybrene and 20mM 

HEPES for 2 hours of spinoculation and 24 hours of incubation. An m.o.i of approximately 0.01, 

corresponding to 1% infectivity estimated by flow cytometer, was used to ensure that the majority 

of cells were labeled with single barcode per cell. Founder cells were selected by fluorescence-

activated cell sorting (FACS) at 72 hours post transduction. Founder cells were expanded for two 

weeks and split into two pools. In the first pool, cells were subject to mapping the genomic location 

of barcoded reporter. In the second pool, cells were single-cell sort to establish cell lines of unique 

barcode.  

Identification of genuine barcode list 

A library of genuine barcodes in founder cells was first listed. Briefly, barcode region was 

amplified in first nested PCR from 5 µg of genomic DNA in 50 ul of 20 cycle PCR reaction using 

Titanium Taq. Barcode amplicons were enriched from genomic DNA using SPRI beads (Beckman 

Coulter) and further amplified in the second nested PCR for 20 cycles. Illumina adapter was 

attached to final amplicon, amplified and sequenced on Illumina HiSeq 3000 platform (1x50bp). 

Sequencing reads were filtered and analyzed using Matlab Bioinformatics Toolbox. To identify 
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genuine barcode, we used the following algorithm. First, we sorted barcodes according to their 

counts from most frequent to least frequent. Then, mutant versions of each barcode, defined as 

barcodes within a Hamming distance of 2, were sequentially removed. We consider remaining 

sequences as ‘‘genuine’’ barcodes. We recovered 756 genuine barcodes from 3,000 sorted founder 

cells.  

Mapping of reporter integration sites 

Mapping of reporter integration sites was done by inverse PCR coupled with high-

throughput sequencing. Briefly, founder cells were collected and splitted into two replicates. For 

each replica, 2 µg of genomic DNA was digested with 20 units of MspI (NEB) overnight at 37C 

in a volume of 100 µl. Subsequently, three sets of ligation reactions were set up by incubating 600 

ng of purified digested DNA with 2 µl of high-concentration T4 DNA ligase (NEB, M0202T) 

overnight at 4C in a volume of 400 µl. The ligation reactions were purified by phenol-chloroform 

isoamyl alcohol extraction and ethanol precipitation. DNA pellets were dissolved in 30 µl of water. 

Two rounds of PCR were performed to amplify and enrich fragments containing both the barcodes 

and flanking genomic DNA regions (Primer details in Table S1). For the first round of nested PCR, 

five sets of 25-cycle reaction in a volume of 50 µl were performed using Phusion Hot Start Flex 

2X Master Mix (NEB) and 5 µl of ligated products as templates. Amplicon was pooled together, 

cleaned by DNA Clean & Concentrator kit (Zymo), and diluted in 50 ul of water. For the second 

round of nested PCR, four sets of 15-cycle reaction in a volume of 50 ul were done with 5 ul of 

cleaned amplicon from first PCR. Purified sample was further ligated with Illumina adapter, 

amplified and sequenced on Illumina HiSeq 3000 platform (2x150bp). Sequencing reads were 

filtered and analyzed using Matlab Bioinformatics Toolbox. The genomic regions associated with 

genuine barcodes were extracted from mapping reads and aligned against the human genome (hg38) 
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using STAR [85].  Detected integration sites from each replicate were compared and assigned to 

each genuine barcode only if top candidate site from both replicates are identical. Mapping of 

reporter integration sites were plotted on the ideogram (Fig.2b) using R and karyoploteR package 

[86]. Genome coordinate of reporter integration site was converted to human reference 

genome(hg19) using UCSC liftOver tool (Kuhn et al., 2013) for comparison to ChIP-Seq data.  

Combinatorial pool sequencing  

Identity of reporter cell lines, linked by DNA barcodes, were simultaneously revealed in a 

single run using combinatorial pooled sequencing. Clonal numbers were encoded in a form of 

pooling pattern. To increase decoding accuracy, we designed pooling signature to be unique four 

selected pools out of total eighteen pools. Cells from each clone were split into four pools 

according to the design.  Sequentially, genomic DNA from individual pool of mixed clones was 

extracted and used as templates for PCR to amplify barcode using same procedure described in 

the method of identification of genuine barcode list. Forward primers of second nested PCR 

contain 6-bp index DNA to label PCR products from each pool, which allow high-throughput 

multiplex sequencing (Primer details in Table S1). Sequences were filtered and demultiplexed 

using Matlab Bioinformatics Toolbox. Genuine barcodes from all pools were first listed. For each 

detected barcode, normalized counts per pools were calculated and pools showing high reads 

above the threshold were identified. Barcodes with four detected pools were first assigned to the 

clone showing matched pooling design. Some barcodes were found in more than four pools when 

sister cells, expanded from one founder cell, were sorted into multiple wells during single-cell sort. 

A list of merged pooling signature of two unassigned clones was matched with barcodes showing 

complexed readout. Clones with two inserted barcodes (~2% of the population) were excluded 

from the library of reporter cell lines.    
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Epigenetic drug treatment  

We first created control cells expressing both mClover and IRFP670 from multiple 

integration sites. Briefly, K562 cells were transduced with CMV-IRFP670 lentivirus  at high m.o.i. 

and sorted for IRFP positive cells. Lentiviral transduction of CMV-mClover was followed and 

dual reporter cells were selected by FACS. Control cells were co-cultured with individual reporter 

clones. 0.5 million cells of mixed samples were separately treated with DMSO, 400 nM of TSA, 

5 µM of 5’ Azacytidine and 1 µM of JQ1 for 24 hours. Afterward, cells were collected and 

measured for expression distribution of mClover and IRFP using BD FACSCelesta flow cytometer. 

Experiments were done in three replicates per drug treatment per clone. IRFP expression was used 

to separate control cells from sample cells. To eliminate non loci-specific effects, log10-

transformed mclover expression of control cells with epigenetic drug treatment was calibrated to 

match corresponding expression in DMSO condition. Same adjustment was applied to reporter 

cells in the same well. the Kolmogorov–Smirnov test was performed by Matlab software to 

compare histogram similarity of mClover distribution under different conditions.  

 

Validation of Combinatorial pool sequencing  

For the validation of combinatorial pool sequencing, 5 clones were randomly chosen and two of 

them are sister clones, sharing same barcode. Genomic DNA (200ng) was used as a template for 

amplification with a set of validation primers (Primer details in Table S1). PCR products were 

cleaned by DNA Clean & Concentrator kit (Zymo) and Sanger sequenced to verify the barcode 

sequences.  
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Analysis of ChIP-Seq data  

Following ChIP-seq data sets were downloaded from ENCODE: H2A.Z (ENCFF191EXE), 

H3K4me1 (ENCFF526QTS), H3K4me2 (ENCFF118MMT), H3K4me3 (ENCFF715DGL), 

H3K9ac (ENCFF602QRW), H3K9me1 (ENCFF526UWC), H3K9me3 (ENCFF834YLI), 

H3K27ac (ENCFF010PHG), H3K27me3 (ENCFF445UCR), H3K36me3 (ENCFF678IWR), 

H3K79me2 (ENCFF003CLZ) and H4K20me1 (ENCFF143CUR). Fold change over control 

signals were averaged within a window of 10 kb centered around integration sites using R and 

Bioconductor packages.   

  

Methylation analysis of CMV promoter 

To assess the levels of DNA methylation of CMV promoter, targeted bisulfite conversion 

was performed. Genomic DNA from clones of interest was extracted and bisulfite converted with 

Qiagen’s EpiTect bisulfite kit according to manufacturer’s instructions. Bisulfite converted 

genomic DNA was used as a template for two rounds of nested PCR using Invitrogen’s Phusion 

U polymerase (Primer details in Table S1). Amplicons from all samples were pooled together, 

purified by DNA Clean & Concentrator kit (Zymo) and deep sequenced. Sequencing reads were 

filtered and demultiplexed by barcode using Matlab Bioinformatics Toolbox. Changes in cytosine 

base at CpG sites were converted into a matrix of methylation status. 
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Supplemental Figures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) Positions of mapped barcoded-CMV-mClover reporters along all chromosome. Each synthetic reporter 

is represented as an orange tick on the ideogram. We detected 756 candidate genuine barcodes from three 

thousand original founder cells after two weeks of expansion. (b) A bar graph representing the frequency 

of mapped reporter per megabase. 

 

 

Supplementary Figure 3.1: Genome-wide map of barcoded reporter insertion 



 

77 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 (a) The distributions of KS statistics in control cells fall within the three standard deviation limits. (b-d) 

The number of hits in the drug screen for TSA(b), JQ1(c) and 5-AZA(d) is determined by Kolmogorov-

Smirnov statistics passing three standard deviation limits of control groups. 

 

 

 

 

 

 

 

 

 

Supplementary Figure 3.2: Drug screening shows different number of hits for different epi-drug 

treatment     
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Supplemental Table 

Name Sequence FW/RV Description 

DBC_Amp_FWD GATCCTGTAGAACTCTGAACCT F 

Verify barcode 
insertion in plasmid 
library 

DBC_Amp_REV AGTCGGTGTCTTCTATGGAG R 

Verify barcode 
insertion in plasmid 
library 

What_Nest1_FWD  TATGGATCCTGTAGAACTCTG F 
Identify geniune 
barcode sequence 

What_Nest1_REV GCTCTGCTTATATAGACCTCCCAC R 
Identify geniune 
barcode sequence 

What_Nest2_FWD TGTAGAACTCTGAACCTAGCT F 
Identify geniune 
barcode sequence 

What_Nest2_REV CGTAAGTTATGTAACGCGGA R 
Identify geniune 
barcode sequence 

Where_Nested1_FWD TATGGATCCTGTAGAACTCTG F 

Mapping reporter 
location. First Nest 
PCR. 

Where_Nested1_REV GCTTCAGCAAGCCGAGTCCTGCGTCGAG R 

Mapping reporter 
location. First Nest 
PCR. 

Where_Nested2_FWD_A AGTCATGTAGAACTCTGAACCTAGCT F 

Mapping reporter 
location, Second 
Nest PCR, 
Replication1 

Where_Nested2_FWD_B CTAGTTGTAGAACTCTGAACCTAGCT F 

Mapping reporter 
location, Second 
Nest PCR, 
Replication2 

Where_Nested2_REV GCTTTCAGGTCCCTGTTCGG R 

Mapping reporter 
location, Second 
Nest PCR, 
Replication1&2 

CombiWhat_Nest2_FWD_A ATCACGTGTAGAACTCTGAACCTAGCT F 

Combinatorial 
pooled sequencing, 
Second Next PCR  

CombiWhat_Nest2_FWD_B CGATGTTGTAGAACTCTGAACCTAGCT F 

Combinatorial 
pooled sequencing, 
Second Next PCR  

CombiWhat_Nest2_FWD_C TTAGGCTGTAGAACTCTGAACCTAGCT F 

Combinatorial 
pooled sequencing, 
Second Next PCR  

CombiWhat_Nest2_FWD_D TGACCATGTAGAACTCTGAACCTAGCT F 

Combinatorial 
pooled sequencing, 
Second Next PCR  
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CombiWhat_Nest2_FWD_E ACAGTGTGTAGAACTCTGAACCTAGCT F 

Combinatorial 
pooled sequencing, 
Second Next PCR  

CombiWhat_Nest2_FWD_F GCCAATTGTAGAACTCTGAACCTAGCT F 

Combinatorial 
pooled sequencing, 
Second Next PCR  

CombiWhat_Nest2_FWD_G CAGATCTGTAGAACTCTGAACCTAGCT F 

Combinatorial 
pooled sequencing, 
Second Next PCR  

CombiWhat_Nest2_FWD_H ACTTGATGTAGAACTCTGAACCTAGCT F 

Combinatorial 
pooled sequencing, 
Second Next PCR  

CombiWhat_Nest2_FWD_I GATCAGTGTAGAACTCTGAACCTAGCT F 

Combinatorial 
pooled sequencing, 
Second Next PCR  

CombiWhat_Nest2_FWD_J TAGCTTTGTAGAACTCTGAACCTAGCT F 

Combinatorial 
pooled sequencing, 
Second Next PCR  

CombiWhat_Nest2_FWD_K GGCTACTGTAGAACTCTGAACCTAGCT F 

Combinatorial 
pooled sequencing, 
Second Next PCR  

CombiWhat_Nest2_FWD_L CTTGTATGTAGAACTCTGAACCTAGCT F 

Combinatorial 
pooled sequencing, 
Second Next PCR  

CombiWhat_Nest2_FWD_M AGTCAATGTAGAACTCTGAACCTAGCT F 

Combinatorial 
pooled sequencing, 
Second Next PCR  

CombiWhat_Nest2_FWD_N AGTTCCTGTAGAACTCTGAACCTAGCT F 

Combinatorial 
pooled sequencing, 
Second Next PCR  

CombiWhat_Nest2_FWD_O ATGTCATGTAGAACTCTGAACCTAGCT F 

Combinatorial 
pooled sequencing, 
Second Next PCR  

CombiWhat_Nest2_FWD_P CCGTCCTGTAGAACTCTGAACCTAGCT F 

Combinatorial 
pooled sequencing, 
Second Next PCR  

CombiWhat_Nest2_FWD_Q GTCCGCTGTAGAACTCTGAACCTAGCT F 

Combinatorial 
pooled sequencing, 
Second Next PCR  

CombiWhat_Nest2_FWD_R GTGAAATGTAGAACTCTGAACCTAGCT F 

Combinatorial 
pooled sequencing, 
Second Next PCR  

CombiWhat_Validate_F TAGTGAACGGATCTCGACG F 

Validate 
combinatorial 
pooled sequencing 

CombiWhat_Validate_R GCTCTGCTTATATAGACCTCCCAC R 

Validate 
combinatorial 
pooled sequencing 

 

Table 1 A list of primers used in this study 
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CHAPTER 4  

Conclusion and future directions 

Here we developed a novel method that combine two high throughput techniques together. 

One is Thousands of Reporters Integrated in Parallel (TRIP) which has high capacity of revealing 

the level of gene expression from thousands of genomic locations in a single run of deep 

sequencing. However, the drawback of this method is the sensitivity of data since it only provides 

populational average per specific location labeled by the unique barcode. To get single cell data, 

clonal establishment and characterization is required. Nevertheless, this process is very laborious 

and not scalable. We circumvented this problem by integrating combinatorial pooled sequencing 

with TRIP. Combinatorial pooled sequencing eliminates the process of individual genomic 

extraction and PCR amplification per clones which significantly decreases both the cost and time 

for sequencing preparation. We showed that our approach is highly robust, massive, parallel and 

scalable.  

Our novel method allows massive and parallel establishment and characterization of clonal 

line of reporters which has numerous applications for addressing important questions yet still 

underexplored in biology. One interesting question is the effect of chromosomal position effects 

on gene expression variability in higher eukaryote genome. We used newly developed method to 

investigate the underlying factors controlling gene expression mean and variability in the human 

genome. We showed that the insertion site affects both features of gene expression. Mechanistic 

insights related to the factors underlying expression mean and variance noise were gleaned by 
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leveraging multiple epigenetic profiles with our measurement data. Overall, our results provide 

new insights into chromatin factors that contribute to regulation of gene expression and highlights 

the importance of chromosomal context in gene regulation.  

Moreover, we also investigated the contribution of heterogenous chromatin environment 

on the sensitivity of epigenetic drugs using newly developed method. The position specific effects 

of three common epi-drugs targeting histone deacetylase (TSA), DNA methylation (5’Azacytidine) 

and bromodomain proteins (JQ1) were evaluated. We found that up to 60% of genomic positions 

change in a manner that is different than average including both hyper and hypo sensitivity. 

Through analysis of the chromatin features that are enriched in sites with hyper/hypo drug 

sensitivities, we were able to characterize what aspects of chromatin environment make it more, 

or less, sensitive to a specific chemical compound.  

Future work for this dissertation should focus on applying other approaches to validate new 

finding. Our studies took advantage of big repository of well characterized and publicly available 

K562 epigenetic data. However, these profiles might not be perfectly identical to our K562 cells 

used in this study. Therefore, it will be beneficial to verify our novel finding using other 

approaches such as performing ChIP-qPCR experiments on reporter promoter and gene with 

epigenetic marks representing chromatin states or transcription factors of interest. Moreover, 

investigation of chromosomal position effects on more epigenetic drugs, promoters and cell lines 

will be useful to validate the generalization of our finding. 

Overall, we demonstrated that our method has both translational and basic science 

implications. Here, we used gene expression noise and the sensitivity of epigenetic drug as proof-

of-concept studies. However, our approach is highly flexible and can be easily adapted to probe 

the influence of chromatin environment on any biological processes that involve the use of genetic 
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and epigenetic information and their readouts need single cell data. For example, our method is a 

great tool to study the contribution of chromatin context on the efficiency of genome editing tool 

CRISPR. Deeper understanding of the factors that affect this process will lead to improvement on 

their efficacy and safety and further propel this technology toward therapeutic applications.  

 

 

 

 




