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ABSTRACT OF THE DISSERTATION

Online Learning and Decision Making with Partial Information, a feedback perspective

by

Anshuka Rangi

Doctor of Philosophy in Electrical Engineering

(Machine Learning and Data Science)

University of California San Diego, 2021

Professor Massimo Franceschetti, Chair

This dissertation considers a problem of online learning and online decision making where

an agent or a group of agents aim to learn unknown parameters of interest. There are two key

interacting components: agent and environment. The agent perform actions on the environment,

these actions may or may not change the state of the environment, and the environment generates

feedback based on the actions and its underlying state. The feedback is utilized by the agent to

learn and improvise its decisions and actions, and optimize a certain objective.

In the first part of this dissertation, we consider different variants of the online learning

and decision making systems. We propose optimal (or order-optimal) online learning algorithms
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for these variants. We characterize the flow of information through feedback, and provide

quantitative information measures that are key to optimal learning and decision making in these

systems.

In the second part of this dissertation, we focus on the attacks and security of these online

learning and decision making systems. Since the distributed nature of these systems is their

Achilles’ heel, making these systems secure requires an understanding of the regime where the

systems can be attacked, as well as designing ways to mitigate these attacks. We study both

of these aspects of the problem for stochastic Multi-Armed Bandits (MAB). We also study the

former aspect of the problem, namely understanding the regime under which the system can be

attacked, for Reinforcement Learning and Cyber Physical systems.

Finally, we lay the foundations of non-stochastic information theory. Classical infor-

mation theory has little role in providing non-stochastic guarantees for online systems such as

Cyber-Physical systems where occasional errors can quickly drive these systems out of control

and lead to catastrophic failures. We propose a non-stochastic δ-mutual information to capture

the worst case error guarantees, denoted by δ. We propose non-stochastic analogue of capacities

which are studied in classical information theory. We also establish key results such as channel

coding theorem and single letter characterization for the non-stochastic capacities.
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Chapter 1

Introduction

1.1 Introduction

Modern learning and decision making systems such as recommendation systems, crowd-

sourcing systems, and cyber physical systems are inherently online. These online systems are

made of two key interacting components: agent and environment. In these systems, the agent

perform actions on the environment, these actions may or may not change the state of the envi-

ronment, and the environment generates feedback based on the actions and its underlying state.

Namely, at a discrete time t, the agent performs action at, the state st of the environment evolves

as h(st−1, at) , and the feedback signal f(st, at) is observed by the agent (see Figure 1.1). The

feedback corresponding corresponding to the actions is used by the agent to learn and improvise

its decisions and actions, and optimize a certain objective. In these online systems, the agent

faces uncertainity in decision making since either the state of the environment or behaviour of

the environment to the agent’s actions is unknown. The uncertainity in decision making leads to

a well-studied exploration (searching the space of possible decisions) and exploitation (choosing

the optimal decision based on the learned model) trade-off [16].

In this thesis, we will focus on different variants of these online learning and decision

making systems. We propose optimal (or order-optimal) online learning algorithms for these

variants. We characterize the flow of information through feedback, and provide quantitative

information measures that are key to optimal learning and decision making in these systems.
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Figure 1.1. Online decision making and learning systems

These information measures capture either the expected or the worst-case behaviour of the

information flow depending on the environment. We focus on the following aspects of these

online systems based on the information possessed by the agent about the environment.

1.1.1 Known dynamics and Unknown state

In this setting, the state of the environment is unknown to the agent (or learner), and is

fixed throughout the interaction of the agent with the environment, namely st = st−1 = s0 is fixed

in Figure 1.1, and is unknown to the learner. However, the agent posses the knowledge of the

dynamics (or behaviour) of the environment in each possible state, namely for all actions a ∈ A

and all state s ∈ S , the function f(s, a) is known, where A and S denote all the possible actions

and states, respectively. The objective of the agent is to identify the state of the environment

among the possible states. This problem is also referred as Hypothesis Testing in the literature

[45].

We study this problem in a network setting consisting of a group of agents connected to

each other by communication links. Each agent interacts with the environment, and shares the

information possessed by it with other agents over the network. The objective of the agents is to

identify the state of the environment as soon as possible. More formally, the agents collectively

minimize the risk, expressed by the expected cost required to reach a decision plus the expected

cost of making a wrong decision.

In Chapter 2, we propose an “online” decision making scheme which is an extension of
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classic Chernoff test. This scheme is asymptotically optimal in terms of risk for the networks

with small diameters, and parsimonious in terms of communications in comparison to state-of-art

schemes proposed in the literature. We show that the information measure characterizing the flow

of information is the KL-divergence. In other words, the KL-divergence quantify the capabilities

of the agents collectively to achieve their objective.

1.1.2 Unknown dynamics and Unknown state

In this setting, both the state and the dynamics of the environment are unknown to the agent,

namely the current state st and the function f(st, at) is unknown in Figure 1.1. Additionally, the

state is fixed throughout the interaction of the agent with the environment, namely st = st−1 = s0.

The objective of the agent is to minimize its expected regret, which is defined as the difference

between the gain from the best fixed policy in the hindsight and the gain from agent’s policy.

This problem is commonly studied as Multi-Armed Bandits and Online Learning in the literature

[16, 17].

We study this problem in a knapsack setting where the agent has an additional constraint

over the resources needed to perform actions. We study this problem under two different feed-

back models: stochastic and adversarial. First, in the stochastic feedback model, the feedback

corresponding to agent’s action is drawn from a fixed underlying probability distribution func-

tion, which is unknown to the agent. Second, in the adversarial feedback model, the feedback

corresponding to agent’s action is assigned by an oblivious adversary. We propose two different

order-optimal learning algorithms for both these feedback models. We also propose another

novel algorithm which unifies both these feedback models by achieving almost order-optimal

guarantees for both these models simultaneously. These algorithms and their regret guarantees

are presented in Chapters 3 and 4.

We also study another variant of online learning where the feedback received from the

environment can be modelled as a graph. In other words, the feedback from the environment

provides information about the agent’s action as well as a subset of actions which were not
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Figure 1.2. Online decision making and learning systems

performed. In the same spirit as the knapsack setting, the actions of the agent are constraint by

adding a penalty (or cost) if the agent switches its action. We study this problem in the adversarial

feedback setting in Chapter 5. We propose order-optimal algorithms which utilize the feedback

efficiently. We introduce a new measure independence sequence number to characterize the

flow of information in this setting .

In this section, we study all these variants for a single agent setting. However, these can

also be extended to the network setting consisting of a group of agents connected to each other

by communication links.

1.1.3 Attacks and Security of Online systems

The distributed nature of online learning systems is their Achilles’ heel, as it is a source

of vulnerability to third party attacks. For example, in web services decision making critically

depends on reward collection, and this is prone to attacks that can impact observations and

monitoring, delay or temper rewards, produce link failures, and generally modify or delete

information through hijacking of communication links [2] [37]. Making these systems secure

requires an understanding of the regime where the systems can be attacked, as well as designing

ways to mitigate these attacks.

We study both of these aspects of the problem for stochastic Multi-Armed Bandits

(MAB) setting in Chapter 6. We consider a data poisoning attack, also referred as man in the

middle (MITM) attack. In this attack, there are three entities: the environment, the agent (or
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MAB algorithm), and the attacker. In this setting, the attacker can eavesdrop and contaminate

(or manipulate) the communication between the agent and the environment (see Figure 1.2).

We establish the regime where any order-optimal MAB algorithm can be attacked. Formally,

we provide order-optimal bounds on the amount of contamination required by the attacker to

successfully attack the MAB algorithm. In the effort of developing secure ways to mitigate the

attacks, we consider a reward verification model in which the agent can access verified (i.e.

uncontaminated) rewards from the environment. This verified access can be implemented through

a secure channel between the agent and the environment, or using auditing. Since verification

is costly, the agent faces a tradeoff between its performance in terms of regret, and the number

of times access to a verified reward occurs. Second, the agent needs to decide when to access

a verified reward during the learning process. We design an order-optimal bandit algorithm

which strategically plans the verification, and makes no assumptions on the attacker’s strategy or

capabilities.

We extend the study of the former aspect of the problem, namely understanding the

regime under which the system can be attacked, from MAB setting to episodic Reinforcement

Learning in Chapter 7. We study the regime where any order-optimal episodic RL algorithm can

be attacked.

We also study the former aspect of the problem, namely understanding the regime under

which the system can be attacked, in cyber physical systems in Chapter 8. We study learning based

MITM attacks where the attacker has full access to the communication between the controller (or

agent) and the plant (or environment), but the dynamics of the plant are unknown to the attacker.

Thus, the attacker needs to learn about the plant in order to generate the fictitious signals to the

controller that allow the attacker to remain undetected for the time needed to cause harm. On the

other hand, the controller has perfect (or nearly perfect) knowledge of the dynamics of the plant

and is actively looking out for an anomalous behaviour in the feedback signals from the plant. In

this setting, both the attacker and the controller need to perform optimal online decision making

in a feedback loop fashion. We study the trade-offs between the information acquired by the
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attacker from observations, the detection capabilities of the controller, and the control cost.

1.1.4 Non-stochastic Information Theory

When Shannon laid the mathematical foundations of information theory he embraced

a probabilistic approach [199]. Occasional violations from a specification are permitted, and

cannot be avoided. This approach is well suited for consumer-oriented digital communication

devices, where the occasional loss of data packets is not critical. In contrast, in the context of

control of safety-critical online systems, error bounds must often be guaranteed at any time,

not only on average. In this case, at each time step of the evolution of a dynamical system

(or environment), the feedback is used by the agent to choose the next action, which is then

fed back into the system. When this feedback loop is closed over a communication channel,

occasional decoding errors can quickly drive the system out of control and lead to catastrophic

failures. An example of such a safety critical online systems is cyber-physical systems (CPS)

[115]. In this setting, classical information theory has little role in providing non-stochastic

guarantees of meeting the control objectives. On the other hand, information in some sense must

be flowing across the network, and this observation motivates the need for a meaningful theory

of information in a non-stochastic setting.

In Chapter 8, we lay the foundations of non-stochastic information theory. We propose a

non-stochastic δ-mutual information to capture the worst case error guarantees, denoted by δ. We

propose non-stochastic analogue of capacities which are studied in classical information theory.

We also establish key results such as channel coding theorem and single letter characterization

for the non-stochastic capacities. Few applications of this work is discussed at length in Chapter

9.

1.2 Dissertation Overview

The rest of the dissertation is organized as follows.

In Chapter 2, we study “active” decision making over sensor networks where the sensors’
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sequential probing actions are actively chosen by continuously learning from past observations.

We consider two network settings: with and without central coordination. In the first case, the

network nodes interact with each other through a central entity, which plays the role of a fusion

center. In the second case, the network nodes interact in a fully distributed fashion. In both

of these scenarios, we propose sequential and adaptive hypothesis tests extending the classic

Chernoff test. We compare the performance of the proposed tests to the optimal sequential

test. In the presence of a fusion center, our test achieves the same asymptotic optimality of the

Chernoff test, minimizing the risk, expressed by the expected cost required to reach a decision

plus the expected cost of making a wrong decision, when the observation cost per unit time tends

to zero. The test is also asymptotically optimal in the higher moments of the time required to

reach a decision. Additionally, the test is parsimonious in terms of communications, and the

expected number of channel uses per network node tends to a small constant. In the distributed

setup, our test achieves the same asymptotic optimality of Chernoff’s test, up to a multiplicative

constant in terms of both risk and the higher moments of the decision time. Additionally, the test

is parsimonious in terms of communications in comparison to state-of-the-art schemes proposed

in the literature. The analysis of these tests is also extended to account for message quantization

and communication over channels with random erasures.

In Chapter 3, we study the setting of Bounded Knapsack Bandits with an application in

Crowdsourcing Systems. Crowdsourcing systems have become a valuable solution for various

organizations to outsource work on a temporary basis. Quality assurance in these systems

remains a key issue due to the distributed setup of the crowdsourcing platforms and the absence

of a priori information about the workers. Our work develops a notion of Limited-information

Crowdsourcing Systems (LCS), where the task master can assign the work based on some

knowledge of the workers’ ability acquired over time. The key challenges in this new setup are

determining an efficient workers’ selection policy and estimating the abilities of the workers.

To address the first challenge, we reduce the problem to an arm-limited, budget limited, multi-

armed bandit (MAB) setup, also referred as Bounded Knapsack Bandits, and use the simplified
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bounded KUBE (B-KUBE) algorithm as a solution. This algorithm has previously only been

experimentally evaluated, and we provide provable performance guarantees, showing that it

is order optimal, namely the expected regret of B-KUBE is O(log(B)) where B is the total

budget of the task master. The second challenge is solved by formalizing the notion of workers’

ability mathematically, and proposing a strategy for its estimation. We experimentally evaluate

B-KUBE in conjunction with this strategy, showing that it outperforms other state-of- the-art

MAB algorithms when applied in the same setting.

In Chapter 4, we investigate the adversarial Bandits with Knapsack (BwK), where a

learner repeatedly chooses to perform an action, pays the corresponding cost, and receives a

reward associated with the action. The learner is constrained by the maximum budget that can

be spent to perform actions, and the rewards and the costs of the actions are assigned by an

oblivious adversary. This problem has only been studied in the restricted setting where the reward

of an action is greater than the cost of the action, while we provide a solution in the general

setting. Namely, we propose EXP3.BwK, a novel algorithm that achieves order optimal regret.

We also propose EXP3++. BwK, which is order optimal in the adversarial BwK setup, and

incurs an almost optimal expected regret with an additional factor of in the stochastic BwK setup.

Finally, we investigate the case of having large costs for the actions (ie, they are comparable

to the budget size ), and show that for the adversarial setting, achievable regret bounds can be

significantly worse, compared to the case of having costs bounded by a constant, which is a

common assumption within the BwK literature.

In Chapter 5, we study online learning when partial feedback information is provided

following every action of the learning process, and the learner incurs switching costs for changing

his actions. In this setting, the feedback information system can be represented by a graph,

and previous works studied the expected regret of the learner in the case of a clique (Expert

setup), or disconnected single loops (Multi-Armed Bandits). This work provides a lower bound

on the expected regret in the Partial Information (PI) setting, namely for general feedback

graphs–excluding the clique. Additionally, it shows that all algorithms that are optimal without
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switching costs are necessarily sub-optimal in the presence of switching costs, which motivates

the need to design new algorithms. We propose two new algorithms: Threshold Based EXP3

and EXP3.SC. For the two special cases of symmetric PI setting and MAB, the expected regret

of both of these algorithms is order optimal in the duration of the learning process. Additionally,

Threshold Based EXP3 is order optimal in the switching cost, whereas EXP3.SC is not. Finally,

empirical evaluations show that Threshold Based EXP3 outperforms the previously proposed

order-optimal algorithms EXP3 SET in the presence of switching costs, and Batch EXP3 in the

MAB setting with switching costs.

In Chapter 6, we study bandit algorithms under data poisoning attacks in a bounded

reward setting. We consider a strong attacker model in which the attacker can observe both the

selected actions and their corresponding rewards, and can contaminate the rewards with additive

noise. We show that any bandit algorithm with regret O(logT ) can be forced to suffer a regret

Ω(T ) with an expected amount of contamination O(logT ). This amount of contamination is

also necessary, as we prove that there exists an O(logT ) regret bandit algorithm, specifically the

classical UCB, that requires Ω(logT ) amount of contamination to suffer regret Ω(T ). To combat

such poising attacks, our second main contribution is to propose a novel algorithm, Secure-UCB,

which uses limited verification to access a limited number of uncontaminated rewards. We show

that with O(logT ) expected number of verifications, Secure-UCB can restore the order optimal

O(logT ) regret irrespective of the amount of contamination used by the attacker. Finally, we

prove that for any bandit algorithm, this number of verifications O(logT ) is necessary to recover

the order-optimal regret. We can then conclude that Secure-UCB is order-optimal in terms of

both the expected regret and the expected number of verifications, and can save stochastic bandits

from any data poisoning attack.

In Chapter 7, we study poisoning attacks to manipulate any no-regret learning algorithm

towards a targeted policy in episodic RL and examines different settings in which different

kind of poisoning attacks, reward manipulation and action manipulation, could be damaging.

We distinguish between two different settings: unbounded rewards and bounded rewards. In
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unbounded rewards setting, we show that reward manipulation attacks are sufficient for an

adversary to successfully manipulate any no-regret learning algorithm to follow any targeted

policy using Õ(
√
T ) amount of contamination, even without any knowledge of the Markov

Decision Process (a.k.a., the black-box attacks). In bounded rewards setting, we first demonstrate

that only reward manipulation or only action manipulation cannot lead to a successful attack,

namely there exists a target policy and an MDP which cannot be attacked successfully by

only reward manipulation or only action manipulation. Second, combining reward and action

manipulation, we show that the adversary can manipulate any no-regret learning algorithm to

follow any targeted policy with Õ(
√
T ) attack cost, i.e., sum of amount of contamination and

number of action manipulation, in the black-box attack setup. Our results reveal useful insights

about what can or cannot be achieved by an adversary’s poisoning attacks, and hopefully can

spur more works on the design of robust RL algorithms.

In Chapter 8, we study the problem of learning-based attacks in linear systems, where

the communication channel between the controller and the plant can be hijacked by a malicious

attacker. We assume the attacker learns the dynamics of the system from observations, then

overrides the controller’s actuation signal, while mimicking legitimate operation by providing

fictitious feedback about the sensor readings to the controller. On the other hand, the controller is

on a lookout to detect the presence of the attacker and tries to enhance the detection performance

by carefully crafting its control signals. We study the trade-offs between the information acquired

by the attacker from observations, the detection capabilities of the controller, and the control cost.

Specifically, we provide tight upper and lower bounds on the expected ε-deception time, namely

the time required by the controller to make a decision regarding the presence of an attacker with

confidence at least (1− ε log(1/ε)). We then show a probabilistic lower bound on the time that

must be spent by the attacker learning the system, in order for the controller to have a given

expected ε-deception time. We show that this bound is also order optimal, in the sense that if the

attacker satisfies it, then there exists a learning algorithm with the given order expected deception

time. Finally, we show a lower bound on the expected energy expenditure required to guarantee
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detection with confidence at least 1− ε log(1/ε).

In Chapter 9, we introduce the δ-mutual information between uncertain variables as

a generalization of Nair’s non-stochastic information functional. Several properties of this

new quantity are illustrated, and used to prove a channel coding theorem in a non-stochastic

setting. Namely, it is shown that the largest δ-mutual information between a metric space and

its ε-packing equals the (ε, δ)-capacity of the space. This notion of capacity generalizes the

Kolmogorov ε-capacity to packing sets of overlap at most δ, and is a variation of a previous

definition proposed by one of the authors. These results provide a framework for developing a

non-stochastic information theory motivated by potential applications in control and learning

theories. Compared to previous non-stochastic approaches, the theory admits the possibility of

decoding errors as in Shannon’s probabilistic setting, while retaining its worst-case non-stochastic

character.
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Chapter 2

Distributed Chernoff Test: Optimal Deci-

sion Systems over Network

2.1 Introduction

With the boom in the Internet of Things, sensor-network based solutions for inference

systems have become increasingly popular [15, 130, 144]. This is mainly due to the decreasing

cost of the sensors, their increasing computational capabilities, the availability of high-speed com-

munication channels, and the redundancy provided by the distributed nature of the network [215].

Inference systems have two key functionalities: decision making (viz. hypothesis testing) and

estimation. We focus on designing optimal tests for sensor networks in decision-making scenar-

ios where the sensors actively choose their probing actions by continuously learning from past

observations. Applications that fall in this framework include intrusion and target detection, and

object classification and recognition [88, 138, 13, 123, 185].

Previous studies are broadly classified into two categories: fusion-center based and

distributed setting. In the first case, all the nodes of the network are connected to a fusion

center — and two operative modalities are considered. In the first modality, the network nodes

simply deliver their observations to the fusion center, where the inference task is performed. In

the second modality, the nodes exploit their computational capability to perform preliminary

processing of the observations, and only a limited amount of information is delivered to the

fusion center for making the final decision. This reduces the communication overhead, but
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may also result in a loss of performance. In the distributed setup, network nodes are connected

to each other via communication links, typically forming a sparse network, and there is no

central processing unit. Thus, to perform an inference task, the network nodes need to perform

computations locally, share their processed data with neighboring nodes, and collectively reach a

decision. A natural question in both settings is what kind of local processing to perform at the

nodes, and what fusion scheme to adopt at the fusion center or at the network nodes, in order to

reduce the communication burden while keeping a high level of performance. In this work, we

address this question and propose statistical tests for both settings.

Hypothesis tests can be broadly classified as sequential or non-sequential tests, as well as

adaptive or non-adaptive tests. In a sequential test the number of observations needed to reach a

decision is not fixed in advance, but depends on the realization of the observed data. The test

proceeds to collect and process data until a decision with a prescribed level of reliability can be

made, and an important performance figure — in addition to the probability of correct decision

— is the average number of observations required to end the test. In an adaptive test, the sensors’

probing actions are chosen on the basis of the collected data in an on-line, causal manner. Hence,

the sensors learn from the past, and adapt their future probing actions in a closed-loop fashion.

In this case, the sensors are said to be “active,” in the sense that measurement observations are

the consequence of the sensors’ chosen probing actions. Our focus here is on sequential and

adaptive tests.

We propose a Decentralized Chernoff Test (DCT) for the fusion center based setup, and

a Consensus-based Chernoff Test (CCT) for the distributed setup. We provide bounds on the

performance of the tests in terms of their risk, defined as the expected cost required to reach a

decision plus the expected cost of making a wrong decision. We also provide converse results

showing the best possible performance of any adaptive or non-adaptive sequential test over

the network. We show that DCT is asymptotically optimal in terms of both the risk and the

higher moments of the expected decision time, as the observation cost per unit time tends to zero.

Additionally, DCT is parsimonious in terms of communication: when the observation cost per
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unit time tends to zero, the expected number of messages sent per node tends to a small constant.

Finally, we show that CCT also retains the asymptotic optimality of Chernoff’s original solution,

being order optimal up to a multiplicative constant, in terms of both risk and higher moments of

decision time.

To ease the presentation, our initial analysis assumes ideal communication links carrying

real-valued messages without errors. In a real network, messages are quantized into packets of

a fixed length, and subject to random erasures at each transmission. In the second part of the

paper, we extend our results to this scenario.

The rest of the paper is organized as follows: Section 2.2 discusses related work; Section

2.3 formulates the problem; Section 2.4 reviews the standard Chernoff test; Section 2.5 introduces

the Decentralized Chernoff Test (DCT); Section 2.6 introduces the Consensus-based Chernoff

Test (CCT); Section 2.7 presents theoretical results on DCT and CCT; Section 2.8 presents

simulation results; Section 2.9 extends the analysis to quantized messages and erasure channels;

Section 2.10 concludes the work. The proofs of all results appear in the Appendices.

2.2 Related Work

Sequential tests were first introduced by Wald in 1973 [221]. One of these tests, the

Sequential Probability Ratio Test (SPRT) has been proven optimal for binary hypothesis testing

in [222], and for multi-hypothesis testing in [57, 58]. The performance of sequential tests can be

further improved by combining them with adaptive schemes. These schemes operate in closed-

loop, adapting the choice of actions to past observations. In the case of sequential and adaptive

tests, Chernoff provided the optimal test for binary composite hypotheses in [45]. Its asymptotic

optimality for multi-hypothesis testing was proven in [164]; see also [68] and references therein

for an application. Later, the sequentiality and adaptivity gains for different classes of tests

were studied, and it was established that sequential adaptive tests outperform other classes of

tests [155], and that the gains can vary from application to application [154, 156, 75, 174]. All
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of these results were established in the case a single agent performs the test.

Different works discuss the extension to an ensemble of networked sensors independently

making observations and coordinating to reach a decision [26, 219]. Different techniques for

combining the information from different sensors at a fusion center are considered in [42, 215,

94, 134]. In this case, minimization of the risk, which depends on both the decision time and the

reliability of the decision, requires joint optimization over both the node level computations and

the fusion center operations. Key challenges of this optimization problem are discussed in [216],

and asymptotically optimal sequential (non-adaptive) tests have been developed in [149, 225].

Previous works have not considered the performance of sequential, adaptive tests in a

network setting. The DCT proposed here fills this gap for star networks, namely for networks in

which each node is directly connected to a fusion center. On the other hand, the CCT proposed

here considers networks having a general graph structure and no central entity. In this more

general case, different non-sequential tests have been developed relying on gossip protocols for

distributed computation [29, 165, 30, 48, 108, 31]. These protocols can be broadly classified into

two categories: consensus protocols and running-consensus protocols. In consensus protocols,

a distributed computation task is performed after the collection of all the measurements at the

network nodes [29, 165, 48, 108]. Necessary and sufficient conditions for convergence are well

studied, see e.g., [234]. In running-consensus protocols, the collection of the measurements from

the environment and the computation task are performed simultaneously at the network nodes

[30, 31]. Hypothesis testing schemes typically rely on consensus over “belief vectors.” In this

case, each network node holds a belief vector, whose elements represent the probability that a

certain hypothesis is true, given all the information collected by the node. Different strategies

are then used to transmit and combine the belief vectors over the network, leading to asymptotic

learning of the correct hypothesis [93, 166, 161, 197, 59, 125]. For example, a strategy based on

distributed dual averaging was proposed in [59], using an optimization algorithm from [196].

The work in [93] proposes usage of linear consensus strategies to combine the belief vectors,

and [166] extends the results of [93] to the case of random time-varying networks. Other works
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consider Bayesian strategies for updating and combining the belief vectors at the nodes [125].

In [125] the bounds on the asymptotic learning rate are presented in terms of KL-divergences of

the beliefs at the different network nodes. Under the assumption that the log-likelihood ratio is

bounded, finite-time analysis of the KL-divergence cost has been performed in [197]. Similar

results have been obtained for networks modeled as time-varying graphs [161, 162].

Despite this huge literature, only limited attention has been given to distributed sequential

hypothesis testing over general networks, which requires designing an appropriate stopping rule

over the network and evaluating the corresponding expected decision time and performance

in terms of risk. Recently, a sequential (non-adaptive) hypothesis test which is asymptotically

optimal among non-adaptive tests has been proposed [131]. In the present work, we propose

a sequential as well as adaptive hypothesis test in the distributed network setup. Unlike the

previous literature, including [131], the proposed test does not perform consensus over the belief

vector, and is parsimonious in terms of communication. The stopping criterion proposed in

[131] is not applicable to our test. Our test is also asymptotically optimal among all adaptive

or non-adaptive sequential tests, under a broad range of conditions. Finally, we point out that

unlike our work, all of the above works do not consider the effect of quantization and erasures

occuring over the communication links.

2.3 Problem Formulation

2.3.1 Hypotheses Testing model

We consider an ensemble L = {1, 2, . . . , L} of sensor nodes engaged in a multi-

hypothesis testing problem. The state of nature to be detected is one of M exhaustive and

mutually exclusive hypotheses {hi}i∈[M ], where [M ] = {1, 2, . . .M}. Nodes are connected

by bi-directional communication links to form a network. At each discrete time step n every

node ` ∈ L can select a probing action un,` ∈ S, where S is a fixed set of cardinalityM . As a

consequence of this action, the node observes the realization of a real-valued random variable
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Yn,` whose distribution is p
un,`

i,` and is known to node ` only. The node can then send one message

over each of its incident links, and receive one message from each link. The probing actions

and the messages sent at time n can be selected based on all past observations, actions taken,

and messages sent and received up to time n− 1. It follows that the observations at each node

can be dependent across time. On the other hand, given the state of nature, we assume that the

observations at different nodes are conditionally independent, but not necessarily identically

distributed.

2.3.2 Network model

We consider two network setups.

1. Star network. In this case, the network is composed of theL sensors and of one special node

acting as a fusion center. Each sensor is connected to the fusion center via a communication

link, while there are no links between the sensors. This setup is used to introduce our

Decentralized Chernoff Test (DCT).

2. General network. In this case, the network is represented by a connected graph G(L, E),

where L is the set of vertices, and the edges {(`, j)} ∈ E , are such that `, j ∈ L, we have

` 6= j. Communication and information processing tasks are fully distributed and there

is no fusion center. This setup is used to introduce our Consensus-based Chernoff Test

(CCT).

2.3.3 Communication model

We first assume an ideal communication model, where at each time step every node can

send and receive a vector composed ofC real-values over each of its incident links. The messages

sent are received instantaneously and without error. This synchronous model of communication

with no queueing delay and real vector channels has been widely used in the literature of detection

and estimation, see e.g. [149, 225, 29, 165, 30, 48, 108, 31, 93, 161, 197, 59, 125, 234, 131].
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We then refine the communication model by taking into account that in a real packet-

switched network, links can only carry a finite number of bits at each transmission, rather than

real numbers. In this case, if there is a communication link connecting nodes ` and j, then

we assume that at each time step node ` can transmit a packet of C bits to node j and at the

same time step node j can transmit a packet of C bits to node `. This accounts for quantization

of the real data in the previous model. In information-theoretic terms, every link behaves in

each direction as a noiseless channel of finite capacity C bits/transmission. As in the previous

model, every packet transmission occurs synchronously in one time step, and there is no queuing

delay. Although less popular than the previous one, this refined model has been considered

in the context of quantized consensus in [160], and in the context of estimation and detection

in [149, 225, 214, 233, 215, 147].

Finally, we further extend the communication model by considering random packet

erasures. We assume that at any time step any link in the network can fail independently with

probability ε. When a link fails, packets travelling on both directions of the link are received as

“erasures.” In information-theoretic terms, every link behaves in this case in both directions as a

C-bit erasure channel without feedback, having capacity (1− ε)C bits/transmission. As in the

previous case, transmissions are synchronous, and there is no queuing delay. A related model,

where links can fail at random times but carry real numbers rather than quantized packets has

been used to study consensus in [101] and estimation and detection in [39, 40, 99, 197, 159, 244,

223, 168, 90, 100].

2.3.4 Performance measure

Our objective is to design a scheme to select at each step the nodes’ probing actions and

the messages to transmit, to eventually decide the state of nature with sufficiently high reliability.

To quantify the performance of the proposed scheme, we let N be the random time at which all

the nodes have reached the same decision and halt the test. We consider both the expectation and

the higher moments of this stopping time. Following [45], we also consider the risk, expressed
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as the sum of the expected cost required to reach a decision and the expected cost of making a

wrong decision. Namely, under the true hypothesis H∗ = hi, we let the risk Rδ
i of a test δ be

Rδ
i = cEδ

i [N ] + ωi Pδ
i (Ĥ 6= hi), (2.1)

where c is the observation cost per unit time, Ĥ is the final decision, Ei and Pi are the expectation

and the probability operators computed under H∗ = hi, and ωi is the cost of a wrong decision.

As in [45], we evaluate the risk for all i ∈ [M ], as c→ 0.

2.3.5 Additional notation

We write log for natural logarithms, unless otherwise indicated. For the general network

case, we denote by dG the diameter of the network, which is the maximum shortest hop-distance

between any pair of nodes of G(L, E). We denote by hG the shortest height of all possible

spanning trees of G(L, E). Since the network is connected, dG and hG are both finite. For all

` ∈ [L], u ∈ S and i, j ∈ [M ], the KL-divergence between hypotheses hi and hj is denoted by

D(pui,`||puj,`), and is assumed to be finite over the entire action set S. We also assume that for all

` ∈ [L] and i, j ∈ [M ], there exists an action u ∈ S such that D(pui,`||puj,`) > 0. This assumption

entails little loss of generality, rules out trivialities, and is commonly adopted in the literature, see

e.g., [45]. For all ` ∈ [L], u ∈ S and i, j ∈ [M ], we assume E[log(pui,`(Y ))/ log(puj,`(Y ))]2 <∞.

If v1 = [v1,1, . . . vk,1] and v2 = [v1,2, . . . vk,2] are two vectors of same dimension, then v1 � v2

implies that for all i ∈ [k], vi,1 ≤ vi,2. Finally, we indicate with |v1| the vector of absolute values

of the entries of v1.

2.4 Standard Chernoff Test

We start by describing the Standard Chernoff Test (SCT) for a single sensor ` attempting

to detect the true hypothesis H∗, having no interactions with other sensors in the network [45].

For all n > 1 we let yn` = {y1,`, . . . , yn−1,`}, where yi,` denotes the realization of the observation

19



collected at time step i, and let un
` = {u1,`, . . . , un−1,`}, where ui,` denotes the realization

of the action made at step i. For n = 1 we initialize the set of previous actions un
` = ∅

and previous observations yn` = ∅, and let all posterior probabilities be the same, namely

P(H∗ = hi|yn` , un
` ) = 1/M .

At every step n ≥ 1, the test proceeds as follows:

1) A temporary decision is made, based on the maximum posterior probability of the hypothe-

ses, given the past observations and actions of the sensor. Ties are resolved at random.

This temporary decision is in favor of hi∗n if

i∗n = argmax
i∈[M ]

P(H∗ = hi|yn` , un
` ). (2.2)

2) A new action un,` is randomly chosen among the elements of the action set S, according

to the Probability Mass Function (PMF)

Q`
i∗n
= argmax

q∈Q
min
j∈Mi∗n

∑
u∈[M ]

q(u)D(pui∗n,`||p
u
j,`), (2.3)

where Q denotes the set of all the possible PMFs over the [M ] actions, and Mi∗n =

[M ] \ {i∗n}.

3) As a consequence of this action, a new observation yn,` is collected, and for all i ∈ [M ]

the posterior probabilities P(H∗ = hi|yn+1
` , un+1

` ) are updated.

4) The test stops if the worst case log-likelihood ratio crosses a prescribed fixed threshold γ,

namely if

log
P(H∗ = hi∗n,|y

n+1
` , un+1

` )

maxj 6=i∗n P(H∗ = hj|yn+1
` , un+1

` )
≥ γ, (2.4)

If the test stops, then the final decision is hi∗n , otherwise n is incremented by one and the

procedure continues from 1).
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2.5 Decentralized Chernoff Test

We now extend the SCT to a DCT in the star network configuration. We start by noticing

that in the SCT the quantity

vi,` = max
q∈Q

min
j 6=i

∑
u∈[M ]

q(u)D(pui,`||puj,`), (2.5)

is a measure of the capability of node ` to detect hypothesis hi (see [45] for a discussion), and

plays a critical role for the selection of the action in (2.3) that is performed at each step and is

adapted to the current belief. In a network setting, the quantity

I(i) =
L∑

`=1

vi,`, (2.6)

represents a measure of the cumulative capability of the network to detect hypothesis hi and

can be used for the selection of the threshold of each node in a coordinated fashion to optimize

the expected decision time. Accordingly, in DCT, the fusion center collects vi,` for all i ∈ [M ]

and ` ∈ [L], computes I(i) for all i ∈ [M ], and distributes this result to all the nodes to enable

their threshold selection. The nodes then perform SCTs in parallel, until they all reach the same

decision and terminate the test. The three phases of the test are as follows:

Initialization phase

1. Without performing any probing action, each node ` sends the vector v` = [v1,`, . . . , vM,`]

to the fusion center.

2. The fusion center sends the cumulative capability vector I = [I(1), . . . , I(M)] back to

each node, and upon reception, each node ` computes the vector ρ` = [ρ1,`, . . . , ρM,`]

representing its fraction of network detection capability, namely for all i ∈ [M ], we have

ρi,` = vi,`/I(i). (2.7)
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Test phase

Proceeding in parallel, every node ` performs a SCT using the threshold

γ = ρi∗n,` |log c|. (2.8)

This threshold depends on both the current estimate of the hypothesis and the node identity,

while it was a constant in (2.4). If the log-likelihood ratio in (2.4) exceeds the threshold, node

` sends its preference for hi∗n to the fusion center and continues to run the test. Hence, rather

than using it as a stopping condition, the threshold is used here as a triggering condition for the

communication of a preference by node ` to the fusion center.

Stopping phase

When the preferences expressed by all the nodes are the same, the fusion center sends a

halting message to all the nodes, who stop the test and declare the final decision.

The proposed DCT only requires the communication of the messages in the initialization

phase, the local preferences from the nodes during the test phase, and the halting message in

the stopping phase. We show below that, while maintaining the same asymptotic optimality of

the Chernoff test, the oscillations in the local preferences of the nodes in the test phase vanish

as c → 0 and, if C ≥ M , each sensor tends to use the channel on average at most four times:

two in the initialization phase, one (on average) to communicate the local preference, and one

to receive the halting message. In the case C < M , the test retains its asymptotic optimality,

although the expected number of channel uses per node increases from four to a constant that

is at most 2(M + 1), since in this case multiple transmissions are needed to communicate each

vector in the initialization phase.
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2.5.1 Informal Discussion of DCT

The key idea behind the proposed DCT is to first determine the individual capabilities of

the nodes for detecting the hypotheses. These capabilities are captured by the vector v`, whose i
th

element is a measure of node ` capability to detect the hypothesis hi. The fusion center gathers

this information, and utilizes it to control the threshold at each node through the vector ρi,`. In this

context, I(i) is the measure of the cumulative detection capability of the network for hypothesis

hi and ρi,` represents the fraction of this capability contributed by node ` for hypothesis hi. To

minimize the expected time to reach a decision, it is desirable to determine the threshold for each

node ` such that all the nodes require roughly the same time to reach the triggering condition in

(2.8). This is achieved by dividing the task of hypothesis testing among the nodes based on their

speed of performing the task, so that all the nodes finish their share of the task at roughly the

same time.

2.6 Consensus-Based Chernoff Test

We now describe CCT in a general network setup, without a fusion center. The main idea

is to generalize the DCT to a fully distributed setting. CCT employs a consensus protocol to agree

on the cumulative capability of the network to detect each hypothesis, performs individual SCTs,

and then employs another consensus protocol to finalize the decision. To ease the presentation of

CCT, similar to [93, 161, 197, 59, 125], we now assume that C ≥M , so that consensus can be

performed by exchanging real vector messages of sizeM at every time step. In the case C < M

the test proceeds along the same lines, but performing vector communications of sizeM now

requires multiple time-steps, and the test completion time must be scaled accordingly. The three

phases of the test are as follows:
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Initialization Phase

The nodes use a distributed protocol to compute the vector I = [I(1), . . . , I(M)]. Using

consensus, they compute the arithmetic mean I/L, and then compute I using their knowledge

of L. For all ` ∈ [L], we let the initial estimate for I/L at every node be Î0` = [v1,`, . . . , vM,`],

which can be computed locally using (2.5). Then, every node ` runs the following consensus

protocol by iteratively exchanging messages without performing any probing action: for n ≥ 0,

În+1
` = w`,`Î

n
` +

∑
j∈N`

w`,j Î
n
j , (2.9)

where În` = [În` (1), . . . , Î
n
` (M)] is an estimate of I/L at node ` and at time n, w`,j is the weight

assigned by node ` to the estimate received from node j, and N` = {j|{`, j} ∈ E} is the set of

neighbors of node ` in G(L, E). We now rewrite (2.9) in the matrix form as

În+1 = WÎn, (2.10)

where În is an L×M matrix whose `th row is În` andW is an L× L matrix whose elements

satisfy

0 < w`,j < 1 if j ∈ N` ∪ {`}, otherwise w`,j = 0. (2.11)

The following theorem presents the necessary and sufficient conditions for the consensus

protocol (2.10) to converge to I/L, as n→∞.

Theorem 1. [234, Theorem 1]. The consensus protocol (2.10) converges to I/L as n→∞ if

and only if

1TL×1W = 1TL×1, (2.12)

W1L×1 = 1L×1, (2.13)
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and

R

(
W − 1L×111×L

L

)
< 1, (2.14)

where R(·) denotes the spectral radius of a matrix, and 1A×B is a A × B matrix of all ones.

Additionally, the rate of convergence is proportional to the spectral radius in the left-hand side

of (2.14).

Based on the above theorem, the computation of the weights in the matrix W can be

formulated as a convex optimization problem minimizing the spectral radius in (2.14), subject

to (2.11), (2.12) and (2.13), and can be determined using standard techniques [234]. Hence, in

the following we assume that, in addition to (2.11), the matrixW verifies the conditions stated

in Theorem 1.

Although the consensus protocol converges to the correct value I/L as n → ∞, the

initialization phase must terminate in finite time and guarantee that consensus has been reached

in a suitable approximate fashion.

To characterize approximate consensus, we define a local c-consensus status if for all

` ∈ [L] and j ∈ N`, we have

|În` − Înj | �
c

L2
11×M . (2.15)

We also define a global c-consensus status if for all `, j ∈ [L], we have

|În` − Înj | �
c

L
11×M . (2.16)

Since the diameter dG ≤ L, it should be clear that local c-consensus implies global c-consensus.

We employ a stopping rule for the initialization phase that guarantees global c-consensus,

and is illustrated in Algorithm 1. A similar rule has been previously studied in [235]. In Algorithm

1, the variable rn` indicates the number of time steps since node ` is in local c-consensus, namely

satisfies (2.15). The variable zn` is responsible for the percolation of the consensus information

across the network. If at any node ` we have zn` > L+ 1, then the network has reached global
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Algorithm 1. Initialization Phase of CCT

Initialize n = 0, and for all ` ∈ [L], În` , r
n
` = 0 and zn` = 0

while True do

For all ` ∈ [L], broadcast local information Î
(n)
` and zn` .

Update the local cumulative capability using (2.9).

if n ≥ 1 then
zn` = min{rn−1

` ,minj∈N`∪{`} z
n−1
j }+ 1

end if

if zn` > L+ 1 orm(1) = 1 is received then

În` ← LÎn`
Sensor ` broadcastsm(1) = 1 and stops updating.
Break While;

end if

if maxj∈N`
|Î(n)` − Î

(n)
j | � c11×M/L2 then

rn` = rn−1
` + 1

else

rn` = 0
end if

n = n+ 1
end while

c-consensus and node ` sends a termination message m(1) = 1 to its neighbors, where the

superscript indicates that this is the termination message of the initialization phase. When a node

receives a termination message, it halts the protocol, it scales the final estimate by L, namely

În` ← LÎn` , (2.17)

and forwards the termination message to its neighbors. It follows that all the nodes receive a

termination message at most dG time steps after the first termination message has been sent, and

at the end of the initialization phase for all `, j ∈ [L], we have

|În` − Înj | � c11×M . (2.18)

In the following phases, we let Î` denote the estimate of vector I at node ` at the end of the

initialization phase.
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Algorithm 2. Test Phase of CCT

For all i ∈ [M ] and ` ∈ [L], n = 0; Ĥn
` = NULL

Input: Termination message of stopping phase, i.e.,m(3)

while Final decision is not made, namelym(3) 6= 1 do
For all ` ∈ [L], perform SCT with γ = ρ̂i∗n,` |log c|
If Ĥn

` 6=NULL, then broadcast Ĥn
`

n = n+ 1
end while

Algorithm 3. Stopping Phase of CCT

For all ` ∈ [L], initialize n = 0; d`,n = xn` = 0,m(3) = 0;
while TRUE do

ifm(3) = 1 is received from neighbor j then
Set the final decision, i.e., Ĥn

` = Ĥn−1
j

Broadcastm(3) and Ĥn
` .

Break;

end if

For all ` ∈ [L], update xn` according to (2.21).
For all ` ∈ [L], update dn` according to (2.20).
if dN` > L+ 1 then

m(3) = 1
For all ` ∈ [L], broadcastm(3) and Ĥn

` .

else

For all ` ∈ [L], broadcast dn` and Ĥ
n
` .

end if

n = n+ 1
end while

Test Phase

This phase is illustrated in Algorithm 2 and begins following the termination of the

initialization phase, namely after receivingm(1) = 1. Every node ` performs a SCT using the

threshold

γ = ρ̂i∗n,` |log c|, (2.19)

where ρ̂ni∗n,` = vi∗n,`/Î`(i
∗
n). If the log-likelihood in (2.4) exceeds the threshold, then node ` updates

its local preference Ĥn
` in favor of the hypothesis hi∗n; otherwise, it sets its local preference to

NULL. Similar to DCT, the node ` communicates its preference Ĥn
` , if any, to its neighbors

(instead than to the fusion center) and continues to run the test. Hence, rather than using it as a
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stopping condition, the threshold is used here as a triggering condition for the communication of

the preference by node ` to its neighbors in N`.

Stopping Phase

This phase is illustrated in Algorithm 3, and runs in parallel with the test phase. This

phase detects if all the network nodes have reached the same preference, and halts the test if the

preferences are the same. At every time step n ≥ 1, every node ` ∈ [L] sends dn` to its neighbors

which is defined as

dn` = min

{
min

j∈N`∪{`}
dn−1
j , xn−1

`

}
+ 1, (2.20)

where d0` = 0, x0
` = 0, and

xn
` =


xn−1
` + 1 if ∀j ∈ N`, Ĥ

n
` = Ĥn

j , Ĥ
n
` = Ĥn−1

` , and Ĥn
` 6= NULL,

1 if ∀j ∈ N`, Ĥ
n
` = Ĥn

j , Ĥ
n
` 6= Ĥn−1

` , and Ĥn
` 6= NULL,

0 otherwise.

(2.21)

The rationale of (2.20) and (2.21) is as follows. Suppose xn
` = k. Then, for the past k

time steps the local preference of the neighbors of node ` was the same as the local preference

Ĥn
` of node `. The value of dn` is responsible for the percolation of this information along the

network. Using (2.21), if node j ∈ N` does not report any local preference, then the value x
n
j = 0

is received by the neighbors of j. If at any node ` we have dN` > L+ 1, then there exists a time

k ≤ N at which the local decisions of all the nodes are the same, namely minj∈[L] x
k
j ≥ 1 (see

Lemma 3 in Appendix 2.12.2). This node ` sends the final decision ĤN
` and the termination

messagem(3) = 1 to its neighbors, wherem(3) = 1 represents the termination message for the

stopping phase. When a node receives the termination message and the final decision ĤN
` , it

halts the test and forwardsm(3) along with ĤN
` to its neighbors. It follows that all nodes receives

the termination message and the final decision at most dG time steps after the first termination

message of the stopping phase has been sent.
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2.6.1 Informal Discussion of CCT

As in DCT, the key idea behind CCT is to first determine the individual capabilities of the

nodes for detecting the hypotheses. These capabilities are captured by the vector v`, whose i
th

element is a measure of node’s ` capability to detect the hypothesis hi. However, in contrast to

DCT, there is no central entity to facilitate the sharing of this information among different nodes,

and a consensus algorithm is used — in the first phase of CCT — to gain global knowledge at

each node of the capabilities of all the other nodes. If the consensus algorithm stops at time N ,

then ρ̂Ni,` denotes the estimated fraction of the capability contributed by node ` for hypothesis hi.

To minimize the expected time to reach a decision, it is desirable to determine this threshold

for each node ` such that all the nodes require roughly the same time to reach the triggering

condition in (2.8). This is achieved by dividing the task of hypothesis testing among the nodes

based on their speed of performing the task, so that all the nodes finish their share of the task

roughly at the same time. The decision phase is a distributed stopping criterion for the Chernoff

test, and ensures that the nodes stop the test as they reach the same decisions.

2.7 Performance analysis

We now present the performance analysis of our tests. The proofs of all theorems are

deferred to the Appendices.

2.7.1 Lower Bounds for a Sequential and an Adaptive test

In this section, we present lower bounds on two different performance measures, namely

risk and decision time, for any sequential and adaptive test. The superscript δ is appended to

quantities that refer to a generic test and N indicates the time required to take a decision.

Theorem 2. (Converse) For any hypothesis testing scheme δ operating over a network as
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described in Section 2.3, we have that for all i ∈ [M ], if the probability of missed detection is

Pδ
i (Ĥ 6= hi) = O(c | log c|), as c→ 0, (2.22)

then for all integers r ≥ 1, we have

Eδ
i [N

r] ≥

(
(1 + o(1))

|log c|
I(i)

)r

, as c→ 0. (2.23)

Using (2.23) with r = 1, we also have

Rδ
i ≥ (1 + o(1))

c |log c|
I(i)

, as c→ 0. (2.24)

The lower bounds provided by Theorem 2 hold for any scheme operating in our problem

formulation setting, in both a star network or general network configuration. In the case the

network is composed of a single node and r = 1, these results recover Chernoff’s original

results [45].

2.7.2 Upper bounds for proposed DCT and CCT schemes

We now provide upper bounds on the performance of our schemes, starting with DCT. In

the following theorems, the superscript D refers to the DCT. Part (i) of Theorem 3 states that the

probability of making a wrong decision can be made as small as desired by an appropriate choice

of the observation cost c. Part (ii) provides an upper bound on the expected time to reach the

final decision, and part (iii) bounds the risk as an immediate consequence of parts (i) and (ii).

Finally, part (iv) presents an upper bound on the higher moments of the decision time of DCT.

Theorem 3. (Direct). The following statements hold:

(i) For all c ∈ (0, 1) and i ∈ [M ], the probability that DCT makes an incorrect decision is

PD
i (Ĥ 6= hi) ≤ min{(M − 1)c, 1}. (2.25)
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(ii) For all ` ∈ [L], i, j ∈ [M ] and u ∈ S, if E
[
log pui,`(Y )/puj,`(Y )

]2
<∞, then we have

ED
i [N ] ≤ (1 + o(1))

|log c|
I(i)

, as c→ 0. (2.26)

(iii) Combining (i) and (ii), we have

RD
i ≤ (1 + o(1))

c |log c|
I(i)

, as c→ 0. (2.27)

(iv) For all ` ∈ [L], i, j ∈ [M ], u ∈ S and all integers r ≥ 2, if

E
[
|log pui,`(Y )/puj,`(Y )|r+1

]
<∞, (2.28)

then we have

ED
i [N

r] ≤

(
(1 + o(1))

c |log c|
I(i)

)r

, as c→ 0. (2.29)

In the above theorem, the bound on the expected decision time in (ii) requires the second

moment of the log-likelihood ratio to be finite. Likewise, for all r ≥ 2, the bound on the rth

moment of the decision time requires the r + 1st moment of the log-likelihood ratio to be finite.

The next result is a consequence of Theorems 2 and 3. It shows the asymptotic optimality

of DCT, and presents the expected communication overhead, as c→ 0.

Theorem 4. For any hypothesis testing scheme δ operating over a network as described in

Section 2.3, we have

(i) For all ` ∈ [L], i, j ∈ [M ] and u ∈ S, if E
[
log pui,`(Y )/puj,`(Y )

]2
<∞, then we have

lim
c→0

ED
i [N ]

Eδ
i [N ]

≤ 1. (2.30)
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Additionally,

lim
c→0

RD
i

Rδ
i

≤ 1. (2.31)

(ii) For all ` ∈ [L], i, j ∈ [M ], u ∈ S and all integers r ≥ 2, if

E
[
|log pui,`(Y )/puj,`(Y )|r+1

]
<∞, (2.32)

then we have

lim
c→0

ED
i [N

r]

Eδ
i [N

r]
≤ 1. (2.33)

(iii) Assuming C ≥M , and letting the communication overhead CO be the number of channel

usages by each node, we have

lim
c→0

ED
i [CO] = 4. (2.34)

Combining Theorem 3 and Theorem 4, it follows that DCT is asymptotically optimal in

terms of stopping time and risk, as the observation cost tends to zero. This asymptotic optimality,

expressed by (2.30), (2.31), and (2.33), holds for all values of C, although in the case C < M

the expected number of channel uses per node in (2.34) increases from four to a constant that

is at most 2(M + 1), due to multiple transmissions required to communicate each vector in

the initialization phase. We also point out that the performance of DCT depends only on the

cumulative capability I(i) of the network to detect hypothesis hi, and is independent of how

the capabilities vi,` are distributed over the network. If two networks have the same cumulative

capabilities, then the expected decision time will be the same for both of them. These results

hold irrespective of the number of nodes in the network.

We now provide upper bounds on the performance of CCT. We make use of the following

well known lemma:

32



Lemma 1. [54, Proposition 1]. For any connected graph G(L, E) with weights assigned to the

edges satisfying (2.11), we have that

0 < η(W hG
) < 1, (2.35)

where

η(W ) = min
i 6=j

L∑
k=1

min{wi,k, wj,k}, (2.36)

is the ergodic coefficient of the weight matrixW .

In the following theorems, the superscript C refers to the CCT. Part (i) of Theorem 5

states that the probability of making a wrong decision can be made as small as desired by an

appropriate choice of c. Part (ii) provides an upper bound on the expected time to reach the

final decision, and part (iii) bounds the risk as an immediate consequence of parts (i) and (ii).

Finally, part (iv) presents an upper bound on the higher moments of the decision time of CCT.

Theorem 5. (Direct). Assuming C ≥M , the following statements hold:

(i) For all c ∈ (0, 1) and i ∈ [M ], the probability that CCT makes an incorrect decision is

PC
i (Ĥ 6= hi) ≤ min

{
(M − 1)c

1
1+c/I(i) , 1

}
. (2.37)

(ii) For all ` ∈ [L], i, j ∈ [M ] and u ∈ S, if E
[
log pui,`(Y )/puj,`(Y )

]2
<∞, then we have

EC
i [N ] ≤ (1 + o(1))

(
hG| log(c/maxj∈[L] I(j))|
| log

(
1− η(W hG)

)
|

+
|log c|
I(i)− c

)
, (2.38)

as c→ 0.

(iii) Combining (i) and (ii), we have

RC
i ≤ (1 + o(1))

(
hGc|log(c/maxj∈[L] I(j))|
|log(1− η(W hG))|

+
c|log c|
I(i)− c

)
, (2.39)
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as c→ 0.

(iv) For all ` ∈ [L], i, j ∈ [M ], u ∈ S and all integers r ≥ 2, if

E
[
|log pui,`(Y )/puj,`(Y )|r+1

]
<∞, (2.40)

then we have

EC
i [N

r] ≤

(
(1+o(1))

(
hG| log(c/maxj∈[L] I(j))|
| log(1− η(W hG))|

+
|log c|
I(i)− c

))r

, (2.41)

as c→ 0.

The following result is a consequence of Theorems 2 and 5, and shows that CCT is

asymptotically optimal, up to a constant factor, as the observation cost tends to zero.

Theorem 6. For any hypothesis testing scheme δ operating over a network as described in

Section 2.3 and assuming C ≥M , we have:

(i) For all ` ∈ [L], i, j ∈ [M ] and u ∈ S, if E
[
log pui,`(Y )/puj,`(Y )

]2
<∞, then

lim
c→0

EC
i [N ]

Eδ
i [N ]

≤

(
I(i)hG|log(1/maxj∈[L] I(j))|

|log(1− η(W hG))|
+ 1

)
. (2.42)

Additionally,

lim
c→0

RC
i

Rδ
i

≤

(
I(i)hG|log(1/maxj∈[L] I(j))|

|log(1− η(W hG))|
+ 1

)
. (2.43)

(ii) For all ` ∈ [L], i, j ∈ [M ], u ∈ S and all integers r ≥ 2, if

E
[
|log pui,`(Y )/puj,`(Y )|r+1

]
<∞, (2.44)
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then we have

lim
c→0

EC
i [N

r]

Eδ
i [N

r]
≤

(
I(i)hG|log(1/maxj∈[L] I(j))|

|log(1− η(W hG))|
+1

)r

. (2.45)

While Theorems 5 and 6 provide bounds for the case C ≥ M , it should be clear from

their proof that when C < M CCT is still asymptotically optimal up to a constant factor, as

c→ 0. In this case, the right-hand sides of (2.42) and (2.43) are simply scaled by an additional

factor that is upper bounded byM , due to the multiple transmissions required to complete each

vector transmission. Similarly, the right-hand side of (2.45) is scaled by a factor upper bounded

byM r.

The decision time of CCT, refer (2.38) and (2.41), depends on two terms: A1 and A2,

where

A1 =
hG| log(c/maxj∈[L] I(j))|
| log

(
1− η(W hG)

)
|

, (2.46)

A2 =
|log c|
I(i)− c

. (2.47)

Here, A1 corresponds to the expected time of the initialization phase. Since this phase performs

consensus over the network, this time depends on the network parameters hG and matrix W .

Similarly, A2 corresponds to the expected time of the test phase, where the Chernoff test is

performed independently at all the nodes. This time is independent of the network parameters.

Finally, since the decision phase of CCT begins only after the termination of the initialization

phase and is dependent on the test phase, the expected decision time of CCT depends on A1+A2.

Thus, in Theorem 6, the ratio of the performance parameters of CCT and of the optimal test

converges to the constant 1 + I(i)hG|log(1/maxj∈[L] I(j))|/|log(1− η(W hG
))|. It follows that

the gap between the performance parameters of CCT and the optimal test is given by the quan-

tity I(i)hG|log(1/maxj∈[L] I(j))|/|log(1− η(W hG
))|, and as the expected time of initialization

phase decreases this gap decreases.
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Figure 2.1. Performance of DCT: risk vs. cost c for different number of sensors L

As a final remark, we point out that the star network configuration is a special case of the

distributed setup. In this case, the cumulative capability vector I can be estimated (with no error)

in two time steps at all the nodes, namely for n = 2 and `, j ∈ [L], the equivalent of (2.16) is

|În` − Înj | � 011×M , (2.48)

and is independent of the parameter c. In the regime of vanishing cost c → 0, we have that

A1 + A2 = 2 + A2, which implies the asymptotic optimality of DCT.

2.8 Numerical Results

In this section, we evaluate the performance of both DCT and CCT by simulations, and

compare the results to the theoretical bounds presented in the previous section. The performance

of these tests is evaluated for different sizes of networks. In our experiments, the number of

hypotheses isM = 3. The probability distribution pui,` is Bernoulli with parameter p, which is

selected uniformly at random from (0, 1/3),(1/3, 2/3) and (2/3, 1) for i = 1, 2 and 3 respectively.

Figure 2.1 shows the risk of DCT in a fusion center based setup, as obtained by simulations.

Figure 2.2 shows the corresponding value of the risk, as predicted by Theorem 3. The risk

decreases as the observation cost c decreases. This is because the threshold in the triggering

36



Figure 2.2. Performance of DCT according to Theorem 3: risk vs. cost c for different number
of sensors L

condition (2.8) increases, which ensures that the nodes have a greater confidence about their

local decision. On the other hand, the risk decreases by increasing the number of sensors L. This

is because the cumulative capability of the network to detect the hypothesis, defined in (2.6),

increases with L, and the task of hypothesis testing is divided among a larger number of sensors.

Hence, the final decision can be reached more quickly, and this decreases the risk. The trends

are in agreement with the theoretical results obtained for DCT.

Our simulations also confirm the prediction that, on the average, only four channel usages

are required, per single sensor, see (2.34) in Theorem 4. The results of these simulations are not

reported here for the sake of brevity. We only mention that, on rare occasions, for individual

realizations it may happen that the number of channel usages is substantially larger than four —a

manifestation of the long-run phenomenon [169, p. 110]. In practice, this can be remedied by

resorting to a truncated version of the sequential test, for which the maximum number of probing

actions is fixed, see [207, 206] and references therein for a discussion, and see [148] for a simple

implementation of truncation. A precise analysis of DCT using truncated tests is out of the scope

of the present paper.

The performance of CCT is evaluated for two network configurations. In the first

configuration, given the number of network nodes L, dL/2e sensors are connected to form a
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Figure 2.3. An example of sensor network with L = 10 nodes.

Figure 2.4. Performance of CCT for the ring with random attachments: risk vs. cost c for
different number of sensors L

Figure 2.5. Performance of CCT according to Theorem 5 for the ring with random attachments:

risk vs. cost c for different number of sensors L
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Figure 2.6. Performance of CCT for the tree: risk vs. cost c for different number of sensors L

ring, and the remaining sensors are randomly connected to the sensors in the ring. An example

of network with L = 10 is shown in Figure 2.3. In this case, the spanning height of the tree is

linear in L. In the second configuration, given the number of network nodes L, the nodes are

connected to form a binary tree. In this case, the spanning height of the tree is O(log2 L).

Figure 2.4 shows the performance of CCT for the ring with random attachments, obtained

by computer simulations. Figure 2.5 shows the value of risk according to Theorem 5. Like in the

case of DCT, the risk of CCT decreases as the observation cost c decreases. Instead, the behavior

as function of L is different. Unlike DCT, the risk of CCT increases by increasing the number

of network nodes L. This effect can be explained by observing that in CCT there is a trade-off

between the time required by the initialization phase and the time required by the test phase. For

the considered network G and consensus matrix W , as the number of nodes L increases, the

consensus scheme in the initialization phase will require more time in comparison to the test

phase. Additionally, the time required by the test phase decreases with L, for the same reasons

as in the DCT case. Figures 2.4 and 2.5 show that the consensus between the sensors in the first

phase of CCT becomes the dominating factor in the decision time. This is in agreement with the

theoretical bounds provided in Theorem 5.

Figures 2.6 and 2.7 show the performance of CCT for the tree configuration, via simula-
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Figure 2.7. Performance of CCT according to Theorem 5 for the tree: risk vs. cost c for
different number of sensors L

tions and using the theoretical predictions of Theorem 5, respectively. The risk of CCT decreases

as c decreases. Unlike the ring configuration with random attachments, the risk decreases by

increasing L until L = 15, and then increases. In this setup, for the initial values of L, the

time required by the test phase is larger than the time for the initialization phase, hence, it is

the dominating factor in the decision time of CCT. On the contrary, for L = 20, the time of the

initialization phase becomes dominant, which leads to the increase in the risk with L. Finally,

comparing Figures 2.6 and 2.7, we see that the theoretical values of the risk are close to the

results of numerical simulations.

2.9 Extension to Channels with Quantized Messages and

Link Failures

In the previous sections, we have assumed a communication model carrying real numbers

over ideal links, without errors. This models a situation where transmission are finely quantized

and adequately protected against errors. We now wish to explicitly take into account the effect

of data quantization, and of link failures leading to packet erasures.
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2.9.1 Channels with Quantized Messages

We start by considering channels supporting quantized messages, rather than real numbers,

as described in Section 2.3. We extend our previous results by describing the key changes to

both DCT and CCT formulations.

DCT with quantized messages

In the initialization phase, the vectors v` and I need to be quantized using C bits be-

fore transmission. Accordingly, at the sensor nodes we construct the quantized vector bv`c =

[bv1,`c, . . . , bvM,`c] and at the fusion center we construct the corresponding vector

bIc = [bI(1)c, . . . , bI(M)c]. (2.49)

Using (2.6), for all i ∈ [M ] and ` ∈ [L], we have that vi,` ≤ I(i). It follows that to construct

the first vector we can divide the interval [0,maxi I(i)] uniformly into Q sub-intervals, where

Q = 2C/M , and let bvi,`c be the nearest value among the Q quantization levels smaller than vi,`.

In this way, the difference between any two contiguous quantization levels for vi,` is

∆
(
max

i
I(i), Q

)
=

maxi I(i)

Q
. (2.50)

The quantized vector bv`c = [bv1,`c, . . . , bvM,`c] is then sent by each node to the fusion center

usingM log2Q = C bits in one transmission. On the other hand, for the second vector we let,

for all i ∈ [M ]

bI(i)c =
L∑

`=1

bvi,`c. (2.51)

Since bvi,`c lies in the interval [0,maxi I(i)] and
∑L

`=1 vi,` = I(i), then bI(i)c also corresponds

to a quantization level of the interval [0,maxi I(i)] when this is uniformly divided into Q sub-

intervals. It follows that the fusion center can send the vector bIc to each node using C bits in

one transmission.
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Upon reception of bIc from the fusion center, every node ` computes a vector ρ` =

[ρ1,`, . . . , ρM,`], where for all i ∈ [M ]

ρi,` =
vi,`∑L

˜̀=1bvi,˜̀c
=

vi,`
bI(i)c

, (2.52)

and uses it in the test phase for the determination of the threshold in (2.8). In the test phase, each

local preference can be communicated using log2M bits and in the stopping phase, the halting

message can be communicated using a single bit.

CCT with quantized messages

In the initialization phase, we need to send zn` and Î
n
` over the channel at each transmission

using C bits. Since the initialization phase terminates when zn` > L + 1 (see Algorithm

1), it follows that at most log2(L + 2) bits are needed to communicate zn` . The remaining

C̃ = C − log2(L + 2) bits can then used to communicate the vector În` . Similar to DCT, we

divide the interval [0,maxi I(i)] uniformly into Q̃ = 2C̃/M sub-intervals so that the difference

between any two adjacent quantization levels is

∆
(
max

i
I(i), Q̃

)
=

maxi I(i)

Q̃
. (2.53)

We let the initial estimate Î0` = [bv1,`c, . . . , bvM,`c], where bvi,`c is the nearest lower value among

the Q̃ quantization levels representing vi,`. The consensus protocol is then modified as follows

În+1
` =

⌊
w`,`Î

n
` +

∑
j∈N`

w`,j Î
n
j

⌋
. (2.54)

It follows that every node ` performs a convex combination of the quantized self-estimate În` and

the quantized estimates {Înj }j∈N`
from its neighbors and the updated estimate În+1

` is a quantized

version of this convex combination. The stopping rule of the initialization phase remains the

same as stated in Algorithm 1. In the following phases, we let bÎ`c = [bÎ`(1)c, . . . , bÎ`(M)c]
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denote the estimate of the vector I using (2.54) at node ` at the end of the initialization phase.

In the test phase of CCT, the SCT is performed locally using the result of the consensus

algorithm to select the threshold, namely γ = ρ̂i∗n,`| log c| and ρ̂i∗n,` = vi∗n,`/bÎ`(i∗n)c. Finally, in

the stopping phase of CCT, presented in Algorithm 3, the variable dn` and the local decision Ĥ
n
`

are communicated over the channel. Since the stopping phase terminates when dn` > L + 1,

no more than log2(L+ 2) bits are needed to communicate dn` . The local preference Ĥ
n
` can be

communicated by log2M bits.

2.9.2 Performance analysis for Channels with Quantized Messages

In this section, we extend the results in Theorem 3 and Theorem 5 to channels with

quantized messages.

Theorem 7. (Direct). Letting

f(Q) =
Lmaxi I(i)

Q
, (2.55)

and assumingC is sufficiently large such that for all i ∈ [M ], we have f(Q) < I(i), the following

statements hold for DCT:

(i) For all c ∈ (0, 1) and i ∈ [M ], the probability that the DCT takes an incorrect decision is

PD
i (Ĥ 6= hi) ≤ min{(M − 1)c, 1}. (2.56)

(ii) For all ` ∈ [L], i, j ∈ [M ] and u ∈ S, if E
[
log pui,`(Y )/puj,`(Y )

]2
< ∞, then the expected

decision time is

ED
i [N ] ≤ (1 + o(1))

|log c|
I(i)− f(Q)

, as c→ 0. (2.57)

(iii) Combining (i) and (ii), the risk defined in (2.1) is

RD
i ≤ (1 + o(1))

c |log c|
I(i)− f(Q)

, as c→ 0. (2.58)
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(iv) For all ` ∈ [L], i, j ∈ [M ], u ∈ S and all integers r ≥ 2, if

E
[
|log pui,`(Y )/puj,`(Y )|r+1

]
<∞, (2.59)

then the rth moment of the decision time N is

ED
i [N

r] ≤

(
(1 + o(1))

c |log c|
I(i)− f(Q)

)r

, as c→ 0. (2.60)

By Theorem 7, it follows that the performance of DCT depends on the number of

quantization levels through the function f(Q). As Q → ∞, we have that f(Q) → 0 and the

results of Theorem 3 are recovered. As Q→∞, real numbers can be communicated perfectly

over the channels, hence DCT incurs no loss of asymptotic performance. We can then view f(Q)

as quantifying the loss in the performance of DCT due to quantization. This is also evident by

combining (2.50) and (2.51), which show that the quantization error |I(i)− bI(i)c| is at most

f(Q). By assuming that f(Q) < I(i), our theorem statement ensures that this quantization error

is smaller than I(i). Since Q = 2C/M , this constraint can be satisfied by having C sufficiently

large.

Next, we consider the CCT case. We make the following assumptions that are commonly

adopted in the literature of consensus over channels with quantized messages.

Assumption 1. [160, Assumption 1] The matrix W is doubly stochastic, namely (2.12) and

(2.13) holds, with positive diagonal entries. In addition, there exists a constant α > 0 such that

if wi,j > 0, then wi,j > α.

The double stochastic assumption on the weight matrixW guarantees that the average of

the sensor values remains the same at each consensus iteration. The second part of Assumption

1 ensures that each sensor gives a non-negligible weight to its values and to the values of its

neighbors at each time.

Assumption 2. [160, Assumption 4] For all ` and i, we have that vi,` is a multiple ofM/Q̃.
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The above assumption states that the values of vector Î0` are already quantized, namely

Î0` = [bv1,`c, . . . , bvM,`c] = [v1,`, . . . , vM,`].

Theorem 8. (Direct). Let

g(Q, c, α) =
L

Q

(
2L2

α
log(min(Q2, L4/c2)max

j
I2(j)) + 1

+ hG

(
− log(dG)

log
(
1− η(W hG)

) + 1

)
+ L+ 1

)
. (2.61)

Assume that C is sufficiently large such that for all i ∈ [M ], we have g(Q, c, α) < I(i) and

C > log2(L+ 2) + log2M , and Assumptions 1 and 2 hold. Then, the following statements hold

for CCT:

(i) For all c ∈ (0, 1) and i ∈ [M ], the probability that CCT takes an incorrect decision is

PC
i (Ĥ 6= hi) ≤ min

{
(M − 1)c

I(i)

I(i)+g(Q̃,c,α) , 1

}
. (2.62)

(ii) For all ` ∈ [L], i, j ∈ [M ] and u ∈ S, if E
[
log pui,`(Y )/puj,`(Y )

]2
< ∞, then the expected

decision time is

EC
i [N ] ≤ (1 + o(1))

(
Q̃g(Q̃, c, α) +

|log c|
I(i)− g(Q̃, c, α)

)
, (2.63)

as c→ 0.

(iii) Combining (i) and (ii), the risk defined in (2.1) is

RC
i ≤ (1 + o(1))

(
Q̃g(Q̃, c, α)

c
+

1

I(i)− g(Q̃, c, α)

)
c |log c|, (2.64)

as c→ 0.
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(iv) For all ` ∈ [L], i, j ∈ [M ], u ∈ S and all integers r ≥ 2, if

E
[
|log pui,`(Y )/puj,`(Y )|r+1

]
<∞, (2.65)

then the rth moment of the expected decision time is

EC
i [N

r] ≤

(
(1 + o(1))

(
Q̃g(Q̃, c, α) +

|log c|
I(i)− g(Q̃, c, α)

))r

, (2.66)

as c→ 0.

By Theorem 8, it follows that the performance of CCT depends on the number Q̃ of

quantization levels through the function g(Q̃, c, α). As Q → ∞, Q̃ → ∞ and g(Q̃, c, α) → 0.

The time required by the initialization phase is given by Q̃g(Q̃, c, α) = O(| log(c)|) as Q →

∞, which is of the same order as the quantity hG| log(c/maxj∈[L] I(j))|/log
(
1− η(W hG

)
)
=

O(| log(c)|) appearing in Theorem 5. As Q → ∞, Theorem 8 recovers the same optimality

of CCT expressed by Theorem 6. In conclusion, g(Q̃, c, α) quantifies, in terms of the relevant

system parameters, the loss in asymptotic performance of CCT due to quantization. In this case,

the error for |I(i) − bÎ`(i)c| is at most g(Q̃, c, α) and our theorem assumes that this error is

smaller than I(i). Since Q̃ = 2C̃/M , this constraint can be satisfied by having C sufficiently

large. The additional capacity constraint C > log2(L + 2) + log2M in the statement of the

theorem is due to the transmission of dn` and the local preference Ĥ
n
` .

2.9.3 Channels with Quantized Messages and Erasures

In this section, we consider both quantized channels and ε-random packet erasures, as

described in Section 2.3. We extend our previous results by describing key changes to both DCT

and CCT.
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DCT with Quantization and Erasures

In the initialization phase each node ` communicates the vector bv`c to the fusion center

using a packet of C bits. The expected time for successful transmission of the packet is 1/(1− ε).

After receiving the vector bv`c from all the nodes, the fusion center communicates the vector

bIc = [bI(1)c, . . . , bI(M)c] back to each node `, which requires an expected time 1/(1− ε) as

well.

In the test phase, each local preference is communicated using a packet of log2M bits to

the fusion center, also with an expected time 1/(1− ε).

The final decision Ĥ at the fusion center is made in favor of hypothesis hi when the local

decisions received from all the network nodes are in favor of the hypothesis hi. Given the local

decision hi is reached at all the nodes, the expected time for reaching the final decision Ĥ is

1/(1− ε)L, as it is required that all the links are simultaneously active. Upon taking the final

decision, the fusion center sends a halting message to each node `.

CCT with Quantization and Erasures

In this case, at each time step n, we consider the time-varying graph G(L, E(n)), where

E(n) ⊆ E denotes the set of communication links where a packet can be sent successfully.

In the initialization phase of CCT, since the graph is time-varying, the weight matrix

W = W (n) also varies over time. This matrix can be expressed as [101]

W (n) = UL×L − βL̄(n), (2.67)

where β is a design parameter, UL×L is the identity matrix of dimension L×L, L̄(n) is the L×L
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dimensional Laplacian matrix of G(L, E(n)) [101], with entries:

l̄i,j(n) =



∑
j′ 6=i 1((i, j

′) ∈ E(n)) if i = j,

−1 if (i, j) ∈ E(n),

0 otherwise,

(2.68)

where 1(·) denotes the indicator function. Each node i can compute locally the values l̄i,j(n),

based on whether a packet is received from node j at time n. Since l̄i,j(n) = l̄j,i(n), it follows

thatW (n) is a symmetric matrix, where [101]

wi,j(n)=


1− β

∑
j′ 6=i 1((i, j

′) ∈ E(n)) if i = j,

β if (i, j) ∈ E(n),

0 otherwise.

(2.69)

Then, as in (2.54), node ` updates its quantized estimate at time step n as

În+1
` =

⌊
w`,`(n)Î

n
` +

∑
j∈N`

w`,j(n)Î
n
j

⌋
. (2.70)

Whenever links are active, the information communicated over the channels is of the same form

as that over channels with quantized messages. The stopping rule of this phase remains the same

as stated in Algorithm 1. In the following phases, we let bÎε`c = [bÎε` (1)c, . . . , bÎε` (M)c] denote

the estimate of vector I using (2.70) at node ` at the end of the initialization phase in this channel

model.

In the test phase of CCT, the SCT is performed locally using the result of the consensus

algorithm to select the threshold, namely γ = ρ̂εi∗n,`| log c| and ρ̂
ε
i∗n,`

= vi∗n,`/bÎε` (i∗n)c.

Finally, in the stopping phase of CCT, presented in Algorithm 3, the variable dn` and the

local decision Ĥn
` are communicated over channel by log2(L + 2) + log2M bits. Of course,
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these communications are successful only when the link between the nodes is active.

2.9.4 Performance Analysis for Channels with Quantized Messages and

Erasures

In this section, we extend the results of Theorem 7 and Theorem 8 to channels with

quantized messages and erasures.

Theorem 9. In the presence of channel with quantized messages and ε-random packet erasures,

Theorem 7 holds unmodified.

Intuitively, the reason why the results of Theorem 7 hold unmodified is as follows. Link

failures only delay the communication of the quantized information over the channel, which

impacts the decision time. Note that the expected time for communication of bv`c from all the

nodes is at most L/(1− ε), as is the expected time to communicate the response vector to all

the nodes. Given the same local decision is reached at the nodes, the expected time to reach the

final decision is 1/(1− ε)L. Likewise, the expected time to communicate the halting message is

L/(1− ε). All these delays introduced by the ε-erasure channel are finite and independent of c,

and are embodied in the terms o(1) appearing in the statement of Theorem 9.

Next, we give a lemma needed to provide the performance guarantees of CCT.

Lemma 2. For all n and 0 < β < 1/(2|E|), the following holds:

(i)W (n) is a doubly stochastic matrix, namely (2.12) and (2.13) holds.

(ii) For all i, j ∈ [L], if wi,j(n) > 0, then we have wi,j(n) > min (1−D(G)β, β), where

D(G) = maxs
∑

j 6=s 1((j, s) ∈ E) is the maximum node degree in the graph G(V , E).

(iii) The spectral radius verifies

R

(
W (n)− 1L×111×L

L

)
< 1. (2.71)
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Theorem 10. (Direct). Let ε < 1/|E|,

h(Q, c, α, ε) =
g(Q, c, α)(2− |E|ε)

(1− |E|ε)2
, (2.72)

q(Q, c, α, ε) =
Qg(Q, c, α)

L(2− |E|ε)
, (2.73)

and 0 < β < 1/(2|E|). Assume that C is sufficiently large such that for all i ∈ [M ], we have

h(Q̃, c,min (1−D(G)β, β), ε) < I(i) and C > log2(L+ 2)+ log2M , and Assumption 2 holds.

Then the following statements hold for CCT:

(i) For all c ∈ (0,
√

(1− |E|ε)/2) and i ∈ [M ], the probability that CCT takes an incorrect

decision is

PC
i (Ĥ 6= hi) ≤ min{(M − 1)(1− exp(−2q(Q̃, c,min (1−D(G)β, β), ε))

cI(i)/(I(i)+h(Q̃,c,min (1−D(G)β,β),ε))

+ exp(−2q(Q̃, c,min (1−D(G)β, β), ε), 1}. (2.74)

(ii) For all ` ∈ [L], i, j ∈ [M ] and u ∈ S, if E
[
log pui,`(Y )/puj,`(Y )

]2
< ∞, then the expected

decision time is

EC
i [N

∣∣{bÎε`c}`∈[L]] ≤ (1 + o(1))

(
Q̃h(Q̃, c,min (1−D(G)β, β), ε)

+
|log c|

min`∈[L]bÎε` (i)c

)
(2.75)

≤ (1 + o(1))

(
Q̃h(Q̃, c,min (1−D(G)β, β), ε)

+
|log c|

I(i)− h(Q̃, c,min (1−D(G)β, β), ε)

)
, (2.76)
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with probability at least

1− exp (−2q(Q̃, c,min (1−D(G)β, β), ε)), as c→ 0. (2.77)

(iii) Combining (i) and (ii), the risk is

RC
i ≤(1 + o(1))

(
Q̃h(Q̃, c,min (1−D(G)β, β), ε)

c

+
1

I(i)− h(Q̃, c,min (1−D(G)β, β), ε)

)
c|log c|, (2.78)

with probability at least

1− exp (−2q(Q̃, c,min (1−D(G)β, β), ε)), as c→ 0. (2.79)

(iv) For all ` ∈ [L], i, j ∈ [M ], u ∈ S and all integers r ≥ 2, if

E
[
|log pui,`(Y )/puj,`(Y )|r+1

]
<∞, (2.80)

then the rth moment of the expected decision time is

EC
i [N

r
∣∣{bÎε`c}`∈[L]] ≤

(
(1 + o(1))

(
Q̃h(Q̃, c,min (1−D(G)β, β), ε)

+
|log c|

I(i)− h(Q̃, c,min (1−D(G)β, β), ε)

))r

, (2.81)

with probability at least

1− exp (−2q(Q̃, c,min (1−D(G)β, β), ε)), as c→ 0. (2.82)
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We point out that when estimating the vector bÎε`c in the initialization phase of CCT, the

ε-random erasure model introduces additional randomness. For this reason, (2.75) represents the

conditional expected decision time given {bÎε`c}`∈[L]. To obtain (2.76), we use the fact that for

all ` ∈ [L], we have that the random variable

bÎε` (i)c ∈ [I(i)− h(Q̃, c,min (1−D(G)β, β), ε),

I(i) + h(Q̃, c,min (1−D(G)β, β), ε)], (2.83)

with probability at least

1− exp (−2q(Q̃, c,min (1−D(G)β, β), ε)), (2.84)

shown in (2.169) in Appendix 2.12.2.

In Theorem 10, the performance guarantees are provided with high probability, and this

probability depends on the number of quantization levels and on the packet erasures through

q(Q̃, c,min (1−D(G)β, β), ε). As c → 0 and Q → ∞ (in arbitrary order), we have that

q(Q̃, c,min (1−D(G)β, β), ε)→∞ and 1−exp (−2q(Q̃, c,min (1−D(G)β, β), ε)) converges

to one. Additionally, the performance of CCT also depends on h(Q̃, c,min (1−D(G)β, β), ε).

As Q → ∞, we have g(Q̃, c, α) → 0, which implies h(Q̃, c,min (1−D(G)β, β), ε) → 0.

Finally, the time required to complete the initialization phase is given by the quantity

Q̃h(Q̃, c,min (1−D(G)β, β), ε) = O(| log(c)|), (2.85)

as Q→∞.

As Q → ∞, Theorem 10 recovers the same optimality of CCT expressed in Theorem

6. The quantity h(Q̃, c,min (1−D(G)β, β), ε) quantifies the loss in performance of CCT due

to both quantization and random packet erasures. In this case, since bÎε`c is a random variable,
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the error for |I(i)−bÎε` (i)c| is at most h(Q̃, c,min (1−D(G)β, β), ε) with high probability, and

our theorem assumes that this error is smaller than I(i). Since Q̃ = 2C̃/M , this constraint can be

satisfied by having C sufficiently large. The additional capacity constraint C > log2(L+ 2) +

log2M in the statement of the theorem is due to the transmission of dn` and the local preference

Ĥn
` .

2.10 Conclusion

Networked sensor systems are becoming increasingly popular for inference problems due

to their improved robusteness, scalability, versatility, and performance. Initial implementations

were based on inexpensive small sensors, with extremely limited hardware/software capabilities.

Progressively, these devices acquired more and more functionalities, and are nowadays capable of

active sensing, namely they can adapt the probing signal on the basis of previous measurements,

in order to optimize their sensing capability. Thus, individual sensors have become intelligent

devices which continuously learn from the past and can decide their future actions, in closed-loop

adaptive scheme.

We considered two network configurations of these “intelligent” sensors: a star network

configuration with a fusion center, and a general network configuration that is fully distributed.

In the first configuration, the fusion center coordinates the actions of the remote nodes, and takes

the final decision. The second configuration does not have a central coordination, and all the

processing takes place at the nodes: they actively collect measurements, exchange information

with immediate neighbors, and collectively take a decision.

For the first configuration we proposed a sequential adaptive decision system — referred

to as DCT — which operates in three phases. First, there is a round of communication between

the fusion center and the remote nodes, needed to define the relative capability of each node to

detect the hypotheses. This capability is then used to divide the decision task among the nodes.

Each node begins to continuously sense the environment, and makes the central entity aware
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about decisions that are locally believed to be sufficiently reliable. The final decision is taken by

the fusion center on the basis of these local suggestions about the true hypothesis.

We provided a theoretical analysis of detection performance and expected time to reach

a decision. We show that the test is asymptotically optimal in terms of detection performance

(risk), as the observation cost per unit time tends to zero.

For the second configuration, we exploit ideas from the DCT implementation, combined

with gossip protocols that use consensus techniques, to design a fully distributed adaptive

sequential decision system, which is referred to as CCT. Our approach is markedly different

from those usually exploited in the literature, where real-valued belief vectors are continuously

exchanged over the network to reach consensus.

Our CCTworks in three phases. In the first phase, a consensus about the relative capability

of the nodes to detect the state of nature is achieved by means of gossip protocols with local

information exchange. In the second phase, nodes implement the Chernoff test and, once all the

network nodes reach their preference, the final decision is reached in a distributed way in the third

phase of operation, by diffusing messages across the network that percolate the information of

whether the other sensors have terminated their share of task. We prove the asymptotic optimality

of CCT, up to a multiplicative factor in terms of both risk and higher moments of the decision

time.
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2.12 Appendix

2.12.1 Proof of Theorem 2

Proof. Let H∗ = hi be the true hypothesis. The proof of Theorem 2 consists of two parts. First,

for all 0 < ε < 1, we show that for the probability of error to be close to zero, the log-likelihood

ratio between hi and all hm 6= hi, should be greater than −(1− ε) log c with high probability as

c→ 0. Namely, the inequality

SN(hi, hm) =
L∑

`=1

N∑
k=1

log
p
uk,`

i,` (yk,`)

p
uk,`

m,` (yk,`)
≥ −(1− ε) log c, (2.86)

must hold with high probability, as c → 0. Second, we show that for all 0 < ε < 1 and

n < −(1 − ε) log c/I(i), it is unlikely that such inequality is satisfied for some hypothesis

hm 6= hi.

We start by defining two sets of hypothesesH′
0 = {hi} andH′

1 = {hm}m 6=i. By (2.22),

both type I and type II error probabilities of the hypothesis testH′
0 vs. H′

1 are O(−c log c). Thus,

by [45, Lemma 4], for all hypotheses hm 6= hi and 0 < ε < 1, we have

Pi

(
SN(hi, hm) ≤ −(1− ε) log c

)
= O(−cε log c). (2.87)

Therefore, as c → 0, the probability in (2.87) tends to 0, which concludes the first part of the

proof.

Now, we show that for all ε > 0, we have

lim
n′→∞

Pi

(
max

1≤n≤n′
min
m6=i

Sn(hi, hm) ≥ n′(I(i) + ε)

)
= 0. (2.88)
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We have

Sn(hi, hm) =
L∑

`=1

n∑
k=1

(
log

p
uk,`

i,` (yk,`)

p
uk,`

m,` (yk,`)
−D(p

uk,`

i,` ||p
uk,`

m,` )

)
+

L∑
`=1

n∑
k=1

D(p
uk,`

i,` ||p
uk,`

m,` )

= Mn
1 +Mn

2 , (2.89)

where

Mn
1 =

L∑
`=1

n∑
k=1

(
log

p
uk,`

i,` (yk,`)

p
uk,`

m,` (yk,`)
−D(p

uk,`

i,` ||p
uk,`

m,` )

)
,

(2.90)

is a martingale with mean 0, and

Mn
2 =

L∑
`=1

n∑
k=1

D(p
uk,`

i,` ||p
uk,`

m,` ). (2.91)

Then, for all 1 ≤ n ≤ n′, we have

min
m6=i

Mn
2 = min

m6=i

L∑
`=1

n∑
k=1

D(p
uk,`

i,` ||p
uk,`

m,` )

(a)

≤
L∑

`=1

n∑
k=1

vi,`

(b)
= nI(i)

(c)

≤ n′I(i), (2.92)

where (a) follows from the definition of vi,` in (2.5), (b) follows from the definition of I(i) in

(2.6), and (c) follows from n ≤ n′. Now, using (2.92), if the event in (2.88) occurs for a fixed

n1, namely

min
m 6=i

(Mn1
1 +Mn1

2 ) ≥ n′(I(i) + ε
)
, (2.93)

then there exists a hypothesis hm such that Mn1
1 ≥ n′ε. Thus, there exists a constant K ′ > 0
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such that the probability in (2.88) becomes

Pi

(
max

1≤n≤n′
min
m6=i

Sn(hi, hm) ≥ n′(I(i) + ε)

)
≤
∑
m 6=i

Pi

(
max

1≤n≤n′
Mn

1 ≥ n′ε

)
(a)

≤ (M − 1)K ′

n′ε2
, (2.94)

where (a) follows from the fact Mn
1 is a martingale with mean zero and using the Doob Kol-

mogorov extension of Chebyshev’s inequality [56]. Thus, (2.88) follows. As discussed in [45,

Theorem 2], for n0 = −(1− ε) log c/(I(i) + ε), we have

Pi(N ≤ n0) ≤ Pi

(
N ≤ n0 and ∀m 6= i : SN(hi, hm) ≥ n0(I(i) + ε)

)
+ Pi

(
∃m 6= i : SN(hi, hm) ≤ n0(I(i) + ε)

)
≤ Pi

(
max

1≤n≤n0

min
m6=i

Sn(hi, hm) ≥ n0(I(i) + ε)
)

+ Pi

(
∃m 6= i : SN(hi, hm) ≤ n0(I(i) + ε)

)
. (2.95)

The first and the second terms at the right-hand side of (2.95) approach zero by (2.88) and (2.87)

respectively. Now, using (2.95), we also have

Pi(N
r ≤ nr

0) = Pi(N ≤ n0)→ 0,
(2.96)

as c→ 0. (2.23) follows upon observing that as c→ 0, Ei[N
r] ≥ nr

0 which is

Ei[N
r] ≥

(
(1 + o(1))

|log c|
I(i)

)r

.

The proof of (2.24) is straightforward.
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2.12.2 Proofs for DCT and CCT

Proof of Theorem 3

Proof. To prove Theorem 3, we need some additional notation. Let An,j be the set of sample

paths where the decision made by the fusion center is in favor of hj at the n
th step, and we

indicate a single sample path as {(un
1 , y

n
1 ) . . . (u

n
L, y

n
L)}. We indicate by An,j,` the set of sample

paths in An,j corresponding to the `
th node. Finally, we define

Ni,` = inf

{
n : log

P(H∗ = hi∗n,|y
n+1
` , un+1

` )

maxj 6=i∗n P(H∗ = hj|yn+1
` , un+1

` )
≥ ρi,` |log c|

}
= inf

{
n :

n∑
k=1

log
p
uk,`

i,` (yk,`)

maxj 6=i p
uk,`

j,` (yk,`)
≥ ρi,` |log c|

}
.

The proof consists of two parts. First, we write PD
i (Ĥ 6= hi) as the probability of a countable

union of disjoint sets of sample paths. An upper bound on this probability then follows from

an upper bound on the probability of these disjoint sets, in conjunction with the union bound.

Second, we upper bound ED
i [N ] by the sum of the expected time required to reach the threshold

in (2.8) at node ` forH∗ = hi, and the expected delay between the time of reaching the threshold

and the time when the final decision is taken in favor of hypothesis hi at the fusion center. We

then show that these expectations are the same at all the nodes, so that (2.26) follows.

Consider the probability PD
i (Ĥ = hj). This is the same as the probability of the countable
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union of disjoint sets An,j . Thus, for all j 6= i, we have

PD
i (An,j) =

∫
An,j

L∏
`=1

n∏
k=1

p
uk,`

i,` (yk,`) dy1,`(u1,`) . . . dyn,`(un,`)

(a)
=

L∏
`=1

∫
An,j,`

n∏
k=1

p
uk,`

i,` (yk,`) dy1,`(u1,`)..... dyn,`(un,`)

(b)

≤
L∏

`=1

∫
An,j,`

cρj,`
n∏

k=1

p
uk,`

j,` (yk,`) dy1,`(u1,`) . . . dyn,`(un,`)

(c)
= c

L∏
`=1

∫
An,j,`

n∏
k=1

p
uk,`

j,` (yk,`) dy1,`(u1,`) . . . dyn,`(un,`)

= c
L∏

`=1

PD
j (Ĥ = hj at sample n at `th sensor)

= cPD
j (Ĥ = hj at sample n), (2.97)

where (a) follows from the definition ofAn,j,`; (b) follows from the definition ofNi,`; (c) follows

from
∑L

`=1 ρj,` = 1. Now, we can bound PD
i (Ĥ 6= hi) as follows

PD
i (Ĥ 6= hi) =

∑
j 6=i

PD
i (Ĥ = hj) =

∑
j 6=i

∞∑
n=1

PD
i (An,j)

≤
∑
j 6=i

∞∑
n=1

cPD
j (Ĥ = hj at sample n)

=
∑
j 6=i

cPD
j (Ĥ = hj) ≤ c (M − 1), (2.98)

where the first inequality follows from (2.97). This proves part (i) of the theorem.

Let us now define

τ(Ni,`) = sup
{
n :

Ni,`+n∑
k=Ni,`+1

log
p
uk,`

i,` (yk,`)

maxj 6=i p
uk,`

j,` (yk,`)
< 0
}
.

The condition in (2.4) is satisfied for threshold in (2.8) at the `th node for all n > Ni,` + τ(Ni,`),
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yielding

N ≤ max
1≤`≤L

(Ni,` + τ(Ni,`) + 3(M + 1))

≤ max
1≤`≤L

Ni,` +
L∑

`=1

τ(Ni,`) + 3(M + 1), (2.99)

where if C ≥M , then three time steps are needed to communicate v`, I and the halting message;

otherwise at most 3(M + 1) time steps are needed to communicate this information.

Taking the expectation of both sides, we have

ED
i [N ] ≤ Ei

[
max
1≤`≤L

Ni,`

]
+

L∑
`=1

Ei[τ(Ni,`)] + 3(M + 1). (2.100)

We now bound the terms on the right-hand side of (2.100). Since each node performs the

Chernoff test individually, for all ` ∈ [L] and i ∈ [M ], there exist two constants Ki,` > 0 and

bi,` > 0 such that for all ε > 0 and n ≥ (1 + ε)|log(c)|/I(i), we have [45, Lemma 2]

Pi(Ni,` ≥ n) ≤ Ki,`e
−bi,`n. (2.101)

Thus, we have

Ei[Ni,`] = (1 + o(1))
|log c|
I(i)

, (2.102)

which is independent of `. Using (2.101), for all ε > 0 and n ≥ (1 + ε)|log(c)|/I(i), we also

have that

Pi

(
max
1≤`≤L

Ni,` ≥ n

)
≤

L∑
`=1

Pi(Ni,` ≥ n)

≤ LKie
−bin, (2.103)

where Ki = max` Ki,` and bi = min` bi,`. For all r ≥ 1, we have the bound on the rth moment
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of max1≤`≤L Ni,` ,i.e.

Ei

[(
max
1≤`≤L

Ni,`

)r]
≤

(
(1 + o(1))

|log c|
I(i)

)r

. (2.104)

Now, we bound the higher moments of τ(Ni,`). Let N
∗ be the time instance such that

for all n ≥ N∗, the local decision Ĥ` at node ` is h
∗, i.e., Ĥ` = h∗. Using [45, Lemma 1], there

exists K > 0 and b > 0 such that

Pi(N
∗ ≥ n) ≤ k exp (−bn), (2.105)

which implies Pi(N
∗ <∞) = 1. Then, node ` following time N∗ selects the actions in an i.i.d.

fashion according to the probability mass function given by (2.3).

Let Gn,` be the joint cumulative distribution function of the variables (yn,`, un,`) at round

n and node ` for the Chernoff test. Also, let F` be the joint cumulative distribution function of

(yn,`, un,`) under the true hypothesis h
∗ when the actions are selected according toQ`

h∗ (see (2.3))

at each round at sensor `. Then, for all n > N∗, we have Gn,` = F`. Since Pi(N
∗ <∞) = 1, it

follows that the distribution Gn,` converges to F`.

Given that for all n, (yn, un) ∼ F` are i.i.d. random variables, we have that

Ei

[
log(p

ui,`

i,` (yk,`)/max
j 6=i

p
ui,`

j,` (yk,`))
]
= vi,` > 0. (2.106)

Additionally, using (2.106), finiteness of the r + 1st moment of log-likelihood ratio for r ≥ 1,

and by Corollary 10.1, Lemma 5 and (2.202) in Appendix 2.12.3, we have that

Ei[τ(Ni,`))
r] <∞, (2.107)

where the expectation is with respect to F`.

We now note that (2.107) also holds when the expectation is with respect toGn,`. To show
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this claim, first observe that Ei[τ(Ni,`))
r] is upper bounded by the two terms at the right-hand

side of (2.182) in Corollary 10.1. The first term is bounded, since the KL-divergence between

any two probability measures is finite. The second term can be split into two summations, one

for 1 ≤ n ≤ N∗, and the other for n ≥ N∗ + 1. The first summation is finite since N∗ <∞ a.s.,

and the probability is at most one. By using Lemma 5 in Appendix 2.12.3 and Gn,` = F`, the

second summation is also finite. It follows that (2.107) holds for the SCT.

Since E[log(pui,`

i,` (yk,`)/maxj 6=i p
ui,`

j,` (yk,`))]
2 is finite, using (2.107), Ei[τ(Ni,`)] on the

right-hand side of (2.100) is finite and independent of c. Now, combining equation (2.100),

(2.104) and the finiteness of Ei[τ(Ni,`)], as c→ 0, we get (2.26). Thus, part (ii) of the theorem

is proved.

Now,

ED
i [N

r] ≤ Ei

[(
max
1≤`≤L

Ni,` +
∑
`∈[L]

τ(Ni,`) + 1
)r]

. (2.108)

The moments of
∑

`∈[L] τ(Ni,`) are finite and independent of c. Hence, the dominant term,

dependent on c, in the expansion of the right-hand side of (2.108) is given only by max1≤`≤L Ni,`.

Using (2.107) and (2.104), it follows that as c→ 0, we have

ED
i [N

r] ≤

(
(1 + o(1))

|log c|
I(i)

)r

, (2.109)

which proves part (iv) of the theorem.

Proof of Theorem 4

Proof. Combining Theorems 2 and 3, we have that (2.30), (2.31) and (2.33) follow immediately.

We then turn to the proof of (2.34).

For all ` ∈ [L], given that hypothesis hi is true, we have that as c→ 0, the probability of
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incorrect detection tends to zero. It follows that Ĥ = hi and

ED
i [N ] = (1 + o(1))

|log c|
I(i)

= ED
i [Ni,`], (2.110)

where the last equality follows from (2.102). Thus, as c→ 0, all the nodes reach the same local

decision, on average, at the same time, and the average number of messages that each node sends

to the fusion center to communicate this local decision is one. It follows that, as c→ 0 , the total

expected communication overhead is four: two in the initialization phase, one to communicate

the local decision, and one to receive the halting message.

Proof of Theorem 5

Proof. Let Bn,j be the set of sample paths where the final decision Ĥ is initiated in favor of hj

at the nth step, and we indicate a single sample path as {(un
1 , y

n
1 ) . . . (u

n
L, y

n
L)}. We indicate by

Bn,j,` the set of sample paths in Bn,j corresponding to the `
th node. N c denotes the time taken to

terminate the initialization phase of CCT. Now, we define the two times associated with the test

phase of CCT:

Ti,` = inf

{
n : log

P(H∗ = hi∗n,|y
n+1
` , un+1

` )

maxj 6=i∗n P(H∗ = hj|yn+1
` , un+1

` )
≥ ρ̂

(Nc)
i,` |log c|

}
= inf

{
n :

n∑
k=1

log
p
uk,`

i,` (yk,`)

maxj 6=i p
uk,`

j,` (yk,`)
≥ ρ̂

(Nc)
i,` |log c|

}
,

and

τ(Ti,`) = sup
{
n :

Ti,`+n∑
k=Ti,`+1

log
p
uk,`

i,` (yk,`)

maxj 6=i p
uk,`

j,` (yk,`)
< 0
}
.

The proof consists of two parts. First, we write PC
i (Ĥ 6= hi) as the probability of a

countable union of disjoint sets of sample paths. An upper bound on this probability then follows

from an upper bound on the probability of these disjoint sets, in conjunction with the union
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bound. Second, EC
i [N ] is dependent on the time required to reach and detect the consensus during

the initialization phase, the time required to reach the threshold in (2.19) in the test phase, and

the time required to reach and detect that the nodes have reached a common preference about a

hypothesis in the stopping phase. The stopping time N can be bounded as

N ≤ N c + max
1≤`≤L

(Ti,` + τ(Ti,`)) +N s, (2.111)

where N s is the time taken to detect the common preference about the hypothesis in the stopping

phase of CCT.

Consider the probability PC
i (Ĥ = hj). This is the same as the probability of the countable

union of disjoint sets Bn,j . Thus, for j 6= i, we can write

PC
i (Bn,j) =

∫
Bn,j

L∏
`=1

n∏
k=1

p
uk,`

i,` (yk,`) dy1,`(u1,`) . . . dyn,`(un,`)

(a)
=

L∏
`=1

∫
Bn,j,`

n∏
k=1

p
uk,`

i,` (yk,`) dy1,`(u1,`)..... dyn,`(un,`)

(b)

≤
L∏

`=1

∫
Bn,j,`

cρ̂
(n)
j,`

n∏
k=1

p
uk,`

j,` (yk,`) dy1,`(u1,`) . . . dyn,`(un,`)

(c)

≤ cI(i)/(I(i)+c)

L∏
`=1

∫
Bn,j,`

n∏
k=1

p
uk,`

j,` (yk,`) dy1,`(u1,`) . . . dyn,`(un,`)

= cI(i)/(I(i)+c)

L∏
`=1

PC
j (Ĥ = hj at sample n at `th sensor)

= cI(i)/(I(i)+c)PC
j (Ĥ = hj at sample n), (2.112)

where (a) follows from the definition of Bn,j,`; (b) follows from the definition of Ti,`; (c) follows

from the facts that using Theorem 1 and (2.18), we have

I(i)/(I(i) + c) ≤
L∑

`=1

ρ̂
(n)
j,` ≤ I(i)/(I(i)− c), (2.113)
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and c < 1. Now, we can bound PC
i (Ĥ 6= hi) as follows

PC
i (Ĥ 6= hi) =

∑
j 6=i

PC
i (Ĥ = hj) =

∑
j 6=i

∞∑
n=1

PC
i (Bn,j)

≤
∑
j 6=i

∞∑
n=1

cI(i)/(I(i)+c) PC
j (Ĥ = hj at sample n)

= cI(i)/(I(i)+c) (M − 1), (2.114)

where the inequality in the chain follows by (2.112). This proves part (i) of the theorem.

Let us bound the timeN c required to terminate the initialization phase. Since matrixW in

(2.10) is row stochastic using (2.13) and the graph G(N , E) is connected, the ergodic coefficient

η(W ) ∈ (0, 1) using Lemma 1. It follows from [54] that for all k, n ∈ N and `, j ∈ [L], we have

ek+n
`,j �

(
1− η(W n)

)
ek`,j, (2.115)

where ek`,j = |Îk` − Îkj |. Now, if the initialization phase reaches uniformly local c-consensus at

time instance k0, then using (2.18), for all `, j ∈ [L], we have

ek0`,j � c11×M . (2.116)

Thus, there exists k′ ∈ N such that hGk′ ≤ k0 ≤ hG(k′ + 1). Using (2.115), for all `, j ∈ [L], we

have

ek0`,j � eh
Gk′

`,j

(a)

�
(
1− η

(
W hG))k′

e0`,j

(b)

�
(
1− η

(
W hG))k′

I, (2.117)

where (a) follows from Îh
Gk′ = W hG

Îh
G(k′−1) and Lemma 1, and (b) follows from the fact that
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for all `, j ∈ [L], we have e0`,j � I . Since for all `, j ∈ [L], we have ek0`,j � c11×M , using (2.117),

we have (
1− η(W hG

)
)k′

I � c, (2.118)

and

k
′ ≤

log(c/maxj∈[L] I(j))

log
(
1− η(W hG)

) . (2.119)

Since k0 ≤ hG(k′ + 1), we have

k0 ≤ hG

(
log(c/maxj∈[L] I(j))

log
(
1− η(W hG)

) + 1

)
. (2.120)

Now, let kd be the time to detect the local c-consensus. From [235], we have

kd ≤ hG

(
− log(dG)

log
(
1− η(W hG)

) + 1

)
+ L+ 1. (2.121)

Now, the time N c for initialization phase is bounded as follows

N c ≤ k0 + kd

≤ hG

(
log(c/maxj∈[L] I(j))

log
(
1− η(W hG)

) + 1

)

+ hG

(
− log(dG)

log
(
1− η(W hG)

) + 1

)
+ L+ 1. (2.122)

The expected time of the test phase of CCT is at most Ei [max1≤`≤L(Ti,` + τ(Ti,`))].

Combining (2.104), (2.107), and the fact that |Î`(i)− I(i)| ≤ c using Theorem 1 and (2.18), as

c→ 0, we have

Ei

[
max
1≤`≤L

(Ti,` + τ(Ti,`))

]
≤ (1 + o(1))

|log c|
I(i)− c

. (2.123)

Now, we compute the time for the decision phase of CCT. The network will reach the
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final decision for all n > max1≤`≤L τ(Ti,`) + kr, where kr is the time taken by the termination

message m
(3)
t to reach every node after its initiation at any node. Thus, the time N s of the

decision phase is bounded above as

N s ≤ max
1≤`≤L

τ(Ti,`) + kr.

Therefore, we have

Ei[N
s] ≤

L∑
`=1

Ei[τ(Ni,`)] + Ei[kr]. (2.124)

Using (2.107), the term Ei[τ(Ti,`)] at the right-hand side of (2.124) is finite and independent of c.

Additionally, kr < dG + 1. Thus, Ei[N
s] is finite and independent of c.

Combining equations (2.122), (2.123), and the finiteness of Ei[N
s], we get that (2.38)

holds as c→ 0, proving part (ii) of the theorem.

Now we derive the bounds for the higher moments of the decision time N . We have

N ≤ N c + max
1≤`≤L

(Ti,` + τ(Ti,`)) +N s

≤ N c + max
1≤`≤L

(Ti,`) + 2 max
1≤`≤L

τ(Ti,`) + kr

≤ N c + max
1≤`≤L

(Ti,`) + 2
∑
`∈[L]

τ(Ti,`) + kr. (2.125)

Now, we present the bound on the rth moment of each term in the right-hand side of (2.125).

Using (2.122), N c is bounded above by a constant. As c→ 0, we have

(N c)r ≤

(
(1 + o(1))

hG log(c/maxj∈[L] I(j))

log(1− η(W hG)

)r

. (2.126)

Using (2.104) and the fact that |Î`(i)− I(i)| ≤ c, we have

Ei

[
max
1≤`≤L

T r
i,`

]
=

(
(1 + o(1))

|log c|
I(i)− c

)r

. (2.127)
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Using (2.107), the higher moments of the third term in the right-hand side of (2.125) are finite

and independent of c by definition of τ(Ti,`). Additionally, kr ≤ L+ 1 <∞. Now,

EC
i [N

r] ≤ Ei

[
N c + max

1≤`≤L
(Ti,`) + 2

∑
`∈[L]

τ(Ti,`) + kr

]r
. (2.128)

The moments of
∑

`∈[L] τ(Ti,`) + kr are finite and independent of c. The dominant terms, depen-

dent on c, in the expansion of the right-hand side of (2.128) depend only onN c+max1≤`≤L(Ti,`).

Therefore, as c→ 0, we have

EC
i [N

r] ≤

(
(1 + o(1))

(
hG log(c/maxj∈[L] I(j))

log(1− η(W hG))
+
|log c|
I(i)− c

))r

, (2.129)

which proves part (iv) of the theorem.

Proof of Theorem 6

Proof. Combining Theorems 2 and 5, we have (2.42), (2.43) and (2.45) follow immediately.

Decision Phase of CCT

Lemma 3. If dN` > L+ 1, then there exists a time k ≤ N at which the local decision of all the

nodes are the same, i.e., minj∈[L] x
k
j ≥ 1. This decision is the same as the local decision ĤN

` of

node ` at time N .

Proof. At time N and node `, if dN` > L + 1, then for all k ∈ N`, we have d
N−1
k > L and

xN−2
k ≥ L. If the shortest distance between the node ` and j is s`,j , then we have

d
N−s`,j
j > L− s`,j + 1. (2.130)

Thus, for all j ∈ [L], we have

dN−dG

j > d
N−s`,j
j + s`,j − dG > 1, (2.131)
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since s`,j ≤ dG ≤ L. This implies that for all j ∈ [L], we have

xN−dG−1
j ≥ 1. (2.132)

Thus, the first statement of the claim follows.

Now, we prove the second statement by contradiction. For all j ∈ [L], let the decision at

time N − dG − 1 be ĤN−dG−1
j = h′ which is different from ĤN

` . At sensor `, let the decision

change from h′ to ĤN
` at time n. Then,

N − dG − 1 < n ≤ N. (2.133)

Therefore, xn
` = 1, which implies

dn+1
` ≤ 2. (2.134)

Now,

dN` ≤ dn+1
` +N − n− 1

≤ 2 +N − n− 1

< 2 + dG

≤ 2 + L. (2.135)

However, dN` ≥ L+ 2 by the statement of the Lemma. Hence, by contradiction, we conclude

that the second statement of our claim holds.

Proof of Theorem 7

Proof. The proof of the theorem is exactly along the same lines as the proof of Theorem 3.

The key difference lies in the computation of the constant ρi,`. Due to quantization into Q
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sub-intervals, we have

vi,` −∆(max
i

I(i), Q) ≤ bvi,`c ≤ vi,`, (2.136)

which implies

vi,` − f(Q)/L ≤ bvi,`c ≤ vi,`. (2.137)

Using (2.137), we have that bI(i)c is

I(i)− f(Q) ≤ bI(i)c ≤ I(i), (2.138)

which implies that ρi,` in (2.52) verifies

vi,`
I(i)
≤ ρi,` ≤

vi,`
I(i)− f(Q)

.
(2.139)

For part (i), using the lower bound from (2.139) in (2.97), we have

PD
i (An,j) ≤ c

∑
` vi,`/I(i) PD

j (Ĥ = hj at sample n)

= cPD
j (Ĥ = hj at sample n). (2.140)

Now, the result in part (i) follows similar to (2.98).

For part (ii), (iii) and (iv), since C > log2M , the local decisions can be communicated

at each time instance. Using (2.138) and the assumption that f(Q) ≤ I(i), for all r ≥ 1, similar

to (2.104), we have

Ei

[(
max
1≤`≤L

Ni,`

)r]
≤

(
(1 + o(1))

|log c|
bI(i)c

)r

≤

(
(1 + o(1))

|log c|
I(i)− f(Q)

)r

. (2.141)

70



Now, similar to (2.109), we have

ED
i [N

r] ≤

(
(1 + o(1))

|log c|
I(i)− f(Q)

)r

. (2.142)

Hence, part (ii), (iii) and (iv) follows.

Proof of Theorem 8

Proof. The proof of the theorem is along the same lines as Theorem 5. The key difference lies

in the computation of the constant ρ̂i,`.

Firstly, we will upper bound and lower bound ρ̂i,` in terms of I(i) and g(Q̃, c, α). Since

Assumptions 1 and 2 hold, and the graph G is strongly connected, using [160, Proposition 5],

the time k0 to reach local c-consensus is

k0 ≤ 2
L2

α
log(min(Q̃2, L4/c2)max

j
I2(j)) + 1. (2.143)

Using C > log2(L+ 2) and (2.121), time kd to detect the consensus is

kd ≤ hG

(
− log(dG)

log
(
1− η(W hG)

) + 1

)
+ L+ 1. (2.144)

Now, using [160, Proposition 7] and the fact that the average decreases by at most 1/Q̃

in each iteration of consensus, for all i ∈ [M ] and ` ∈ [L], the error in estimation bÎ`(i)c at the

end of initialization phase is at most

|bÎ`(i)c − I(i)| ≤ L

Q̃
(k0 + kd) ≤

L

Q̃

(
2
L2

α
log(min(Q̃2, L4/c2)max

j
I2(j)) + 1

)
+

L

Q̃

(
hG

(
− log(dG)

log
(
1− η(W hG)

) + 1

)
+ L+ 1

)
= g(Q̃, c, α). (2.145)
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This implies

vi,`

I(i) + g(Q̃, c, α)
≤ ρ̂i,` ≤

vi,`

I(i)− g(Q̃, c, α)
. (2.146)

Thus, for part (i), using the lower bound from (2.146) in (2.112), we have

PC
i (Bn,j) ≤ cI(i)/(I(i)+g(Q̃,c,α))PC

j (Ĥ = hj at sample n). (2.147)

The result in part (i) follows similar to (2.114).

For part (ii), (iii) and (iv), the time required in the initialization phase is at most k0 + kd

and can be bounded using (2.143) and (2.144). For test phase, using (2.146) and the assumption

that g(Q̃, c, α) < I(i), for all r ≥ 1, similar to (2.127), we have

Ei

[
max
1≤`≤L

T r
i,`

]
=

(
(1 + o(1))

|log(c)|
min`∈[L] Î`(i)

)r

≤

(
(1 + o(1))

|log(c)|
I(i)− g(Q̃, c, α)

)r

. (2.148)

For decision phase, since C > log2(L+ 2) + log2M , the local decisions and dn` can be commu-

nicated at each time instance. Hence, the time N s of decision phase is finite from Theorem 5.

Similar to (2.129), the result follows by combining the time for all the three phases of CCT.

Proof of Theorem 9

Proof. For part (i), since the vectors v` and I are communicated using Q levels of quantization,

the proof is exactly same as that of part (i) in Theorem 7.

For part (ii), (iii) and (iv), the additional delays in comparison to the setting in Theorem

7 are the time to communicate the vectors bv`c to the fusion center, the time to communicate

vector bIc to the nodes, and time to make a final decision given the same preferences about the

hypothesis are reached at the nodes. Since each link is active with probability 1− ε, the expected

72



time to communicate the vectors bv`c and bIc is at most

2L

1− ε
. (2.149)

Given that all the local preferences are reached at the nodes, i.e., n > maxi τ(Ni,`), the probability

that all these preferences are received at the same time instances at the fusion center is (1− ε)L,

which corresponds to all the links being active at the same time. The expected decision time

following n > maxi τ(Ni,`) is

1

(1− ε)L
. (2.150)

Combining the delays in (2.149) and (2.150), and the results in Theorem 7, the statement of the

theorem follows.

Proof of Lemma 2

Proof. For part (i), for all ` ∈ [L], we have

L∑
j=1

w`,j(n) = w`,`(n) +
∑
j 6=`

w`,j(n)

= 1− β
∑
j 6=`

1((j, `) ∈ E(n)) + β
∑
j 6=`

1((j, `) ∈ E(n))

= 1. (2.151)

Since wi,j(n) = wj,i(n), we have
L∑

`=1

w`,j(n) = 1. (2.152)

Hence,W (n) is doubly stochastic.

For part (ii), for all (i, j) ∈ E(n), we have

wi,j(n) ≥ min (β, 1− β
∑
6̀=i

1((i, `) ∈ E(n))). (2.153)
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Thus, for all (i, j) ∈ E(n), we have

wi,j(n) > min (1−D(G)β, β), (2.154)

where D(G) = maxs
∑

j 6=s 1((j, s) ∈ E).

For part (iii), note that the eigenvalues of L̄(n) are non-negative and recall that the sum

of the diagonal elements of L̄(n) is equal to the sum of the its eigenvalues [87]. Let λ is an

eigenvalue of L̄(n). Then, we have

λ ≤ 2|E|, (2.155)

because |E(n)| ≤ |E|. The eigenvalues ofW (n) are of the form 1− βλ. Since 0 < λ ≤ 2|E|,

for all 0 < β < 1/(2|E|), we have

0 < 1− βλ < 1, (2.156)

which implies R(W (n)) < 1. To show (2.71), let λ̄ be an eigenvalue ofW (n)− (1L×111×L)/L

and not an eigenvalue ofW (n). We have

det

(
λ̄UL×L −W (n) +

1L×111×L

L

)
(a)
= det(λ̄UL×L−W (n))

(
1+

11×L(λ̄UL×L−W (n))−11L×1

L

)
(b)
= det(λ̄UL×L −W (n))

(
1 +

11×L1L×1

(λ̄− 1)L

)
=det(λ̄UL×L −W (n))

(
1 +

1

(λ̄− 1)

)
, (2.157)

where det(·) denotes the determinant of a matrix, (a) follows from the fact that (λ̄UL×L−W (n))

is non-singular because λ̄ is not an eigenvalue of W (n), and exploits the matrix determinant

lemma [87], namely if A is a non-singular matrix of dimension L× L and c and d are column
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vectors of dimension L× 1, then

det(A+ cdT ) = det(A)(1 + dTA−1c), (2.158)

(b) follows from the fact that (λ̄UL×L −W (n)) is non-singular and doubly stochastic, which

implies

(λ̄UL×L −W (n))1L×1 = λ̄1L×1 − 1L×1

= (λ̄− 1)1L×1. (2.159)

Since λ̄ is an eigenvalue ofW (n)− (1L×111×L)/L, we have

(
1 +

1

(λ̄− 1)

)
= 0, (2.160)

which implies λ̄ = 0. Combining the facts that λ̄ < 1 and R(W (n)) < 1, the claim in (iii)

follows.

Proof of Theorem 10

Proof. The proof of the theorem is along the same lines as the proof of Theorem 8. The key

difference is that, unlike ρ̂i,`, in this case ρ̂εi,` is a random variable, and the randomness is

introduced by the time-varying configuration of the network due to ε-random packet erasures.

We derive the upper and lower bound on ρ̂εi,` with high probability in terms of I(i) and

h(Q̃, c,min (1−D(G)β, β), ε). First, for all n, we establish that W (n) satisfies Assumption

1. Second, for all n, we show that the resulting graph G(V , E(n)) is strongly connected with

probability at least 1− |E|ε. Using these two results, similar to Theorem 8, we bound the time to

reach consensus K0 +Kd, which is now a random variable (see (2.143) and (2.144)), and the

estimation error (see (2.145)). The rest of the proof is similar to that of Theorem 8.

For all n, given an edge e ∈ E , the probability that e /∈ E(n) is ε since the link failures
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are independent and identically distributed across time and independent of other links. Thus, the

probability that the graph G(V , E(n)) is strongly connected is

P(G(V , E(n)) is strongly connected) ≥ P(For all e ∈ E , we have e ∈ E(n))

≥ (1− ε)|E|

≥ 1− |E|ε. (2.161)

Since Assumptions 1 and 2 hold, and the graph G(V , E(n)) is strongly connected with

probability at least 1 − |E|ε, using Lemma 2,[160, Proposition 5] and (2.143), the number of

time steps satisfying the property that G(V , E(n)) is strongly connected and that are required to

converge to local c-consensus is at most

2L2 log(min(Q̃2, L4/c2)maxj I
2(j))

min (1−D(G)β, β)
+ 1. (2.162)

This along with (2.161) implies that E[K0] to reach local c-consensus is

E[K0]≤
1

(1−|E|ε)

(
2L2 log(min(Q̃2, L4/c2)maxj I

2(j))

min (1−D(G)β, β)
+ 1

)
. (2.163)

Now, similar to (2.144), we have that E[Kd] to detect consensus is

E[Kd] ≤
1

(1− |E|ε)

(
hG

(
− log(dG)

log
(
1− η(W hG)

) + 1

)
+ L+ 1

)
. (2.164)

To obtain the high probability bound on the estimation error of the vector I , let us introduce a

sequence of Bernoulli i.i.d random variables {Zn}∞n=1 with probability of success P(Zn = 1) =

1− |E|ε. Then, with probability one, we have

K0 ≤ min

{
n ≥ 1 :

n∑
k=1

Zk >
2L2 log(min(Q̃2, L4/c2)maxj I

2(j))

min (1−D(G)β, β)
+ 1

}
. (2.165)
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Let δ = 1/(1− |E|ε), and

N0=
1

(1− |E|ε)

(
2L2 log(min(Q̃2, L4/c2)maxj I

2(j))

min (1−D(G)β, β)
+ 1

)
.

Using Hoeffding’s inequality [85], we have

P
(
K0 ≥ N0(1 + δ)

)
(a)

≤ P
(N0(1+δ)∑

n=1

Zn ≤
2L2 log(min(Q̃2, L4/c2)maxj I

2(j))

min (1−D(G)β, β)
+1

)

=P
(N0(1+δ)∑

n=1

Zn−N0(1 + δ)(1−|E|ε)≤−N0(1+δ)(1−|E|ε)

2L2 log(min(Q̃2, L4/c2)maxj I
2(j))

min (1−D(G)β, β)
+ 1

)
(b)
=P
(N0(1+δ)∑

n=1

Zn−N0(1 + δ)(1− |E|ε)≤−N0δ(1− |E|ε)
)

≤ exp (−2δ2(1− |E|ε)2N0(1 + δ)/(1 + δ)2)

= exp (−2δ2(1− |E|ε)2N0/(1 + δ))

= exp (−2(1− |E|ε)N0/(2− |E|ε)), (2.166)

where (a) follows from (2.165), and (b) follows from the definition of N0.

Similarly, we can show that for δ = 1/(1− |E|ε) and

N ′
0 =

1

(1− |E|ε)

(
hG
(

− log(dG)
log
(
1− η(W hG)

) + 1

)
+ L+ 1

)
,

we have

P(Kd > N ′
0(1 + δ)) ≤ exp (−2(1− |E|ε)N ′

0/(2− |E|ε)). (2.167)

Thus, similar to (2.145), using (2.166) and (2.167), we have that with probability one, the error
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in the estimation of bÎε` (i)c at the end of initialization phase is

|bÎε` (i)c − I(i)| ≤ L

Q̃
(K0 +Kd). (2.168)

This implies that using (2.166) and (2.167) , we have

|bÎε` (i)c − I(i)| ≤ L

Q̃
(K0 +Kd)

≤ L(1 + δ)

Q̃(1− |E|ε)

(
2L2 log(min(Q̃2, L4/c2)maxj I

2(j))

min (1−D(G)β, β)
+ 1

+ hG

(
− log(dG)

log
(
1− η(W hG)

) + 1

)
+ L+ 1

)
= g(Q̃, c,min (1−D(G)β, β))(2− |E|ε)/(1− |E|ε)2

= h(Q̃, c,min (1−D(G)β, β), ε), (2.169)

with probability at least

1−exp

(
− 2

(2−|E|ε)
2L2 log(min(Q̃2, L4/c2)maxj I

2(j))

min (1−D(G)β, β)

)

exp

(
− 2

(2−|E|ε)

(
hG

(
− log(dG)

log
(
1−η(W hG)

)+ 1

)
+L+2

))

= 1− exp (−2Q̃g(Q̃, c,min (1−D(G)β, β))/L(2− |E|ε))

= 1− exp(−2q(Q̃, c,min (1−D(G)β, β), ε), (2.170)

since K0 and Kd are independent.

Now, for part (i), using the lower bound from (2.169) in (2.112), we have PC
i (Bn,j) is at
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most

(1− exp(−2q(Q̃, c,min (1−D(G)β, β), ε))

cI(i)/(I(i)+h(Q̃,c,min (1−D(G)β,β),ε))PC
j (Ĥ = hj at samplen)

+ exp(−2q(Q̃, c,min (1−D(G)β, β), ε)PC
j (Ĥ = hj at sample n). (2.171)

The result in part (i) follows similar to (2.114).

Consider next parts (ii), (iii) and (iv). For the consensus phase, the expected time

E[K0 +Kd] required is upper bounded by the right-hand sides of (2.163) and (2.164). For the

test phase, using the assumption h(Q̃, c,min (1−D(G)β, β), ε) < I(i), for all r ≥ 1, we have

that (2.127) becomes

Ei

[
max
1≤`≤L

T r
i,`

∣∣∣∣{bÎε`c}`∈[L]]
=

(
(1+o(1))

|log(c)|
min`∈[L]bÎε` (i)c

)r

(a)

≤

(
(1+o(1))

|log(c)|
I(i)− h(Q̃, c,min (1−D(G)β, β), ε)

)r

, (2.172)

with probability at least

(1− exp (−2q(Q̃, c,min (1−D(G)β, β), ε))), (2.173)

where (a) follows from (2.169). For the stopping phase, since C > log2(L+ 2) + log2M , the

local decisions and dn` can be communicated at each time instance. Hence, the time N
s of the

decision phase is finite from Theorem 5 and the fact that the probability the graph is strongly

connected at each time instance is at least (1− |E|ε) > 0. Similar to (2.129), the result follows

by combining the time for all the three phases of CCT.

79



2.12.3 Proofs of Miscellaneous Results

In this section, we present results used to bound the time τ(Ni,`) in Theorem 3 and 5 (see

(2.107)). Let X1 . . . Xn be i.i.d. random variables and let the time

T = sup
{
n :

n∑
k=1

Xk > 0
}
. (2.174)

This is the last n at which

Sn > 0, (2.175)

where Sn =
∑n

k=1Xk, n ≥ 1, and S0 = 0.

Lemma 4. For all r ≥ 1, if E
[
|X1|r+1

]
<∞ and E

[
X1

]
≤ −µ0 < 0, then we have

E[T r] ≤ r

(
2

µ0

)r

E[(S∗)r] +
∞∑
k=1

rkr−1P
(
Sk + kµ0/2 > 0

)
, (2.176)

where S∗ = maxj≥0 Sj .

Proof. We have

E[T r]≤
∞∑
k=1

rkr−1P(T ≥ k)

=
∞∑
k=1

rkr−1P(max
j≥k

Sj > 0)

=
∞∑
k=1

rkr−1P
(
max
j≥k

(
Sj − Sk

)
+ Sk > 0

)
=

∞∑
k=1

rkr−1P
(
S∗ + Sk > 0

)
, (2.177)

where S∗ is an independent copy of maxj≥0 Sj , therefore we loosely use the same symbol.
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Now, along the same lines of proof as in [114, Theor. D], we have

∞∑
k=1

rkr−1P
(
S∗ + Sk > 0

)

=

∫ ∞

0

b2ξ/µ0c∑
k=1

rkr−1P
(
Sk > −ξ

)
dP
(
S∗ ≤ ξ

)
+

∫ ∞

0

∞∑
k=b2ξ/µ0c+1

rkr−1P
(
Sk+µ0k/2 > µ0k/2−ξ

)
dP
(
S∗ ≤ ξ

)
. (2.178)

The first integral at the right-hand side of (2.178) can be bounded as

∫ ∞

0

b2ξ/µ0c∑
k=1

rkr−1P
(
Sk > −ξ

)
dP
(
S∗ ≤ ξ

)
≤
∫ ∞

0

b2ξ/µ0c∑
k=1

rkr−1 dP
(
S∗ ≤ ξ

)
≤
∫ ∞

0

r (2ξ/µ0)
r dP

(
S∗ ≤ ξ

)
= r

(
2

µ0

)r

E
[
(S∗)r

]
. (2.179)

The second integral at the right-hand side of (2.178) can be bounded as

∫ ∞

0

∞∑
k=b2ξ/µ0c+1

rkr−1P
(
Sk+µ0k/2 > µ0k/2−ξ

)
dP
(
S∗≤ξ

)
≤
∫ ∞

0

∞∑
k=b2ξ/µ0c+1

rkr−1P
(
Sk + µ0k/2 > 0

)
dP
(
S∗ ≤ ξ

)
≤
∫ ∞

0

∞∑
k=1

rkr−1P
(
Sk + µ0k/2 > 0

)
dP
(
S∗ ≤ ξ

)
≤

∞∑
k=1

rkr−1P
(
Sk + µ0k/2 > 0

)
, (2.180)

where the first inequality follows from the fact that integration variable verifies ξ ≤ µ0k/2.

The claim of the Lemma now follows by (2.179) and (2.180).
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Corollary 10.1. Let X1, . . . , Xn be i.i.d. random variables such that E[|X1|r+1] < ∞ and

E[X1] ≥ µ0 > 0. Also, let S0 = 0, Sn =
∑n

k=1 Xk, n ≥ 1, and

T = sup
{
n :

n∑
k=1

Xk < 0
}
. (2.181)

Then, for all r ≥ 1, we have

E[T r] ≤ r
( 2

µ0

)r
E
[(
−min

j≥0
Sj

)r]
+

∞∑
k=1

rkr−1P
(
Sk − kµ0/2 < 0

)
. (2.182)

Proof. The proof follows from replacing Xk by −Xk in Lemma 4.

Lemma 5. Let X1, . . . , Xn be a sequence of independent and identically distributed random

variables with zero mean and finite (r + 1)th absolute moment, namely for all r ≥ 1, we have

E[|X|r+1] <∞. Then, for all r ≥ 1, we have

∞∑
n=1

nr−1P
(∣∣∣ n∑

k=1

Xk

∣∣∣ > n
)
<∞. (2.183)

Proof. The proof technique is borrowed from [60]. Event A = {|
∑n

k=1Xk| > n} is written as

a subset of the union of three events i.e. A ⊂ A
(1)
n ∪ A

(2)
n ∪ A

(3)
n . We bound the probability of

these three events, and show that for all i ∈ [3], we have

∞∑
n=1

nr−1P(A(i)
n ) <∞. (2.184)

Thus, (2.183) follows from (2.184).
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Let 2i ≤ n < 2i+1, with i ≥ 0. The events A
(1)
n , A

(2)
n and A

(3)
n are defined as follows:

A(1)
n = {There exists k ≤ n such that |Xk| > 2i−2},

A(2)
n = {There exists at least two integers k1, k2 ≤ n such that

|Xk1| > n4/5and |Xk2| > n4/5},

A(3)
n =

{∣∣∣ ∑
k∈N ′

Xk

∣∣∣ > 2i−2
}
,

where N ′ = [n]\{k ≤ n : |Xk| > n4/5}. If the event A(1)
n ∪ A

(2)
n ∪ A

(3)
n does not occur, then we

have ∣∣∣∣ n∑
k=1

Xk

∣∣∣∣ ≤ 2i−2 + 2i−2 < n. (2.185)

Hence, A ⊂ A
(1)
n ∪ A

(2)
n ∪ A

(3)
n , and P(A) ≤ P(A(1)

n ) + P(A(2)
n ) + P(A(3)

n ). Therefore,

∞∑
n=1

nr−1P(A) ≤
∞∑
n=1

nr−1P(A(1)
n ) +

∞∑
n=1

nr−1P(A(2)
n ) +

∞∑
n=1

nr−1P(A(3)
n ). (2.186)

Now, we bound the probability of all three events at the right-hand side of the above equation.

Let ai = P(|Xk| > 2i). We have

∞∑
i=0

2i(r+1)−1ai
(a)

≤
∞∑
i=0

2i(r+1)(ai − ai+1)

(b)

≤ E[|Xk|r+1]

(c)
< ∞, (2.187)

where (a) follows from the fact that

1

2

∞∑
i=0

2i(r+1)ai ≥
1

2r+1

∞∑
i=1

2i(r+1)ai =
∞∑
i=0

2i(r+1)ai+1, (2.188)

83



which implies
∞∑
i=0

2i(r+1)ai −
1

2

∞∑
i=0

2i(r+1)ai ≥
∞∑
i=0

2i(r+1)ai+1, (2.189)

(b) follows from the definitions of ai and E[|Xk|r+1], after exploiting
∫ y2
y1

ydy ≥
∫ y2
y1

y1dy, and

(c) follows from the assumption of the lemma. Thus, using (2.187), we have

∞∑
i=0

2i(r+1)ai <∞. (2.190)

Now, we bound the probability of the event at the right-hand side of (2.186) that involves A
(1)
n

∞∑
n=1

nr−1P(A(1)
n ) =

∞∑
n=1

nr−1P(∃k≤n : |Xk|>2i−2where i verifies 2i≤n<2i+1)

(a)

≤
∞∑
n=1

nrP(|Xk| > 2i−2 where i verifies 2i ≤ n < 2i+1)

=
∞∑
i=0

∑
2i≤n<2i+1

nrai−2

≤
∞∑
i=0

∑
2i≤n<2i+1

2(i+1)rai−2

=
∞∑
i=0

2i(r+1)+rai−2

<∞, (2.191)

where (a) follows from the union bound and the fact that Xk are i.i.d, and the last inequality

follows from (2.190).

Since the (r + 1)st absolute moment is finite, for all k ∈ N, there exists a finite constant

K > 0 such that

P(|Xk| ≥ u) ≤ K/ur+1. (2.192)
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Now, we bound the probability of event A
(2)
n

P(A(2)
n )

(a)

≤
∑

1≤k1<k2≤n

P(|Xk1 | > n4/5and |Xk2| > n4/5)

(b)

≤ n2P(|X1| > n4/5)P(|X2| > n4/5)

(c)

≤ K2n2n−4(r+1)/5n−4(r+1)/5, (2.193)

where (a) follows from the definition of the event and the union bound, (b) follows from the

independence of the random variables and a bound on the number of possible combinations of k1

and k2, and (c) follows from (2.192). Therefore, we have

∞∑
n=1

nr−1P(A(2)
n )

(a)

≤
∞∑
n=1

K2nr−1n2n−8(r+1)/5

=
∞∑
n=1

K2n−3r/5−3/5

(b)
< ∞, (2.194)

where (a) follows from (2.193), and (b) follows as r ≥ 1.

Now, we bound the probability of event A
(3)
n . Let

X+
k =


Xk |Xk| < n4/5,

0 otherwise.

(2.195)

85



There exist finite positive constants K(1), K(2), such that

E
[∣∣∣ n∑

k=1

X+
k

∣∣∣2r] (a)

≤ E
[ n∑

k=1

|X+
k |

2r

]
+

∑
1≤k1,k2≤n

E
[
|X+

k1
|2r−1

]
E
[
|X+

k2
|
]
+ . . .

(b)

≤ E
[ n∑

k=1

n4(r−1)/5|X+
k |

r+1

]
+

∑
1≤k1,k2≤n

E
[
n4(r−2)/5|X+

k1
|r+1
]
E
[
|X+

k2
|
]
+ . . .

(c)

≤ K(1)n4r/5r2r
(
n−4/5 + n−8/5 + . . .

)
(d)

≤ K(1)n4r/5r2r
n−4/5

1− n−4/5

≤ K(2)n4(r−1)/5, (2.196)

where (a) follows from the multinomial expansion of (
∑n

k=1|X
+
k |)2r, and the independence of

the random variables, (b) follows from (2.195), (c) follows from the following facts that

• (r + 1)st absolute moment of X+
k is finite;

• the coefficient of multinomial expansion is of the form 2r!/(k1! . . . kn!) such that k1 +

. . .+ kn = 2r and can be bounded as O(2r2r) independent of n;

• the largest coefficient of n in the expansion is n4r/5 present in the first term in (b);

• the remaining coefficient of n will form a finite geometric progression, more specifically

n−4/5, n−8/5, . . .;

and (d) follows from the fact that sum of the geometric progression n−4/5, n−8/5, . . . can be

bounded by n−4/5/(1− n−4/5).

Thus, using (2.196), there exists K(3) > 0 such that

P
(∣∣∣ n∑

k=1

X+
k

∣∣∣ > n/8

)
≤ K(3)n4(r−1)/5

n2r
, (2.197)
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and

P(A(3)
n ) = P

(∣∣∣ n∑
k=1

X+
k

∣∣∣ > 2i−2

)
(a)

≤ P
(∣∣∣ n∑

k=1

X+
k

∣∣∣ > n/8

)
(b)

≤ K(3)n4(r−1)/5n−2r, (2.198)

where (a) follows by n/8 < 2i−2, and (b) follows from (2.197). Thus, we have

∞∑
n=1

nr−1P(A(3)
n )

(a)

≤
∞∑
n=1

nr−1K(3)n4(r−1)/5n−2r

=
∞∑
n=1

K(3)n−r/5n−9/5
(b)
< ∞, (2.199)

where (a) follows from (2.198), and (b) from the convergence of summation for r ≥ 1. Finally,

using (2.191), (2.194) and (2.199), we have that (2.183) follows.

Now, we combine the results in Corollary 10.1 and Lemma 5. Let X1, . . . , Xn be i.i.d.

random variables with E[X1] = µx > 0, and E[|X1|r+1] < ∞ for all r ≥ 1. Let S0 = 0,

Sn =
∑n

k=1 Xk for n ≥ 1, and T = sup
{
n : Sn < 0

}
. Using (2.182), we have

E[T r] ≤ r
( 2

µx

)r
E
[(
−min

j≥0
Sj

)r]
+

∞∑
k=1

rkr−1P
(
Sk − kµx/2 < 0

)
. (2.200)

The first term at the right-hand side of (2.200) is finite because of the assumptions µx > 0 and

E[|X1|r+1] <∞ [114]. The second term can be bounded as follows

∞∑
k=1

rkr−1P
(
Sk − kµx/2 < 0

)
=

∞∑
k=1

rkr−1P
(
2k − 2Sk/µx > k

)
≤

∞∑
k=1

rkr−1P
(∣∣∣2k − 2Sk/µx

∣∣∣ > k
)
<∞, (2.201)
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where the last inequality follows by Lemma 5 applied to the zero-mean i.i.d. variables {2 −

2Xi/µx}∞i=1. Thus, we arrive at

E[T r] <∞. (2.202)
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Chapter 3

Bounded Knapsack Bandits in crowd-

sourcing systems

3.1 Introduction

Crowdsourcing systems (CS) have emerged as a valuable tool for several organizations

to outsource a variety of tasks to a population of diverse workers at low cost. Some of the key

players in the crowdsourcing market include for example Amazon Mechanical Turk, Upwork,

Freelancer and uTest. In these systems, guaranteeing the quality of the work remains a key

challenge, due to the limited a priori information about the ability of the workers. Thus, there is

interest in developing automated methods for the collection and aggregation of information from

the workers, incentive schemes to hire expert workers, and schemes for determining the quality

of the tasks being done.

CS research has mostly focused on distributed methods where there is very limited

interaction between workers and task master. The interaction is typically limited to the assignment

of a gold-set of tasks to evaluate workers’ performance prior to the assignment of the actual set

of tasks, and does not provide a way to continuously monitor the quality of the work in real time.

Dishonest workers can perform well on a gold-set of tasks and, not being evaluated on-line on a

competitive basis, underperform during the actual working phase. Alternatively, the gold set can

be mixed with all the assigned tasks in a way that the workers cannot distinguish between them.

This is helpful to detect underperforming workers, but it wastes resources, and does not ensure
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continuous monitoring of the quality of the work.

In this paper, we develop a notion of Limited-information Crowdsourcing Systems (LCS)

that is desirable from both the task master and workers perspective. In LCS, workers express their

interest in doing the tasks, quote their charges per task, and provide an upper limit on the number

of tasks they are willing to perform. The tasks can then be assigned in burst or one-by-one to

the workers, as long as the workers’ constraints are satisfied. Given these constraints, unlike

traditional CS, the workers do not need to be assigned all of their tasks at the same time. The

workers’ selection policy is not limited to be of the form “take-it” or “leave-it,” but it can include

workers who are still available after having completed a certain number of tasks, and that may

be assigned additional tasks at a later time. This eliminates the requirement of having gold-set of

tasks, and allows the task master to continuously monitor the quality of the work and assign tasks

based on the estimated workers’ ability, thus creating a competitive environment. Additionally,

the workers are incentivized to perform tasks satisfactorily in order to maximize their earnings,

while satisfying their load constraint.

This new formulation also poses new challenges. In our setting, the workers’ selection

algorithm needs to balance an exploration-exploitation trade-off, since the workers’ ability is

initially unknown to the task master and is learned on-line. This trade-off is not considered in

traditional CS due to the limited interaction between the workers and the task master, but it is a

classic one in the field of Multi-Armed Bandits (MAB) [124]. This is a class of problems dealing

with decision making under uncertainty, where the actions have rewards that have to be learned

through observations. Thus, the main challenge in LCS is to determine an efficient workers’

selection scheme and to estimate of the abilities of the workers. To exploit the similarity of

LCS with MAB, we reformulate the LCS problem in terms of a Bounded Knapsack Problem

(BKP) that is equivalent to an arm-limited, budget-limited MAB. Given a strategy to estimate

the workers’ ability in real time, we use the B-KUBE algorithm developed in [213] for workers’

selection. This algorithm has previously only been evaluated experimentally, and we provide

provable performance guarantees, showing that its expected regret is O(logB), where B is the
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maximum available budget. Since it has been shown in [16] that the expected regret for any

algorithm is at least Ω(logB), our results imply that B-KUBE is order optimal. Thus, we close

the gap in the literature of arm-limited, budget-limited MAB by providing the first order optimal

bounds of an algorithm in the current MAB setup. We then formalize the notion of workers’

ability and propose an online strategy to estimate it. We also experimentally evaluate B-KUBE

in conjunction with our strategy for estimating the workers’ ability, showing that it outperforms

other state-of-the-art MAB algorithms applied in the same setting. Thus, the contributions of the

work are two fold: providing an optimal scheme for a MAB setup and using it in a crowdsourcing

setting conjunction with an estimation scheme.

The organization of the paper is as follows: Section 2 describes the problem formulation;

Section 3 discusses related work; Section 4 describes usage of B-KUBE for workers’ selection

and gives its performance guarantees; section 5 describes a strategy for estimating the workers’

performance in real time; section 6 provides experimental evaluation of of B-KUBE in conjunction

with this strategy; section 7 concludes the work.

3.2 Problem Formulation

We consider a labeling task in LCS, but this formulation can be easily modified to

accommodate a different type of work. We assume the task master has a budget B and needs

to label data with one of L labels. There are K workers interested in performing the labeling

tasks. For every k ∈ [K], the number of evaluations a worker can perform is limited byMk and

the cost of each evaluation is ck. The objective of the task master is to minimize the average

classification error

ε =
1

T

∑
i

P(l̂i 6= l∗i ) (3.1)

where l̂i and l
∗
i are the predicted label and true label of the task i respectively, and T is the total

number of labeling tasks. This is a commonmeasure of performance considered in crowdsourcing

systems works [103, 102, 109]. Thus, letting xk be the number of evaluations assigned to each
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worker, we define the LCS problem as follows

min ε s.t.∑
k

xkck ≤ B,

∀k ∈ [K] : 0 ≤ xk ≤Mk,

and xk is an integer.

(3.2)

We now reformulate the problem in (3.2) as a Bounded Knapsack problem (BKP).

Assume that the measure of a worker’s performance is given by a value contribution vk. This

value contribution is a measure of information contributed by a worker to the system after each

evaluation. Minimizing ε in the LCS problem is then analogous to maximizing the aggregated

value contributions in the following BKP

max
{xk}

∑
k

xkvk s.t.

∑
k

xkck ≤ B,

∀k ∈ [K] : 0 ≤ xk ≤Mk,

and xk is an integer.

(3.3)

The key benefit of the reformulation to BKP is that it provides an insight on the optimal aggrega-

tion of two different attributes, cost and value contribution, of the workers. Despite this equivalent

formulation, the original LCS problem cannot be solved using standard BKP techniques. The

value contributions typically are assumed to be known in BKP [107], while they need to be

estimated in our setting. Nevertheless, the problem in (3.3) is also equivalent to an arm-limited,

budget-limited stochastic MAB problem, whose expected rewards correspond to the unknown

value contributions.

In a stochastic MAB problem, there are K arms of a single “bandit” machine. Pulling of
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each arm delivers a reward that is independently drawn from an unknown distribution. An agent

chooses to pull arms with the goal of maximizing the expected sum of the rewards received over

a sequence of pulls.

We consider a popular stochastic model, from the literature of CS, for modeling the

workers’ responses. In this model, a worker k can be assigned a task multiple times and the

correct label is predicted each time with probability pk independent of the past responses of the

worker about the task [103, 102, 83, 1, 246, 109, 213]. Given a task i, for all workers k ∈ [K], we

assume that the probability of predicting any incorrect label is the same for all labels independent

of the task i and true label l∗i , namely for all l̂i,k ∈ [L] we have P(l̂i,k 6= l∗i ) = (1− pk)/(L− 1),

where l̂i,k is the predicted label of task i by the worker k. We also assume that the value

contribution of a worker remains the same irrespective of the true label, namely for all i ∈ [T ]

and l∗i ∈ [L] we have vk(l
∗
i ) = vk. These assumptions are only made for ease of presentation

of our estimation strategy for value contributions and all the theoretical results provided in the

paper do not rely on them.

The workers in LCS are equivalent to arms in MAB, and the task master plays the same

role as the agent in MAB. The value contributions of the workers are analogous to the rewards of

the arms. However, while the reward realization is immediately known after each pull, value

contributions need to be estimated as the worker’s ability in a real LCS scenario. SinceMk in

LCS corresponds to a limit on the number of times an arm can be pulled, and ck corresponds to

the cost of pulling each arm in MAB, it follows that our problem corresponds to an arm-limited,

budget-limited MAB where the realizations of the rewards depend on the workers’ ability.

The regret of an algorithm A for a given budget B is defined as:

RA(B) = v∗(B)− vA(B)

where v∗(B) is the optimal solution of the BKP in (3.3) and vA(B) is the aggregated value

contributions using algorithm A.
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3.3 Related Work

Several heuristic algorithms have been proposed for labeling tasks in CS, however, the

performance of these inference algorithms is typically intractable [96, 229, 248]. In [103], an

algorithm was proposed for the evaluation of homogeneous labeling tasks, i.e., all the tasks are

equally difficult to label. It was proved that the algorithm is order optimal in the number of

evaluations required per task required to obtain a desired classification error, when the number

of tasks and workers tends to infinity. Thus, the work concluded that using an adaptive algorithm

for task assignment has no gain in traditional CS. The model studied in [103] was generalized to

heterogeneous labeling tasks in [83]. In this case, the authors showed that adaptive assignment of

tasks leads to significant gains both in theory and practice. Unlike our work, the solution in this

work is limited to weighted MV and binary labeling of the tasks. In addition, [109] presented

tight achievable lower bounds for heterogeneous labeling tasks and proposed an order optimal

scheme. For a similar model, [239] exploits the notions of iterative improvement and redundancy

for translation tasks outsourced to CS. The work in [84] proposed an online task assignment

scheme based on exploration and exploitation for heterogenous tasks. Their system model is

budget constrained by assigning a limit on the number of evaluations for each task.

All of the above works consider equal incentives for all the workers and minimize the

number of evaluations required per task. However, in a real life scenario a more efficient worker

would expect higher incentives for his or her work. Our model allows for different costs per

worker, and plans the assignment of the tasks accordingly. Additionally, the model also accounts

for a maximum number of tasks that can be performed by a worker.

The Multi-Armed Bandits (MAB) problem is closely related to our crowdsourcing prob-

lem. A variety of budget constrained models have been studied in the MAB setup [32, 77, 10].

These works consider a budget-limited exploration in the initial phase followed by a cost-free

exploitation phase. However, in a real world setting such as the one considered in LCS, the

exploitation phase is not free of cost. This limitation is addressed in the budget-limited MAB
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problem, where both the exploration and exploitation phase are limited by a single budget. This

model also considers different costs for arm selection. Two different policies were proposed in

this setting, called ε-first policy and KUBE [210, 211]. However, they did not consider a limit

on the number of times an arm can be pulled, which is analogous to limiting the number of tasks

a worker can do in LCS.

Later, the ε-first policy in [210] was extended to an arm-limited, budget-limited MAB

and the regret of this new policy is O(B2/3), where B is the budget [213]. However, the lower

bound on the regret for any algorithm is of the order Ω(logB) [16]. It follows that the extended

ε-first policy is not optimal. Additionally, the KUBE algorithm was also extended to arm-limited,

budget-limited MAB [213]. However, the work does not provide any theoretical performance

analysis for this new algorithm, called B-KUBE. In this paper, we show that B-KUBE is indeed

order optimal, achieving the lower bound presented in [16].

Other extensions of the MAB setup to CS have been considered in the literature. The

workers’ selection criteria for different cost of workers is studied in [1]. Two schemes were

proposed for learning the ability of the labelers for equal and unequal incentives, respectively

[55, 246]. Unlike our model, their system is not task limited by the workers and budget limited

by the task master. BTASC is a workers’ selection scheme proposed for spatial CS, however,

it does not have any theoretical guarantees[150]. It is sub-optimal compared to BKUBE as it

does not account for different costs paid to the workers. Also,the computation complexity of the

scheme is O(BK2), whereas, the computation complexity for B-KUBE is O(BK log(K)).

Also, there has been a large amount of work on bandits with knapsack [20, 52, 83, 25, 5].

In [20, 52, 83, 25], the work focuses on unbounded multidimensional knapsack problem in MAB,

whereas, our work studies the bounded knapsack problem (BKP). In other words, the setup of

these works do not consider a limit on the number of tasks that can be performed by each worker.

In [20] and [83], workers arrive sequentially, and the workers’ selection policy has to be of

the form “take-it” or “leave-it”. Therefore, unlike LCS, no worker is accessible later for task

assignment once left. In [5], the work assumes that the constraints of the knapsack problem form
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Algorithm 4. Bounded KUBE algorithm

Initialization: n = 1;Bn = B; For all k,mk = Mk

while selecting a worker is feasible do

if n ≤ K then

Initialization Phase: assign i(n) = n
else

{m∗
k,n} =greedyAlgoForBKP(v̂k,mk, n,Bn)

Choose i(n) with P(i(n) = j) =
m∗

j,n∑
k m∗

k,n

end if

Assign the task to i(n)
Update the value contribution v̂i(n) of i(n)
Bn+1 = Bn − ci(n)
mi(n) = mi(n) − 1
n = n+ 1

end while

a simplex. Therefore, the focus is on a perfectly convex knapsack problem. Unlike our work,

this problem setup does not capture the limit on the number of tasks that can be performed by

each worker which is an integer programming problem. Additionally, upper confidence bounds

proposed in [5, 52] are different than the one used in B-KUBE. Extension of the policy proposed

in [25] to BKP setting is of the form of Bounded ε-F policy which is suboptimal with respect to

BKUBE, and its performance bounds cannot be improved [213].

3.4 Workers’ Selection

We perform workers’ selection using B-KUBE, which is described in Algorithm 4, where

n denotes the iteration for worker’s selection, Bn is the remaining budget before the n
th iteration,

mk is the remaining number of tasks a worker can perform, and i(n) is the worker selected in the

nth iteration.

In each iteration, the task master checks the feasibility of worker’s selection, i.e., whether

there exists a k ∈ [K] such that ck ≤ Bn and mk > 0. The first K iterations of B-KUBE

constitute the initialization phase, where all the workers are selected once. For the remaining

iterations, B-KUBE selects a worker j with probabilitym∗
j,n/
∑

k m
∗
k,n, wherem

∗
j,n is the number

of selections of worker j proposed by the density-ordered greedy algorithm (DGA) for BKP at
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Algorithm 5. Density Ordered Greedy Algorithm for BKP

Function name: greedyAlgoForBKP

Input: v̂k,mk, n,Bn

Output:{m∗
k,n}

Initialization: ŵk = v̂k +
√

2 log(n)
Mk−mk

,m∗
k,n = 0 ∀k

ê = {e1, . . . , ek} is the list of (ŵk, ck,m
∗
k,n,mk) sorted in decreasing order with respect to ŵk/ck

c = 0
for j = 1 toK do

if c+ ê(cj) ≤ Bn then

assign task to jth worker in ê

ê(m∗
j,n) = min

(
ê(mj), bB(n)−c

ê(cj)
c
)

c = c+ ê(m∗
j,n)ê(cj)

else

ê(m∗
j,n) = 0

end if

end for

the nth iteration.

DGA for BKP is described in Algorithm 5. It gives the number of selections of the

workers for the remaining budgetBn. The algorithm computes the upper confidence bound value

contribution ŵk, using the estimated value contribution v̂k, as

ŵk = v̂k +

√
2 log(n)

Mk −mk

, (3.4)

and utilizes the entire Bn to select the workers as many times as possible, taking into account

their individual limit mk at the n
th iteration. The workers are selected in decreasing order of

their estimated efficiencies êk = ŵk/ck.

To analyze the performance of B-KUBE, we assume that the budget
∑

k ck < B ≤∑
k ckMk, the value contribution vk has support in [0, 1], and the cost ck ≥ 1, ∀k ∈ [K]. All

results can easily be generalized using an appropriate scaling factor.

We start by recalling some results from the literature of BKP that are useful in our setting.
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The BKP formulation in (3.3) can be relaxed to the linear problem LP-BKP

max
{xk}

∑
k

xkvk

such that
∑
k

xkck ≤ B,

∀k ∈ [K] : 0 ≤ xk ≤Mk.

(3.5)

The following lemma provides the optimal workers’ selection strategy for LP-BKP.

Lemma 6. [107]. If the workers are sorted in decreasing order of their efficiencies ek = vk/ck,

where e1 ≥ e2 ≥ . . . ≥ eK , then the optimal workers’ selection strategy for LP-BKP is

x∗
k =


Mk ∀k = 1, 2, . . . , s− 1,

(B −
∑s−1

k=1 ckMk)/cs k = s,

0 ∀k = s+ 1, . . . , K,

(3.6)

where the splitting worker s is such that
∑s−1

k=1 ckMk ≤ B and
∑s

k=1 ckMk > B. The maximum

aggregated value contribution is

v∗LP−BKP =
s∑

k=1

x∗
kvk. (3.7)

Letting v∗BKP be the maximum aggregated value contributions that can be obtained

from BKP and v′ be the aggregated value contribution corresponding to the selection strategy

bx∗c = (x∗
1, x

∗
2, . . . , bx∗

sc, 0, 0 . . .), by Lemma 6 we have

v′ ≤ v∗BKP ≤ v∗LP−BKP ≤ v′ + vs. (3.8)

The key idea for obtaining a regret bound for B-KUBE is now to determine the number
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of times a worker k is selected more than the number of selections of worker k as proposed by

bx∗c. This will provide a bound on the regret of B-KUBE assuming bx∗c is the optimal workers’

selection strategy. This bound can then be combined with (3.8) to obtain the regret bound for

B-KUBE.

It is worth pointing out the main challenges for the theoretical evaluation of B-KUBE

compared to that of KUBE. In the KUBE setup, the computation of the regret bound simply

corresponds to determining the expected number of times the most efficient worker is not selected.

In the B-KUBE setup, the optimal selection of workers is not limited to a single most efficient

worker, and a simplification like the one for KUBE is not possible. We overcome this difficulty

by assuming that a feasible solution of BKP is the optimal selection strategy, and bounding

the sub-optimal workers’ selection based on this assumption. The other challenge is that the

selection of the splitting worker s in bx∗c is not always optimal. We solve this challenge by

giving a bound on the expected number of times a worker k is selected more than the number of

selections of worker k as proposed by bx∗c, as follows

Theorem 11. For a given budget B, let B-KUBE perform N iterations. Assume that bx∗c is the

optimal selection strategy for the workers. Then, the expected number of times a worker k is

selected more than the number of selections proposed by bx∗c is

E
[
Nk(N)|N

]
≤

(
8

min {Q2
min, d

2
s}

+

(
Cmax

Cmin

)2
)
logN +

π2

3
+ 1, (3.9)

where

Qmin = min
k/∈I∗∪{s}

∣∣ek − es
∣∣

= min
k/∈I∗∪{s}

∣∣vk/ck − vs/cs
∣∣, (3.10)

I∗ is the set of the top s− 1 workers, arranged in decreasing order of their efficiencies ek, s is

the splitting worker, ds = |vs−1/cs−1 − vs/cs|, Cmax = maxk∈[K] ck and Cmin = mink∈[K] ck.
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From Theorem 11, it follows that assuming bx∗c is the optimal selection strategy, using

B-KUBE the selection of sub-optimal workers grows only logarithmically with N and we can

conclude that B-KUBE favors the selection of workers as proposed by bx∗c. Additionally, Qmin

and ds measure the minimum separation between the optimal and sub-optimal selections, hence,

they are the leading constants of log(N) in Theorem 11. Intuitively, it is more difficult to identify

the optimal selection strategy bx∗c if the abilities of the workers at the boundary of the optimal

and sub-optimal selections are close. Theorem 11 recovers the result of the stochastic bandits,

which are neither budget limited nor arm limited, with an additional constant factor of one in

the leading term log(N) [16]. The minimum separation between the optimal and sub-optimal

selections reduces to the same measure as proposed in [16].

Finally, the following theorem provides the regret bound for B-KUBE.

Theorem 12. The expected regret for B-KUBE is O(log(B)).

The lower bound on the regret is Ω(logN), whereN is the total number of iterations [16].

In a budget-limited scenario, the number of iterationsN isΘ(B), sinceN ∈ [B/Cmax, B/Cmin].

It follows that the lower bound on the regret in a budget-limited scenario isΩ(logB) and B-KUBE

is order optimal for arm-limited, budget-limited MAB.

3.5 Value Contributions of Workers

At each step n, workers’ selection policy discussed in the previous section is dependent

on the realization of i(n)th worker’s value contribution for the update of its empirical estimate

v̂i(n). Therefore, we now focus on the determination of the ability of the workers in terms of

value contributions, and propose a strategy for estimating the value contribution in real time.

Let the inference function fk(l, l̂) denote the contribution of the k
th worker to the label l

when l̂ is the label predicted by the kth worker. Then, for all l ∈ [L], the accumulated contribution
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to the label l afterM evaluations of task i is

si,l =
M∑
n=1

K∑
k=1

fk(l, l̂
(n)
i )yk,n, (3.11)

where yk,n is an indicator function which is unity if the n
th evaluation of the task is performed

by the kth worker, and l̂
(n)
i is the predicted label of task i at nth evaluation. The decision rule is

l̂i = argmax
l∈[L]

si,l. (3.12)

The inference function fk(., .) is assumed to be non-negative, and bounded for all k ∈ [K]. Any

generalized inference rule for labeling task is captured by (3.11) and (3.12). Special cases include

majority voting, weighted majority voting and Maximum A Posteriori (MAP) decision rule.

Two key properties play an important role in the design of the inference function. First,

the function should account for the characteristics of an individual worker. For example, if a

worker is expected to confuse between the two labels, then the contribution of the inference

function to them should be similar when one of these labels is predicted. This knowledge can be

acquired from the prior knowledge about the workers’ ability, if available. Second, the inference

function can be designed by the task master based on the knowledge of the labeling tasks. If

two labels are similar to each other, then the contributions to them should be similar, for all

the workers, when one of these labels is predicted. Other properties that the task master can

consider while designing the inference function are the difficulty level of the tasks and the prior

distribution on the labels. Clearly, while all of the above properties can be used to design an

appropriate inference function, it is not mandatory to use any these properties. For example, a

popular inference rule that does not account for these properties is majority voting (MV), while

weighted majority voting takes into account the efficiency of the workers.

The following theorem provides the value contribution of each worker and the relation

between the accumulated value contribution and the classification error for each task.
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Theorem 13. Given a task i, for the inference rule in (3.11) and (3.12), the value contribution

vk for the k
th worker is

vk(l
∗
i ) = min

l 6=l∗i
El∗i

[
fk(l

∗
i , Y )− fk(l, Y )

]
. (3.13)

Additionally, the classification error εi = P(l̂i 6= l∗i ) and the accumulated value contribution

afterM evaluations of a task are related as

N∑
n=1

K∑
k=1

vk(l
∗
i ).yk,n ≥

√
MQ2 log

L− 1

εi
, (3.14)

where Q = maxk∈[K]maxl∗∈[L]maxl̂∈[L] fk(l
∗, l̂).

In LCS, the value contributions of the workers are unknown and need to be estimated

online. The workers’ responses are modeled by a stochastic model where a worker k can be

assigned a task multiple times and the correct label is predicted each time with probability pk

independent of the past responses of the worker about the task. Therefore, using (3.13), the

estimation of the value contribution in LCS is based on the knowledge of true label of task i l∗i

and the estimate of pk of the worker k. In practise, the true label l
∗
i for a task i is unknown. To

circumvent this issue in practical crowdsourcing systems, the ground truth l∗i is estimated by l̂i

aftermth evaluation (3.12). Following the estimate of l∗i , we estimate pk for each worker based

on its empirical mean. Letmth evaluation of a task i is assigned to a worker k. The worker k

is said to have labeled the task correctly if the predicted label at themth evaluation l̂
(m)
i is the

same as l̂i, which is an estimate of l
∗
i afterm evaluations. Since the probability of predicting the

correct label is independent of the true label, the empirical estimate of pk is then updated as the

ratio of correctly predicted labels to the total number of evaluations performed by the worker,

namely

p̂k =
p̂k
∑m−1

n=1 yk,n + 1{l̂(m)
i =l̂i}

yk,m∑m
n=1 yk,n

. (3.15)
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Using the estimate of pk, the value contribution vk is estimated according to (3.13), where the

expectation is computed using the empirical estimate of pk. Under the assumption that the value

contribution is independent of the true label i.e. for all l∗i ∈ [L] vk(l
∗
i ) = vk, the current estimate

of the value contribution can be used for the workers’ selection in the next iteration.

Now, we briefly re-visit the reformulation of LCS problem in (3.2) to BKP in (3.3).

The reformulation of LCS problem to BKP is dependent on the inference rule. The average

classification error ε (3.1) is the average of εi. Using Theorem 13, for a generalized inference rule

in (3.12), the upper bound on the classification error εi decays exponentially with the increase

in aggregated value contributions from the workers for a task i. Thus, minimizing the εi can

be reformulated as maximizing the aggregated value contributions from the workers for task i.

Hence, BKP in (3.3) follows from LCS problem in (3.2). The key benefit of the reformulation

to BKP is that it provides an insight on the optimal aggregation of two different attributes, cost

and value contribution, of the worker, and facilitate their comparison on a single scale defined

as efficiency in Lemma 6. A similar transformation of the problem for labeling tasks, with

different constraints, has been considered earlier for special cases such as weighted majority

voting and majority voting [83, 1]. However, we formalize the notion of the value contribution

for a generalized form of inference rule which recovers the transformation derived for weighted

majority voting and majority voting in the literature as a special case.

3.6 Performance Evaluation

We now compare the performance of B-KUBE in conjunction with our value contribution

estimation strategy, with three benchmark MAB algorithms for workers’ selection using the same

value contribution estimation strategy in LCS setup. The benchmark algorithms are Bounded

ε-First (Bounded ε-F), Trailsourcing, and Budget-Limited ε-First (ε-F). Bounded ε-F and ε-F are

described in [213], whereas, trailsourcing is a special case of Bounded ε-F. Bounded ε-F consists

of separate exploration and exploitation phases. It allocates an ε fraction of the total budget for
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exploration to estimate the value contributions of the workers. The exploitation phase in Bounded

ε-F is a single step assignment phase where the labeling tasks are assigned to the workers based on

their estimated value contributions. Trailsourcing is a simpler version of Bounded ε-F with only

one round of exploration phase i.e. each worker is selected exactly once in the exploration phase.

Budget-Limited ε-First has the same exploration phase as Bounded ε-F but in the exploitation

phase it assigns all the tasks to a single worker with maximum estimated efficiency.

Like Bounded ε-F, the task assignment schemes studied in the literature of traditional

CS are based on learning the quality parameters of the workers in the first stage followed by

a single step assignment of the tasks to the workers [102, 84, 83, 1, 150]. These schemes are

sub-optimal with respect to Bounded ε-F as they do not consider the unequal incentives for

the workers. Additionally, in [213], the authors also argue that the theoretical regret bounds of

Bounded ε-F cannot be improved for any estimation scheme for quality parameters of the workers.

Thus, we limit ourselves to the above mentioned three schemes for the performance comparison.

We compare BKUBE directly with Bounded ε-F, and show that BKUBE outperforms it both

experimentally and theoretically.

LCS is a novel system proposed in this work, therefore, an appropriate real data set is not

available for labeling tasks in this setup. Thus,the algorithms are compared in an experimental

setup. Additionally, the evaluations in a simulated setup are common for CS as the other schemes

proposed in the literature are mostly evaluated in a simulated environment[102, 1, 103, 109].

We perform the comparison in a setup where twenty workers express their interest to perform

binary labeling tasks i.e. K = 20 and L = 2. In this setup, the labels are considered to be equally

likely and the tasks are assumed to be equally difficult. The experiments are performed for two

different set of workers. In set A, every worker predicts the true label with probability pk > 1/2.

The set B contains 15 workers from set A and 5 spammers, i.e, pk = 0.5. MV is used as the

inference rule for labeling the tasks. Since MV does not account for any prior information about

the labels and the workers, it provides a neutral environment to capture the performance of the

algorithms for workers’ selection in LCS. By Theorem 13, the value contribution vk of a worker
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Figure 3.1. The first and second column of plots are corresponding to the classification error ε
and number of tasks T performed by the workers respectively. a) T=50 and Set A workers b)

T=50 and Set B workers c) T=100 and Set A workers

k is vk = 2pk − 1. In this setup, pk is randomly chosen from the uniform distribution over the

interval [0.5, 1]. The value contribution vk can be computed from pk. Given vk, ck is randomly

chosen from the uniform distribution over the interval [vk, 1 + vk] as a worker with higher value

contribution will expect more incentives.

Assignment of the labeling tasks to the workers is a single step process in all the three

benchmark algorithms. Therefore, we evaluate the performance of these algorithms for two

different set of tasks with number of tasks T = 50 and T = 100 in each set and the limitMk on

the number of tasks a workers can perform is 0.6T for all the workers. Unlike the benchmark

algorithms, B-KUBE evaluates one task at a time and moves to a different task whenever the

algorithm is confident that the estimated label of the current task is correct. For the evaluations
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Figure 3.2. The first and second column of plots are corresponding to the classification error ε
and number of tasks T performed by the workers respectively. a) T=50 and Set A workers b)

T=50 and Set B workers c) T=100 and Set A workers

of B-KUBE, we use the criteria proposed in [1] to move on to the next task.

For a given budget, the two key performance measures of the algorithms are: classification

error and the number of tasks being performed in LCS. The classification error can be reduced

by assigning a task to a large number of workers and aggregating the contributions from the

workers to predict the final label of the task. However, this will reduce the number of tasks that

can be performed in a limited budget. Thus, there is a trade-off between these two performance

measures. The evaluations show that B-KUBE outperforms all the three benchmarks for both

the performance measures simultaneously, see Figure 3.1 and 3.2.

As the budget B increases, the classification error decreases for all the algorithms. This

is expected, since a larger number of evaluations of the labeling tasks can be performed if more
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budget is available. The key observation is that B-KUBE has the smallest classification error

whereas the three benchmark algorithms have a higher classification error even after utilizing

the available budget to perform less number of tasks in comparison to B-KUBE. Additionally,

the classification error of ε-F is close to that of Bounded ε-F, however, the number of tasks

performed by ε-F are less than the number of tasks performed by Bounded ε-F. This is because

the tasks are only assigned to the most efficient worker estimated during the exploration phase.

As a consequence, this limits the number of tasks T performed by ε-F ( Fig. 3.1 and 3.2). Another

important observation is that the gap between the classification error of the three benchmark

algorithms and B-KUBE reduces as the budget increases. This is because the optimal solution of

the BKP includes more and more less efficient workers as the budget increases and the absolute

gains from the correct identification of the optimal workers decreases for a large budget. In

other words, the losses due to selection of a worker from the sub-optimal set, according to BKP,

reduces for large budget.

Figure 3.1(b) and 3.2(b) shows the performance of the algorithms in presence of the

spammers for the same setting as in Fig 3.1(a) and 3.2(a) respectively. An important remark here

is that the optimal solution for BKP doesn’t include any spammer for the values of B considered

in the setup. B-KUBE performs better than the three benchmark algorithms in the presence

of spammers as well. However, there is a significant increase in the classification error of the

B-KUBE for small budget i.e. B = 100. The key reason is the absence of a pure exploration

phase in B-KUBE which limits the opportunity to identify the spammers. For large budget

B = 300, the classification error of B-KUBE does not increase significantly as the algorithm is

able to utilize the budget efficiently for the identification of spammers. On contrary, this is not

true for the three benchmark algorithms.

In conclusion, B-KUBE has a smaller classification error and performs a larger number

of tasks in comparison to the three benchmark algorithms. Note that B-KUBE and Bounded ε-F

are the DGA based extension of KUBE and ε-First policies from a budget-limited MAB setup

to an arm-limited, budget-limited MAB setup . Finally, the performance trends of B-KUBE
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and Bounded ε-F in the current setup are similar to the ones of KUBE and ε-First policy in a

budget-limited MAB setup reported in [211].

3.7 Conclusion

We proposed a notion of Limited-information Crowdsourcing Systems. Unlike traditional

CS, LCS monitors the labeling of every single task by a worker in real time, and controls the

further assignment of the tasks to the workers based on the estimated value contribution. Due

to this form of continuous monitoring, the task master can choose not to assign a task to a

worker, and return later to the same worker after exploring other workers, thus, eliminating

the requirement of gold-set of tasks. The key challenges in this new setup are determining an

efficient workers’ selection policy and estimating the value contributions of the workers in real

time.

We used B-KUBE to resolve the first challenge and provided its performance analysis,

showing that it is an order optimal policy for workers’ selection in a budget limited arm limited

MAB setup. This work closes the gap in the literature of current MAB setup, showing that

B-KUBE is order optimal. To resolve the second challenge, we first introduced the value

contributions of the workers for any inference rule and then provided the explicit relation

between the accumulated value contribution from the workers and the classification error. We

also proposed a strategy to estimate the value contributions of the workers.

We compared the performance of B-KUBE in conjunction with our value contribution

estimation strategy, with three benchmark MAB algorithms using the same value contribution

estimation strategy in LCS setup. Our experimental evaluations show that B-KUBE outperforms

all the three benchmark algorithms for both the performance measures simultaneously. However,

it is worth noticing that B-KUBE has a higher computational complexity than the benchmarks

evaluated here.

TheMAB setup considered in this paper is important as it has extension to various applica-
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tions like recommendation systems and learning optimal causal intervention. In recommendation

systems, the selection of items is analogous to the workers’ selection and value of the items

need to estimated online from the user’s prospective like value contributions in LCS. Likewise,

the current MAB setup can be used to learn an optimal causal intervention in Directed Acyclic

Graphs. In this application, the intervention selection is analogous to workers’ selection and

the reward corresponding to the intervention is analogous to workers’ value contribution. The

budget constraint is applicable to these applications in a similar way as to the current LCS setup.

Hence, there exists many applications where the current MAB setup can be used along with

an online estimation scheme, depending on the application, to design an efficient multi-agent

system. Likewise, the work can be applied to various Multi-agent systems as the budget limited

arm limited MAB setup is a popular model for constraining the systems.

Additionally, the work introduces a notion of LCS which triggers another research

direction for crowdsourcing systems. The value contributions of the workers can be formulated

for more complicated tasks, for example translation and testing, that require variety of skills

to complete. If a task requires z skills to be completed then the value contribution of a worker

can be modeled as a z dimensional vector where each dimension of the vector corresponds to a

particular skill required for completing the task. Designing the workers’ selection policy and

online strategy to estimate the value contributions of the workers for such tasks is challenging

and is left as future work.
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3.9 Appendix

3.9.1 Proof of Theorem 11

Let i(n) be the worker selected at the nth iteration of B-KUBE; Bn is the residual budget

before the nth iteration of B-KUBE; m(k,n) is the remaining number of tasks a worker k can

perform at the nth iteration of B-KUBE; x̂(n) is an estimate of bx∗
Bn
c by DGA using the estimated

efficiencies êk = ŵk/ck, where x
∗
Bn

is the solution proposed by Lemma 6 for a given budget

Bn and the set {m(k,n)} of the remaining tasks that can be performed by the workers; j /∈ x̂(n)

implies that an additional selection of worker j is not proposed by selection strategy x̂(n); ŝ(n) is

the estimated splitting worker by DGA at the nth iteration; Nk(N) denotes the number of times

the worker k is selected more than the number of selections proposed by bx∗c when B-KUBE

stops after N iterations.

The following two lemmas are the key components of the proof of Theorem 11.

Lemma 7. Let B-KUBE perform N iterations. For all 1 ≤ n ≤ N , if a worker j is selected,

then

P
(
i(n) = j|N

)
≤ P

(
j ∈ x̂(n)|N

)
+
(Cmax

Cmin

)2 1

N − n+ 1
. (3.16)

Proof. We consider the nth iteration and assume that the estimated efficiencies of the workers

êk = ŵk/ck are such that ê1 ≥ ê2 ≥ . . . ≥ êK . For convenience, we drop the conditioning on

N in the notation. LetM∗(Bn, {m(k,n)}) = {m∗
k,n}, wherem∗

k,n is the number of selections of

worker k proposed by DGA at the nth iteration. For a given Bn and {m(k,n)}, using Bayes rule,

and the fact that i(n) is independent of Bn and {m(k,n)}, givenM∗(Bn, {m(k,n)}), we have

P
(
i(n) = j|Bn, {m(k,n)}

)
=

∑
{m∗

(k,n)
}

P
(
i(n) = j|M∗(Bn, {m(k,n)})

)
· P
(
M∗(Bn, {m(k,n)})

)
|Bn, {m(k,n)}). (3.17)

110



DGA proposes the selection of the first ŝ(n)− 1 workers up to their maximum remaining

capacitym(k,n) and selects the worker ŝ(n) as many times as feasible. These selections are same

as the ones suggested by x̂(n). Since the selection strategies x̂(n) and M∗(Bn, {m(k,n)}) are

same for the first ŝ(n) workers, the remaining budget after the selections of the first ŝ(n) workers

is at most cŝ(n), otherwise, the worker ŝ(n) can be selected one more time. Thus, the number of

workers’ selections suggested byM∗(Bn, {m(k,n)}) in addition to x̂(n) can be bounded as:

∑
i/∈x̂(n)

m∗
i,n ≤

cŝ(n)
Cmin

. (3.18)

Additionally, the total number of selections as proposed by DGA can be bounded as:

K∑
k=1

m∗
k,n ≥

Bn

Cmax

. (3.19)

The following inequalities can be obtained by combining eq. (3.18) and (3.19), and using the

fact that cŝ(n) ≤ Cmax,

∑
i/∈x̂(n) m

∗
i,n∑K

k=1m
∗
k,n

≤
cŝ(n)
Cmin

.
Cmax

Bn

≤
(Cmax

Cmin

)2Cmin

Bn

. (3.20)

Additionally, before each iteration n of B-KUBE, the remaining number of iterations areN−n+1.

Therefore, the residual budget Bn is at least Cmin(N − n+ 1). Thus, we have

Cmin

Bn

≤ 1

N − n+ 1
. (3.21)
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Now, the probability on the right-hand side of eq. (3.17) can be written as

P
(
i(n) = j|M∗(Bn, {m(k,n)}) = {m∗

(k,n)}
)

(a)
= P

(
i(n) = j, j ∈ x̂(n)|M∗(Bn, {m(k,n)}) = {m∗

k,n}
)

+ P
(
i(n) = j, j /∈ x̂(n)|M∗(Bn, {m(k,n)}) = {m∗

(k,n)}
)

(b)

≤ P
(
j ∈ x̂(n)|M∗(Bn, {m(k,n)})

)
· P
(
i(n) = j|j ∈ x̂(n),M∗(Bn, {m(k,n)})

)
+

∑
i/∈x̂(n)m

∗
(i,n)∑K

k=1m
∗
(k,n)

P
(
j /∈ x̂(n)|M∗(Bn, {m(k,n)})

)
(c)

≤ P
(
j ∈ x̂(n)|M∗(Bn, {m(k,n)})

)
+

∑
i/∈x̂(n)m

∗
(i,n)∑K

k=1m
∗
(k,n)

(d)

≤ P
(
j ∈ x̂(n)|M∗(Bn, {m(k,n)})

)
+
(Cmax

Cmin

)2 1

N − n+ 1
, (3.22)

where (a) follows from the fact that two events are mutually exclusive; (b) follows because B-

KUBE chooses worker j with probabilitym∗
j,n/
∑K

k=1 m(k,n) and j /∈ x̂(n); (c) follows because

the probability is bounded by 1; (d) follows by combining eq. (3.20) and (3.21). The lemma

follows by combining eq. (3.17) and (3.22), and using Bayes rule.

Lemma 8. Let bx∗c be the optimal workers’ selection strategy. If j /∈ bx∗c and j ∈ x̂(n), then

there is at least one worker k
′ ∈ bx∗c whose estimated efficiency is less than the estimated

efficiency of the worker j i.e. êk′ ≤ êj and the worker k
′
can perform additional tasks.

Proof. If bx∗c is the optimal workers’ selection strategy at budgetB, then for any budgetB′
< B

the optimal selection strategy bx∗
B′c is a subset of the selections proposed by bx∗c. This can be

seen from Lemma 6.

We can say that if a worker j /∈ bx∗c, then j /∈ bx∗
Bn
c for the residual budget Bn as

Bn ≤ B. Now x̂(n) is an estimate of bx∗
Bn
c by DGA, and j ∈ x̂(n) according to the hypothesis

in this lemma. Thus, there is at least one worker k
′ ∈ bx∗

Bn
c whose estimated efficiency is less

than the estimated efficiency of worker j by DGA i.e. êk′ ≤ êj . Also, k
′ ∈ bx∗

Bn
c implies that

the worker k
′
can still perform tasks. As bx∗

Bn
c is a subset of bx∗c and k

′ ∈ bx∗
Bn
c, therefore
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k
′ ∈ bx∗c and the worker k′

can perform more tasks.

Using the above lemmas, we continue with the proof of Theorem 11. Without loss of

generality, let us assume that the efficiencies ek of the workers are such that e1 ≥ e2 ≥ . . . ≥ eK .

The notation of conditioning N is dropped for convenience.

If bx∗c is the optimal selection strategy, then by Lemma 6 the selection of the first s− 1

workers is always optimal. Thus, if a worker j /∈ bx∗c,then the worker j ≥ s. According to

bx∗c, the selection of these workers is always sub-optimal with the exception of the sth worker.

Therefore, j = s will be handled separately in the proof. Thus, Nj(N) for j /∈ bx∗c can be

written as

Nj(N) ≤ 1 +min
( N∑

n=K+1

{i(n) = j},Mj

)
≤ 1 +

N∑
n=K+1

{i(n) = j}. (3.23)

Taking expectations on both sides, for 1 ≤ l ≤Mj , we have

E
[
Nj(N)

]
≤ 1 +

N∑
n=K+1

P
(
i(n) = j

)
(a)

≤ 1 +
N∑

n=K+1

P
(
j ∈ x̂(n)

)
+

N∑
n=K+1

(Cmax

Cmin

)2 1

N − n+ 1

(b)

≤ l +
N∑

n=K+1

P
(
j ∈ x̂(n),Mj(n) ≥ l

)
+

N∑
n=K+1

(Cmax

Cmin

)2 1

N − n+ 1
, (3.24)

where (a) follows from Lemma 7; (b) follows from the intersection of events j ∈ x̂(n) and

Mj(n) ≥ l where Mj(n) is the number of times worker j is selected before n
th iteration i.e.

Mj(n) = Mj −m(j,n).

Let bN,m(j,n)
=
√

2 logN/Mj −m(j,n) and bN,mj
=
√
2 logN/Mj −mj . Now, con-

113



sider the eventA(n, j) = {j ∈ x̂(n),Mj(n) ≥ l} on the right-hand side of (3.24). By hypothesis,

we have j /∈ bx∗c, however, j ∈ x̂(n), thus by Lemma 8 ∃k′ ∈ bx∗c such that êk′ ≤ êj . Note

that Lemma 8 also accounts for the sub-optimal selections of the splitting worker s. It follows

that the probability of the event A(n, j) = {j ∈ x̂(n), Nj(n) ≥ l} can be simplified as:

N∑
n=K+1

P
(
A(n, j)

)
≤

N∑
n=K+1

P
(
êj ≥ êk′ ;Mj(n) ≥ l

)
=

N∑
n=K+1

P
( v̂j,m(j,n)

cj
+

bn,m(j,n)

cj

≥
v̂k′ ,m

(k
′
,n)

ck′
+

bn,m
(k

′
,n)

ck′
;Mj(n) ≥ l

)
≤

N∑
n=K+1

P
(

max
l≤mj≤min (n,Mj)

v̂j,mj

cj
+

bn,mj

cj

≥ min
1≤i≤n

{ v̂k′ ,m
(k

′
,i)

ck′
+

bn,m
(k

′
,i)

ck′

})
≤

N∑
n=1

n∑
i=1

n∑
mj=1

P
(
F
)
, (3.25)

where the event F is defined as follows:

v̂j,mj

cj
+

bn,mj

cj
≥

v̂k′ ,m
(k

′
,i)

ck′
+

bn,m
(k

′
,i)

ck′
. (3.26)

The event F occurs only if at least one of the events among C, D and E occurs where

C:
v̂k′ ,m

(k
′
,i)

ck′
+

bn,m
(k

′
,i)

ck′
≤ vk′

ck′
, (3.27)

D:
vj
cj
≤

v̂j,mj

cj
+

bn,mj

cj
, (3.28)

114



E:
vk′

ck′
≤ vj

cj
+ 2

bn,mj

cj
. (3.29)

This claim can be proved by contradiction. Thus, the probability of the event F can be bounded

as

P
(
F
)
≤ P

(
C
)
+ P

(
D
)
+ P

(
E
)
. (3.30)

Using Chernoff-Hoeffding inequalities, the probability of the events C and D can be bounded as

P(C) ≤ exp
(
− 2b2(n,m

(k
′
,i)

)(Mk′ −m(k′ ,i))
)
= n−4, (3.31)

P(D) ≤ exp
(
− 2b2(n,mj)

(Mj −mj)
)
= n−4. (3.32)

Next, we show that for l ≥ 8 logN/min {Q2
min, d

2
s}, we have P(E) = 0. The analysis is split

into two cases: j > s and j = s.

Case 1: For j > s and l ≥ 8 logN/Q2
min, we have

vk′

ck′
− vj

cj
−

2bn,mj

cj

(a)

≥ vk′

ck′
− vj

cj
− 2bn,mj

(b)

≥ vk′

ck′
− vj

cj
− 2

√
2 logn

l

(c)

≥ vk′

ck′
− vj

cj
− 2

√
2Q2

min logn

8 logN

(d)

≥ vk′

ck′
− vj

cj
−Qmin

(e)

≥ vk′

ck′
− vj

cj
−Qj

(f)

≥ 0, (3.33)
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where (a) follows from the fact that ∀j ∈ [K], cj ≥ 1 ; (b) and (c) use the fact that mj ≥

l ≥ 8 logN/Q2
min ; (d) follows from the fact that n ≤ N ; (e) and (f) follow from the fact that

Qmin = minj∈[K] Qj where Qj = |vs/cs − vj/cj| and s is the splitting worker.

Case 2: For j = s, we have by Lemma 8 that k
′
< s. By following the same steps as in

case 1, it can be shown that P (E) = 0 for l ≥ 8 logN/d2s where ds = |vs−1/cs−1 − vs/cs|.

Thus, for l ≥ 8 logN/min {Q2
min, d

2
s}, we have P (E) = 0. Now combining this fact

with eq. (3.25), (3.31) and ( 3.32), we have

N∑
n=K+1

P
(
j ∈ x̂(n), Nj(n) ≥ l

)
≤

N∑
n=1

n∑
i=1

n∑
mj=1

2n−4

≤ π2

3
. (3.34)

The third term in eq. (3.24) can be bounded as

N∑
n=K+1

(
Cmax

Cmin

)2
1

N − n+ 1
≤

(
Cmax

Cmin

)2

log (N). (3.35)

Thus, for l = 8 logN/min {Q2
min, d

2
s}+ 1, and combining eq. (3.24), (3.34) and (3.35)

the result follows

E
[
Nj(N)|N

]
≤ 8 logN

min {Q2
min, d

2
s}

+

(
Cmax

Cmin

)2

log (N) +
π2

3
+ 1. (3.36)

3.9.2 Proof of Theorem 12

Proof. The key idea is to use the result from Theorem 11 to bound the regret of B-KUBE

assuming bx∗c is the optimal workers’ selection strategy. This bound can then be combined with

eq. (3.8) to obtain the regret bound for B-KUBE.

Let ∆j = vmax − vj where vmax = maxj∈[K] vj , I
∗ is the set of top s− 1 workers when

arranged in decreasing order of their efficiencies and s is the splitting worker. The regret of
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B-KUBE is

RB−KUBE(B) = v∗BKP − vB−KUBE(B)

= v∗BKP − v
′
+ v

′ − vB−KUBE(B)

(a)

≤ vs + EN

[∑
j /∈I∗

∆jE
[
Nj(N)|N

]]
,

(b)

≤ EN

[∑
j /∈I∗

∆j

(( 8

min {Q2
min, d

2
s}

+
(Cmax

Cmin

)2)
· log

(
B

Cmin

)
+

π2

3
+ 1

)]
+ 1

=
∑
j /∈I∗

∆j

(( 8

min {Q2
min, d

2
s}

+
(Cmax

Cmin

)2)
· log

(
B

Cmin

)
+

π2

3
+ 1

)
+ 1, (3.37)

where (a) follows from eq. (3.8) and Theorem 11; (b) follows from N ≤ B/Cmin and vs ≤ 1.

Hence, the regret bound of B-KUBE follows.

3.9.3 Proof of Theorem 13

Proof. The classification error can be written as follows

P(l̂ 6= l∗) = P
(
∪l 6=l∗ (sl > sl∗)

)
(a)

≤
∑
l 6=l∗

P
(
sl − sl∗ − E(sl − sl∗) ≥ E(sl∗ − sl)

)
(b)

≤
∑
l 6=l∗

exp

(
−
(
E(sl∗ − sl)

)2
2Q2M

)
(c)

≤ (L− 1) exp
(−minl 6=l∗

(
E(sl∗ − sl)

)2
2Q2M

)
(d)
= (L− 1) exp

(−(minl 6=l∗ E(sl∗ − sl)
)2

2Q2M

)
(e)

≤ (L− 1) exp
(−(∑K

k=1 vk(l
∗)yk,n)

2

2Q2M

)
,

(3.38)
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where (a) follows from the union bound; (b) follows from the Azuma-Hoeffding inequality

because E(sl∗ − sl) > 0 as inference functions are designed to favor the true hypothesis; (c)

follows trivially from the fact that ∀l 6= l∗, we have minl 6=l∗
(
E(sl∗ − sl)

)
< E(sl∗ − sl); (d)

follows from E(sl∗ − sl) > 0; (e) follows from the definition of vk(l
∗).

Now, if the classification error is at most ε, then

N∑
n=1

K∑
k=1

vk(l
∗)yk,n ≥

√
2MQ2 log

L− 1

ε
. (3.39)
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Chapter 4

Unifying the Stochastic and the Adversar-

ial Knapsack Bandits

4.1 Introduction

Multi-Armed Bandit (MAB) is a sequential decision making problem under uncertainty,

that is based on balancing the trade-off between exploration and exploitation, i.e. “the conflict

between taking actions which yield immediate rewards and taking actions whose benefits will be

seen later.” A common feature in various applications of MAB is that the resources consumed

during the decision making process are limited. For instance, scientists experimenting with

alternative medical treatments may be limited by the number of patients participating in the study

as well as by the cost of the material used in the treatments. Similarly, in web advertisements, a

website experimenting with displaying advertisements is constrained by the number of users who

visit the site as well as by the advertisers’ budgets. A retailer engaging in price experimentation

faces inventory limits along with a limited number of consumers. A model which incorporates a

budget constraint on these supply limits is Bandits with Knapsack (BwK). This can be seen as a

game between a player and an adversary (or environment) that evolves for T rounds. The player

is constrained by a budget B on the resources consumed during the decision making process.

The game terminates when the player runs out of budget, therefore T is dependent on B. At each

round t, the player performs an action i from a set ofK actions, pays a cost for the selected action

i from the budget B and receives a reward in [0, 1] for the selected action i. The reward and the

119



cost can vary from application to application. For example, in web advertisement, the reward is

the click through rate and the cost is the space occupied by the advertisement on the web page.

In medical trials, the reward is the success rate of the medicine and the cost corresponds to the

cost of the material used.

The Bandits with Knapsack problem can be classified into two categories: stochastic

BwK and adversarial BwK. In stochastic BwK, the reward and the cost of each action is an i.i.d

sequence over T rounds drawn from a fixed unknown distribution. In adversarial BwK, the

sequence of the rewards and the costs associated with each action over T rounds is assigned by

an oblivious adversary before the game starts. The objective of the player is to minimize the

expected regret, which is the difference between the expectation of the rewards received from

the best fixed action in the hindsight and the sum of rewards received by the player’s action

selection strategy.

The stochastic BwK setting has been extensively studied in the literature [210, 211,

52, 20, 5, 213, 4, 232, 190, 174]. The results in these works can be broadly classified into two

categories depending on the regret analysis. The problem dependent bound on the expected regret

is O(log(B)) [211, 52, 232, 247, 174], while the problem independent bound on the expected

regret is O(
√
KB) [4, 5, 20].

Limited attention has been received by the adversarial BwK setting [247]. In this setting,

it has been assumed that the reward at round t ≤ T is greater than the cost at round t ≤ T for

every action over the duration of the game [247]. Under this assumption, EXP3.M.B has been

proposed and proven to be order optimal [247]. We observe here that the assumption on the

reward being greater than the cost is uncommon in the literature of the BwK problem, and does

not have any physical meaning in many applications. For example, in web advertisement, the

click through rate (i.e., reward) and the space occupied by the advertisement on the web page

(i.e., cost) cannot be compared with each other. Likewise, in a medical trial, the reward is the

success rate of the medicine and the cost corresponds to the cost of the material used, and the

comparison of these values has no meaning. Thus, a key question is how to design an algorithm
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for the adversarial BwK in a general reward setting that achieves order optimal regret guarantees.

Another key challenge is to provide a solution that is satisfactory for both stochastic

and adversarial settings. In many real-world situations, there is no information about whether

the bandit model is used in a stochastic or adversarial manner. Thus, the deployed algorithm

has to be able to perform well in both cases. Current algorithms in the adversarial BwK (e.g.,

EXP3.M.B), do not provide optimal regret guarantees in the stochastic setting, i.e. O(log(B)),

and algorithms in the stochastic BwK (e.g., KUBE), do not provide optimal regret guarantees in

the adversarial setting, i.e. O(
√
KB). Currently, there is no work proposing a practical algorithm

for both settings. Finally, the literature of the BwK problem typically assumes that the costs are

bounded by a constant (i.e., they are independent of the budget B) and it is unknown whether

state-of-the-art regret bounds hold for the case of large costs (i.e., when costs are comparable to

the budget B).

4.2 Contribution

In this framework, the contribution of our work is three fold. First, we extend EXP3, a

classical algorithm, proposed for the adversarial MAB setup [17], and propose EXP3.BwK, an

algorithm for the adversarial BwK setup. We remove the assumption on the rewards and the

costs previously used in [247] to obtain regret bounds and we show that the expected regret of

EXP3.BwK is O(
√

BK logK). We also show the lower bound Ω(
√
KB) in the adversarial

BwK setting. It follows that EXP3.BwK is order optimal. Second, we unify the stochastic

and the adversarial settings by proposing EXP3++.BwK, a novel and practical algorithm which

works well in both of these settings. This algorithm incurs an expected regret ofO(
√

BK logK)

and O(log2(B)) in the adversarial and the stochastic BwK settings respectively. Note that the

regret bound of EXP3++.BwK for the stochastic setting has an additional factor of log(B) in

comparison to the optimal expected regret i.e. O(log(B)). Thus, EXP3++.BwK exhibits an

almost optimal behavior in both the stochastic and the adversarial settings. Table 4.1 summarizes
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Table 4.1. Contributions to the literature of BwK.

Algorithm Upper bound Lower bound

KUBE for BwK [211] O(K log(B)/mini∈[K] ∆(i)) Ω(log(B))
B-KUBE for Bounded BwK

[174]
O(K log(B)/mini∈[K] ∆(i)) Ω(log(B))

UCB-BV for variable cost

[52]
O(K log(B)/mini∈[K] ∆(i)) Ω(log(B))

UCB-MB for multiple plays

[247]
O(K log(B))

EXP3.M.B [247] O(
√
K log(K)B) Ω((1− 1/K)2

√
KB)

EXP3.BwK (our contribution) O(
√
K log(K)B) Ω(

√
KB)

EXP3++.BwK in Adversarial

setting (our contribution)
O(
√
K log(K)B)

EXP3++.BwK in Stochastic

setting (our contribution)
O(K log2(B)/mini∈[K] ∆(i))

these contributions and compares them with the other results in the literature. In the table, the

problem-dependent parameter ∆(i) represents the difference between the contributions of the

optimal action and the action i, and is formally defined in the next section. Finally, we show

that if the maximum cost is bounded above by Bα, where α ∈ [0, 1], then the lower bound on

the expected regret in the adversarial BwK setup scales at least linearly with the maximum cost,

namely it is Ω(Bα). This implies that when α > 1
2
, it is impossible to achieve a regret bound of

O(
√
B), which is order optimal in cases with small costs.

4.2.1 Related Work

In the MAB literature, the problem of finding one algorithm for both the stochastic and

the adversarial setting has been referred as “best of both worlds” [34, 18, 195, 194, 139]. SAO,

the first algorithm proposed in the literature of this problem, relies on the knowledge of the time

horizon T , and performs an irreversible switch to EXP3.P if the beginning of the game is estimated

to exhibit an adversarial, or non-stochastic, behavior [34]. The expected regret of SAO in the

stochastic MAB setting is O(log3(T )), and in the adversarial MAB setting is O(
√
T log2(T )).
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Using ideas from SAO, a new algorithm SAPO was proposed [18]. SAPO exploited some

novel criteria for the detection of the adversarial, or non-stochastic, behavior, and performs

an irreversible switch to EXP3.P if such a behavior is detected. Thus, both SAO and SAPO

initially assume that the rewards are stochastic, and perform an irreversible switch to EXP3.P if

this assumption is detected to be incorrect. The expected regret of SAPO is O(log2(T )) in the

stochastic MAB setting, and O(
√

T log(T 2)) in the adversarial MAB setting. Later, EXP3++

was proposed [195]. Unlike SAO and SAPO, this algorithm starts by assuming the rewards

exhibit an adversarial, or non-stochastic, behavior and adapts itself as it encounters stochastic

behavior on rewards. The analysis of EXP3++ was improved in [194], showing that the algorithm

guarantees an expected regret of O(log2(T )) and O(
√
T ) in the stochastic and the adversarial

MAB settings respectively.

The problem of stochastic bandits corrupted with adversarial samples has been studied in

the regime of small corruptions [139]. The algorithm proposed in this work utilizes the idea of

active arm elimination based on upper and lower confidence bound of the estimated rewards.

The work provides the regret analysis of the algorithm as the corruption C is introduced in the

rewards, and shows that the decay in performance is order optimal in C.

The “best of both worlds” problem has not been studied before in the BwK setting.

4.3 Problem Formulation

A player can choose from a set ofK actions, and has a budget B. At round t, each action

i ∈ [K] is associated with a reward rt(i) ∈ [0, 1] and a cost ct(i) ∈ [cmin, cmax]with cmin ≤ cmax.

For now, we assume that cmax = 1, and will investigate the case of having larger costs in Section

5. At round t, the player performs an action it ∈ [K], pays the cost ct(it) and receives the reward

rt(it). The gain of a player’s strategy A is defined as

G(A) = E
[ τ(A)∑

t=1

rt(it)
]
, (4.1)
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where τ(A) is number of rounds after which the strategy A terminates. The objective of a player

is to design A such that

max
{i1,i2,...,iτ(A)}

G(A)

s.t. P
( τ(A)∑

t=1

ct(it) ≤ B
)
= 1.

(4.2)

Note that τ(A) is dependent on the budget B. Let A∗ be the algorithm that solves (4.2). The

expected regret of an algorithm A is defined as

R(A) = G(A∗)−G(A). (4.3)

The optimization problem in (4.2) is a knapsack problem, and is known to be NP-hard [107].

Given that the rewards and the costs of all the actions are known and fixed for all T rounds, the

greedy algorithm AG for solving (4.2) makes an action selection in the decreasing order of the

efficiency, defined as e(i) = r(i)/c(i) for an action i ∈ [K], until the budget constraint in (4.2)

is satisfied. It can be shown that [107]

G(AG) ≤ G(A∗) ≤ G(AG) + max
i∈[K]

e(i). (4.4)

In the stochastic setting, for all t and i ∈ [K], the reward rt(i) and the cost ct(i) of an

action i are identically and independently distributed according to some unknown distributions.

The expected reward and the expected cost of an action i are denoted by µ(i) and ρ(i) respectively.

Thus, in the stochastic setting, the efficiency of an action i can be defined as e(i) = µ(i)/ρ(i).

Using (4.4), the expected regret of an algorithm A simplifies to

R(A) ≤ max
i∈[K]

µ(i)

ρ(i)
(τ(AG) + 1)−G(A)

= e(i∗)(τ(AG) + 1)−G(A)

≤
∑

i∈[K]/{i∗}

∆(i)E[NT (i)], (4.5)
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where i∗ = argmaxi∈[K]e(i), ∆(i) = e(i∗) − e(i), NT (i) is the number of times an action i is

selected in T rounds, and T = max{τ(A), τ(AG)}. The definition in (4.5) is consistent with the

literature of stochastic BwK [52, 213].

In the adversarial setting, for all t, rt(i) and ct(i) are chosen by an adversary before

the game starts. In this setting, the efficiency of an action i at round t can be defined as

et(i) = rt(i)/ct(i). Therefore, using (4.4), we consider the following expected regret

R(A) = E

[
z(A)

( T (i∗)∑
t=1

et(i
∗)−

τ(A)∑
t=1

et(it)

)]
, (4.6)

where T (i) is the number of rounds for which the game is feasible in the budget B when a fixed

action i ∈ [K] is performed, i∗ = argmaxi∈[K]

∑T (i)
t=1 et(i) is the optimal action in the hindsight,

z(A) = max

{
B

T (i∗)
,
B(A)
τ(A)

}
(4.7)

is the maximum cost per round, andB(A) is the budget utilized by the algorithmA. The expected

regret is the expectation of the efficiency regret scaled by the maximum of the cost spent per

round by the optimal action i∗, and the cost spent per round by the algorithm A, where the

efficiency regret is the sum of the rewards per unit cost associated to the optimal action minus

the sum of the rewards per unit cost associated to the actions performed by the algorithm A.

4.4 Adversarial BwK

In this section, we propose the algorithm EXP3.BwK for the adversarial BwK setting,

and show that it is order optimal.

Similar to EXP3, EXP3.BwK maintains a set of time-varying weights wt(i) for each

action i ∈ [K]. At each round t, an action it = i is selected with probability pt(i) which is

dependent on two parameters: the time-varying weights wt(i) and an exploration constant γ/K.

Following the selection of the action it, the algorithm pays the cost ct(it). If the cost ct(it)
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Algorithm 6. EXP3.BwK

Initialization: γ ; For all i ∈ [K], w1(i) = 1, and ê1(i) = 0; t = 1;
while B > 0 do

Wt =
∑

j∈[K]wt(j)
Update pt(i) = (1− γ)wt(i)/Wt + γ/K
Choose it = i with probability pt(i).
Observe (rt(it), ct(it))
if ct(it) > B then

exit;

end if

B = B − ct(it)
For all i ∈ [K], êt(i) = rt(i)1(i = it)/pt(i)ct(i).
wt+1(i) = wt(i) · exp(γcmin · êt(i)/K)
t = t+ 1

end while

is greater than the remaining budget of the algorithm, then the algorithm terminates without

attempting to find other feasible actions which can be performed using the remaining budget. In

EXP3.BwK, the efficiency et(i) = rt(i)/ct(i) is used as a measure of the contribution from an

action i ∈ [K] at round t. The empirical estimate of the efficiency êt(i) (defined in Algorithm 6)

is used to update the weight wt(i) of the action i. For all i ∈ [K], the difference in the weights

wt(i) andwt−1(i) is controlled by scaling êt(i)with γcmin, which ensures that the γcminêt(i) ≤ 1.

The probability pt(i) is dependent on wt(i) and the exploration constant γ/K. In the probability

pt(i), the weight wt(i) is responsible for the exploitation as it favors the selection of an action

with higher cumulative efficiencies i.e.
∑t

n=1 êt−1(i) observed until round t−1. On contrary, the

exploration constant γ/K ensures that the player is always exploring with a positive probability in

search of the optimal action i∗. This balances the trade-off between exploration and exploitation.

In the literature of the adversarial BwK setup [247], it has been assumed that for all

actions i ∈ [K] and for all t, rt(i) ≥ ct(i). This allows the use of a different efficiency measure

rt(i)− ct(i), which is linear in both the reward and the cost of an action i, thus simplifying the

proofs [247]. In many real life applications, the rewards and the costs are on different scales,

and cannot be compared by an inequality operator. For example, in a recommendation system,

a recommender is constrained by the total space available on the web page which corresponds
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to the budget B, the space occupied by each item corresponds to its cost, and the click rate of

each item corresponds to its reward. In this case, the space (cost) of the item and the click rate

(reward) of the item are not comparable. Likewise, the efficiency measure rt(i)− ct(i) which

compares the reward and the cost of an action i on a linear scale, is questionable and provides no

intuition about the optimality of an action. In EXP3.BwK, we use a different efficiency measure

rt(i)/ct(i) for tracking the contributions of each action i ∈ [K]. The use of this measure is

motivated from the greedy algorithm AG, and its performance guarantees with respect to the

optimal solution (see (4.4) and (4.6)). The advantages of using this measure are two folds. First,

it eliminates the need of the assumption in [247]. Second, it can track G(A) of the algorithm A

irrespective of the measure of the rewards and the costs.

The following theorem provides the performance guarantees of EXP3.BwK in terms of

the expected regret, and shows that it is sublinear in the budget B.

Theorem 14. For γ =
√

cminK log(K)/B(e− 1), the expected regret, as defined in (4.6), of

the algorithm EXP3.BwK is at most

R(E) ≤ 2

√√√√((e− 1) + (e− 2)
K

B

)
BK log(K)

c3min

,

(4.8)

where E denotes EXP3.BwK.

Proof. We bound

E

[
z(E)

(
T (i∗)∑
t=1

rt(i
∗)

ct(i∗)
−

τ(E)∑
t=1

rt(it)

ct(it)

)]
.

(4.9)

We show that

E

[(
T (i∗)∑
t=1

rt(i
∗)

ct(i∗)
−

τ(E)∑
t=1

rt(it)

ct(it)

)]
≤ 2

√√√√((e− 1) + (e− 2)
K

B

)
BK log(K)

c3min

, (4.10)
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and z(E) ≤ 1. The detailed version of the proof is in the appendix.

The key challenge in the proof of Theorem 14 is that the two summations in (4.6)

corresponding to the optimal action i∗ and the algorithm EXP3.BwK are along the different

time scales, T (i∗) and τ(E) respectively. This requires the analysis to be split into two cases:

T (i∗) ≥ τ(E) and T (i∗) ≤ τ(E). The analysis for these cases is based on the inference that

B(E) > B − K because the algorithm EXP3.BwK terminates at round t if and only if the

remaining budget is insufficient to pay the cost ct(it) ≤ 1. Hence, we can bound the difference

between the two time scales i.e. T (i∗) and τ(E) as follows:

|T (i∗)− τ(E)| ≤ K

cmin

. (4.11)

It follows that the difference between the number of rounds of the optimal action i∗ and

EXP3.BwK is bounded by a fixed constant independent of the budget B. Hence, the regret of

the algorithm due to this difference in (4.11) is at most K/c2min, and does not introduce any

dependency on the budget B.

The following theorem provides the lower bound on the expected regret in the adversarial

BwK setting.

Theorem 15. For any player’s strategy A, there exists an adversary for which the expected

regret of the algorithm A is at least Ω(
√
KB/c2min).

Proof. The adversary chooses the optimal action i∗ uniformly at random from the set ofK actions.

For the action i∗ and for all t, the reward rt(i
∗) is assigned using an independent Bernoulli random

variable with expectation 0.5 + ε, where ε =
√
Kcmin/B. For all i ∈ [K]/{i∗} and for all t,

the reward rt(i) is assigned using an independent Bernoulli random variable with expectation

0.5. For all i ∈ [K] and for all t, the adversary assigns cost ct(i) = cmin. The remaining proof is

along the same lines as the lower bound on the expected regret in the MAB setup [17].

By comparing the results in Theorem 14 and Theorem 15, the expected regret of the
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algorithm EXP3.BwK has an additional factor of 1/
√
cmin, and is order optimal in the budget

B. This also highlights an important feature of an alternate class of algorithms in the BwK

setup. Consider a new class of algorithms G which looks for an alternative action to perform

after the algorithm is unable to pay the cost ct(it) at round t in order to utilize the remaining

budget effectively. Since EXP3.BwK terminates if it is unable to pay the cost ct(it), EXP3.BwK

does not belong to G, and is still order optimal in the budget B. Therefore, the expected regret

of this new class of algorithms G will have same dependency as that of EXP3.BwK on the

budget B. Additionally, the difference between the expected regret of EXP3.BwK and the class

of algorithms G will be at most a constant i.e. K/c2min, independent of B (see (4.11)). The

class of algorithms G faces the additional challenge of designing an appropriate criterion for the

termination of the algorithm because the costs are assigned by the adversary.

The ideas developed in EXP3.BwK, particularly the measure of the efficiency rt(i)/ct(i)

forms form the basis of designing an algorithm which achieves almost optimal performance

guarantees in both the stochastic and the adversarial BwK settings.

4.5 One practical algorithm for both stochastic and adver-

sarial BwK

In this section, we propose the algorithm EXP3++.BwK (Algorithm 7), and show that it

achieves almost optimal performance guarantees in both the stochastic and the adversarial BwK

settings.

Before discussing the algorithm EXP3++.BwK, let us briefly focus on the fundamental

difference between the optimal algorithms in the stochastic and the adversarial BwK settings. In

the stochastic BwK setting, the algorithms focus on exploration in the initial stage until a reliable

estimate of the expected rewards and expected costs is achieved. Then, the algorithms focus on

exploitation, and perform exploration with a small probability. For example, in UCB type of

algorithms, the probability of exploration decays as 1/t2 with round t [211, 52, 174]. In greedy
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Algorithm 7. EXP3++.BwK

Initialization: For all i ∈ [K], w1(i) = 1, ê1(i) = 0, ē1(i) = 0, N1(i) = 1 δ1(i) > 0; t = 1,
γt = 0.5cmin

√
log(K)/tK;

Perform each action once and update for all i ∈ [K], ē1(i) = r1(i)/c1(i), B = B −
∑

i∈[K] c1(i) and
t = K + 1.
while B > 0 do

For all i ∈ [K], update:
UCBt(i) (see (4.12))
LCBt(i) (see (4.13))
∆̂t(i) (see (4.15))
δt(i) = β log(t)/(t∆̂t(i)

2)
εt(i) = min{1/2K, 0.5

√
log(K)/t, δt(i)}

pt(i) =
exp(−γtL̂t−1(i))∑

j∈[K] exp(−γtL̂t−1(j))

p̃t(i) = (1−
∑

j 6=i εt(j))pt(i) + εt(i)
Choose it = i with probability p̃t(i).
Observe (rt(it), ct(it))
if ct(it) > B then

exit;

end if

B = B − ct(it)
For all i ∈ [K], update:

êt(i) = rt(i)1(i = it)/p̃t(i)ct(i).
ˆ̀
t(i) = 1(i = it)/cminp̃t(i)− êt(i).
L̂t(i) =

∑t
n=1

ˆ̀
n(i)

Nt(i) = Nt−1(i) + 1(i = it).
r̄t(i) =

∑t
n=1 rn(i)1(i = in)/Nt(i)

c̄t(i) =
∑t

n=1 cn(i)1(i = in)/Nt(i)
ēt(i) = r̄t(i)/c̄t(i)

t = t+ 1
end while

algorithms, the probability of exploration is zero after a fixed round (or time instance) [210, 213].

On the contrary, in the adversarial regime, the algorithms are always exploring, and looking for

the actions with higher contributions [17]. For instance, in EXP3.BwK, the exploration constant

γ/K does not change with the round t, and it is dependent on the total number of rounds i.e.

Θ(B) in the BwK setup.

For all action i ∈ [K], EXP3++.BwK maintains an Upper Confidence Bound (UCB)
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UCBt(i) and a Lower Confidence Bound (LCB) LCBt(i) on the efficiency e(i), where

UCBt(i) = min

{
1

cmin

, ēt(i) +
(1 + 1/λ)ηt(i)

λ− ηt(i)

}
, (4.12)

LCBt(i) = max

{
0, ēt(i)−

(1 + 1/λ)ηt(i)

λ− ηt(i)

}
, (4.13)

ηt(i) =

√
α log(K1/αt)

2Nt(i)
, (4.14)

λ ≤ cmin and Nt(i) is the number of times an action i has been chosen until round t. The UCB

and the LCB on an action i are used to estimate ∆(i). The estimate of this gap at round t is

defined as

∆̂t(i) = max{0,max
j 6=i

LCBt(j)− UCBt(i)}. (4.15)

It can been shown that for all i ∈ [K], in the stochastic BwK setting, we have

∆(i)

2
≤ ∆̂t(i) ≤ ∆(i),

with high probability as t → ∞. Thus, ∆̂t(i) is a reliable estimate of ∆(i). For all i ∈ [K],

the estimate of the gap ∆̂t(i) is used to design the exploration parameter εt(i) in the sampling

probability p̃t(i) where p̃t(i) is the probability of choosing an action i at round t. In the stochastic

BwK setup, since ∆(i∗) = 0, the exploration parameter εt(i
∗) of the optimal action i∗ tends to

zero, and favors its selection. Unlike EXP3.BwK, the exploration parameter εt(i) varies with t.

Additionally, the sampling probability p̃t(i) is dependent on both the estimates of the efficiencies

êt(i) and ēt(i) where êt(i) and ēt(i) are crucial in the adversarial BwK setting (see EXP3.BwK)

and the stochastic BwK setting respectively. In the sampling probability p̃t(i), êt(i) controls

the exploitation performed by the algorithm through pt(i), and ēt(i) controls the exploration

performed by the algorithm through the exploration parameter εt(i).
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The following theorem provides the performance guarantees of EXP3++.BwK in the

stochastic BwK setting.

Theorem 16. In the stochastic BwK setting, for α = 3 and β = 256/c2min, the expected regret

of the EXP3++.BwK is at most

R(F ) = O

( ∑
i:∆(i)>0

log2(B/cmin)

c2min∆(i)

)
, (4.16)

where F denotes the algorithm EXP3++.BwK.

Proof. The expected regret of the algorithm can be bounded by

R(F ) ≤
∑

i∈[K]/{i∗}

∆(i)E[NT (i)], (4.17)

where T ≤ B/cmin is the number of rounds at the termination of the algorithm. We can then

bound the expected number of times E[NT (i)] an action i 6= i∗ is selected by the algorithm. Since

the probability of the selection of an action i is p̃t(i), we have

E[NT (i)] ≤ E[
T∑
t=1

εt(i) + pt(i)]. (4.18)

We now bound the two terms in the right hand side of (4.18) in the stochastic BwK setting. First,

we show that the estimate ∆̂t(i) is a reliable estimate of ∆(i), i.e.

P(∆̂t(i) ≥ ∆(i)) ≤ 1

tα−1
, (4.19)

P

(
∆̂t(i) ≤

∆(i)

2

)
≤

(
log t

tc2min∆(i)2

)α−2

+ 2

(
1

t

)βc2min
8

+
2

Ktα−1
. (4.20)
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These results can be used to prove that

P

(
∆̃t(i) ≤

t∆(i)

2

)
≤

(
log(t)

tc2min∆(i)2

)α−2

+
1

t
, (4.21)

where ∆̃t(i) =
∑t

n=1(
ˆ̀
n(i)− ˆ̀

n(i
∗)). Since

pt(i) ≤ exp(−γt∆̃t(i)), (4.22)

(4.21) is used to bound
∑T

t=1 E[pt(i)], and we have

T∑
t=1

E[pt(i)] = O

(
log2(B/cmin)

c2min∆(i)2

)
. (4.23)

Using the definition of εt(i) and (4.20), we have

T∑
t=1

E[εt(i)] = O

(
log2(B/cmin)

c2min∆(i)2

)
. (4.24)

Hence, the statement of the theorem follows. The detailed version of the proof is in the appendix

In Theorem 16, EXP3++.BwK incurs an expected regret of O(log2(B/cmin)), whereas

the optimal regret guarantees in the stochastic BwK setting are given by O(log(B/cmin)) [211,

52, 174]. Thus, EXP3++.BwK has an additional factor of log(B/cmin) in comparison to the

results in the literature. This additional factor is also common in the literature of MAB [195, 139].

The following theorem provides the performance guarantees of EXP3++.BwK in the adversarial

BwK setting.

Theorem 17. In the adversarial BwK setting, the expected regret of the EXP3++.BwK is at

most

R(F ) ≤

√
6BK log(K)

c3min

. (4.25)
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Proof. Similar to the proof of Theorem 14, we bound

E

[
z(E)

(
T (i∗)∑
t=1

rt(i
∗)

ct(i∗)
−

τ(E)∑
t=1

rt(it)

ct(it)

)]
.

(4.26)

We show that

E

[(
T (i∗)∑
t=1

rt(i
∗)

ct(i∗)
−

τ(E)∑
t=1

rt(it)

ct(it)

)]
≤

√
6BK log(K)

c3min

, (4.27)

and z(E) ≤ 1. The detailed version of the proof is in supplementary material.

Thus, like EXP3.BwK, EXP3++.BwK is order optimal in the adversarial BwK setting.

The challenges in the proof of Theorem 16 and Theorem 17 are addressed in a similar way as

that of Theorem 14. In conclusion, using Theorem 16 and Theorem 17, the EXP3++.BwK is

order optimal in the adversarial BwK setting and has an additional factor of log(B/cmin) in the

stochastic BwK setting.

4.6 BwK with unbounded cost

Assuming the cost is bounded by unity (i.e., cmax = 1), Theorem 15 provides the

dependence of the expected regret on the minimum cost cmin in the adversarial BwK setup. In

this section, we discuss the scaling of the lower bound on the expected regret with respect to the

maximum cost cmax in the adversarial BwK setup.

Theorem 18. Suppose that cmax = Bα. For any algorithm A, there exists an adversary such

that the expected regret of the algorithm is at least Ω(Bα).

Proof. Let the number of actions be K = 2, and the actions be i1, i2. The adversary chooses

the optimal action i∗ uniformly at random from these two actions. Let t∗ = B − Bα. For all

t ≤ t∗ rounds, the adversary assigns rt(i1) = rt(i2) = 0 and ct(i1) = ct(i2) = 1 to both the

actions i1 and i2. Now, for rounds t ≥ t∗ + 1, the adversary assigns rt(i
∗) = 1 and ct(i

∗) = 1
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to the optimal action i∗. For the suboptimal action i 6= i∗, the adversary assigns rt∗+1(i) = 0

and ct∗+1(i) = Bα (since cmax = Bα, this is a valid cost assignment), and rt(i) = ct(i) = 1 for

t > t∗ + 1.

Let S1 be the case when i
∗ = i1, and S2 be the case when i

∗ = i2. For the first t
∗ rounds,

any algorithm A would have the same behavior in both the cases S1 and S2. Now, at round

t∗ + 1, assume that this algorithm A selects an action i1 and i2 with probability p and (1 − p)

respectively. Note that if the suboptimal action is chosen at round t∗ + 1, then the budget is

depleted and the sum of the rewards is 0. On the other hand, if i∗ is chosen at t∗+1, the algorithm

receives a sum of Bα rewards in the end. Thus, if it∗+1 6= i∗, then the regret of the algorithm is

Bα. This implies that the expected regret of the algorithm is 0.5pBα + 0.5(1− p)Bα = Bα/2.

The statement of the theorem follows.

In the literature of BwK, the cost is always considered to be bounded above by a constant

independent of the budget B. Here, we consider that the cost is bounded by a function of the

budget B. Theorem 18 shows that the lower bound on the expected regret scales at least linearly

with the maximum cost cmax in the adversarial BwK setup. If α > 1/2, then it is impossible to

achieve a regret bound of O(
√
B), which is order optimal in cases with small cmax.

In the adversarial BwK setup, the adversary can penalize the player in two ways. First,

the adversary can control the reward of an action at any round. Second, the adversary can control

the cost of an action, which is analogous to penalizing the player on the number of rounds T . For

α > 1/2, the latter penalty on the number of rounds T becomes significant, and the minimum

achievable regret is no longer Ω(
√
B). In this setting with α > 1/2, the design of algorithms

which achieve regret of O(Bα) is left as future work.

4.7 Conclusion

The study of BwK has been mostly focused on the stochastic regime. In this work, we

considered the adversarial regime and proposed the order optimal algorithm EXP3.BwK for
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this setting. We also used ideas from the adversarial BwK setup to design EXP3++.BwK. This

algorithm has an expected regret of O(
√
KB log(K)) and O(log2(B)) in the adversarial and

stochastic settings respectively. Thus, the algorithm is order optimal in the adversarial regime,

and has an additional factor of log(B) in the stochastic regime. It is the first algorithm that

provides almost optimal performance guarantees in both stochastic and adversary BwK settings.

As part of future work, we are considering designing an algorithm which achieves the optimal

regret guarantees with high probability in both the adversarial and the stochastic BwK settings.

All the results in the literature of BwK assume that the maximum cost is bounded by a

constant independent of B. We have shown that if the cost is O(Bα), then the expected regret is

at least Ω(Bα). Thus, the minimum expected regret scales at least linearly with the maximum

cost of the BwK setup. This setting is of particular interest when α > 1/2 because the expected

regret ofO(
√
B), which is achievable in the setting where cost is bounded by a constant, becomes

unachievable. Hence, there is a need to study this BwK setting, and design optimal algorithms

whose expected regret is O(Bα), which is left as a future work.
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4.9 Appendix

4.9.1 Proof of Theorem 1

Proof. Let T = max{T (i∗), τ(E)}, where

i∗ = argmaxi∈[K]

T (i)∑
t=1

rt(i)

ct(i)
. (4.28)

Additionally, we have

∑
i∈[K]

pt(i)êt(i) = pt(it)
rt(it)

pt(it) · ct(it)
=

rt(it)

ct(it)
, (4.29)

and

∑
i∈[K]

pt(i)êt(i)
2 = pt(it)

rt(it)

pt(it) · ct(it)
êt(it)

(a)

≤ êt(it)

cmin

=

∑
i∈[K] êt(i)

cmin

, (4.30)

where (a) follows from the fact that for all i ∈ [K], rt(i)/ct(i) ≤ 1/cmin. Also, for all i ∈ [K],

we have

E

[
êt(i)|{pt(j)}j∈[K]

]
= pt(i) · êt(i) + (1− pt(i)) · 0 =

rt(i)

ct(i)
. (4.31)
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SinceWt =
∑

j∈[K] wt(j), we have

Wt+1

Wt

=
∑
i∈[K]

wt+1(i)

Wt

=
∑
i∈[K]

wt(i) exp (γcmin · êt(i)/K)

Wt

(a)
=
∑
i∈[K]

pt(i)− γ/K

1− γ
· exp (γcmin · êt(i)/K)

(b)

≤
∑
i∈[K]

pt(i)− γ/K

1− γ

(
1 +

γcmin

K
êt(i) + (e− 2)

(
γcmin

K
êt(i)

)2
)

(c)

≤ 1 +
cminγ/K

(1− γ)

∑
i∈[K]

pt(i)êt(i) +
(e− 2)c2min(γ/K)2

(1− γ)

∑
i∈[K]

pt(i)êt(i)
2, (4.32)

where (a) follows from the definition of wt(i), (b) follows from the facts that for all i ∈ [K], we

have pt(i) > γ/K and for all x ≤ 1, we have ex ≤ 1 + x+ (e− 2)x2, and (c) follows from the

fact that
∑

i∈[K] pt(i) = 1 and γ/K > 0.

Now, taking logs on both sides of (4.32), summing over 1, 2, . . . T +1, and using log(1+

x) ≤ x for all x > −1, we get

log
WT+1

W1

≤ cminγ/K

(1− γ)

T∑
t=1

∑
i∈[K]

pt(i)êt(i) +
(e− 2)c2min(γ/K)2

(1− γ)

T∑
t=1

∑
i∈[K]

pt(i)êt(i)
2. (4.33)

Additionally, for all j ∈ [K], we have

log
WT+1

W1

≥ log
wT+1(j)

W1

=
cminγ

K

T∑
t=1

êt(j)− log(K). (4.34)
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Combining (4.33) and (4.34), for all j ∈ [K], we have

cminγ

K

T∑
t=1

êt(j)− log(K) ≤ cminγ/K

(1− γ)

T∑
t=1

rt(it)

ct(it)

+
(e− 2)c2min(γ/K)2

cmin(1− γ)

T∑
t=1

∑
i∈[K]

êt(i), (4.35)

where the right hand side of the above equation follows from (4.29) and (4.30). We will split the

analysis into two cases: T (i∗) ≤ τ(E) and T (i∗) > τ(E). For T (i∗) ≤ τ(E), using (4.35), we

have

γ

K

T (i∗)∑
t=1

êt(i
∗)− log(K)

cmin

≤ γ/K

(1− γ)

τ(E)∑
t=1

rt(it)

ct(it)

+
(e− 2)(γ/K)2

(1− γ)

τ(E)∑
t=1

∑
i∈[K]

êt(i), (4.36)

where the inequality follows by replacing T = τ(E), and using the facts that T (i∗) ≤ τ(E) and

êt(i
∗) is non-negative.

Now, for T (i∗) > τ(E), using (4.35), we have

γ

K

T (i∗)∑
t=1

êt(i
∗)− log(K)

cmin

≤ γ/K

(1− γ)

T (i∗)∑
t=1

rt(it)

ct(it)
+

(e− 2)(γ/K)2

(1− γ)

T (i∗)∑
t=1

∑
i∈[K]

êt(i),

(a)
=

γ/K

(1− γ)

τ(E)∑
t=1

rt(it)

ct(it)
+

(e− 2)(γ/K)2

(1− γ)

T (i∗)∑
t=1

∑
i∈[K]

êt(i), (4.37)

where (a) follows from the fact that for all t > τ(E), we have rt(it)/ct(it) = 0. Therefore,
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(4.37) can be further simplified as

γ

K

T (i∗)∑
t=1

êt(i
∗)− log(K)

cmin

≤ γ/K

(1− γ)

τ(E)∑
t=1

rt(it)

ct(it)
+

(e− 2)(γ/K)2

(1− γ)

(
τ(E)∑
t=1

∑
i∈[K]

êt(i) +

T (i∗)∑
t=τ(E)+1

∑
i∈[K]

êt(i)

)
. (4.38)

Combining (4.36) and (4.38), taking expectation on both the sides of (4.38), and using (4.31),

we have

T (i∗)∑
t=1

rt(i
∗)

ct(i∗)
− E

[
τ(E)∑
t=1

rt(it)

ct(it)

]

≤ K

cminγ
log(K) + γ

T (i∗)∑
t=1

rt(i
∗)

ct(i∗)
+

(e− 2)γ

K
E

[
τ(E)∑
t=1

∑
i∈[K]

rt(i)

ct(i)

]

+
(e− 2)γ

K
P(T (i∗) > τ(E))E

[
T (i∗)∑

t=τ(E)+1

∑
i∈[K]

êt(i)

]
. (4.39)

Since B(E) ≥ B −K, we have that |T (i∗)− τ(E)| ≤ K/cmin. Using G(A∗) ≤ B/c2min and

T (i∗)− τ(E) ≤ K/cmin, we have that

T (i∗)∑
t=1

rt(i
∗)

ct(i∗)
− E

[
τ(E)∑
t=1

rt(it)

ct(it)

]
≤ K

cminγ
log(K) + γ · B

c2min

+ (e− 2)γ ·

(
B

c2min

+
K

c2min

)
. (4.40)

Using γ =
√

cminK log(K)/(B(e− 1) +K(e− 2)), the right hand side of the above

equation is bounded by

2

√
((e− 1)B + (e− 2)K)K log(K)

c3min

. (4.41)
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Since for all t, we have that ct(i
∗) ≤ 1, T (i∗) ≥ B and B(E) ≥ B − K . Also, we have

τ(E) ≤ B/cmin. Thus,

z(E) ≤ 1. (4.42)

Combining (4.41) and (4.42), the statement of the theorem follows.

4.9.2 Proof of Theorem 3

Proof. Let T = max{T (i∗), τ(E)}. The proof of the theorem is split into following results.

In Lemma 9, we show that for all i ∈ [K], the efficiency e(i) is

LCBt(i) ≤ e(i) ≤ UCBt(i),

with high probability as t→∞ (see Lemma 9), namely

P(UCBt(i) ≤ e(i)) ≤ 1

Ktα−1
, (4.43)

P(LCBt(i) ≥ e(i)) ≤ 1

Ktα−1
. (4.44)

This is used to show that ∆̂t(i) ≤ ∆(i) with high probability as t→∞ (see Lemma 10), namely

P(∆̂t(i) ≥ ∆(i)) ≤ 1

tα−1
. (4.45)

Using Lemma 11 and Lemma 12, we show that (see Lemma 13)

P

(
∆̂t(i) ≤

∆(i)

2

)
≤

(
log t

tc2min∆(i)2

)α−2

+ 2

(
1

t

)βc2min
8

+
2

Ktα−1
. (4.46)
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Thus, using (4.45) and (4.46), we have

∆(i)

2
≤ ∆̂t(i) ≤ ∆(i),

with high probability as t→∞.

Using Lemma 14 and 15, we have

P

(
∆̃t(i) ≤

t∆(i)

2

)
≤

(
log(t)

tc2min∆(i)2

)α−2

+
1

t
, (4.47)

where ∆̃t(i) =
∑t

n=1(
ˆ̀
n(i) − ˆ̀

n(i
∗)). Since pt(i) ≤ exp(−γt∆̃t(i)), (4.47) is used to bound∑T

t=1 E[pt(i)], and we have

T∑
t=1

E[pt(i)] = O

(
log2(B/cmin)

c2min∆(i)2

)
. (4.48)

Using the definition of εt(i) and (4.47), we have

T∑
t=1

E[εt(i)] = O

(
log2(B/cmin)

c2min∆(i)2

)
. (4.49)

Hence, the statement of the theorem follows.

Lemma 9. For all i ∈ [K] and t ≥ K, we have

P(UCBt(i) ≤ e(i)) ≤ 1

Ktα−1
, (4.50)

P(LCBt(i) ≥ e(i)) ≤ 1

Ktα−1
, (4.51)
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Proof. If UCBt(i) ≤ e(i), then we have

ēt(i) +
(1 + 1/λ)ηt(i)

λ− ηt(i)
≤ e(i) =

µ(i)

ρ(i)
.

Therefore, at least one of the events U1 and U2 is true, where

U1 : r̄t(i) ≤ µ(i)− ηt(i),

U2 : c̄t(i) ≥ ρ(i) + ηt(i).

This can be proved by contradiction. Let both U1 and U2 are false. Then, we have

µ(i)

ρ(i)
− r̄t(i)

c̄t(i)
=

µ(i)c̄t(i)− ρ(i)r̄t(i)

ρ(i)c̄t(i)

=
µ(i)(c̄t(i)− ρ(i)) + ρ(i)(µ(i)− r̄t(i))

ρ(i)c̄t(i)
(a)

≤ µ(i)ηt(i) + ρ(i)ηt(i)

ρ(i)c̄t(i)
(b)

≤ ηt(i)

λ(λ− ηt(i))
+

ηt(i)

λ− ηt(i)

=
(1 + 1/λ)ηt(i)

λ− ηt(i)
, (4.52)

where (a) follows from the fact that both U1 and U2 are false, and (b) follows from the facts that

U1 and U2 are false, and λ ≤ cmin. Hence, at least one of the events U1 and U2 is true. Now,

using Hoeffding’s inequality, we have

P(U1) ≤
1

Ktα
, (4.53)

and

P(U2) ≤
1

Ktα
. (4.54)
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Thus,

P(UCBt(i) ≤ e(i)) ≤ P(U1) + P(U2)

≤ 1

Ktα−1
. (4.55)

Similarly, if LCBt(i) ≥ e(i), then we have

ēt(i)−
(1 + 1/λ)ηt(i)

λ− ηt(i)
≥ e(i) =

µ(i)

ρ(i)
. (4.56)

Therefore, at least one of the events L1 and L2 is true, where

L1 : r̄t(i) ≥ µ(i) + ηt(i),

L2 : c̄t(i) ≤ ρ(i)− ηt(i).

This can be proved by contradiction. Now, using Hoeffding’s inequality, we have

P(L1) ≤
1

Ktα
, (4.57)

and

P(L2) ≤
1

Ktα
. (4.58)

Thus, we have

P(LCBt(i) ≥ e(i)) ≤ P(L1) + P(L2)

≤ 1

Ktα−1
. (4.59)

Hence proved.
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Lemma 10. For all i ∈ [K] and t ≥ K,

P(∆̂t(i) ≥ ∆(i)) ≤ 1

tα−1
, (4.60)

Proof. Since ∆(i) = maxj∈[K] e(j)− e(i), we have

P(∆̂t(i) ≥ ∆(i)) = P(max
j 6=i

LCBt(j)− UCBt(i) ≥ ∆(i))

≤
∑
j 6=i

P(LCBt(j) ≥ e(j)) + P(UCBt(i) ≤ e(i))

≤ 1

tα−1
, (4.61)

where the last inequality follows from Lemma 9. Hence proved.

Lemma 11. For all i ∈ [K], let

tmin(i) = min{t : t ≥ 4Kβ(log t)2/∆(i)4 log(K)}.

We define two events A(i, t) and A(i∗, i, t) as

A(i, t) =

{
there exists an n ≤ t : εn(i) <

β log t

t∆(i)2

}
, (4.62)

A(i∗, i, t)=

{
there exists an n ≤ t : εn(i

∗) <
β log t

t∆(i)2

}
. (4.63)

For t > tmin(i) and α ≥ 3, we have

P(A(i, t)) ≤ 1

2

(
log t

tc2min∆(i)2

)α−2

, (4.64)

P(A(i∗, i, t)) ≤ 1

2

(
log t

tc2min∆(i)2

)α−2

. (4.65)
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Proof. We start with proving the bound on the probability of the event A(i, t). This proof is

divided into two parts. First, for n ≤ tc2min∆(i)2/ log(t), using the Lemma 10, we show that

A(i, t) does not occur with high probability as t → ∞. Later, for n ≥ tc2min∆(i)2/ log(t), we

bound the probability of the event A(i, t) using the Lemma 10.

For n ≤ tc2min∆(i)2/ log(t), we have

β log(n)

n∆̂2
n(i)

(a)

≥ βc2min log(n)

n

(b)

≥ β log(n) log(t)

t∆(i)2

≥ β log(t)

t∆(i)2
, (4.66)

where (a) follows from the definition of ∆̂n(i), and (b) follows from the range of n. For t ≥ tmin,

we have

0.5

√
log(K)

tK
≥ β log(t)

t∆(i)2
. (4.67)

Additionally, using Lemma 10, we have that ∆̂n(i) ≤ ∆(i) w.h.p as n → ∞. Therefore,

combining the fact ∆̂n(i) ≤ ∆(i) along with (4.67) and (4.66), we have

εn(i) ≥
β log t

t∆(i)2
. (4.68)

Now, for n ≥ tc2min∆(i)2/ log(t), we have

P

(
There exists n ∈

[
tc2min∆(i)2

log(t)
, t

]
: εn(i) <

β log t

t∆(i)2

)

= P

(
There exists n ∈

[
tc2min∆(i)2

log(t)
, t

]
: ∆̂n(i) ≥ ∆(i)

)

≤
t∑

n=
tc2

min
∆(i)2

log(t)

1

nα−1
≤ 1

2

(
log t

tc2min∆(i)2

)α−2

. (4.69)
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Similarly, we can bound the probability of P(A(i∗, i, t)) by using the fact that∆(i∗) = 0 < ∆(i)

for i 6= i∗. Hence proved.

Lemma 12. For all i ∈ [K] and t ≥ tmin(i), we have

P

(
Nt(i) ≤

β log t

2∆(i)2

)
≤

(
1

t

)βc2min
8

+
1

2

(
log t

tc2min∆(i)2

)α−2

. (4.70)

Additionally,

P

(
Nt(i

∗) ≤ β log t

2∆(i)2

)
≤

(
1

t

)βc2min
8

+
1

2

(
log t

tc2min∆(i)2

)α−2

. (4.71)

Proof. We have

P

(
Nt(i) ≤

β log t

2∆(i)2

)
≤ P

(
AC(i, t) and Nt(i) ≤

β log t

2∆(i)2

)
+ P

(
A(i, t)

)
(a)

≤ exp

(
−β log t
8∆(i)2

)
+

1

2

(
log t

tc2min∆(i)2

)α−2

(b)

≤

(
1

t

)βc2min
8

+
1

2

(
log t

tc2min∆(i)2

)α−2

, (4.72)

where AC(i, t) is the complement of the event A(i, t), (a) follows from the Theorem 8 in [194]

and Lemma 11, and (b) follows from the fact that for all i ∈ [K], ∆(i) ≤ 1/c2min. Similarly, we

can bound the probability in (4.71).

Lemma 13. For all i ∈ [K], t ≥ tmin(i), α ≥ 3 β ≥ 64(α + 1)/c2min ≥ 256/c2min, we have

P

(
∆̂t(i) ≤

∆(i)

2

)
≤

(
log t

tc2min∆(i)2

)α−2

+ 2

(
1

t

)βc2min
8

+
2

Ktα−1
. (4.73)
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Proof. Using Lemma 9, we have

P
(
(UCBt(i

∗) ≤ e(i∗)) or (LCBt(i) ≥ e(i))
)
≤ 2/Ktα−1. (4.74)

Now, assume UCBt(i
∗) ≥ e(i∗) and LCBt(i) ≤ e(i), we have

∆̂t(i) ≥ max
j 6=i

LCBt(j)− UCBt(i)

≥ LCBt(i
∗)− UCBt(i)

= ēt(i
∗)− ηt(i

∗)− ēt(i)− ηt(i)

≥ e(i∗)− 2ηt(i
∗)− e(i)− 2ηt(i)

= ∆(i)− 2ηt(i
∗)− 2ηt(i). (4.75)

Similarly, using Lemma 12, we have

P

(
Nt(i) ≤

β log t

2∆(i)2
or Nt(i

∗) ≤ β log t

2∆(i)2

)

≤ 2

(
1

t

)βc2min
8

+

(
log t

tc2min∆(i)2

)α−2

. (4.76)

Now, assuming Nt(i) > β log t/2∆(i)2 and Nt(i
∗) > β log t/2∆(i)2, we have

∆̂t(i) ≥ ∆(i)− 2ηt(i
∗)− 2ηt(i)

≥ ∆(i)− 4

√
2∆(i)2α log(tK1/α)

2β log(t)

≥ ∆(i)

(
1− 4

√
α + 1

c2minβ

)

≥ ∆/2. (4.77)

Therefore, combining (4.74),(4.75),(4.76) and (4.77), the statement of the theorem follows.
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Hence proved.

Lemma 14. For all i ∈ [K], let Xt(i) = ∆(i) − (ˆ̀t(i) − ˆ̀
t(i

∗)) be the martingale difference

sequence with respect to filtration F1, . . . ,F1 where Ft is the sigma field based on all the past

actions, their rewards and their costs until round t. Then, for t ≥ tmin(i),we have

P

(
max
1≤n≤t

Xn(i) ≥
1.25t∆(i)2

cminβ log(t)

)
≤ 1

2

(
log t

tc2min∆(i)2

)α−2

, (4.78)

P

(
νt(i) ≥

2t2∆(i)2

c3minβ log(t)

)
≤

(
log t

tc2min∆(i)2

)α−2

, (4.79)

where νt(i) =
∑t

n=1 E[Xn(i)
2|Fn−1].

Proof. We bound the magnitude of Xn(i). For all i ∈ [K], we have

Xn(i) = ∆(i)− (ˆ̀n(i)− ˆ̀
n(i

∗))

≤ 1

cmin

+ ˆ̀
n(i

∗)

≤ 1

cmin

+
1

cminεn(i∗)

≤ 1

cmin

(
1 +max

{
2K, 2

√
nK

log(K)
,
n∆̂n(i

∗)2

β log(n)

})

≤ 1.25

cmin

max

{
2K, 2

√
nK

log(K)
,
n∆̂n(i

∗)2

β log(n)

}
. (4.80)

Similar to the proof of Lemma 11, for t ≥ tmin and n ≤ tc2min∆(i)2/ log(t), we have εn(i
∗) ≥

t∆(i)2/β log(t) and (see (4.66))

β log(n)

n∆̂2
n(i)

≥ β log(t)

t∆(i)2
. (4.81)

Additionally, for t ≥ tmin,

0.5

√
log(K)

tK
≥ β log(t)

t∆(i)2
, (4.82)
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and using Lemma 10, we have that ∆̂n(i) ≤ ∆(i) w.h.p as n → ∞. Therefore, using for all

i ∈ [K] ∆(i∗) = 0 ≤ ∆(i), for t1 ≤ tc2min∆(i)2/ log(t) and t ≥ tmin(i),

max
1≤n≤t1

Xn(i) ≤
1.25t∆(i)2

cminβ log(t)
, (4.83)

w.h.p at t1 →∞. Now,

P

(
max
1≤n≤t

Xn(i) ≥
1.25t∆(i)2

cminβ log(t)

)
(a)
= P

(
∃n ∈

[
tc2min∆(i)2

log(t)
, t

]
: Xn(i) ≥

1.25t∆(i)2

cminβ log(t)

)
(b)

≤ P

(
∃n ∈

[
tc2min∆(i)2

log(t)
, t

]
: ∆̂n(i) ≥ ∆(i)

)
(c)

≤ 1

2

(
log(t)

tc2min∆(i)2

)α−2

, (4.84)

where (a) follows from (4.83), (b) follows from (4.80), and (c) follows from Lemma 10.

Now, we bound νt(i) =
∑t

n=1 E[Xn(i)
2|Fn−1]. For all i ∈ [K], we have

E[Xn(i)
2|Fn−1] ≤ E[(ˆ̀n(i∗)− ˆ̀

n(i))
2|Fn−1]

(a)
= E[ˆ̀n(i∗)2|Fn−1] + E[ˆ̀n(i)2|Fn−1]

= p̃n(i)

(
`n(i)

p̃n(i)

)2

+ p̃n(i
∗)

(
`n(i

∗)

p̃n(i∗)

)2

≤ 1

c2minp̃n(i)
+

1

c2minp̃n(i
∗)

(b)

≤ 1

c3min

(
max

{
2K, 2

√
nK

log(K)
,
n∆̂n(i)

2

β log(n)

})
+

max

{
2K, 2

√
nK

log(K)
,
n∆̂n(i

∗)2

β log(n)

})
,

(4.85)

where (a) follows from the fact that for all i ∈ [K] and n ≤ t, we have ˆ̀n(i
∗)ˆ̀n(i) = 0, and (b)
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follows from (4.80).

Similar to (4.84), we bound the νt(i) as follows

P

(
νt(i) ≥

2t2∆(a)2

c3minβ log(t)

)
(a)

≤ P

(
∃n ∈

[
tc2min∆(i)2

log(t)
, t

]
: ∆̂n(i) ≥ ∆(i)

)

+ P

(
∃n ∈

[
tc2min∆(i)2

log(t)
, t

]
: ∆̂n(i

∗) ≥ 0

)
(b)

≤

(
log(t)

tc2min∆(i)2

)α−2

, (4.86)

where (a) can be implied in a similar way as (b) of (4.84), and (b) follows from Lemma 10.

Lemma 15. For all t ≥ tmin(i) and β ≥ 256/c2min, we have

P

(
∆̃t(i) ≤

t∆(i)

2

)
≤

(
log(t)

tc2min∆(i)2

)α−2

+
1

t
. (4.87)

where ∆̃t(i) =
∑t

n=1(
ˆ̀
n(i)− ˆ̀

n(i
∗)).

Proof. We have

P

(
∆̃t(i) ≤

t∆(i)

2

)
= P

(
t∆(i)− ∆̃t(i) ≥

t∆(i)

2

)

≤ P(M1(t)) + P(M2(t)) + P(M3(t)), (4.88)

where

M1(t) =

{
max
1≤n≤t

Xn(i) ≥
1.25t∆(i)2

cminβ log(t)

}
, (4.89)

M2(t) =

{
νt(i) ≥

2t2∆(a)2

c2minβ log(t)

}
, (4.90)

and

M3(t) =

{
t∆(i)− ∆̃t(i) ≥

t∆(i)

2
andM1(t) andM2(t)

}
. (4.91)
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The probability of the eventsM1(t) andM2(t) can be bound using Lemma 14, and using

the fact that cmin ≤ 1.

Let w1 = 2t2∆(a)2/c2minβ log(t), w2 = 1.25t∆(i)2/cminβ log(t), and w3 = 1/t. For all

t ≥ tmin(i) and β ≥ 256/c2min, we have

√
2w1 log

1

w3

+
w2

3
log

1

w3

=

√
4t2∆(i)2 log t

c2minβ log t
+

1.25t∆(i)2 log t

cminβ log t

≤ t∆(i)

(
2t√
c2minβ

+
1.25

3c2minβ

)

≤ 1

2
t∆(i). (4.92)

Thus, using Bernstein’s inequality for martingales and (4.92), we can bound the probability of

M3(t) as follows

P(M3(t)) ≤
1

t
. (4.93)

Thus, combining the bounds over the probabilities of the eventsM1(t),M2(t) andM3(t), the

statement of the lemma follows.

Lemma 16. For all i ∈ [K], τ(E) ≥ tmin(i), T = max{τ(E), T (i∗)}, α = 3 and β = 256/c2min,

we have

T∑
t=1

E[εt(i)] ≤ tmin(i) +
4β(log2(T ) + log(T ))

∆(i)2
+
log2(T ) + log(T )

c2min∆(i)2

+
2

K
(log(T ) + 1) +

2π2

3
. (4.94)
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Proof: We have

T∑
t=1

E[εt(i)] =
T∑
t=1

E

[
min

{
1

2K
,
1

2

√
log(t)

tK
,
β log t

t∆̂t(i)2

}]

≤
T∑
t=1

E

[
β log t

t∆̂t(i)2

]
(a)

≤ tmin(i) +
4β(log2(T ) + log(T ))

∆(i)2

+
T∑

t=tmin(i)

((
log t

tc2min∆(i)2

)α−2

+
2

Ktα−1
+ 2

(
1

t

)βc2min
8
)

≤ tmin(i) +
4β(log2(T ) + log(T ))

∆(i)2

+
log2(T ) + log(T )

c2min∆(i)2
+

2

K
(log(T ) + 1) +

2π2

3
, (4.95)

where (a) follows from Lemma 13.

Lemma 17. For all i ∈ [K], τ(E) ≥ tmin(i), γ ≥ c2min

√
K log(K)/B(1 + (e− 2)/c2min) and

α ≥ 3, there exists a constantm2 such that

T∑
t=1

E[pt(i)] ≤ tmin(i) +m2
log2(T )

c2min∆(i)2
. (4.96)

Proof. We have

T∑
t=1

E[pt(i)] ≤
T∑
t=1

E
[
exp(−γt∆̃t(i))

]
(a)

≤ tmin(i) +
T∑

t=tmin(i)

(
e−

√
log(K)
tK

t∆(i)
4K +

1

t
+ 2

(
1

t

)βc2min
8

+

(
log(t)

tc2min∆(i)2

)α−2

+

(
log t

tc2min∆(i)2

)α−2

+
2

Ktα−1

)
(b)

≤ tmin(i) +O

(
log2(T )

c2min∆(i)2

)
,

(4.97)
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where (a) follows from the Lemma 13 , and (b) follows from bounds over the summation of

sequences via integration.

4.9.3 Proof of Theorem 4

Proof. For all i ∈ [K],

pt(i) =
exp(−γt

∑t−1
n=1

ˆ̀
n(i))∑

i∈[K] exp(−γt
∑t−1

n=1
ˆ̀
n(i))

, (4.98)

and γt = 0.5
√

c2min log(K)/Kt. Therefore, using Lemma 7 of [195], we have

T∑
t=1

∑
i∈[K]

pt(i)ˆ̀t(i)− min
j∈[K]

T∑
t=1

ˆ̀
t(j) ≤

1

2

T∑
t=1

γt
∑
i∈[K]

pt(i)(ˆ̀t(i))
2 +

log(K)

γT
, (4.99)

where T = max{T (i∗), τ(E)}. We have

E

[
T∑
t=1

E[
∑
i∈[K]

pt(i)ˆ̀t(i)|Ft−1]

]
− E

[
T∑
t=1

ˆ̀
t(i)

]

≤ log(K)

γT
+ E

[
T∑
t=1

γt
2
E
[ ∑

i∈[K]

pt(i)ˆ̀
2
t (i)|Ft−1

]]
, (4.100)

where Ft is the sigma field with respect to the entire past until round t.

Now, let us bound the terms in (4.100). We have

E[
∑
i∈[K]

pt(i)ˆ̀t(i)|Ft−1] ≥ E

[ ∑
i∈[K]

(p̃t(i)− εt(i))ˆ̀t(i)|Ft−1

]
,

≥ 1

cmin

− E

[
rt(it)

ct(it)

∣∣∣∣∣Ft−1

]
−
∑
i∈[K]

εt(i)

cmin

. (4.101)

Also, we have

E

[
T∑
t=1

ˆ̀
t(i

∗)

]
=

T∑
t=1

1

cmin

−
T∑
t=1

rt(j)

ct(j)
. (4.102)
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Additionally, we have

E

[ ∑
i∈[K]

pt(i)ˆ̀
2
t (i)|Ft−1

]
≤ E

[ ∑
i∈[K]

pt
c2minp̃

2
t

∣∣∣∣∣Ft−1

]
,

≤
∑
i∈[K]

pt
c2minp̃t

,

(a)

≤ 2K

c2min

, (4.103)

where last inequality follows from the definition of p̃t(i), and the fact that for all i ∈ [K] and

t,(1−
∑

j 6=i εt(j)) ≥ 0.5.

Using (4.39),(4.100), (4.101),(4.102) and (4.103), we have that the expected regret of the

algorithm is at most

log(K)

γn′
+

K

c2min

n′∑
t=1

γt +

τ(E)∑
t=1

∑
i∈[K]

εt(i)

cmin

(a)

≤ log(K)

γn′
+

K

c2min

n′∑
t=1

γt +
n′∑
t=1

∑
i∈[K]

γt
c2min

(b)

≤ 6

√
BK log(K)

c3min

, (4.104)

where n′ = τ(E) + K/cmin, (a) follows from the value of γ, and from the fact that εt(i) ≤

0.5cmin

√
log(K)/tK,and (b) follows from the concavity of

√
x.
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Chapter 5

Online learning with Feedback Graphs

and Switching Costs

5.1 Introduction

Online learning has a wide variety of applications like classification, estimation, and

ranking, and it has been investigated in different areas, including learning theory, control theory,

operations research, and statistics. The problem can be viewed as a one player game against an

adversary. The game runs for T rounds and at each round the player chooses an action from a

given set of K actions. Every action k ∈ [K] performed at round t ∈ [T ] carries a loss, that is

a real number in the interval [0, 1]. The losses for all pairs (k, t) are assigned by the adversary

before the game starts. The player also incurs a fixed and known Switching Cost (SC) every

time he changes his action, that is an arbitrary real number c > 0. The expected regret is the

expectation of the sum of losses associated to the actions performed by the player plus the SCs

minus the losses incurred by the best fixed action in hindsight. The goal of the player is to

minimize the expected regret over the duration of the game.

Based on the feedback information received after each action, online learning can be

divided into three categories: Multi-Armed Bandit (MAB), Partial Information (PI), and Expert

setting. In a MAB setting, at any given round the player only incurs the loss corresponding to

the selected action, which implies the player only observes the loss of the selected action. In a PI

setting, the player incurs the loss of the selected action k ∈ [K], as well as observes the losses

156



that he would have incurred in that round by taking actions in a subset of [K]\{k}. This feedback

system can be viewed as a time-varying directed graph Gt with K nodes, where a directed edge

k → j in Gt indicates that performing an action k at round t also reveals the loss that the player

would have incurred if action j was taken at round t. In an Expert setting, taking an action reveals

the losses that the player would have incurred by taking any of the other actions in that round. In

this extremal case, the feedback system Gt corresponds to a time-invariant, undirected clique.

Online learning with PI has been used to design a variety of systems [70, 105, 252, 179].

In these applications, feedback captures the idea of side information provided to the player during

the learning process. For example, the performance of an employee can provide information

about the performance of other employees with similar skills, or the rating of a web page can

provide information on ratings of web pages with similar content. In most of these applications,

switching between the actions is not free. For example, a company incurs a cost associated to

the learning phase while shifting an employee among different tasks, or switching the content

of a web page frequently can exasperate users and force them to avoid visiting it. Similarly, re-

configuring the production line in a factory is a costly process, and changing the stock allocation

in an investment portfolio is subject to certain fees. Despite the many applications where both

SC and PI are an integral part of the learning process, the study of online learning with SC has

been limited only to the MAB and Expert settings. In the MAB setting, it has been shown that

the expected regret of any player is at least Ω̃(c1/3K1/3T 2/3) [49], and that Batch EXP3 is an

order optimal algorithm [11]. In the Expert setting, it has been shown that the expected regret is

at least Ω̃(
√
log(K)T ) [41], and order optimal algorithms have been proposed in [71, 79]. The

PI setup has been investigated only in the absence of SC, and for any fixed feedback system

Gt = G with independence number α(G) > 1, it has been shown that the expected regret is at

least Ω̃(
√

α(G)T ) [145].
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5.1.1 Contributions

We provide a lower bound on the expected regret for any sequence of feedback graphs

G1, . . . GT in the PI setting with SC. We show that for any sequence of feedback graphs G1:T =

{G1, . . . GT} with independence sequence number β(G1:T ) > 1, the expected regret of any

player is at least Ω̃(c1/3β(G1:T )
1/3T 2/3). We then show that for G1:T with α(Gt) > 1 for all

t ≤ T , the expected regret of any player is at least Ω̃(c1/3
∑

Gj∈G α(Gj)
1/3N(Gj)

2/3), where

G is the set of unique feedback graphs in the sequence G1:T , and N(Gj) =
∑T

t=1 1(Gt = Gj)

is the number of rounds for which the feedback graph Gj is seen in T rounds. These results

introduce a new figure of merit β(G1:T ) in the PI setting, which can also be used to generalize

the lower bound given in the PI setting without SC [145]. A consequence of these results is that

the presence of SC changes the asymptotic regret by at least a factor T 1/6. Additionally, these

results also recover the lower bound on the expected regret in the MAB setting [49].

We also show that in the PI setting for any algorithm that is order optimal without SC,

there exists an assignment of losses from the adversary that forces the algorithm to make at least

Ω̃(T ) switches, thus increasing its asymptotic regret by at least a factor T 1/2. This shows that

any algorithm that is order optimal in the PI setting without SC, is necessarily sub-optimal in the

presence of SC, and motivates the development of new algorithms in the PI setting and in the

presence of SC.

We propose two new algorithms for the PI setting with SC: Threshold-Based EXP3 and

EXP3.SC. Threshold-Based EXP3 requires the knowledge of T in advance, whereas EXP3.SC

does not. The performance of these algorithms is given for different scenarios in Table 5.1.

The algorithms are order optimal in T and β(G1:T ) for two special cases of feedback informa-

tion system: symmetric PI setting i.e. the feedback graph Gt = G is fixed and un-directed,

and MAB. In these two cases, β(G1:T ) equals α(G) and K respectively. The state-of-art algo-

rithm EXP3 SET in PI setting without SC is known to be order optimal only for these cases

as well [8]. Threshold Based EXP3 is order optimal in the SC c as well, while EXP3.SC
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Table 5.1. Comparison of Threshold based EXP3 and EXP3.SC.

Scenarios Threshold based EXP3 EXP3.SC Lower Bound

For all t, Õ(c1/3(mas(G))1/3T 2/3) Õ(c4/3(mas(G))2/3T 2/3) Ω̃(c1/3α(G)1/3T 2/3)
Gt = G

Symmetric PI Õ(c1/3α(G)1/3T 2/3) Õ(c4/3α(G)2/3T 2/3) Ω̃(c1/3α(G)1/3T 2/3)

MAB Õ(c1/3K1/3T 2/3) Õ(c4/3K2/3T 2/3) Ω̃(c1/3K1/3T 2/3)

G1:T Õ

(
c
∑t∗

t=1
mas(G(t))

mas(G(T ))

)
Õ

(∑n∗

t=1
mas(G(t))

mas(G(T ))

)
Ω̃(c1/3β(G1:T )

1/3T 2/3)

Equi-informa- Õ(c1/3α(G1)
1/3T 2/3) Õ(c4/3α(G1)

2/3T 2/3) Ω̃(c1/3β(G1:T )
1/3T 2/3)

tional

has an additional factor of c in its expected regret. In the time-varying case, for sequence

G1:T , the expected regret is dependent on the worst t
∗ and n∗ instances of the ratio of mas(Gt)

and mas(G(T )), where {mas(G(1)),mas(G(2)), . . . ,mas(G(T ))} are the sizes of the maximal

acyclic subgraphs of G1:T arranged in non-increasing order, t∗ = dT 2/3c−2/3mas1/3(G(T ))e and

n∗ = 0.5mas1/3(G(T ))T
2/3c1/3. Finally, Table 5.1 also provides the performance in the equi-

informational setting, namely when Gt is undirected and all the maximal acyclic subgraphs in

G1:T have the same size.

Numerical comparison shows that Threshold Based EXP3 outperforms EXP3 SET in the

presence of SCs. Threshold Based EXP3 also outperforms Batch EXP3, which is another order

optimal algorithm for the MAB setting with SC [11].

5.1.2 Related Work

In the absence of SC, the lower bound on the expected regret is known for all three

categories of online learning problems. In the MAB setting, the expected regret is at least

Ω̃(
√
KT ) [17, 41, 180]. In the PI setting with fixed feedback graph G, the expected regret is

at least Ω̃(
√

α(G)T ) [145]. In the Expert setting, the expected regret is at least Ω̃(
√
log(K)T )

[41]. All three cases present an asymptotic regret factor T 1/2. In contrast, in the presence of

SC the expected regrets for MAB and Expert settings present different factors, namely T 2/3

and T 1/2 respectively. The expected regret is at least Ω̃(c1/3K1/3T 2/3) in the MAB setting and
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Ω̃(
√
log(K)T ) in the Expert setting [49]. This work provides the lower bound on the expected

regret Ω̃(c1/3β(G1:T )
1/3T 2/3) for the PI setting in the presence of SC. For the case without SC,

this work establishes that the lower bound in PI setting is Ω̃(
√

β(G1:T )T ).

The PI setting was first considered in [9, 145], andmany of its variations have been studied

without SC [7, 9, 38, 178, 126, 118, 177, 231, 174]. In the adversarial setting we described, all of

these algorithms are order optimal in the MAB and symmetric PI settings, but they also require

the player to have knowledge of the graph Gt before performing an action. The algorithm EXP3

SET does not require such knowledge [8]. We show that all of these algorithms are sub-optimal

in the PI setting with SC, and propose new algorithms that are order optimal in the MAB and

symmetric PI settings.

In the expert setting with SC, there are two order optimal algorithms with expected regret

Õ(
√
log(K)T ) [71, 79]. In the MAB setting with SC, Batch EXP3 is an order optimal algorithm

with expected regret Õ(c1/3K1/3T 2/3) [11]. This algorithm has also been used to solve a variant

of the MAB setting [62]. In the MAB setting, our algorithm has the same order of expected

regret as Batch EXP3 but it numerically outperforms Batch EXP3.

There is a large literature on a continuous variation of the MAB setting, where the number

of actions K depends on the number of rounds T . In this setting, the case without the SC was

investigated in [19, 33, 116, 238]. Recently, the case including SC has also been studied in

[120, 121]. In [120], the algorithm Slowly Moving Bandits (SMB) has been proposed and in

[121], it has been extended to different settings. These algorithms incur an expected regret linear

in T when applied in our discrete setting.

5.2 Problem Formulation

Before the game starts, the adversary fixes a loss sequence `1, . . . , `T ∈ [0, 1]K , assigning

a loss in [0, 1] toK actions for T rounds. At round t, the player performs an action it ∈ [K], and

incurs the loss `t(it) assigned by the adversary. If it 6= it−1, then the player also incurs a cost
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c > 0 in addition to the loss `t(it).

In the PI setting, the feedback system can be viewed as a time-varying directed graph

Gt with K nodes, where a directed edge k → j indicates that choosing action k at round t

also reveals the loss that the player would have incurred if action j were taken at round t. Let

St(i) = {j : i → j is a directed edge in Gt}. Following the action it, the player observes the

losses he would have incurred in round t by performing actions in the subset St(it) ⊆ [K]. Since

the player always observes its own loss, it ∈ St(it). In a MAB setup, the feedback graph Gt has

only self loops, i.e. for all t ≤ T and i ∈ [K], St(i) = {i}. In an Expert setup, Gt is a undirected

clique i.e. for all t ≤ T and i ∈ [K], St(i) = [K] . The expected regret of a player’s strategy δ is

defined as

Rδ(`1:T , c) = E

[
T∑
t=1

`t(it) +
T∑
t=2

c · 1(it−1 6= it)

]
− min

k∈[K]

T∑
t=1

`t(k). (5.1)

In words, the expected regret is the expectation of the sum of losses associated to the actions

performed by the player plus the SCs minus the losses incurred by the best fixed action in the

hindsight, and the objective of the player is to minimize the expected regret.

5.3 Lower Bound in PI setting with SC

We start by defining the independence sequence number for a sequence of graphs G1:T .

Definition 1. GivenG1:T , let P (Gt) be the set of all the possible independent sets of the graphGt.

The independence sequence number β(G1:T ) is the largest cardinality among all intersections of

the independent sets s1 ∩ s2 ∩ . . . ∩ sT , where st ∈ P (Gt). Namely,

β(G1:T ) = max
s1∈P (G1),...sT∈P (GT )

|s1 ∩ s2 ∩ . . . ∩ sT |. (5.2)

Definition 2. The independence sequence set I(G1:T ) is the set s1 ∩ s2 ∩ . . . sT attaining the

maximum in (5.2).
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Algorithm 8. Adversary’s strategy

Input:T > 0, G1:T with β(G1:T ) > 1;
Set ε1 = ε2 = c1/3β(G1:T )

1/3T−1/3/9 log2(T ) and σ = 1/9 log2(T ).
Choose an arm X ∈ I(G1:T ) uniformly at random
Draw T variables such that ∀t ≤ T , yt ∼ N (0, σ2).
For all 1 ≤ t ≤ T and i ∈ [K], assign

`t(i) = Wt + 0.5− ε11(X = i) + ε21(i /∈ I(G1:T )),

`t(i) = clip(`t(i)),

where clip(a) = min{max{a, 0}, 1}, For all t ≤ T Wt = Wρ(t) + yt,,W0 = 0, ρ(t) = t− 2δ(t) and
δ(t) = max{i ≥ 0 : 2i divides t}.
Output: loss sequence `1:T .

We use the notion of β(G1:T ) to provide a lower bound on the expected regret in the PI

setting with SC.

Theorem 19. For any G1:T with β(G1:T ) > 1, there exists a constant b > 0 and an adversary’s

strategy (Algorithm 8) such that for all T ≥ 27c log
3/2
2 (T )/β(G1:T )

2, and for any player’s

strategy A, the expected regret of A is

RA(`1:T , c) ≥ b c1/3β(G1:T )
1/3T 2/3/ logT. (5.3)

The proof of Theorem 19 relies on Yao’s minimax principle [237]. A randomized

adversary strategy is constructed such that the expected regret of a player, whose action at any

round is a deterministic function of his past observations, is at least b c1/3β(G1:T )
1/3T 2/3/ logT .

This adversary strategy is described in Algorithm 8, and is a generalization of the one proposed

to establish similar bounds in the MAB setup [49]. The generalization is different than the one

proposed for the PI setting without SC [145]. Since G1:T is known to the adversary, it computes

the independence sequence set I(G1:T ), and the cardinality of this set is β(G1:T ). For all t ≤ T

and i, j ∈ I(G1:T ), there exists no edge in the graph Gt between the actions i and j. Thus, the

selection of any action in I(G1:T ) provides no information about the losses of the other actions

in I(G1:T ). The adversary selects the optimal action uniformly at random from I(G1:T ), and

162



assigns an expected loss of 1/2− ε1. The remaining actions in I(G1:T ) are assigned an expected

loss of 1/2 . On the other hand, since i ∈ [K]\I(G1:T ) provides information about the losses

of actions in I(G1:T ), action i is assigned an expected loss of 1/2 + ε2 to compensate for this

additional information. In practice, even a small bias ε2 compensates for the extra information

provided by an action in [K]\I(G1:T ).

In the PI setup without SC, for a fixed feedback graph Gt = G, the expected regret is

at least Ω̃(
√

α(G)T ) [8]. The lower bound is provided only for a fixed feedback system, and

the lower bound for a general time-varying feedback system G1:T is left as an open question [8].

This also motivates the investigation of different graph theoretic measures to study the PI setting

[8]. Theorem 19 provides a lower bound for a general time-varying feedback system G1:T for

the PI setting in presence of SC. The lower bound is dependent on the independence sequence

number β(G1:T ) of G1:T . Thus, the ideas introduced in Theorem 19 can be extended to close

this gap in the literature of PI setting without SC.

Lemma 18. In the PI setting without SC, for any G1:T with β(G1:T ) > 1, there exists a constant

b > 0 and an adversary’s strategy such that for any player’s strategy A, the expected regret of

A is at least b
√

β(G1:T )T .

Using Theorem 19 and Lemma 18, it can be concluded that the presence of SC changes

the asymptotic regret by at least a factor T 1/6. In the MAB setup, β(G1:T ) = K, and Theorem

19 recovers the bounds provided in [49].

We now focus on the assumption in Theorem 19, i.e. β(G1:T ) > 1. This is satisfied in

many networks of practical interest. For example, networks modeled as p-random graphs where

p is the probability of having edge between two nodes. The expected independence number

of these graphs is 2 log(Kp)/p [46]. Since the probability of each node being in independent

set is same, the expected value of β(G1:T ) is K(2 log(Kp)/Kp)T , and Kp is the expected node

degree which is usually a constant as p is inversely proportional toK. This is greater than one

for large values of K, and small values of T .
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Algorithm 8 depends on the independence sequence set I(G1:T ) whose cardinality is

non-increasing in T . In such cases, the adversary can split the sequence of feedback graphs

G1:T into multiple sub-sequences i.e. say M sub-sequences such that U1 = {Gt : t ∈ T1 ⊆

[T ]}…UM = {Gt : t ∈ TM ⊆ [T ]}, [T ] = ∪m∈[M ]Tm, and for all m1,m2 ∈ [M ], Tm1 ∩ Tm2 is

an empty set. For each sub-sequence Um, compute the independence sequence set and assign

losses independently of other sub-sequences according to Algorithm 8. This adversary’s strategy,

which we call Algorithm 1.1, gives the following bound on the expected regret.

Theorem 20. For any split of G1:T into disjoint sub-sequences U1, . . . UM with β(Um) > 1

and N(Um) ≥ 27c log
3/2
2 (N(Um))/β(Um)

2 ∀m ∈ [M ], there exists a constant b > 0 and an

adversary’s strategy (Algorithm 1.1) such that for any player’s strategy A, the expected regret

of A is

RA(`1:T , c) ≥ b c1/3
∑

m∈[M ]

β(Um)
1/3N(Um)

2/3/ logT, (5.4)

where N(Um) =
∑T

t=1 1(Gt ∈ Um) is the length of sub-sequence Um.

With the insight provided by Theorem 20, the regret can be made large with an appropriate

split of G1:T into sub-sequences. This can be formulated as a sub-modular optimization problem

where the objective is:

max
{U1,...,UM}

c1/3
∑

m∈[M ]

β(Um)
1/3N(Um)

2/3/ logT (5.5)

subject to
∑

m∈[M ]

N(Um) = T,

∀m1,m2 ∈ [M ], Um1 ∩ Um2 = φ. (5.6)

This can be solved using greedy algorithms developed in the context of sub-modular maximiza-

tion.
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Until now, we have been focusing on designing an adversary’s strategy for maximizing

the regret for a given sequence of feedback graphs G1:T . Now, we briefly discuss the case when

G1:T can also be chosen by the adversary. If the adversary is not constrained about the choice of

feedback graphs, then the feedback graph that maximizes the expected regret would be a feedback

graph with only self loops, as this reveals the least amount of information. If the adversary is

constrained by the choice of independence number, i.e. for all t ≤ T , α(Gt) ≤ H , then the

optimal value of (5.5) is achieved for a sequence of fixed feedback graphs i.e. for all t ≤ T ,

α(Gt) = H , which implies β(G1:T ) = H .

We now discuss the trade-off between the loss incurred and the number of switches

performed by the player.

Lemma 19. If the expected regret computed ignoring the switching cost of any algorithm

A is Õ((β(G1:T )
1/2T )β), then there exists a loss sequence `1:T such that A makes at least

Ω̃[(β(G1:T )
1/2T )2(1−β)] switches.

Along the same lines of Lemma 4, it can also be shown that if the expected number

of switches of A is Õ[(β(G1:T )
1/2T )2(1−β)], then the expected regret without SC is at least

Ω̃((β(G1:T )
1/2T )β). This provides the lower bound on the expected regret given the SC is

constrained by a fixed budget. Using Lemma 19, if the expected regret without SC of A is

Õ(
√
β(G1:T )T ), then there exists a loss sequence that forces A to make at least Ω̃(T ) switches.

This implies the regret of A with the SC is linear in T . Thus, any algorithm that is order optimal

without SC, is necessarily sub-optimal in the presence of SC, which motivates the design of new

algorithms in our setting.

5.4 Algorithms in PI setting with SC

In this section, we introduce the two algorithms Threshold Based EXP3 and EXP3.SC

for an uninformed setting where Gt is only revealed after the action it has been performed.

This is common in a variety of applications. For instance, a user’s selection of some product
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Algorithm 9. Threshold based EXP3

Initialization: η ∈ (0, 1]; For all i ∈ [K], wi,1 = 1, ˆ̀0(i) = 0 and `′0(i) = 0; r = 1;
for t = 1, . . . , T do

if Et
1 or E

t
2 or E

t
3 then

if t 6= 1 then
ˆ̀
t(i) = ˆ̀

t−1(i) + `′t−1(i)
wi,t = wi,t−1 exp (−η`′t−1(i))

end if

Update pi,t = wi,t/
∑

j∈[K]wj,t.

Choose it = i with probability pi,t.
Set r = 1 and for all i ∈ [K], set `′t(i) = 0

else

For all i ∈ [K], pi,t = pi,t−1, ˆ̀t(i) = ˆ̀
t−1(i)

and wi,t = wi,t−1; it = it−1;r = r + 1
end if

For all i ∈ St(it), observe the pair (`t(i), i).
For all i ∈ [K], `′t(i) = `′t−1(i) + `t(i)1(i ∈ St(it))/qi,t, where qi,t =

∑
j:j→i pj,t

end for

allows to infer that the user might be interested in similar products. However, no action on the

recommended products may mean that user might not be interested in the product, does not need

it or did not check the products. Thus, the feedback is revealed only after the action has been

performed.

In Threshold Based EXP3 (Algorithm 9), each action i ∈ [K] is assigned a weight wi,t

at round t. When the loss of action i is observed at round t, i.e. i ∈ St(it), wi,t is computed

by penalizing wi,t−1 exponentially by the empirical loss `t(i)1(i ∈ St(it))/qi,t. At round t,

pt = {p1,t, . . . , pK,t} is the sampling distribution where pi,t = wi,t/
∑

i∈[K] wi,t. At round t,

action it is selected with probability pi,t if the threshold event E
t = Et

1 ∪Et
2 ∪Et

3 is true, where

Et
1 = {t = 1}, (5.7)

Et
2 = {r > γt, where γt = T 1/3c2/3/mas(G(T ))

1/3}, (5.8)
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Et
3 ={∀i ∈ [K]\{it}, ˆ̀t−1(i)+`

′
t−1(i)> εt/η + 1/qit,t−1, and there exists an

i ∈ [K]\{it} such that ˆ̀t−1(i) + `′t−1(i)− `′t−1(it) ≤ εt/η + 1/qit,t−1}, (5.9)

and εt ≥ log(tc2/mas(G(T )))/3 . The event E
t contains two threshold conditions, one on the

variable r and the other on the empirical losses. The threshold event Et is critical in balancing

the trade-off between the number of switches and the loss incurred by the player. Et
1 corresponds

to the first selection of action, and incurs no SC. In Et
2, the variable r tracks the number of rounds

(or time instances) since the event Et occurred last time. If the choice of a new action has not

been considered for past γt rounds, then E
t
2 forces the player to choose an action according to the

updated sampling distribution pt at round t. The threshold condition in E
t
2 ensures that the regret

incurred due to the selection of a sub-optimal action does not grow continuously while trying to

save on the SC between the actions. The event Et
2 is independent of the observed losses, and

will occur at most O(T 2/3) times. Unlike event Et
2, the event E

t
3 is dependent on the losses

ˆ̀
t(i)

and `′t(i), for all i ∈ [K]. Each loss ˆ̀t(i) tracks the total empirical loss of action i observed until

round σ(t)− 1, namely

ˆ̀
t(i) =

σ(t)−1∑
k=1

`k(i)1(i ∈ Sk(ik))/qi,k, (5.10)

where σ(t) = max{k ≤ t : Ek is true } is the latest round k∗ ≤ t at which Ek∗ is true. On the

other hand, each loss `′t(i) represents the total empirical loss of action i observed between rounds

σ(t) and t, namely

`′t(i) =
t∑

k=σ(t)

`k(i)1(i ∈ Sk(ik))/qi,k. (5.11)

This loss tracks the total empirical loss observed after the selection of an action at time instance

σ(t). The event Et
3 balances exploration and exploitation while taking into account the SC. In

Et
3, the first condition ensures that the player has sufficient amount of information about the
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losses of all other actions before exploitation is considered. Given sufficient exploration has

been performed, the second condition triggers the exploitation. The selection of a new action is

considered when the empirical loss `′t(it) incurred by the current action it, following its selection

at σ(t), becomes significant in comparison to the total empirical loss ˆ̀t(i) + `′t(i) incurred by

the other actions i ∈ [K]\{it}. Since the total empirical loss of an action i increases with t, it

is desirable that the threshold εt/η + 1/qit,t−1 increases with t as well. Since the increment in

`′t−1(it−1) is bounded above by 1/qi,t−1 at round t, for all i ∈ [K]\{it}, Et
3 implies that

ˆ̀
t−1(i) + `′t−1(i)− `′t−1(it−1) ≥ εt/η. (5.12)

Thus, Et
3 ensures that the player reconsiders the action selection if the loss incurred due to the

current selection becomes significant in comparison to the total empirical loss of other actions.

The event also ensures that the loss incurred due to the current selection is sufficiently smaller

than the total empirical loss of other actions (see (5.12)). The event ensures that the sampling

distribution pt has changed significantly from the previous sampling distribution pσ(t−1) before

selecting the action again. Thus, Et
3 balances exploration and exploitation based on the observed

losses.

Batch EXP3, the order optimal algorithm in MAB with SC, is EXP3 performed in batches

of O(T 1/3). A similar strategy to design an algorithm for the PI setting with SC will fail because

unlike MAB setting, the feedback graph Gt can change at every round t, and this requires

an update of empirical losses based on Gt at every round. In our algorithm, the computation

of empirical loss is dependent on Gt via qi,t. Additionally, Batch EXP3 does not utilize the

information about the observed losses, which is captured in Et
3. The following theorem presents

the performance guarantees of our algorithm.

Theorem 21. The following statements hold for Threshold Based EXP3:
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(i)The expected regret without accounting for SC is

E

[
T∑
t=1

`t(it)− min
k∈[K]

T∑
t=1

`t(k)

]
≤ log(K)

η
+

η

2

t∗∑
t=1

T 2/3c4/3mas(G(t))

(1− 1/e)mas2/3(G(T ))
, (5.13)

where t∗ = dT 2/3c−2/3mas1/3(G(T ))e.

(ii) The expected number of switches is

E
[ T∑

t=2

1(it−1 6= it)

]
≤ 2T 2/3c−2/3mas1/3(G(T )). (5.14)

(iii) Letting η = log(K)/T 2/3c1/3mas1/3(G(T )), the expected regret (5.1) is at most

REXP3.T (`1:T , c) ≤ 3T 2/3c1/3mas1/3(G(T )) (5.15)

+
ec log(K)

2(e− 1)mas(G(T ))

t∗∑
t=1

mas(G(t)). (5.16)

(iv) In a symmetric PI setting i.e. for all t ≤ T Gt is un-directed and fixed, the expected regret

(5.1) is at most

REXP3.T (`1:T , c) ≤ 4T 2/3c1/3α1/3(G1) log(K). (5.17)

In the PI setting, mas(Gt) captures the information provided by the feedback graph Gt.

As mas(Gt) increases, the information provided by Gt about the losses of actions decreases. The

regret of the algorithm depends on the O(T 2/3) instances of mas(G(t)) (see Theorem 21 (i)).

This is because the algorithm makes a selection of a new action O(T 2/3) times in expectation

(see Theorem 21 (ii)), and Gt is not available in advance to influence the selection of the action.

Also, the ratio mas(G(t))/mas(G(T )) is bounded above by K and has no affect on order of

T . The bounds of the algorithm on the expected regret are tight in two special cases. In the

symmetric PI setting, the expected regret of Threshold Based EXP3 is Õ(T 2/3c1/3α1/3(G1)) (see

Theorem 21 (iii)), hence, the algorithm is order optimal. In the MAB setting, the expected
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Algorithm 10. EXP3.SC

Initialization: For all i ∈ [K], ˆ̀
1(i) = 0; t = 1, εt = 0.5c1/3mas1/3(G(T ))/t

1/3, ηt =

log(K)/t2/3c1/3mas1/3(G(T ))
for t = 1, . . . , T do

For all i ∈ [K], update:

pt(i) =
exp(−ηtL̂t−1(i))∑

j∈[K] exp(−ηtL̂t−1(j))

Choose it = it−1 with probability 1− εt,
else, it = i with probability εtpi,t.
For all i ∈ St(it), observe the pair (`t(i), i).
For all i ∈ [K], update L̂t(i) =

∑t
n=1

ˆ̀
n(i),

where ˆ̀t(i) = `t(i)1(i ∈ St(it))/qi,t and
qi,t =

∑
j:j→i pj,t.

end for

regret of Threshold Based EXP3 is Õ(T 2/3c1/3K1/3), hence, the algorithm is order optimal. The

state-of-art algorithm for the case without SCs is known to be order optimal only for these cases

as well, and the key challenges for closing this gap are highlighted in the literature[8].

EXP3.SC (Algorithm 10) is another algorithm in PI setting with SC. The key differences

between Threshold based EXP3 and EXP3.SC are highlighted here. Unlike Threshold based

EXP3, EXP3.SC does not require the knowledge of the number of rounds T . Threshold based

EXP3 favors the selection of action at regular intervals based on the event Et. On contrary,

EXP3.SC chooses a new action with probability εt which is decreasing in t. Thus, the algorithm

favors exploration in the initial rounds, and favors exploitation as t increases. In Threshold

based EXP3, the scaling exponent η is a constant dependent on T . On contrary, in EXP3.SC, the

scaling exponent ηt is time-varying, and is decreasing in t. The following theorem provides the

performance guarantees of EXP3.SC.

Theorem 22. The expected regret (5.1) of EXP3.SC is at most

REXP3.SC(`1:T , c) ≤ 1.5c4/3mas1/3(G(T ))T
2/3 +

2 log(K)

mas2/3(G(T ))

n∗∑
j=1

mas(G(j)), (5.18)

where n∗ = 0.5mas1/3(G(T ))T
2/3c1/3.
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In symmetric PI and MAB settings, the expected regret of EXP3.SC is bounded above by

Õ(c4/3α2/3(G1)T
2/3) and Õ(c4/3K2/3T 2/3) respectively. Hence, the algorithm is order optimal

in T and β(G1:T ), and has an additional factor of c in the performance guarantees. In EXP3.SC,

the dependency on T is removed at the expense of an additional factor of c in its performance.

In an alternative setting where the number of switches are constraint to be O(T 2(1−β)), it

can be shown using Lemma 19 that the expected regret without SC is at least Ω̃((β(G1:T )
1/2T )β).

The two algorithms in this setting are also simple variations of our two algorithms: Threshold

based EXP3 and EXP3.SC. Threshold based EXP3 can be adapted by using threshold γt =

O(T 2β−1), εt = O(log(t)/2β − 1) and η = O(T−β). EXP3.SC can be adapted by using εt =

O(t−(2β−1)) and ηt = O(t−β). These adapted algorithms would be order optimal in MAB and

symmetric PI settings as well.

5.5 Performance Evaluation

In this section, we numerically compare the performance of Threshold based EXP3 with

EXP3 SET and Batch EXP3 in PI and MAB setups with SC respectively. We do not compare

the performance of our algorithm with the ones proposed in the Expert setting with SC because

in MAB and PI setups, the player needs to balance the exploration-exploitation trade-off, while

in the Expert setting the player is only concerned about the exploitation. Hence, there is a

fundamental discontinuity in the design of algorithms as we move from the Expert to the PI

setting. This gap is also evident from the discontinuity in the lower bounds in these settings,

for the Expert setting the expected regret is at least Ω̃(
√
log(K)T ), while for the PI setting

the expected regret is at least Ω̃(β(G1:T )
1/3T 2/3), for β(G1:T ) > 1 which excludes the clique

feedback graph.

We evaluate these algorithms by simulations because in real data sets, the adversary’s

strategy is not necessarily unfavorable for the players. Hence, the trends in the performance

can vary widely across different data sets. For this reason, in the literature only algorithms in
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(a) For α(G) = 5 (b) For α(G) = 5

Figure 5.1. Performance evaluation of EXP3 SET and Threshold based EXP3 for K=25

stochastic setups rather than adversarial setups are typically evaluated on real data sets [105, 252].

In our simulations, the adversary uses the Algorithm 8, and c = 0.35.

Figure 5.1 shows that the Threshold based EXP3 outperforms EXP3 SET in the presence

of SC. Additionally, the expected regret and the number of switches of EXP3 SET grow linearly

with T . These observations are in line with our theoretical results presented in Lemma 19. The

results presented here are for Gt = G, α(G) = 5 andK = 25. Similar trends were observed for

different value of α(G) and K.

Figure 5.2 shows that Threshold based EXP3 outperforms Batch EXP3 in MAB setup

with SC. The gap in the performance of these algorithm increases with T (see Figure 5.2(a)).

Additionally, the number of switches performed by threshold based EXP3 is larger than the

number of switches performed by Batch EXP3 (see Figure 5.2(b) and (d)). The former algorithm

utilizes the information about the observed losses via Et
3 to balance the trade off between the

regret and the number of switches. On contrary, Batch EXP3 does not utilize any information

from the observed losses, and switches the action only after playing an action Õ(T 1/3) times.

Note that MAB setup reveals the least information about the losses, and performance gap due to

utilization of this information is significant (see Figure 5.2). This gap in performance grows as

β(G1:T ) decreases.

In summary, Threshold Based EXP3 outperforms both EXP3 SET and Batch EXP3 in PI
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(a) For K = 5 (b) For K = 5

(c) For T = 20000 (d) For T = 20000

Figure 5.2. Performance evaluation of Batch EXP3 and Threshold based EXP3 in MAB setting

and MAB settings with SC respectively. Threshold Based EXP3 fills a gap in the literature by

providing a solution for the PI setting with SC, and improves upon the existing literature in the

MAB setup.

5.6 Conclusion

This work focuses on online learning in the PI setting with SC in the presence of an

adversary. The lower bound on the expected regret is presented in the PI setup in terms of

independence sequence number. There is a need to design new algorithms in this setting because

any algorithm that is order optimal without SC is necessarily sub-optimal in the presence of SC.

Two algorithms, Threshold Based EXP3 and EXP3.SC, are proposed and their performance is

evaluated in terms of expected regret. These algorithms are order optimal in T in two cases:

symmetric PI and MAB setup. Numerical comparisons show that the Threshold Based EXP3
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outperforms EXP3 SET and Batch EXP3 in PI setting with SC.

As future work, algorithms can be designed in a partially informed setting and a fully

informed setting. In the partially informed setting, the feedback graph Gt at round t is revealed

following the action at round t − 1. Thus, the feedback graphs are revealed one at a time in

advance at the beginning of each round. In the fully informed setting, the entire sequence of

feedback graphs G1:T is revealed before the game starts. Since the adversary is aware of G1:T ,

these settings are important to study from the player’s end as well. Note that without SC, the

algorithms in both the partially informed and fully informed settings can exploit the feedback

graphs at every round in a greedy manner, and perform an action accordingly. Hence, the

algorithm in partially informed setting is also optimal in a fully informed setting in the absence

of SC. On the contrary, in the presence of SC, a greedy exploitation of the feedback structure

is not possible at every round. Hence, in fully informed setting with SC, the player chooses an

action based on G1:T such that the selected action balances the trade off between the regret and

the SC. Thus, the partially informed and fully informed settings of PI are of particular interest in

the presence of SC, and is an interesting area for further study.
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5.8 Appendix

5.8.1 Proof of Theorem 1

Proof. Without loss of generality, let the independent sequence set I(G1:T ) formed of actions (or

“arms”) from 1 to β(G1:T ). Given the sequence of feedback graphs G1:T , let Ti be the number of
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times the action i ∈ I(G1:T ) = [β(G1:T )] is selected by the player in T rounds. Let T∆ be the total

number of times the actions are selected from the set [K]\I(G1:T ). Let Ei denote expectation

conditioned on X = i, and Pi denote the probability conditioned on X = i. Additionally, we

define P0 as the probability conditioned on event ε1 = 0. Therefore, under P0 , all the actions

in the independent sequence set, i.e. i ∈ I(G1:T ), incur an expected regret of 1/2, whereas, the

expected regret of actions i ∈ [K]\I(G1:T ) is 1/2 + ε2. Let E0 be the corresponding conditional

expectation. For all i ∈ [K] and t ≤ T , `t(i) and `
c
t(i) denote the unclipped and clipped loss of

the action i respectively. Assuming the unclipped losses are observed by the player, then F is

the sigma field generated by the unclipped losses, and St(it) is the set of actions whose losses

are observed at time t, following the selection of it, according to the feedback graph Gt. The

observed sequence of unclipped losses will be referred as `o1:T . Additionally, F ′ is the sigma

field generated by the clipped losses, for all t ∈ [T ], `′t(i) where i ∈ St(it), and the observed

sequence of clipped losses will be referred as `′o1:T . By definition, F ′ ⊆ F .

Let i1, . . . , iT be the sequence of actions selected by a player over the time horizon T .

Then, the regret Rc of the player corresponding to clipped loses is

Rc =
T∑
t=1

`ct(it) + c ·Ms − min
i∈[K]

T∑
t=1

`ct(i), (5.19)

whereMs is the number of switches in the action selection sequence i1, . . . , iT , and c is the cost

of each switch in action. Now, we define the regret R which corresponds to the unclipped loss

function in Algorithm 1 as following

R =
T∑
t=1

`t(it) + c ·Ms − min
i∈[K]

T∑
t=1

`t(i). (5.20)

Using [49, Lemma 4], we have

P
(
For all t ∈ [T ],

1

2
+Wt ∈

[
1

6
,
5

6

])
≥ 5

6
. (5.21)
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Thus, for all T > max{β(G1:T ), 6}, we have ε1 = ε2 < 1/6. If B = {For all t ∈ [T ] :

1/2 + Wt ∈ [1/6, 5/6]} occurs and ε1 = ε2 < 1/6, then for all i ∈ [K], `ct(i) = `t(i) which

implies Rc = R (see (5.19) and (5.20)). Now, if the event B does not occur, then the losses at

any time t satisfy

`t(i)− `ct(i) ≤ (ε1 + ε2).

Therefore, we have

c ·Ms ≤ Rc ≤ R ≤ c ·Ms + (ε1 + ε2)T.

Now, for T > max{β(G1:T ), 6}, we have

E[R]− E[Rc] = (1− P(B))E[R−Rc|B does not occur] ≤ (ε1 + ε2)T

6
. (5.22)

Thus, (5.22) lower bounds the actual regret Rc in terms of regret R. Now, we derive the lower

bound on regret R corresponding to the unclipped loses. Using the definition of R, we have

E[R] = max
i∈[K]

E[
T∑
t=1

`t(it)−
T∑
t=1

`t(i)] + E[Ms]

=
1

β(G1:T )

β(G1:T )∑
i=1

Ei[
T∑
t=1

`t(it)− min
i∈[K]

T∑
t=1

`t(i)] + E[Ms]

=
1

β(G1:T )

β(G1:T )∑
i=1

Ei

[ ∑
j∈I(G1:T )\{i}

Tj

2
+

(
1

2
− ε1

)
Ti +

(
1

2
+ ε2

)
T∆−

(
1

2
− ε1

)
T

]
+E[Ms]

=
1

β(G1:T )

β(G1:T )∑
i=1

Ei

[
β(G1:T )∑
j=1

1

2
Tj +

(
1

2
+ ε2

)
T∆ − ε1Ti −

(
1

2
− ε1

)
T

]
+ E[Ms]

(a)
=

1

β(G1:T )

β(G1:T )∑
i=1

Ei

[
ε2T∆ + ε1(T − Ti)

]
+ E[Ms]

(b)

≥ ε1

(
T − 1

β(G1:T )

β(G1:T )∑
i=1

Ei

[
Ti

]
+ E

[
T∆

])
+ E[Ms],

(5.23)

where (a) follows from the fact that
∑β(G1:T )

j=1 Tj + T∆ = T , and (b) follows from ε1 = ε2.
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Now, we upper bound the term Ei

[
Ti

]
in (5.23) to obtain the lower bound on the expected

regret E[R]. Since the player is deterministic, the event {it = i} is F ′ measurable. Therefore,

we have

Pi(it = i)− P0(it = i) ≤ dF
′

TV (P0, Pi)
(a)

≤ dFTV (P0, Pi), (5.24)

where dFTV (P0, Pi) = supA∈F |P0(A)− Pi(A)| is the total variational distance between the two

probability measures, and (a) follows from F ′ ⊆ F . Summing the above equation over t ∈ [T ]

and i ∈ I(G1:T ) yields

β(G1:T )∑
i=1

(
Ei[Ti]− E0[Ti]

)
≤ T

β(G1:T )∑
i=1

dFTV (P0, Pi). (5.25)

Rearranging the above equation and using
∑β(G1:T )

i=1 E0[Ti] = E0[
∑β(G1:T )

i=1 Ti] = T , we have

β(G1:T )∑
i=1

Ei[Ti] ≤ T

β(G1:T )∑
i=1

dFTV (P0, Pi) + T. (5.26)

Combining the above equation with (5.23), we have

E[R]

≥ ε1T −
ε1T

β(G1:T )

β(G1:T )∑
i=1

dFTV (P0, Pi)−
ε1T

β(G1:T )
+

ε1
β(G1:T )

β(G1:T )∑
i=1

Ei

[
T∆

]
+ E[Ms]

(a)

≥ ε1T

2
− ε1T

β(G1:T )

β(G1:T )∑
i=1

dFTV (P0, Pi) + ε1E
[
T∆

]
+ E[Ms], (5.27)

where (a) uses the fact that β(G1:T ) > 1. Next, we upper bound the second term in the right

hand side of (5.27). Using Pinsker’s inequality, we have

dFTV (P0, Pi) ≤
√

1

2
DKL(P0(`o1:T )||Pi(`o1:T )), (5.28)

where `o1:T are the losses observed by the player over the time horizon T . Using the chain rule of
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relative entropy to decompose DKL(P0(`
o
1:T )||Pi(`

o
1:T )), we get

DKL(P0(`
o
1:T )||Pi(`

o
1:T )) =

T∑
t=1

DKL(P0(`
o
t |`o1:t−1)||Pi(`

o
t |`o1:t−1))

=
T∑
t=1

DKL(P0(`
o
t |`oρ∗(t))||Pi(`

o
t |`oρ∗(t))), (5.29)

where ρ∗(t) is the set of time instances 0 ≤ k ≤ t encountered when operation ρ(.) in Algorithm

1 is applied recursively to t. Now, we deal with each term DKL(P0(`
o
t |`oρ∗(t))||Pi(`

o
t |`oρ∗(t))) in

the summation individually. For i ∈ I(G1:T ), we separate this computation into four cases:

it is such that loss of action i is observed at both time instances t and ρ(t) i.e. i ∈ St(it) and

i ∈ St(iρ(t)); it is such that loss of action i is observed at time instance t but not at time instance

ρ(t) i.e. i ∈ St(it) and i /∈ St(iρ(t)); it is such that loss of action i is not observed at time instance

t but is observed at time instance ρ(t) i.e. i /∈ St(it) and i ∈ St(iρ(t)); it is such that loss of action

i is not observed at both time instances t and ρ(t) i.e. i /∈ St(it) and i /∈ St(iρ(t)).

Case 1: Since the loss of action i is observed from the independent sequence set I(G1:T )

at both the time instances, the loss distribution for the action i is `ot (i)|`oρ∗(t) ∼ N (`ρ(t)(i), σ
2) for

both P0 and Pi. For all j ∈ I(G1:T )\{i}, the loss distribution is `ot (j)|`oρ∗(t) ∼ N (`ρ(t)(i)+ε1, σ
2)

under both P0 and Pi. For all j ∈ [K]\I(G1:T ), the loss distribution is `
o
t (j)|`oρ∗(t) ∼ N (`ρ(t)(i)+

ε1 + ε2, σ
2) under both P0 and Pi.

Case 2: The loss of action i is observed from the independent sequence set I(G1:T )

at time instance t but not at ρ(t). Let k′ ∈ I(G1:T )\{i} be the action from the independent

sequence set which was observed at time instance ρ(t). Then, the loss distribution for the action i

is `ot (i)|`oρ∗(t) ∼ N (`ρ(t)(k
′), σ2) under P0, and `

o
t (i)|`oρ∗(t) ∼ N (`ρ(t)(k

′)− ε1, σ
2) under Pi. For

all j ∈ I(G1:T )\{i}, the loss distribution is `ot (j)|`oρ∗(t) ∼ N (`ρ(t)(k
′), σ2) under both P0 and Pi.

For all j ∈ [K]\I(G1:T ), the loss distribution is `
o
t (j)|`oρ∗(t) ∼ N (`ρ(t)(k

′) + ε2, σ
2) under both

P0 and Pi. If no such k′ exists, then there exists a k ∈ [K]\I(G1:T ) that was observed at ρ(t).

Then, the loss distribution for the action i is `ot (i)|`oρ∗(t) ∼ N (`ρ(t)(k) − ε2, σ
2) under P0, and
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`ot (i)|`oρ∗(t) ∼ N (`ρ(t)(k)− ε1 − ε2, σ
2) under Pi. For all j ∈ I(G1:T )\{i}, the loss distribution

is `ot (j)|`oρ∗(t) ∼ N (`ρ(t)(k) − ε2, σ
2) under both P0 and Pi. For all j ∈ [K]\I(G1:T ), the loss

distribution is `ot (j)|`oρ∗(t) ∼ N (`ρ(t)(k), σ
2) under both P0 and Pi.

Case 3: The action i is observed from the independent sequence set I(G1:T ) at time

instance ρ(t) but not at t. Then, `ot (i)|`oρ∗(t) ∼ N (`ρ(t)(i), σ
2) under both P0 and Pi. Let k

′ ∈

I(G1:T )\{i} be the action from the independent sequence set which was observed at time

instance t. Then, the loss distribution for the arm k′ is `ot (k
′)|`oρ∗(t) ∼ N (`ρ(t)(i), σ

2) under P0,

and `ot (k
′)|`oρ∗(t) ∼ N (`ρ(t)(i) + ε1, σ

2) under Pi. For all j ∈ [K]\I(G1:T ), the loss distribution

is `ot (j)|`oρ∗(t) ∼ N (`ρ(t)(i) + ε1 + ε2, σ
2) under both P0 and Pi.

Case 4: The loss of i is not observed at ρ(t) and t. Then the distribution of all action

[K]\{i} is same under both P0 and Pi.

Therefore, we have

DKL(P0(`
o
t |`oρ∗(t))||Pi(`

o
t |`oρ∗(t)))

≤ P0(i ∈ St(it), i /∈ Sρ(t)(iρ(t))) ·DKL(N (0, σ2)||N (−ε1, σ2))

+ P0(i /∈ St(it), i ∈ Sρ(t)(iρ(t))) ·DKL(N (0, σ2)||N (ε1, σ
2))

=
ε21
2σ2

P0(Bt), (5.30)

where Bt = {i ∈ St(it), i /∈ Sρ(t)(iρ(t)) ∪ i /∈ St(it), i ∈ Sρ(t)(iρ(t))}. The event Bt implies that

at least one of the following events are true:

(i) The player has switched at least once between the feedback systems St(k1) and Sρ(t)(k2) such

that i ∈ St(k1) but i /∈ Sρ(t)(k2) or vice-versa.

(ii) The player did not change the selection of action, however, the feedback system has changed

between ρ(t) and t such that i has become observable or vice versa. This can occur only if the

fixed action belongs to [K] \ I(G1:T ).

Let Ni be the number of times a player switches from the feedback system which includes i to

the feedback system which does not include i and vice-versa. Then, using (5.29) and (5.30), we
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have

DKL(P0(`
o
1:T )||Pi(`

o
1:T )) ≤

ε21ω(ρ)

σ2
E0[Ni + T∆], (5.31)

where ω(ρ) is the width of process ρ(.) (see Definition 2 in [49]) and is bounded above by

2 log2(T ). Combining (5.28) and (5.31), we have

sup
A∈F

(P0(A)− Pi(A)) ≤
ε1
σ

√
log2(T )E0[Ni + T∆]. (5.32)

IfMs ≥ ε1T , then E[R′] > ε1T . Thus, the claimed lower bound follows. Now, let us assume

Ms ≤ ε1T . For all i ∈ I(G1:T ), we have

E0[Ms]− Ei[Ms] =

bε1T c∑
m=1

P0(Ms ≥ m)− Pi(Ms ≥ m))

≤ ε1T · dFTV (P0,Pi). (5.33)

Using the above equation, we have

E0[Ms]− E[Ms] =
1

β(G1:T )

β(G1:T )∑
i=1

(E0[Ms]− Ei[Ms])

≤ ε1T

β(G1:T )

β(G1:T )∑
i=1

dFTV (P0,Pi). (5.34)
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Now, combining (5.22), (5.27), (5.32)and (5.34), we obtain

E[R′] ≥ ε1T

6
− ε1T

β(G1:T )

β(G1:T )∑
i=1

ε1
σ

√
log2(T )E0[Ni + T∆] + ε1E

[
T∆

]
+ c · E0[Ms]

(a)

≥ ε1T

6
− ε21T

σ
√

β(G1:T )

√
2 log2(T )E0[Ms + T∆] + ε1E

[
T∆

]
+ c · E0[Ms]

(b)

≥ ε1T

6
− ε41T

2 log2(T )

c · σ2β(G1:T )
+ ε1E

[
T∆

]
+ c ·

(
ε41T

2 log2(T )

2c2 · σ2β(G1:T )
− E0

[
T∆

])
≥ c1/3β(G1:T )

1/3T 2/3

54 log2(T )
− 4c1/3β(G1:T )

1/3T 2/3

162 log2(T )
+ (ε1 − c)E0

[
T∆

]
(c)

≥ c1/3β(G1:T )
1/3T 2/3

81 log2(T )
, (5.35)

where (a) follows from the concavity of
√
x and

∑β(G1:T )
i Ni ≤ 2Ms, (b) follows from the fact

that the right hand side is minimized for
√
E0[Ms + T∆] = ε2T

√
log2(T )/2cσ

√
β(G1:T ), and

(c) follows from the assumption

T ≥ 27c log
3/2
2 (T )/β(G1:T )

2, (5.36)

which implies ε1 ≥ c. The claim of the theorem now follows.

5.8.2 Proof of Lemma 2

We have that β(G1:T ) actions are non adjacent in the entire sequence of feedback graphs

G1:T . Let 1, 2, . . . β(G1:T ) belong to the I(G1:T ). Then, the adversary selects an action uniformly

at random from the set I(G1:T ) say j, and assigns the loss sequence to action j using independent

Bernoulli random variable with parameter 0.5 − ε, where ε =
√

β(G1:T )/T ). For all i ∈

I(G1:T )/{j}, losses are assigned using independent Bernoulli random variable with parameter

0.5. For all i /∈ I(G1:T ), the losses are assigned using independent Bernoulli random variable

with parameter 1. The proof of the lemma follows along the same lines as in Theorem 5 in ([8]).
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5.8.3 Proof of Theorem 3

Proof of this theorem uses the results from Theorem 1. Since the loss sequence is

assigned independently to each sub-sequence Um wherem ∈ [M ]. Using Theorem 1, there exists

a constant bm such that

E

[
T∑
t=1

(`t(it)1(Gt ∈ Um) + cWm

]
− min

i∈Um

T∑
t=1

(`t(i)1(Gt ∈ Um)

≥ bmc
1/3β(Um)

1/3N(Um)
2/3/ log(T ), (5.37)

whereWm is number of switches performed within the sequence Um. Since

∑
m∈[M ]

Wm ≤
T∑
t=1

1(it 6= it−1),

there exist a constant b such that the expected regret of any algorithm A is at least

b c1/3
∑

m∈[M ]

β(Um)
1/3N(Um)

2/3/ logT.

5.8.4 Proof of Lemma 4

Proof. The proof follows from contradiction and is along the same lines as the proof of Theorem

4 in [49]. LetA performs at most Õ((β(G1:T )
1/2T )α) switches for any sequence of loss function

over T rounds with β +α/2 < 1. Then, there exists a real number γ such that β < γ < 1−α/2.

Then, assign c = (β(G1:T )
1/2T )3γ−2. Thus, the expected regret, including the switching cost, of

the algorithm is

Õ((β(G1:T )
1/2T )β + (β(G1:T )

1/2T )3γ−2(β(G1:T )T )
α) = õ(β(G1:T )

1/2T )γ, (5.38)
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over a sequence of losses assigned by the adversary because β < γ and α < 2− 2γ. However,

according to Theorem 1, the expected regret is at least

Ω̃(β(G1:T )
1/3(β(G1:T )

1/2T )(3γ−2)/3T 2/3) = Ω̃((β(G1:T )T )
γ). (5.39)

Hence, by contradiction, the proof of the lemma follows.

5.8.5 Proof of Theorem 5

Proof. Let t1, t2 . . . , tσ(T ) be the sequence of time instances at which the event E
t occurs during

the duration T of the game. We define {rj = tj+1−tj}1≤j≤T as the sequence of inter-event times

between the events Et. Let mas(G(1)), . . . ,mas(G(T )) denote the sequence in the decreasing

order of size of maximal acyclic graphs, i.e. mas(G(1)) (or mas(G(T ))) is the maximum (or

minimum) size of maximal acyclic graph observed in sequence G1:T = {G1, . . . GT}. Using the

definition of Et, note that rj is a random variable bounded by T 1/3c2/3/mas(G(T ))
1/3. For all

1 ≤ j ≤ σ(T ), the ratio of total weights of actions at round tj and tj+1 is

Wtj+1

Wtj

=
∑
i∈[K]

wi,tj+1

Wtj

=
∑
i∈[K]

wi,tj exp(−η`′tj+rj−1(i))

Wtj

=
∑
i∈[K]

pi,tj exp(−η`′tj+rj−1(i))

(a)

≤
∑
i∈[K]

pi,tj

(
1− η`′tj+rj−1(i) +

1

2
η2`′2tj+rj−1(i)

)

= 1− η
∑
i∈[K]

pi,tj · `′tj+rj−1(i) +
η2

2

∑
i∈[K]

pi,tj · `′2tj+rj−1(i), (5.40)
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where (a) follows from the fact that, for all x ≥ 0, e−x ≤ 1− x− x2/2. Now, taking logs on

both sides of (5.40), summing over t1, t2, . . . tσ(T ), and using log(1 + x) ≤ x for all x > −1, we

get

log
Wtσ(T )+1

W1

≤ −η
σ(T )∑
j=1

∑
i∈[K]

pi,tj · `′tj+rj−1(i) +
η2

2

σ(T )∑
j=1

∑
i∈[K]

pi,tj · `′2tj+rj−1(i). (5.41)

For all actions k′ ∈ [K], we also have

log
Wtσ(T )+1

W1

≥ log
wk′,tσ(T )+1

W1

≥ −η
σ(T )∑
j=1

`′tj+rj−1(k
′)− log(K). (5.42)

Combining (5.41) and (5.42), for all k′ ∈ [K], we obtain

σ(T )∑
j=1

∑
i∈[K]

pi,tj · `′tj+rj−1(i)−
σ(T )∑
j=1

`′tj+rj−1(k
′) ≤ log(K)

η
+

η

2

σ(T )∑
j=1

∑
i∈[K]

pi,tj · `′2tj+rj−1(i). (5.43)

Now, for all i ∈ [K], the conditional expectation of `′tj+rj−1(i) is

E
[
`′tj+rj−1(i)

∣∣∣ptj , rj] = tj+rj−1∑
t=tj

∑
k′:i∈St(k′)

pk′,tj ·
`t(i)

qi,t

=

tj+rj−1∑
t=tj

`t(i)

qi,t
·
∑

k′:i∈St(k′)

pk′,tj

=

tj+rj−1∑
t=tj

`t(i). (5.44)

Therefore, we have that for all i ∈ [K], the conditional expectation

E
[ σ(T )∑

j=1

`′tj+rj−1(i)
∣∣∣{ptj , rj}1≤j≤σ(T )]

]
=

σ(T )∑
j=1

tj+rj−1∑
t=tj

`t(i) =
T∑
t=1

`t(i). (5.45)
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Now, the expectation of second term in right hand side of (5.43) is

E

σ(T )∑
j=1

∑
i∈[K]

pi,tj · `′2tj+rj−1(i)

 = E

[
σ(T )∑
j=1

E
[ ∑

i∈[K]

pi,tj`
′2
tj+rj−1(i)|{ptj , rj}1≤j≤σ(T )

]]
(a)

≤ E

[
σ(T )∑
j=1

mas(Gtj :tj+rj−1)r
2
j

]
,

(5.46)

where mas(Gtj :tj+rj−1) = maxn∈[tj ,tj+rj−1]mas(Gn), and (a) follows from the fact that, for all

i ∈ [K] and t ≤ T , `t(i) ≤ 1, and
∑

i∈[K] pi,t/qi,t ≤ mas(Gt)[8, Lemma 10].

Now, we bound
∑σ(T )

j=1 mas(Gtj :tj+rj−1)r
2
j . We write the following optimization problem:

max
{rj}1≤j≤T

T∑
j=1

mas(Gtj :tj+rj−1)r
2
j , subject to (5.47)

T∑
j=1

rj = T,

0 ≤ rj ≤
T 1/3c2/3

mas1/3(G(T ))
.

Since the objective function is submodular and the constraints are linear, the ratio of the solution

of the greedy algorithm and the optimal solution is at most (1 − 1/e) ([163]). Therefore, the

optimal solution o∗ of the above optimization problem is

o∗ ≤
t∗∑
t=1

T 2/3mas(G(t))c
4/3

(1− 1/e)mas2/3(G(T ))
, (5.48)

where t∗ = dT 2/3c−2/3mas1/3(G(T ))e. Using (5.43), (5.44), (5.45), (5.46) and (5.48), we have

E

[
σ(T )∑
j=1

∑
i∈[K]

pi,kj

kj+rj−1∑
t=kj

`t(i)−
T∑

j=1

`t(k
′)

]

≤ log(K)

η
+

η

2

t∗∑
t=1

T 2/3c4/3mas(G(t))

(1− 1/e)mas2/3(G(T ))
. (5.49)
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Additionally, the player switches its action only if Et is true. Thus, using (5.49) and c(i, j) = c,

for all i, j ∈ [K], we have

RA(l1:T , C) ≤
log(K)

η
+

η

2

t∗∑
t=1

T 2/3c4/3mas(G(t))

(1− 1/e)mas2/3(G(T ))
+ cE[

T∑
t=2

1(it 6= it−1)]. (5.50)

Now, we bound E[
∑T

t=2 1(it 6= it−1)]. Et
1 occurs with probability 1, and does not

contribute to any SC. Et
2 can lead to at most dT 2/3c−2/3mas1/3(G(T ))e switches. Now, let Et

3

causes NT switches. Then, we have

E[NT ]

= E

σ(T )∑
j=1

1(itj+1
6= itj , E

tj
3 is true)


= E

[
σ(T )∑
j=1

E
[
1(itj+1

6= itj , E
tj
3 is true)

∣∣∣∣{ptj , rj}1≤j≤σ(T )

]]

≤ E

[
σ(T )∑
j=1

E
[ ∑

i∈[K],
k′∈[K]\{i}

P(itj = i
∣∣Etj

3 is true)P(itj+1
= k′∣∣itj = i)

∣∣∣∣{ptj , rj}1≤j≤σ(T )

]]

= E
[ σ(T )∑

j=1

∑
i∈[K],k′∈[K]\{i}

pi,tjpk′,tj+1

]
(a)

≤
T∑
t=1

c−2/3mas1/3(G(T ))t
−1/3 = c−2/3mas1/3(G(T ))T

2/3, (5.51)

where (a) follows from Lemma 20 in this section. Thus, the number of switches are bounded

above by 2c−2/3mas1/3(G(T ))T
2/3, and the SC is 2c1/3mas1/3(G(T ))T

2/3.

Part (iii) of the theorem follows by combining the results from (i) and (ii). Part (iv)

follows from the fact that if Gt is undirected, mas(Gt) = α(Gt).

Lemma 20. Given i ∈ [K] is chosen at time instance tj , for all k
′ ∈ [K]\{i}, we have

pi,tj · pk′,tj+1
≤ (tj+1)

−1/3.
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Proof. Given i is chosen at time instance tj , for all k
′ ∈ [K]\{i}, we have

pk′,tj+1

pi,tj+1

=
pk′,1 exp(−η ˆ̀tj+1

(k′))

pi,tj exp(−η`′tj+rj−1(i))

(a)
=

pk′,1 exp(−η(ˆ̀tj(k′) + `′tj+rj−1(k
′)))

pi,tj exp(−η`′tj+rj−1(i))

(b)

≤
exp

(
− η(ˆ̀tj(k

′) + `′tj+rj−1(k
′)− `′tj+rj−1(i))

)
pi,tj

(c)

≤
exp

(
− η(εtj+1

/η)
)

Kpi,tj

=
exp

(
− εtj+1

)
pi,tj

, (5.52)

where (a) follows from the fact that ˆ̀tj+1
(k′) = ˆ̀

tj(k
′) + `′tj+rj−1(k

′); (b) follows from pk′,1 =

1/K; (c) follows from the fact that for all k ∈ [K]\{i}, ˆ̀k,t−1 − `′i,t−1 > εt/η as the increment

in `′i,t−1 is bounded by 1/qi,t−1. Now, replacing εt ≥ log(tc2/mas(G(T )))/3 in (5.52), we have

pi,tj · pk′,tj+1
≤ c−2/3mas1/3(G(T ))t

−1/3
j+1 . (5.53)

5.8.6 Proof of Theorem 6

Proof. We borrow the notations from the proof of Theorem 5. Using the fact that ηt is decreasing

in t and (5.43), we have

σ(T )∑
j=1

∑
i∈[K]

pi,tj · `′tj+rj−1(i)− min
k′∈[K]

σ(T )∑
j=1

`′tj+rj−1(k
′)

≤ log(K)

ηT
+

σ(T )∑
j=1

ηtj
2

∑
i∈[K]

pi,tj · `′2tj+rj−1(i). (5.54)
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Now, taking expectation on both the sides and using the fact that expectation of the min(.) is

smaller than the min(.) of the expectation, we have

E

[
σ(T )∑
j=1

∑
i∈[K]

pi,tj · `′tj+rj−1(i)

]
− min

k′∈[K]
E

[
σ(T )∑
j=1

`′tj+rj−1(k
′)

]

≤ log(K)

ηT
+ E

[
σ(T )∑
j=1

ηtj
2
εtjE

[ ∑
i∈[K]

pi,tj · `′2tj+rj−1(i)|ptj , rj, 1(it is selected using pt)

]]
(a)

≤ log(K)

ηT
+ E

[
σ(T )∑
j=1

ηtj
2
εtjE[mas(Gtj :tj+rj−1)r

2
j |1(it is selected using pt)]

]
(b)

≤ log(K)

ηT
+ E

[
σ(T )∑
j=1

ηtj
2
εtj

2 ·mas(Gtj :tj+rj−1)

ε2tj

]

=
log(K)

ηT
+ E

[
σ(T )∑
j=1

ηtj
2

2 ·mas(Gtj :tj+rj−1)

εtj

]
(c)

≤ log(K)

ηT
+ E

[
σ(T )∑
j=1

2 log(K)

mas2/3(G(T ))
mas(G(j))

]
(d)

≤ log(K)

ηT
+

E[σ(T )]∑
j=1

2 log(K)

mas2/3(G(T ))
mas(G(j)),

(5.55)

where (a) follows from (5.46), (b) follows from the fact that since the probability of selecting

a new action is at most εtj , the mean and the variance of the geometric random variable rj is

bounded by 1/ε2tj and (1 − εtj)/ε
2
tj
respectively, (c) follows from the value of ηt and εt, and

(d) follows from the fact that mas(G(j))/mas(G(T )) is a monotonic non increasing sequence in

j, therefore the summation is a concave function and the inequality follows from the Jensen’s

inequality.

Now, we bound the E[σ(T )] in (5.55). This also gives a bound on the number of switches
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performed by the algorithm. We have

E[σ(T )] =
T∑
t=1

E[1(it 6= it−1)]

≤
T∑
t=1

εt

≤ 0.5mas1/3(G(T ))T
2/3c1/3. (5.56)
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Chapter 6

Attacks and Security of Multi-Armed Ban-

dits

6.1 Introduction

Multi Armed Bandits (MAB) algorithms are often used in web services [2, 129], sensor

networks [212], medical trials [21, 180], and crowdsourcing systems [174]. The distributed

nature of these applications makes these algorithms prone to third party attacks. For example, in

web services decision making critically depends on reward collection, and this is prone to attacks

that can impact observations and monitoring, delay or temper rewards, produce link failures,

and generally modify or delete information through hijacking of communication links [2] [37].

Making these systems secure requires an understanding of the regime where the systems can

be attacked, as well as designing ways to mitigate these attacks. In this paper, we study both of

these aspects in a stochastic MAB setting.

We consider a data poisoning attack, also referred as man in the middle (MITM) attack.

In this attack, there are three agents: the environment, the learner (MAB algorithm), and the

attacker. At each discrete time-step t, the learner selects an action it among K choices, the

environment then generates a reward rt(it) ∈ [0, 1] corresponding to the selected action, and

attempts to communicate it to the learner. However, an adversary intercepts rt(it) and can

contaminate it by adding noise εt(it) ∈ [−rt(it), 1− rt(it)]. It follows that the learner observes

the contaminated reward rot (it) = rt(it) + εt(it), and r
o
t (it) ∈ [0, 1]. Hence, the adversary acts
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as a “man in the middle” between the learner and the environment. We present an upper bound

on both the amount of contamination, which is the total amount of additive noise injected by the

attacker, and the number of attacks, which is the number of times the adversary contaminates

the observations, sufficient to ensure that the regret of the algorithm is Ω(T ), where T is the

total time of interaction between the learner and the environment. Additionally, we establish that

this upper bound is order-optimal by providing a lower bound on the number of attacks and the

amount of contamination required by a specific algorithm to suffer regret Ω(T ).

A typical way to protect a distributed system from a MITM attack is to employ a secure

channel between the learner and the environment [14, 202, 36]. These secure channels ensure the

CIA triad: confidentiality, integrity, and availability [72, 53, 76]. Various ways to establish these

channels have been explored in the literature [14, 202, 81, 36]. An alternative way to provide

security is by auditing, namely perform data verification [104]. Establishing a secure channel or

an effective auditing method is generally costly [202]. Hence, it is crucial to design algorithms

that achieve security, namely the performance of the algorithm is unaltered in presence of attack,

while limiting the usage of these additional resources.

Motivated by these observations, we consider a reward verification model in which the

learner can access verified (i.e. uncontaminated) rewards from the environment. This verified

access can be implemented through a secure channel between the learner and the environment, or

using auditing. At any round t, the learner can decide whether to access the possibly contaminated

reward rot (it) = rt(it)+ εt(it), or to access the verified reward r
o
t (it) = rt(it). Since verification

is costly, the learner faces a tradeoff between its performance in terms of regret, and the number

of times access to a verified reward occurs. Second, the learner needs to decide when to access

a verified reward during the learning process. We design an order-optimal bandit algorithm

which strategically plans the verification, and makes no assumptions on the attacker’s strategy or

capabilities.
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6.2 Contributions

Our first contribution is a tight characterization of the regret-contamination trade-off in

poisoning attacks. We show that for any α ≥ 1 and any bandit algorithm, if the expected regret

of an algorithm in the absence of attacks is O((logT )α), then there exists an attack that uses

O((logT )α) expected amount of contamination and is successful, namely it forces the algorithm

to suffer Ω(T ) regret.

In the absence of attacks, it is known that the order optimal regret for any bandit algorithm

is O(logT ) (see e.g. [16]). It then follows letting α = 1 in our results that any bandit algorithm

achieving order optimal regret can be forced to sufferΩ(T ) regret by injectingO(logT ) expected

amount of contamination. In this case, we also show that our upper bound O(logT ) on the

expected amount of contamination for a successful attack is tight. Namely, we show that there

exists an order optimal algorithm, the classical Upper Confidence Bound (UCB) algorithm,

which requires at least Ω(logT ) amount of contamination to be attacked successfully. Our

results complement recent works on poisoning attacks on bandit algorithms with unbounded

rewards [135, 97, 253]. In this case, an Θ(
√
logT ) amount of contamination has been recently

proved to be order-optimal to carry a successful attack [253]. Compared to our results, the

main difference is that when rewards are unbounded the contamination at a single round can be

arbitrarily large, and can have an indefinite effect [253]. In contrast, in our setting of bounded

rewards the contamination at each round is also bounded, and the attack on a single round has a

limited effect.

Our second contribution is to propose a novel algorithm, called Secure-Upper Confidence

Bound (Secure-UCB) — a variant of the classical UCB, that overcomes poisoning attacks

using verification. We show that the regret of Secure-UCB is O(logT ) irrespective of the

adversary’s strategy. Additionally, since verification is costly, we show that the expected number

of verifications performed by Secure-UCB is O(logT ). Finally, we show that Ω(logT ) number

of verifications are necessary for any algorithm to have O(logT ) regret irrespective of the
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adversary’s strategy. Therefore, Secure-UCB is order-optimal in terms of both the expected

regret and the expected number of verifications. We also note that in the absence of verification,

any bandit algorithm that is attacked with an amount of contamination bounded by C, must

experience a regretΩ(C), see, e.g., [139, 27] for more details. Our algorithm can break the barrier

of this lower bound and obtain a regret O(logT ), irrespective of the amount of contamination C,

by using verification in an optimal way.

6.3 Related Work

TheMITM attack has been previously studied in a stochasticMAB setting with unbounded

rewards [97, 135, 253]. The work in [97] focuses on two bandits algorithms, UCB and ε-

greedy, and shows that these algorithms can be successfully attacked using O(logT ) amount

of contamination. The work in [135] consider both online and offline MITM attacks. In the

online setting, it shows that any order-optimal bandit algorithm can be attacked in O(logT )

amount of contamination. Recently, [253] shows that the adversary needs Θ(
√
logT ) amount

of contamination to successfully attack the UCB algorithm. It is worthwhile to compare our

results developed in a bounded reward setting to the ones in [253] developed in unbounded

reward setting. There is an interesting contrast between the lower bounds in the two settings.

This can be explained as follows. In the unbounded reward setting, the contamination at each

round could be arbitrarily large. Therefore, the attack can drag the reward of any action to an

arbitrarily negative value [253]. In contrast, in our bounded reward setting, the contamination at

each round is bounded. It follows that each contamination has limited effect and hence it is more

difficult for the attacker to be successful.

Extending the work in [97, 135], the MITM attack has also been studied in linear con-

textual bandits, and in this case O(logT ) amount of contamination is sufficient to successfully

attack the LinUCB algorithm [69]. A study regarding the feasibility of a successful attack has

been performed in [141] for contextual bandits. Recently, in [236], considers a MITM attack in
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the context of adversarial bandits. It shows that the regret of any bandit algorithm can be Ω(T )

in the presence of o(T ) contamination.

Other variants of MITM attack have also been considered. The work in [136] considers

action-manipulation attacks where an adversary can manipulate the action of the learner instead

of the rewards, and shows that O(logT ) manipulations are sufficient to successfully attack the

UCB algorithm. The work [63] studies a special case of data poisoning attacks where each action

of the algorithm introduces contamination in its own observation, and the algorithm unaware of

the contamination introduced by other actions.

We also point out that our attacker’s model significantly differs from the attacks consid-

ered by recent works on robust stochastic bandit algorithms [139, 78]. The attacker in [139, 78]

has to prepare the attack observations before the action it is selected, and the contamination at

each round t is the largest manipulation over the actions, irrespective of the selected action. In

this model of weak attack, it is indeed possible to design robust stochastic bandit algorithms that

achieve sub-linear regret if the total amount of contamination is o(T ). The adversarial attack

model we consider is better aligned with the recent line of research on adversarial attacks on

stochastic bandits [97, 135]. In this case, the attack occurs after the action it is selected by the

algorithm. This subtle difference turns out to make the attacker significantly more powerful,

as we show that any O(logT )-regret stochastic algorithms will suffer Ω(T ) regret with at most

O(logT ) expected amount of contamination.1 The design of robust algorithms in [139, 78] has

been extended to episodic reinforcement learning and learning product ranking [140, 73].

More recently, [27] considers a strong attacker model similar to ours in the linear bandit

setting with contextual features, and designs robust bandit algorithms in the presence of an amount

of contamination C, whose instant-independent regret is O(C). In contrast, our objective is to

use limited reward verification to obtain the an instant-dependent order-wise optimal O(logT )

regret that is independent of the amount of contamination C. It is worth noting that their robust

algorithm crucially relies on the assumption that the amount of contamination is almost surely

1This has also been proved in [135] for the unbounded rewards setting.
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bounded by C. In our work, the amount of contamination is bounded only in expectation (see

Section 6.7 for a detailed comparison).

The adversarial attacks has been studied in supervised learning [74, 89]. Additionally,

there has been efforts towards analyzing the robustness of neural networks to these adversarial

attacks [228, 224, 218]. Finally, differential privacy is considered as a defensive mechanism

from MITM attack in supervised learning [143].

The MITM attacks has also been studied in Reinforcement Learning (RL) [142, 243, 242,

250]. These works study the feasibility of these attacks in RL, and provide an upper bound on

the attack cost, which varies with the attacker’s objective, for an attacker’s strategy. Related

to RL, these attacks have also been studied in linear control systems [152, 192, 204, 170, 182].

These works focus on detecting the attacks, develop methodologies to mitigate the attacks, and

provide both upper bound and lower bound on the attacker’s cost.

6.4 Preliminaries and Problem Statement

6.4.1 Poisoning Attacks on Stochastic Bandits

We consider the classical stochastic bandit setting under data poisoning attacks. In this

setting, a learner can choose from a set ofK actions for T rounds. At each round t, the learner

chooses an action it ∈ [K], triggers a reward rt(it) ∈ [0, 1] and observes a possibly corrupted

(and thus altered) reward rot (it) ∈ [0, 1] corresponding to the chosen action. The reward rt(i) of

action i is sampled independently from a fixed unknown distribution of action i. Let µi denote

the expected reward of action i and i∗ = argmaxi∈[K]µi.
2 Also, let ∆(i) = µi∗ − µi denote the

difference between the expected reward of actions i∗ and i. Finally, we assume that {µi}i∈[K]

are unknown to both the learner and the attacker.

The reward rot (it) observed by the learner and the true reward rt(it) satisfy the following

2For convenience, we assume i∗ is unique though all our conclusions hold when there are multiple optimal
actions.
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relation

rot (it) = rt(it) + εt(it), (6.1)

where the contamination εt(it) added by the attacker can be a function of {in}tn=1 and {rn(in)}tn=1.

Additionally, since rot (it) ∈ [0, 1], we have that εt(it) ∈ [−rt(it), 1− rt(it)]. If εt(it) 6= 0, then

the round t is said to be under attack. Hence, the number of attacks is
∑T

t=1 1(εt(it) 6= 0) and

the amount of contamination is
∑T

t=1 |εt(it)|.

The regret RA(T ) of a learning algorithm A is the difference between the total expected

true reward from the best fixed action and the total expected true reward over T rounds, namely

RA(T ) = Tµi∗ − E[
T∑
t=1

rt(it)], (6.2)

The objective of the learner is to minimize the regret RA(T ). In contrast, the objective of the

attacker is to increase the regret to at leastΩ(T ). As a convention, we say the attack is “successful”

only when it leads to Ω(T ) regret [97, 135]. The first question we address is the following.

Question 1: Is there a tight characterization of the amount of contamination and the number of

attacks leading to a regret of Ω(T ) in stochastic bandits?

6.4.2 Remedy via Limited Reward Verification

It is well known that no stochastic bandit algorithm can be resilient to data poisoning

attacks if the attacker has sufficiently large amount of contamination [135]. Therefore, to

guarantee sub-linear regret when the attacker has an unbounded amount of contamination it is

necessary for the bandit algorithm to exploit additional (and possibly costly) resources. We

consider one of the most natural resource — verified rewards. Namely, we assume that at any

round t, the learner can choose to access the true, uncontaminated reward of the selected action it,

namely, when round t is verified we have rot (it) = rt(it). This process of accessing true rewards

is referred to as verification. If the learner performs verification at each round, then it is clear

that the regret of any bandit algorithm is unaltered in the presence of attacker. Unfortunately,

196



this is unrealistic because verification is costly in practice. Therefore, the learner has to carefully

balance the regret and the number of verifications. This naturally leads to the second question

that we aim to answer in this paper:

Question 2: Is there a tight characterization of the number of verifications needed by the learner

to guarantee the optimal O(logT ) regret for any poisoning attack?

In this paper we answer both the above questions in the affirmative.

6.5 Tight Characterization for the Cost of Poisoning Attack

on Stochastic Bandits

We now design a data poisoning attack that with O(logT ) expected number of attacks

leads to Ω(T ) regret for any order-optimal bandit algorithm, namely the algorithm which has

O(logT )-regret in the absence of attack. Since rot (it) ∈ [0, 1], this also implies that the attack

would require at mostO(logT ) expected amount of contamination. Moreover, we show that both

the expected number of attacks O(logT ) and the expected amount of contamination O(logT )

are order-wise optimal. Specifically, there exists an order-optimal stochastic bandit algorithm

(the UCB algorithm) which cannot be successfully attacked with o(logT ) expected amount of

contamination (or equivalently with o(logT ) expected number of attacks ). The key technical

aspect of this section lies in our second result showing that any poisoning attack must use at least

Ω(logT ) amount of contamination in order to force UCB to suffer Ω(T ) regret. En route, we

prove an novel “convervativeness” property of the UCB algorithm which may be of independent

interest.

6.5.1 Upper Bound on the Contaminations

We consider an attack where the attacker tries to ensure that a sub-optimal action iA 6= i∗

will be selected by the bandit algorithm at least Ω(T ) times in expectation. As a consequence,

this would imply that the expected regret of the bandit algorithm is Ω(T ). It suffices to consider

the following simple attack, which pulls the observed reward down to 0 whenever the target
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suboptimal action iA is not selected. Namely,

rot (it) =


rt(it) if it = iA,

0 if it 6= iA.

(6.3)

Equivalently, the attacker adds εt(it) = −rt(it)1(it 6= iA) to the true reward rt(it). Unlike the

attacks in [97, 135], the attack in (6.3) can also be considered oblivious, since it overwrites the

rewards observation by zero irrespective of rt(it). The following proposition establishes an upper

bound on the expected number of attacks sufficient to be successful.

Proposition 1. For any stochastic bandit algorithm A with expected regret in the absence of

attack given by

RA(T ) = O

(∑
i 6=i∗

logα(T )

(∆(i))β

)
, (6.4)

where α ≥ 1 and β ≥ 1; and for any sub-optimal target action iA ∈ [K] \ i∗; if an attacker

follows strategy (6.3), then it will use an expected number of attacks

E[
T∑
t=1

1(εt(it) 6= 0)]] = O

(
(K − 1) logα(T )

µβ+1
iA

)
, (6.5)

and it will forceA to select the action iA at leastΩ(T ) times in expectation, namelyE[
∑T

t=1 1(it =

iA)] = Ω(T ).

Proposition 1 provides a relationship between the regret of the algorithm without at-

tack and the number of attacks sufficient to ensure that the target action iA is selected Ω(T )

times, which also implies RA(T ) = Ω(T ). Additionally, since εt(it) ≤ 1, we have that using

(6.5), the expected amount of contamination is O((logT )α) as well, namely E[
∑T

t=1 |εt(it)|] =

O((logT )α). In (6.5), the number of attacks is inversely proportional to the mean µiA of the

target action. This is because the reward observation of all other actions i 6= iA are zero, and iA

is the optimal action for the algorithm, which implies that ∆(i) in (6.4) equals µiA for all i 6= iA
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during the attack. Another important consequence of the proposition is that for an order optimal

algorithm such as UCB, we have that α = 1 and β = 1 in (6.4). Thus, the expected number of

attacks and the expected amount of contamination are O(logT ).

A small criticism to the attack strategy (6.3) might be that it pulls down the reward “too

much”. This turns out to be fixable. In Appendix 6.11.2, we prove that a different type of attack

that pulls the reward of any action i 6= iA down by an estimated gap ∆ = 2max{µi − µiA , 0}

(similar to the ACE algorithm in [141]) will also succeed. However, the number of attacks now

will be inversely proportional to mini 6=iA |µi − µiA|β+1, while not µβ+1
iA

as in Proposition 1.

6.5.2 Matching Lower Bound on the Contaminations

We now show that the simple attack strategy analyzed in Proposition 1 is essentially

order-optimal. That is, there exists an order-optimal bandit algorithm — in fact, the classical

UCB algorithm — which cannot be attacked with o(logT ) amount of contamination by any

poisoning attack strategy. This implies that if an attacking strategy is required to be successful

for all order-optimal bandit algorithms, then the amount of contamination needed is at least

Ω(logT ). Since the amount of contamination is bounded above by the number of attacks, this

also implies that any attacker requires at least Ω(logT ) number of attacks to be successful.

Here we briefly describe the well-known UCB algorithm [16], and defer its details to

Algorithm 11. At each round t ≤ K, UCB selects an action in round robin manner. At each

round t > K, the selected action it has the maximum upper confidence bound, namely

it = argmaxi∈[K]

(
µ̂t−1(i) +

√
8 log t

Nt−1(i)

)
, (6.6)

where Nt(i) =
∑t

n=1 1(in = i) is the number of rounds action i is selected until (and including)

round t, and

µ̂t(i) =

∑t
n=1 r

o
n(in)1(in = i)

Nt(i)
, (6.7)

is the empirical mean of action i until round t. Note that the algorithm uses the observed rewards.
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Algorithm 11. (Classical) Upper Confidence Bound

For all i ∈ [K], initialize µ̂0(i) = 0, N0(i) = 0.
for t ≤ K do

Choose action it = t, and observe rt(it).
Update µ̂t(it) = rot (it), Nt(it) = Nt−1(it) + 1
For all i 6= it, µ̂t(i) = µ̂t−1(i), Nt(i) = Nt−1(i).

end for

forK + 1 ≤ t ≤ T do

Choose action it such that

it = argmaxi∈[K]

[
µ̂t−1(i) +

√
8 log t

Nt−1(i)

]
. (6.8)

Update Nt(it) = Nt−1(it) + 1, and

µ̂t(it) =
µ̂t−1(it) ·Nt−1(it) + rot (it)

Nt−1(it) + 1
. (6.9)

For all i ∈ [K] \ it, µ̂t(i) = µ̂t−1(i) and Nt(i) = Nt−1(i).
end for

The following Theorem 23 establishes that the UCB algorithm will have sublinear regret

o(T ) under any poisoning attack if the amount of contamination is o(logT ). The proof of

Theorem 23 crucially hinges on the following “conservativeness” property about the UCB

algorithm, which might be of independent interest.

Lemma 21 (Conservativeness of UCB). Let t0 be such that t0/(log(t0))
2 ≥ 36K2. Then for all

t ≥ t0 and any sequence of rewards {ron(i)}i∈[K],n≤t in [0, 1] (can even be adversarial), UCB

will select every action at least log(t/2) times up until round t.

Lemma 21 is inherently due to the design of the UCB algorithm. Its proof does not rely

on the rewards being stochastic, and it holds deterministically — i.e., at any time t ≥ t0, UCB

will pull each action at least log(t/2) times. This lemma leads to the following theorem.

Theorem 23. For all 0 < ε < 1 and α > 0 such that 0 < εα ≤ 1/2, and for all T >
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max{(t0)
1

1−αε , exp (4α)}, if the total amount of contamination by the attacker is

T∑
n=1

|εn(in)| ≤ (logT )1−ε, (6.10)

then there exists a constant c1 such that the expected regret of UCB algorithm is

RUCB(T ) ≤ c1
(
T 1−αεmax

i
∆(i) +

∑
i 6=i∗

logT/∆(i)
)
. (6.11)

The constant α in Theorem 23 is an adjustable parameter to control the tradeoff be-

tween the scale of time horizon T (T ≥ max{(t0)
1

1−αε , exp (4α)}) and the dominating term

(T 1−αεmaxi∆(i)) in the regret. If ε is small, then the larger α leads to a smaller regret, however

T should be sufficiently large in order for us to see such a regret.

The upper bound on the expected regret in Theorem 23 holds if the total amount of

contamination in (6.10) is at most (logT )1−ε. Furthermore, if the total number of attacks is at

most (logT )1−ε, then using |εt(it)| ≤ 1, we have that (6.10) holds. Hence, Theorem 23 also

establishes that if the total number of attacks is o(logT ), then the expected regret of UCB is o(T ).

In other words, the attacker requires at least Ω(logT ) amount of contamination (or number of

attacks) to ensure its success.

The lower bound on the amount of contamination in Theorem 23 cannot be directly

compared with the upper bound in Proposition 1 since the former assumes that the amount of

contamination is bounded above by o(logT ) almost surely, while the latter is a bound on the

expected amount of contamination. Instead, we consider the following corollary, which can be

easily derived from Theorem 23 using Markov’s inequality, and establishes the lower bound on

the expected amount of contamination necessary for a successful attack.

Corollary 23.1. For all 0 < ε < 1 and sufficiently large T such that the conditions in Theorem 23

are satisfied, if the expected amount of contamination by the attacker is at most (logT )1−ε, then

the regret of UCB is o(T ).
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6.6 Secure Upper Confidence Bound

In this section, we propose the Secure Upper Confidence Bound (Secure-UCB) algorithm

which utilizes verification, and is robust to any data poisoning attack. Specifically, Secure-UCB

uses only O(logT ) reward verifications and exhibits O(logT ) regret, irrespective of the amount

of contamination and the number of attacks . Moreover, we prove that Ω(logT ) verifications

are necessary for any bandit algorithm to have O(logT ) regret. Therefore, Secure-UCB uses

an order-optimal number of verifications O(logT ), and guarantees the order-optimal regret

O(logT ).

The details of Secure-UCB are presented in Algorithm 12. At each round t ≤ K, Secure-

UCB selects an action i ∈ [K] in round-robin manner, verifies all the reward observations and

updates the corresponding parameters, see Algorithm 12. At each round t > K, Secure-UCB

selects an action it with the largest upper confidence bound of similar format as the classical

UCB. However, Secure-UCB differs from UCB in the following three crucial aspects:

1. The confidence interval µ̂t(i)+
√

8 log t/Nt(i) of the classical UCB algorithm depends on

the total number of rounds the action i is selected until round t, namely Nt(i). However,

in Secure-UCB, the confidence interval uses the total number of rounds the action i is

verified until round t, namely N s
t (i). Note that, like classical UCB, Secure-UCB also uses

the empirical mean µ̂t(i) of the observed rewards.

2. At each round t, Secure-UCB takes an additional step to decide whether to verify the

reward of the current action it or not, based on a carefully designed criterion.

3. If the algorithm decides to not verify the reward observation rot (it), then it will additionally

decide, based on another carefully designed criterion, whether to ignore the current unveri-

fied rewards rot (it) by not updating both the empirical mean µ̂t−1(it) and the number of

rounds the current action is selected Nt−1(it).

The first and second deviations from UCB, as described above, are to guarantee that at
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any round, the algorithm always has the correct and sufficient confidence level. This is done

through: (1) using the number of verified rewards for the confidence interval since the algorithm

is only certain about these observations; (2) dynamically requesting additional verifications as the

algorithm proceeds to guarantee the desirable confidence level. The third deviation is designed

to control the integration of unverified rewards into the empirical mean estimation so that it does

not contain too many attacked (or unverified) rewards.

Next, we give more details about the Secure-UCB algorithm. The first aspect described

above of using number of verifications in the confidence interval is easy to implement, and is

presented in (6.14). Our descriptions below are primarily focused on the second and third key

differences.

Criterion for Performing Verification.

Secure-UCB maintains a countN s
t (i) of the number of verification performed until round

t for each action i ∈ [K]. Additionally, it also maintains a “secured” empirical mean µ̂s
t(i),

which is the empirical estimate of the mean of action i using all the verified reward observations

until round t. Secure-UCB uses this mean µ̂s
t(i) in the criterion to decide whether to perform

additional verification. Specifically, it performs a verification at round t if the following criterion

holds:

N s
t−1(it) ≤ 1200 logT/∆̂∗2

t−1, (6.12)

where ∆̂∗
t is intuitively the estimation of mini 6=i∗ ∆(i), which is the difference between the largest

expected reward and the second largest expected reward. In Secure-UCB, this estimation ∆̂∗
t

is based on the verified rewards and is defined as the difference between the largest lower

confidence bound (obtained by, say action a∗t ) and the largest upper confidence bound among all

actions excluding a∗t , namely

∆̂∗
t = max

{
0, µ̂s

t (a
∗
t )−

√
3 logT

N s
t (a

∗
t )
− µ̂s

t (ãt)−

√
3 logT

N s
t (ãt)

}
, (6.13)
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where

a∗t = argmaxa∈[K]

[
µ̂s
t(a)−

√
3 logT/N s

t (a)

]
,

ãt = argmaxa∈[K]\a∗

[
µ̂s
t(a) +

√
3 logT/N s

t (a)

]
.

We show in Lemma 25 in Appendix 6.11.5 that with high probability, we have ∆̂∗
t ≤

mini 6=i∗ ∆(i). Note that, after verification, the algorithm will observe the true reward, namely

rot (it) = rt(it) at round t. Also, (6.12)- (6.13) depend on the time horizon T . This is for

convenience of our analysis — if T is unknown, the doubling trick can be used in conjunction

with Secure-UCB [24].

Criterion for Integrating Unverified Rewards into Empirical Mean.

The UCB term of Secure-UCB, presented in (6.14), relies on the empirical estimate µ̂t(i)

of the mean of action i which is estimated using all the verified reward observations and some

unverified observations of action i. Specifically, given that the reward is not verified at current

round t, namely (6.12) does not hold, the algorithm will include the unverified observation rot (i)

in the estimate µ̂t(i) if the following event St(i) occurs

St(i) =
{
Pt(i) + 1 + Lt(i) + rot (i)

Nt−1(i) + 1
≤

max{∆̂t−1(i), ∆̂
∗
t−1}

20

}
, (6.18)

where Nt(i) is the total number of observations (verified and un-verified) used to calculate

µ̂t(i), Pt(i) = Nt−1(i)−N s
t−1(i) is the total number of unverified observations used to calculate

µ̂t−1(i),

Lt(i) = µ̂t−1(i)Nt−1(i)− µ̂s
t−1(i)N

s
t−1(i), (6.19)

is the total unverified reward observations previously included in the estimate of µ̂t−1(i), and

∆̂t(i) = max
a∈[K]

{
0, µ̂s

t(a)−

√
3 logT

N s
t (a)

− µ̂s
t(i)−

√
3 logT

N s
t (i)

}
. (6.20)
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Algorithm 12. Secure Upper Confidence Bound

For all i ∈ [K], initialize µ̂0(i) = 0, N0(i) = 0, µ̂s
0(i) = 0, N s

0 (i) = 0, t = 1.
for t ≤ K do

Choose action it = t.
Verify the observed reward, i.e., rot (it) = rt(it).
Update µ̂t(it) = rt(it), Nt(it) = Nt−1(it) + 1, µ̂s

t (it) = rt(it), N
s
t (it) = N s

t−1(it) + 1.
For all i ∈ [K] \ it, µ̂t(i) = µ̂t−1(i), Nt(i) = Nt−1(i), µ̂

s
t (i) = µ̂s

t−1(i), N
s
t (i) = N s

t−1(i).
end for

For all i ∈ [K], update ∆̂K(i) in (6.20) and ∆̂∗
K in (6.13).

forK + 1 ≤ t ≤ T do

Choose action it such that

it = argmaxi∈[K]

(
µ̂t−1(i) +

√
400 logT/N s

t−1(i)
)
. (6.14)

if N s
t−1(it) ≤ 1200 logT/∆̂∗2

t−1 then

Verify the observed reward, i.e., rot (it) = rt(it).
Update Nt(it) = Nt−1(it) + 1, N s

t (it) = N s
t−1(it) + 1,

µ̂s
t (it) =

(
µ̂s
t−1(it) ·N s

t−1(it) + rt(it)
)
/
(
N s

t−1(it) + 1
)
, (6.15)

µ̂t(it) =
(
µ̂t−1(it) ·Nt−1(it) + rot (it)

)
/
(
Nt−1(it) + 1

)
, (6.16)

Update ∆̂t(i) in (6.20) and ∆̂
∗
t in (6.13), ∀i ∈ [K].

else

Observe reward rot (it).
if St(it) defined in Equation (6.18) is true then

Update Nt(it) = Nt−1(it) + 1, N s
t (it) = N s

t−1(it), µ̂
s
t (it) = µ̂s

t−1(it),
µ̂t(it) =

(
µ̂t−1(it) ·Nt−1(it) + rot (it)

)(
Nt−1(it) + 1

)
. (6.17)

else

Update µ̂t(it) = µ̂t−1(it), Nt(it) = Nt−1(it), µ̂
s
t (it) = µ̂s

t−1(it), N
s
t (it) = N s

t−1(it).
end if

end if

For all i 6= it, µ̂t(i) = µ̂t−1(i), Nt(i) = Nt−1(i), µ̂
s
t (i) = µ̂s

t−1(i), N
s
t (i) = N s

t−1(i).
end for
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Intuitively, ∆̂t(i) in (6.20) is an estimation of the gap ∆(i) = µi∗ − µi, namely the difference

between the expected reward of the optimal action i∗ and the action i. Like the estimate ∆̂∗
t in

(6.13), this estimate is also computed using only the verified mean µ̂s
t(i) and N

s
t (i). We show in

Lemma 24 in the appendix that with high probability, we have ∆̂t(i) ≤ ∆(i).

Finally, we briefly discuss the criterion described in the event St(i) in (6.18), re-stating

the criteria

Pt(i) + 1 + Lt(i) + rot (i)

Nt−1(i) + 1
≤

max{∆̂t−1(i), ∆̂
∗
t−1}

20
. (6.21)

The ratio in the left hand side of (6.21) represents the contribution of the unverified reward

observations and their count to the empirical mean µ̂t(i) relative to the total number of (verified

and un-verified) observations considered. This relative contribution is required to be less than

max{∆̂t−1(i), ∆̂
∗
t−1}/20 for a new un-verified reward observation to be considered in µ̂t(i). This

implies that if the number of verified observations is large, then the new unverified observations

can be considered in µ̂t(i), and the error in the estimate will be small even if these unverified ob-

servations are corrupted by an adversary. Thus, the event St(i) balances the tradeoff between the

gain from utilization of information and the adversarial effects that may occur if the information

is corrupted.

Order-Optimality of Secure-UCB.

The following theorems establish the upper bound on both the regret of Secure-UCB and

the expected number of verifications performed.

Theorem 24. For all T such that T ≥ c2 logT/mini 6=i∗ ∆
2(i), Secure-UCB performs O(logT )

number of verification in expectation, and the expected regret of the algorithm is O(logT )

irrespective of the attacker’s strategy. Namely,

∑
i∈[K]

E[N s
T (i)] ≤ c3

(∑
i 6=i∗

logT/∆2(i)

)
, (6.22)
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RSUCB(T ) ≤ c4

(∑
i 6=i∗

logT/∆(i)

)
, (6.23)

where c2, c3 and c4 are numerical constants whose values can be found in the appendix.

Theorem 24 establishes that the regret of Secure-UCB in stochastic bandit setting is

O(
∑

i 6=i∗ log(T )/∆(i)) irrespective of the attacker’s strategy. This regret bound is of the same

order as the regret bound of the classical UCB algorithm without attack. This implies that

Secure-UCB is order optimal in terms of regret, and is robust to any adversary if it can selectively

verify up to O(logT ) reward observations in expectation.

We now show that the number of verifications performed by Secure-UCB is essentially

order-optimal. Specifically, the following theorem establishes that for all consistent learning

algorithm3 A and sufficiently large T , if the algorithm A uses O((logT )1−α) verifications with

0 < α < 1, then the expected regret is Ω((logT )β) with β > 1 in the MAB setting with

verification.

Theorem 25. LetKL(i1, i2) denote the KL divergence between the distributions of actions i1 and

i2. For all 0 < α < 1, 1 < β and all consistent learning algorithm A, there exists a time t∗ and

an attacking strategy such that for all T ≥ 2t∗ satisfying (logT )1−α + β log(4 logT ) ≤ logT,

if the total number of verifications N s
T until round T is

N s
T < (logT )1−α/ min

i1,i2∈[K]
KL(i1, i2), (6.24)

then the expected regret of A is at least Ω((logT )β).

Theorem 25 establishes that Ω(logT ) verifications are necessary to obtain O(logT )

regret. Here, we assume that the number of verifications is bounded above almost surely. To

3A learning algorithm is consistent [106] if for all t, the action it+1 (a random variable) is measurable given the

history Ft = σ(i1, r
o
1(i1), i2, r

o
2(i2) . . . , it, r

o
t (it)).
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make this result comparable with the result from Theorem 24 which provides an upper bound on

the expected number of verifications, we consider the following bound instead.

Corollary 25.1. For all 0 < α < 1, 1 < β, all consistent learning algorithm A and sufficiently

large T such that the requirements in Theorem 25 are satisfied, there exists an attacking strategy

such that if the expected number of verifications N s
T until round T is

E[N s
T ] < (logT )1−α/ min

i1,i2∈[K]
KL(i1, i2), (6.25)

then the expected regret of A is at least Ω((logT )β).

This with Theorem 24 show that Secure-UCB uses order-optimal number of verification,

and enjoys an order-optimal expected regret, irrespective of the attacker’s strategy.

6.7 Comparison of Attacker Models

In this section we provide a more detailed comparison between the different attacker

models from the (robust bandits) literature and their corresponding performance guarantees. In

particular, at each round t, a weak attacker has to make the contamination before the actual action

is chosen. On the other hand, a strong attacker can observe both the chosen actions and the

corresponding rewards before making the contamination. From the perspective of contamination

budget (or the amount of contamination), it can either be bounded above surely by a threshold, or

that bound only holds in expectation. We refer to the former as deterministic budget, while we

call the latter as expected budget. To date, the following three attacker models have been studied:

(i) weak attacker with deterministic budget; (ii) strong attacker with deterministic budget; and

(iii) strong attacker with expected budget.

Weak attacker with deterministic budget.

For this attacker model, [78] have proposed a robust bandit algorithm (called BARBAR)

that provably achieves O(KC + (logT )2) regret against a weak attacker with (unknown) de-
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terministic budget C. They have also proved a matching regret lower bound of Ω(C). These

results imply that in order to successfully attack BARBAR (i.e., to force a Ω(T ) regret), a weak

attacker with deterministic budget would need a contamination budget of Ω(T ).

Strong attacker with deterministic budget.

[27] have shown that there is a phased elimination based bandit algorithm that achieves

O(
√
T + C logT ) regret if C is known to the algorithm, and O(

√
T + C logT + C2) if C is

unknown. Note that by moving from the weaker attacker model to the stronger one, we suffer an

extra loss in terms of achievable regret (i.e., from O(C) to O(C2)) in case of unknown C. While

the authors have also proved a matching regret lower bound of Ω(C) for the known budget case,

they have not provided any similar results for the case of unknown budget. Nevertheless, their

results show that in order to successfully attack their algorithm, an attacker of this type would

need a contamination budget of Ω(T ) for the case of known contamination budget, and Ω(
√
T )

if that budget is unknown.

Strong attacker with expected budget.

Our Proposition 1 shows that this attacker can successfully attack any order-optimal

algorithm with a O(logT ) expected contamination budget (note that [135] have also proved

a similar, but somewhat weaker result). We have also provided a matching lower bound on

the necessary amount of expected contamination budget against UCB. It is worth noting that

if the rewards are unbounded, then the attacker may use even less amount contamination (e.g.,

O(
√
logT )) to achieve a successful attack [253].

Saving bandit algorithms with verification.

The abovementioned results also indicate that if an attacker uses a contamination budget

C (either deterministic or expected), the regret that any (robust) algorithm would suffer is Ω(C).

A simple implication of this is that if an attacker has a budget of Θ(T ) (e.g., he can contaminate

all the rewards), then no algorithm can maintain a sub-linear regret if they can only rely on the

observed rewards. Secure-UCB breaks this barrier of Ω(C) regret with verification. In particular,
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(a) Regret versus T in the absence of

attacker

(b) Regret versus T in the presence of

attacker

Figure 6.1. Comparison between Secure-UCB, UCB and BARBAR

it can still enjoy an order-optimal regret of O(logT ) against any attacker (even when they have

Θ(T ) contamination budget) while only using O(logT ) verifications.

6.8 Simulation Results

For numerical analysis, we consider two actions, namely K = 2, with Bernoulli reward,

and we have µ1 = 0.5 and µ2 = 0.7. Hence, the optimal action is the second one. We evaluate

the performance of Secure-UCB in two scenarios. First, the attacker is absent, namely for all

t, we have rot (it) = rt(it). Second, the attacker is present, and uses the attack strategy defined

by (6.3), namely for all t, we have rot (it) = rt(it)1(it = 1). We also compare the performances

of Secure-UCB, the classical UCB and BARBAR algorithm in [78] in these two scenarios.

BARBAR algorithm has been considered here since it is a robust algorithm for stochastic bandits

and an improvement over the algorithm in [139].

Figure 6.1 shows a comparison between the regret of the three algorithms, Secure-UCB,

UCB and BARBAR, under the two scenarios. In Figure 6.1a, the regret of Secure-UCB and

UCB is close to each other when the attacker is absent. Additionally, the regret of BARBAR

algorithm is greater than both UCB and Secure-UCB in the absence of the attacker. This is inline

with the theoretical results since the regret of UCB and Secure-UCB is O(logT ) and the regret
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(a) (b)

Figure 6.2. Performance of Secure-UCB

of BARBAR is O((logT )2) in the absence of attacker [78]. In Figure 6.1b, the regret of both

the algorithms UCB and BARBAR grows linearly in T in the presence of attacker. On contrary,

by comparing Figures 6.1b and 6.2a, the regret of Secure-UCB is O(logT ) in the presence of

attacker. This is inline with our results in Theorems 1 and 24, and the results in [78].

Figure 6.2 shows a comparison between the performance of Secure-UCB in the two

scenarios. Figure 6.2a shows that the regret of Secure-UCB in the presence of attacker is more

than the regret in the absence of attacker. However, the regret grows O(logT ) in both these

scenarios. Figure 6.2b shows that the number of verifications performed in the two scenarios are

close to each other. This is also inline with our theoretical result since the verification grows

O(logT ). Thus, the regret and the number of verifications are similar in both the presence and

absence of attacker. Hence, Secure-UCB is immune to the attack.

6.9 Conclusion

This paper proposes Secure-UCB, which uses verification to mitigate a strong attacker.

We show that withO(logT ) expected number of verifications, Secure-UCB can recover the order

optimal regret irrespective of the attacker’s strength, and this number of verifications is necessary.

We also prove that without verification, with O(logT ) expected amount of contamination, a

strong attacker can succeed against any order optimal bandit methods, and that this amount is
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tight, in case of bounded rewards.

Since bounding the contamination in expectation and almost surely leads to different

results (see Section 6.7), it would be interesting to study the setting where number of verifications

is bounded almost surely. Another interesting extension is a limited verification model, where

the learner can request a feedback if the observed reward is corrupted or not, however it cannot

observe the true reward. Both these problems can be studied in a strong and weak attacker model.

Extending these results beyond bandits setting, we can study these attack models in

episodic reinforcement learning (RL) setting, and can derive the lower bound on the amount

of contamination for a successful attack on Q-learning using analogue of the conservativeness

of UCB. Similar to Secure-UCB, algorithms can be developed in the RL setting to save it from

adversarial attacks using the verification.

In adversarial bandits setup, the lower bound on the attack cost is an open question.

Additionally, we can explore the feasibility of saving the adversarial bandits from data poising

attacks by using the reward verification. Finally, designing the secure and optimal algorithms for

adversarial setting is an interesting future direction.

MAB has been studied in the presence of switching cost, where switching between action

requires additional cost [49, 175, 12]. Extending along the same direction, using our verification

model, MAB can also be studied in the presence of feedback cost, where observing feedback

corresponding to the selected action requires additional cost.
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6.11 Appendix

6.11.1 Proof of Proposition 1

Let Nt(i) be the number of times action i is chosen by the learner until time t, namely

Nt(i) =
t∑

n=1

1(in = i). (6.26)

Then, we have that
T∑
t=1

1(εt(it) 6= 0) ≤
∑
i 6=iA

NT (i). (6.27)

Using (6.3), for all i ∈ [K] \ iA and t ≤ T , we have that

E[rot (i)] = 0, (6.28)

and

E[rot (iA)] = µiA . (6.29)

Since the algorithm A makes decision based on the rot (.), using (6.4), (6.28) and (6.29), we have

that

E[TµiA −
T∑
t=1

rot (it)] = O

(
(K − 1) logα(T )

µβ
iA

)
. (6.30)

Also, we have

E[TµiA −
T∑
t=1

rot (it)]
(a)
= µiAE[

∑
i 6=iA

NT (i)], (6.31)

where (a) follows from the fact that ∆(i) = µiA for the learner. This along with (6.30) implies

that

E[
∑
i 6=iA

NT (i)] = O

(
(K − 1) logα(T )

µβ+1
iA

)
. (6.32)
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Now, we have

E[NT (iA)] = T −
∑
i 6=iA

E[NT (i)], (6.33)

which using (6.30) and (6.31), implies the attack is successful, i.e., E[
∑T

t=1 1(it = iA)] = Ω(T ).

Combining (6.27) and (6.32), we have

E[
T∑
t=1

1(εt(it) 6= 0)] = O

(
(K − 1) logα(T )

µβ+1
iA

)
. (6.34)

Hence, the statement of the proposition follows.

6.11.2 Attacks Based on Gap Estimation

The attack is similar to the ACE attack in [141]. Specifically, the attacker maintains an

estimate ∆̂A
t (i, iA) of µi − µiA using the previously selected actions and their rewards, namely

∆̂A
t (i, iA) = µ̂t(i) +

√
2 logT

Ñt(i)
− µ̂t(iA) +

√
2 logT

Ñt(iA)
, (6.35)

where

µ̂t(i) =

∑t
n=1 rn(i)1(in = i)∑t

n=1 1(in = i)
, (6.36)

and Ñt(i) =
∑t

n=1 1(in = i). In this attack, we have

rot (it) =


max{0, rt(it)− 2max{0, ∆̂A

t (it, iA)}} if it 6= iA,

rt(it) if it = iA.

(6.37)

This implies that for all t ≤ T , the noise added by the attacker is

εt(it) = −2max{0, ∆̂A
t (it, iA)}1(it 6= iA). (6.38)
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In this attack, for all action i 6= iA such that µi > µiA , the attacker forces the expected observed

reward to be at most µiA − (µi − µiA), and for all action i 6= iA such that µi < µiA , the attacker

forces the expected observed reward to be at most µi. Therefore, this strategy ensures that the

optimal action is iA based on the observed rewards. The following proposition establishes the

success of the attack, and provides an upper bound on the expected number of contaminations

needed by the attacker.

Proposition 2. For any stochastic bandit algorithm A with expected regret in the absence of

attack given by

RA = O

(∑
i 6=i∗

logα(T )

∆β(i)

)
, (6.39)

where α ≥ 1 and β ≥ 1; and for any sub-optimal target action iA ∈ [K] \ i∗, if an attacker

follows strategy (6.37), then it will use an expected number of attacks

E[
T∑
t=1

1(εt(it) 6= 0)] = O

(∑
i 6=iA

logα(T )

|µiA − µi|β(mini′ 6=iA |µi′ − µiA|)

)
, (6.40)

and it will forceA to select the action iA at leastΩ(T ) times in expectation, namelyE[
∑T

t=1 1(it =

iA)] = Ω(T ).

Proof. We will use the following lemma.

Lemma 22. For all t > K and i ∈ [K], we have that

P(∆̂A
t (i, iA) ≤ µi − µiA) ≤

1

T 3
. (6.41)

Proof. Using Theorem 26, for all i ∈ [K], we have that

P
(
µ̂t(i) +

√
2 logT

N̄t(i)
≤ µi

)
≤ 1/T 4, (6.42)
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P
(
µ̂t(iA)−

√
2 logT

N̄t(iA)
≥ µiA

)
≤ 1/T 4. (6.43)

This implies that for all i ∈ [K] and K < t ≤ T , we have

P(∆̂A
t (i, iA) ≤ µi − µiA)

≤ P
(
µ̂t(i) +

√
2 logT

N̄t(i)
≤ µi

)
+ P

(
µ̂t(iA)−

√
2 logT

N̄t(iA)
≥ µiA

)
,

≤ 2/T 4 ≤ 1/T 3. (6.44)

The statement of the lemma follows.

Now consider the following event

E = {∀i ∈ [K],∀t ≤ T : ∆̂A
t (i, iA) ≥ µi − µiA}. (6.45)

Similar to (6.27), we have that

T∑
t=1

1(εt(it) 6= 0) ≤
∑
i 6=iA

NT (i). (6.46)

Using (6.37), under event E , for all i ∈ [K] \ iA such that µi > µiA and t ≤ T , we have that

E[rot (i)] ≤ µi − 2(µi − µiA) = µiA − (µi − µiA). (6.47)

Also, for all i ∈ [K] \ iA such that µi < µiA and t ≤ T , we have that

E[rot (i)] ≤ µi. (6.48)

Since the algorithm A makes decision based on the rot (.), under event E , using (6.47) and (6.48),
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we have that

E[TµiA −
T∑
t=1

rot (it)
∣∣E ] = O

(∑
i 6=iA

logα(T )

|µiA − µi|β

)
. (6.49)

Also, we have

E[TµiA −
T∑
t=1

rot (it)
∣∣E ]=∑

i 6=iA

|µiA − µi|E[NT (i)
∣∣E ] ≥ min

i 6=iA
|µi − µiA|E[

∑
i 6=iA

NT (i)
∣∣E ]. (6.50)

Additionally, using Lemma 22, we have

P(Ē) =
T∑
t=1

K − 1

T 3
≤ K − 1

T 2
. (6.51)

Now, we have

E[NT (iA)] = T −
∑
i 6=iA

E[NT (i)], (6.52)

which using (6.49), (6.50) and (6.51), implies E[
∑T

t=1 1(it = iA)] = Ω(T ). Combining (6.46),

(6.49), (6.50) and (6.51), we have

E[
T∑
t=1

1(εt(it) 6= 0)] = O

(∑
i 6=iA

logα(T )

|µiA − µi|β(mini′ 6=iA |µi′ − µiA|)

)
. (6.53)

Hence, the statement of the proposition follows.

6.11.3 Proof of Theorem 23

The proof crucially relies on the following “conservativeness” property of the UCB

algorithm.

Lemma 23. [Restating Lemma 21] Let t0 be such that t0/(log t0)
2 ≥ 36K2. For all t ≥ t0 and

for any sequence of rewards {ron(i)}i∈[K],n≤t in [0, 1] in [0, 1] (can even be adversarial), UCB

will select every action i ∈ [K] at least log(t/2) times until round t.
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Proof. Let Nt(i) be the number of times action i is selected until round t, namely

Nt(i) =
t∑

n=1

1(in = i), (6.54)

andMt(i) be the number of attacks on action i until round t by the attacker. With slight abuse of

notation, we use [k] to denote the set of actions that are pulled strictly less than log(t/2) times

until round t.

We prove this lemma by contradiction. Suppose that there exists some time t ≥ t0 and

k ≤ K actions such that for all i ∈ [k],

Nt(i) < log(t/2). (6.55)

We now divide the time interval [t/2, 3t/4] into k log(t/2) consecutive blocks of the

same length. Thus, the length of each block is t/(4k log(t/2)). By the pigeonhole principle,

there must exist one block [t1, t3] in which we did not select any action in [k], namely

t3 = t1 + t/4k log(t/2), (6.56)

and for all i ∈ [k], we have

Nt1−1(i) = Nt3(i). (6.57)

First, we provide a lower bound on the UCB index of all actions i ∈ [k] within the time

interval (or block) [t1, t3]. For all t2 ∈ [t1, t3] and i ∈ [k], we have

µ̂t2(i) +

√
8 log t2
Nt2−1(i)

(a)
>

√
8 log(t/2)

log (t/2)
= 2
√
2,∀i ∈ [k] (6.58)

where (a) follows from the facts that t2 ≥ t1 ≥ t/2, and Nt2−1(i) ≤ Nt(i) < log (t/2) using

(6.55).

218



Second, we show that using the lower bound on the UCB index in (6.58) for actions in

[k], no actions outside [k] can be pulled by more than 8 log(3t/4) + 1 times within the interval

[t1, t3], namely for all i ∈ [K] \ [k], we have

Nt3(i)−Nt1−1(i) ≤ 8 log(3t/4) + 1. (6.59)

We prove (6.59) by contradiction. Suppose (6.59) does not hold. Then, there exists an action

j ∈ [K] \ [k] and a time t2 ∈ [t1, t3] such that action j is selected, namely it2 = j, and

Nt2−1 = 8 log(3t/4) + 1. (6.60)

Therefore, at round t2, the UCB index of action j is

µ̂t2(j) +

√
8 log t2
Nt2−1(j)

(a)

≤ 1 +

√
8 log(3t/4)

Nt2−1(j)

(b)
< 2, (6.61)

where (a) follows from the facts that observed rewards are in the interval [0, 1], and t2 ≤ t3 ≤

3t/4, and (b) follows from (6.60). This however is a contradiction since (6.58) shows that the

UCB index of action i ∈ [k] at time t2 is strictly larger than 2. Therefore, action j cannot have

the the largest UCB index at t2, and thus cannot be selected. Thus, we have that (6.59) follows.

Finally, combining (6.59) and the fact that actions in the set [k] are not selected in [t1, t3],

we have that ∑
i∈[K]

(Nt3(i)−Nt1(i)) ≤ (K − k)(8 log(3t/4) + 1). (6.62)

This along with (6.56) implies that

(K − k)(8 log(3t/4) + 1) ≥ t

4k log(t/2)
, (6.63)
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or equivalently

4k(K − k) ≥ t

log(t/2)(8 log(3t/4) + 1)
. (6.64)

We also have

t

log(t/2)(8 log(3t/4) + 1
) ≥ t

log(t)(9 log(t))

(a)

≥ t0
9(log(t0))2

(b)

≥ 4K2, (6.65)

where (a) follows from the facts that t ≥ t0 and t/(log t)2 is an increasing function of t, and

(b) follows from the assumption the lemma that t0/(log(t0))
2 ≥ 36K2. Thus, since k ≥ 1, we

have that (6.64) and (6.65) contradict each other. Thus, the interval [t1, t3] does not exists, which

implies (6.55) does not hold.

Note that in our proof we did not make any assumption about the sequence of the rewards,

except that they are bounded within [0, 1]. Therefore, it holds for arbitrary reward sequence.

For the remainder of the theorem’s proof, we will use the definition of t0 from Lemma 21.

For all 0 < ε < 1 and α > 0 such that 0 < εα ≤ 1/2, and for all T > max{(t0)
1

1−αε , exp (4α)},

we have that

logT ≥ 4α
(a)

≥ (1− αε)−α/(αε), (6.66)

where (a) follows from the fact that using εα ≤ 1/2, we have 4 ≥ (1− αε)−1/(αε). Using (6.66),

we have that

(logT )1−ε ≤ (1− αε) logT. (6.67)

Let µ̂t(i) is the empirical mean of action i at time t using all the observed rewards

(including the contaminated ones), namely

µ̂t(i) =

∑t
n=1 r

o
n(i)1(in = i)

Nt(i)
, (6.68)
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where Nt(i) =
∑t

n=1 1(in = i). Let µ̂m
t (i) denote the empirical mean of action i at time t using

the true reward without contamination, namely

µ̂m
t (i) =

∑t
n=1 rn(i)1(in = i)

Nt(i)
. (6.69)

Also, let ct(i) =
∑t

n=1 |εn(in)|1(in = i) denote the total amount of contamination on action i

until time t. Thus, we have

µ̂m
t (i)−

ct(i)

Nt(i)
≤ µ̂t(i) ≤ µ̂m

t (i) +
ct(i)

Nt(i)
. (6.70)

By our hypothesis in the theorem statement, for all t ≤ T and i ∈ [K], we have that

ct(i) ≤ (logT )1−ε. (6.71)

We now will examine the UCB index of all actions for any time t > 2T 1−αε, which is at

least t0 by our choice of T . Using Lemma 23, for all t > 2T 1−αε ≥ t0 and i ∈ [K], we have that

Nt(i) ≥ log(t/2). (6.72)

Using (6.67) and the fact that t > 2T 1−αε, we also have

log(t/2) > logT 1−αε = (1− αε) logT ≥ (logT )1−ε. (6.73)
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Now, for all t > 2T 1−αε, the UCB index of the optimal action i∗ satisfies

µ̂t(i
∗) +

√
8 log t

Nt(i∗)

(a)

≥ µ̂m
t (i

∗)− ct(i
∗)

Nt(i∗)
+

√
8 log t

Nt(i∗)

(b)

≥ µ̂m
t (i

∗)− (logT )1−ε

Nt(i∗)
+

√
8 log t

Nt(i∗)

(c)

≥ µ̂m
t (i

∗)−

√
(logT )1−ε

Nt(i∗)
+

√
8 log t

Nt(i∗)
(6.74)

(d)

≥ µ̂m
t (i

∗)−

√
log(t/2)

Nt(i∗)
+

√
8 log t

Nt(i∗)

≥ µ̂m
t (i

∗) + (
√
8− 1)

√
log t

Nt(i∗)
,

where (a) follows from (6.70), (b) follows from (6.71), (c) follows from the fact that using (6.72)

and (6.73), we have (logT )1−ε/Nt(i
∗) ≤ 1, and (d) follows from (6.73).

Similarly, we can show that for all t > 2T 1−αε, the UCB index of any sub-optimal action

i 6= i∗ satisfies

µ̂t(i) +

√
8 log t

Nt(i)
≤ µ̂m

t (i) +
ct(i)

Nt(i)
+

√
8 log t

Nt(i)

≤ µ̂m
t (i) + (

√
8 + 1)

√
log t

Nt(i)
. (6.75)

Combining (6.74) and (6.75), and using the standard analysis of the UCB algorithm for 2T 1−αε <

t ≤ T , we can show that sub-optimal action i 6= i∗ is pulled at most O(logT/∆2
i ) times after

round 2T 1−αε. Consequently, the total number of times that sub-optimal actions are pulled is

at most 2T 1−αε + O(logT/∆2
i ) times, and the regret is upper bound by 2T 1−αεmaxi ∆(i) +

O(
∑

i 6=i∗ logT/∆(i)). Since 2T 1−αε < T , the regret of UCB is sub-linear in o(T )
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6.11.4 Proof of Corollary 23.1

Let δ = (logT )−ε/2. Using Markov inequality, and the fact that the expected amount of

contamination is at most (logT )1−ε, we have

P(
T∑
t=1

|εt(it)| ≥ (logT )1−ε/2) ≤ (logT )1−ε

(logT )1−ε/2
= δ. (6.76)

Also, for all 0 < ε < 1, there exists a constant β > 0 such that

(logT )−ε/2T ≤ T 1−β, (6.77)

or equivalently

β ≤ ε log logT

2 logT
. (6.78)

Using Theorem 23 and (6.76), we have that

RUCB(T ) ≤ (1− δ)c1
(
T 1−αε/2max

i
∆(i) +

∑
i 6=i∗

logT/∆(i)
)
+ δT,

≤c1
(
T 1−αε/2max

i
∆(i) +

∑
i 6=i∗

logT/∆(i)
)
+ (logT )−ε/2T,

a

≤ c1
(
T 1−αε/2max

i
∆(i) +

∑
i 6=i∗

logT/∆(i)
)
+ T 1−β, (6.79)

where (a) follows from (6.77). Since 1− αε < 1 and 1− β < 1, the statement of the theorem

follows.

6.11.5 Proof of Theorem 24

Theorem 26. Hoeffding’s inequality: Let x1, . . . , Xn be independent and identically distributed

random variable, such that for all i, we have 0 ≤ Xi ≤ 1 and E[Xi] = µ. Then,

P
(∑n

i=1 Xi

n
− µ ≥

√
log(1/δ)

2n

)
≤ δ, (6.80)
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P
(
µ−

∑n
i=1 Xi

n
≥
√
log(1/δ)

2n

)
≤ δ. (6.81)

Lemma 24. For all i ∈ [K], K < t ≤ T , we have

P(∆̂t(i) ≥ ∆(i)) ≤ K/T 6. (6.82)

Proof. Using Theorem 26, for all i ∈ [K], we have that

P
(
µ̂s
t(i)−

√
3 logT

N s
t (i)

≥ µi

)
≤ 1/T 6, (6.83)

P
(
µ̂s
t(i) +

√
3 logT

N s
t (i)

≤ µi

)
≤ 1/T 6. (6.84)

This implies that for all i ∈ [K] and K < t ≤ T , we have

P(∆̂t(i) ≥ ∆(i))

≤ P
(
µ̂s
t(i) +

√
3 logT

N s
t (i)

≤ µi

)
+
∑
i′ 6=i

P
(
µ̂s
t(i

′)−

√
3 logT

N s
t (i

′)
≥ µi′

)
,

≤ K/T 6 (6.85)

The statement of the lemma follows.

Lemma 25. For all K < t ≤ T , we have

P(∆̂∗
t > min

i 6=i∗
∆(i)) ≤ 2K/T 6. (6.86)
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Proof. Let µi∗ − µi1 = mini 6=i∗ ∆(i). Also, for all K < t ≤ T , let an event

E(t) =
{
∀i ∈ [K] : |µ̂s

t(i)− µi| ≤

√
3 logT

N s
t (i)

}
. (6.87)

If E(t) occurs, then we have

µ̂s
t(a

∗
t )−

√
3 logT

N s
t (a

∗
t )
≤ µi∗ . (6.88)

Also, if E(t) occurs, then there exist two action i∗ and i1 such that

µ̂s
t(i

∗) +
√

3 logT/N s
t (i

∗) ≥ µi1 , (6.89)

and

µ̂s
t(i1) +

√
3 logT/N s

t (i1) ≥ µi1 . (6.90)

This implies that

µ̂s
t(ãt) +

√
3 logT

N s
t (ãt)

≥ µi1 . (6.91)

Using (6.88) and (6.91), if E(t) occurs, then we have

∆̂∗
t = µ̂s

t(a
∗
t )−

√
3 logT

N s
t (a

∗
t )
− µ̂s

t(ãt)−

√
3 logT

N s
t (ãt)

≤ µi∗ − µi1 = min
i 6=i∗

∆(i). (6.92)

This implies that

P(∆∗
t > min

i 6=i∗
∆(i)) ≤ P(Ē(t))

(a)

≤ 2K

T 6
, (6.93)

where Ē(t) denotes the complement of the event E(t), and (a) follows from (6.83) and (6.84).
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Lemma 26. For all i ∈ [K] and K < t ≤ T , we have that

P
(
|µ̂t(i)− µ̂s

t(i)| ≥ ∆(i)/20

)
≤ 3K/T 6. (6.94)

Proof. Let

t′ = max{n ≤ t : it = i, ron(i) was not verified, and St(i) occurs}. (6.95)

If t′ does not exist, then using the algorithm, we have µ̂t(i) = µ̂s
t(i), and the lemma trivially

follows.

We have

|µ̂t(i)− µ̂s
t(i)| =

∣∣∣∣ µ̂s
t(i)N

s
t (i) +

∑t′

n=1 r
o
n(i)1(in = i and Sn(i))

Nt(i)
− µ̂s

t(i)

∣∣∣∣
(a)

≤ µ̂s
t(i)

∣∣∣∣1− N s
t (i)

Nt(i)

∣∣∣∣+ ∣∣∣∣∑t′

n=1 r
o
n(i)1(in = i and Sn(i))

Nt(i)

∣∣∣∣
(b)

≤ Nt(i)−N s
t (i) +

∑t′

n=1 r
o
n(i)1(in = i and Sn(i))

Nt(i)

(c)

≤ Nt′(i)−N s
t′(i) +

∑t′

n=1 r
o
n(i)1(in = i and Sn(i))

Nt′(i)

≤
max{∆̂t−1(i), ∆̂

∗
t−1}

20
, (6.96)

where (a) follows from the fact that |a+ b| ≤ |a|+ |b|, (b) follows from the fact that µ̂s
t(i) ≤ 1,

(c) follows from the fact that Nt′(i) ≤ Nt(i), and the fact that using (6.95), we have

Nt′(i)−N s
t′(i) = Nt(i)−N s

t (i), (6.97)
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and (d) follows from the fact that N s
t′(i) = N s

t′−1(i) and St′(i) occurs. This implies that

P(|µ̂t(i)− µ̂s
t(i)| > ∆(i)/20) = P(max{∆̂t−1(i), ∆̂

∗
t−1} > ∆(i))

≤ P(∆̂t−1(i) > ∆(i)) + P(∆̂∗
t−1 > ∆(i))

(a)

≤ 3K

T 6
, (6.98)

where (a) follows from Lemma 24 and Lemma 25.

Lemma 27. Let T be the set of rounds for which verification is not performed. Let function

f(T ) be

f(T ) =
1200 logT

mini 6=i∗ ∆2(i)
+
∑
i 6=i∗

10000 logT

9∆2(i)
+K − 1. (6.99)

Let T is sufficiently large such that T ≥ f(T ). Then, for all f(T ) ≤ t ≤ T and for all i ∈ [K],

we have

P
(
N s

t (i
∗) ≤ 1200 logT

mini 6=i∗ ∆2(i)

)
≤ 10K2

T 5
, (6.100)

and

P
(
∀i 6= i∗ : N s

t (i) ≤
2500 logT

121∆2(i)
or N s

t (i) ≥
10000 logT

9∆2(i)
+ 1

)
≤ 10K2

T 5
. (6.101)

Additionally, for all t ∈ T such that K ≤ t, we have that

P(it 6= i∗) ≤ 10K2

T 5
. (6.102)

Proof. Let T be a set of rounds such that for all t ∈ T , the action it ∈ [K] satisfies

N s
t−1(it) >

1200 logT

∆̂∗2
t

. (6.103)
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Consider the following events

E1(t) =
{
∀i ∈ [K] and ∀K ≤ t′ ≤ t : |µ̂s

t′(i)− µi| ≤
1

2

√
400 logT

N s
t′(i)

}
, (6.104)

E2(t) =
{
∀i ∈ [K] and ∀K ≤ t′ ≤ t : |µ̂s

t′(i)− µ̂t′(i)| ≤ ∆(i)/20

}
, (6.105)

E3(t) = {∀K ≤ t′ ≤ t : ∆̂∗
t′ ≤ min

i 6=i∗
∆(i)}, (6.106)

E4(t) = {∀i ∈ [K] and ∀K ≤ t′ ≤ t : ∆̂t′(i) ≤ ∆(i)}. (6.107)

Now, we will show by induction that for all i 6= i∗ and K ≤ t ≤ T , if E1(t), E2(t), E3(t)

and E4(t) occurs, then we have

N s
t (i) ≤

10000 logT

9∆2(i)
+ 1. (6.108)

We have that (6.108) trivially holds for t = K. Also, if E1(t), E2(t), E3(t) and E4(t) occurs, then

E1(t− 1), E2(t− 1), E3(t− 1) and E4(t− 1) occurs. Now, let (6.108) holds for t− 1. If it 6= i,

then (6.108) holds for t since log(.) is an increasing function. If it = i, then we have

µ̂t−1(i) +

√
400 logT

N s
t−1(i)

≥ µ̂t−1(i
∗) +

√
400 logT

N s
t−1(i

∗)
. (6.109)

Under the events E1(t), E2(t), E3(t) and E4(t), this implies that

µi +
3

2

√
400 logT

N s
t−1(i)

≥ µi∗ −
2∆(i)

20
, (6.110)
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or equivalently

N s
t−1(i) ≤

10000 logT

9∆2(i)
. (6.111)

This along with N s
t (i) ≤ N s

t−1(i) + 1 implies (6.108).

Second, we will show that for all f(T ) ≤ t ≤ T , we have

N s
t (i

∗) ≥ 1200 logT

mini 6=i∗ ∆2(i)
. (6.112)

We have that

N s
t (i

∗) = t−
∑
i 6=i∗

N s
t (i)

(a)

≥ f(T )−
∑
i 6=i∗

N s
t (i)

(b)

≥ f(T )−
∑
i 6=i∗

10000 logT

9∆2(i)
−K + 1

(c)

≥ 1200 logT

mini 6=i∗ ∆2(i)
, (6.113)

where (a) follows from the fact that f(T ) ≤ t, (b) follows (6.108), and (c) follows from the

definition of f(T ).

Third, we will show by induction that for all i 6= i∗ and k ≤ t ≤ T , we have

N s
t (i) ≥

1

16
min

(
40000 logT

121∆2(i)
,
4

9
(N s

t (i
∗)− 1)

)
. (6.114)

Similar to (6.108), we only need to show that (6.114) holds if it = i∗. If it = i∗, then we have

µ̂t−1(i
∗) +

√
400 logT

N s
t−1(i

∗)
≥ µ̂t−1(i) +

√
400 logT

N s
t−1(i)

, (6.115)
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which implies that under the events E1(t), E2(t), E3(t) and E4(t),

µi∗ +
3

2

√
400 logT

N s
t−1(i

∗)
+ 2∆(i)/20 ≥ µi +

1

2

√
400 logT

N s
t−1(i)

. (6.116)

Thus, we have

N s
t−1(i) ≥

1

4

400 logT(
11∆(i)/10 + 3

2

√
400 logT
Ns

t−1(i
∗)

)2

≥ 1

4

400 logT(
2max{11∆(i)/10, 3

2

√
400 logT
Ns

t−1(i
∗)
}
)2 . (6.117)

This along with N s
t (i) ≤ N s

t−1(i) + 1 and N s
t (i

∗) ≤ N s
t−1(i

∗) + 1 implies (6.114).

Now, combining (6.112) and (6.114), under the events E1(t), E2(t), E3(t) and E4(t), for

all f(T ) ≤ t ≤ T and i 6= i∗, we have that

N s
t (i) ≥

2500 logT

121∆2(i)
. (6.118)

Let E1(t), E2(t), E3(t) and E4(t) occurs. Then, for all t ∈ T , we have

N s
t−1(it) = N s

t (it) >
1200 logT

∆̂∗2
t

≥ 1200 logT

mini 6=i∗ ∆2(i)
. (6.119)

Using (6.119) and (6.108), under the events E1(t), E2(t), E3(t) and E4(t), for all t ∈ T , we have

that

it = i∗, (6.120)

which implies

N s
t (i

∗) ≥ 1200 logT

mini 6=i∗ ∆2(i)
. (6.121)
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Also, using Hoeffding’s inequality and Lemmas 24, 25 and 26, we have

P(Ē1(t)) + P(Ē2(t)) + P(Ē3(t)) + P(Ē4(t)) ≤
t∑

t′=K

K

T 6
+

6K2

T 6
+

2K2

T 6
+

K2

T 6

≤ 10K2

T 5
. (6.122)

Combining (6.108), (6.112), (6.118), (6.120) and (6.122), the statement of the lemma follows.

Lemma 28. For all f(T ) ≤ t ≤ T , we have

P(∆̂∗
t ≤ 0.1min

i 6=i∗
∆(i)) ≤ 22K2/T 5. (6.123)

Proof. Let mini 6=i∗ ∆(i) = µi∗ − µi1 . Now, consider the following events

E1(t) =
{
∀i ∈ [K] : |µ̂s

t(i)− µi| ≤

√
3 logT

N s
t (i)

}
, (6.124)

E2(t) =
{
∀i ∈ [K] \ i∗ : 2500 logT

121∆2(i)
≤ N s

t (i)

}
, (6.125)

E3(t) =
{

1200 logT

mini 6=i∗ ∆2(i)
≤ N s

t (i
∗)

}
. (6.126)

Under events E1(t), E2(t) and E3(t), for all i 6= i∗ and f(T ) ≤ t ≤ T , we have that

|µ̂s
t(i)− µi| ≤

√
3 logT

N s
t (i)

< 0.4∆(i), (6.127)

and

|µ̂s
t(i

∗)− µi∗| ≤

√
3 logT

N s
t (i

∗)
≤ min

i 6=i∗
0.05∆(i). (6.128)
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This implies that for all i ∈ [K] and t ≥ t∗, we have

|µ̂s
t(i)− µi| < ∆(i)/2. (6.129)

Using (6.129) and the definitions of a∗t and ãt, we have that

a∗t = i∗, and ãt = i1. (6.130)

This implies that under events E1(t), E2(t∗) and E3(t∗), we have

∆̂∗
t ≥ µ̂s

t(a
∗
t )−

√
3 logT

N s
t (a

∗
t )
− µ̂s

t(ãt)−

√
3 logT

N s
t (ãt)

(a)

≥ µi∗ − µi1 − 2

√
3 logT

N s
t (i

∗)
− 2

√
3 logT

N s
t (i1)

(b)
> (µi∗ − µi1)(1− 0.8− 0.1)

≥ 0.1min
i 6=i∗

∆(i), (6.131)

where (a) follows from E1(t), and (b) follows from (6.127) and (6.128). Thus, we have

P(∆̂∗
t ≤ 0.1min

i 6=i∗
∆(i)) ≤ P(Ē1(t)) + P(Ē2(t)) + P(Ē3(t))

≤ 2K

T 6
+

10K2

T 5
+

10K2

T 5
≤ 22K2

T 5
, (6.132)

where the last inequality follows from Hoeffding’s inequality and Lemma 27.

Lemma 29. For all f(T ) ≤ t ≤ T , we have that

P
(
N s

t (i
∗) > max

{
1200 log 2T

(0.1mini 6=i∗ ∆(i))2
, f(T )

})
≤ 31K2/T 4. (6.133)
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Proof. Consider the following events

E1 = {∀t ∈ T : it = i∗}, (6.134)

and

E2 = {∀t ≥ f(T ) : ∆̂∗
t ≥ 0.1min

i 6=i∗
∆(i)}. (6.135)

We will show that if E1 and E2 occurs, then for all f(T ) ≤ t ≤ T , we have

N s
t (i

∗) ≤ max

{
1200 log 2T

(0.1mini 6=i∗ ∆(i))2
, f(T )

}
. (6.136)

For all t ∈ T , let `(t) = max{f(T ) < t1 ≤ t : it1 = i∗ and t1 /∈ T } be the latest time instance

before t and after f(T ) where verification is performed for i∗. If `(t) does not exists, then (6.136)

follows trivially. Then, under the events E1 and E2, for all t ∈ T , we have that

N s
t (i

∗) = N s
`(t)−1(i

∗) + 1

(a)

≤ 1200 logT

∆̂∗2
`(t)−1

+ 1

(b)

≤ 1200 log 2T

∆̂∗2
`(t)−1

(c)

≤ 1200 log 2T

(0.1mini 6=i∗ ∆(i))2
, (6.137)

where (a) follows from the fact that verification is performed for i∗ at round `(t), (b) follows

from the facts that 1 ≤ 800 log 2 and ∆̂∗2
t ≤ 1, and (c) follows from E2.

Now, using Lemma 27 and Lemma 28, we have

P(Ē1) + P(Ē2) ≤
T∑

t=K

10K2

T 5
+

22K2

T 5
≤ 32K2

T 4
. (6.138)
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Proof of Theorem 24

Proof. Let t∗ = max{t ∈ T }. Then, we have

∑
i∈[K]

E[N s
T (i)]

=
∑
i∈[K]

E[N s
t∗(i)]

(a)

≤max

{
f(T ),

1200 log 2T

(0.1mini 6=i∗ ∆(i))2

}
+2K+

∑
i 6=i∗

10000 logT

9∆2(i)
+

(
10K2

T 5
+
32K2

T 4

)
t∗

≤ max

{
f(T ),

1200 log 2T

(0.1mini 6=i∗ ∆(i))2

}
+ 2K +

∑
i 6=i∗

10000 logT

9∆2(i)
+

42K2

T 3

≤ max

{
f(T ),

1200 log 2T

(0.1mini 6=i∗ ∆(i))2

}
+ 2K +

∑
i 6=i∗

10000 logT

9∆2(i)
+

42

K
, (6.139)

where (a) follows from Lemma 27 and Lemma 29.Using the definition of f(T ) in (6.99), we

have that (6.22) follows, namely

∑
i∈[K]

E[N s
T (i)] ≤ c3

(∑
i 6=i∗

logT/∆2(i)

)
, (6.140)

Consider the event

E = {∀t ∈ T such that t > K : it = i∗}. (6.141)

Under event E , for all i ∈ [K] \ i∗ and t ≤ T , we have that

N s
t (i) = Nt(i). (6.142)
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We have

E[NT (i)|E ] = E[N s
T (i)|E ]

= E[N s
t∗(i)|E ]

(a)

≤ 10000 logT

9∆2(i)
+

10K2t∗

T 5
+ 1

(b)

≤ 10000 logT

9∆2(i)
+

10K2

T 4
+ 1

(c)

≤ 10000 logT

9∆2(i)
+

10

K2
+ 1, (6.143)

where (a) follows from Lemma 27, (b) follows from the fact that t∗ ≤ T , and (c) follows from

the fact that k ≤ T .

Also, using Lemma 27, we have

P(Ē) ≤
T∑

t=K

10K2

T 5
≤ 10K2

T 4
. (6.144)

Now, combining (6.143) and (6.144), for all i ∈ [K] \ i∗, we have that

E[NT (i)] =
10000 logT

9∆2(i)
+

10

K2
+ 1 +

10K2

T 4
. (6.145)

This implies that the regret of the algorithm is

RSUCB(T ) =
∑
i 6=i∗

∆(i)E[NT (i)]

=
∑
i 6=i∗

(
10000 logT

9∆(i)
+

10∆(i)

K2
+

10K2∆(i)

T 4
+∆(i)

)
. (6.146)

Hence, we have that (6.23) follows.
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6.11.6 Proof of Theorem 25

Proof. Consider the following specific attacker strategy that for all t, the attacker always set

rot (it) = 0. This implies that if verification is not performed by the algorithm at any round t,

then for all i1, i2 ∈ [K], we have that

KL(i1, i2) = 0. (6.147)

Combining (6.147) and Theorem 12 in [106], there exists a constant t∗ such that for all t ≥ t∗,

we have

P(it 6= i∗) ≥ exp (− min
i1,i2∈[K]

KL(i1, i2)N
s
t ), (6.148)

where N s
t is the total number of verifications performed by the learner until round t.

4

Now, divide the interval [T/2, T ] into 2(logT )1−α/mini1,i2∈[K] KL(i1, i2) equal sized in-

tervals. This implies that T mini1,i2∈[K] KL(i1, i2)/(4(logT )
1−α) is the size of each interval. Us-

ing the Pigeonhole principle, we have that there exists at least (logT )1−α/mini1,i2∈[K] KL(i1, i2)

intervals such that no verification is performed during these intervals. Let I = [t1, t1 +

T mini1,i2∈[K] KL(i1, i2)/(4(logT )
1−α)] denote an interval where no verification is performed.

Thus, for all t ∈ I , we have

P(it 6= i∗)
(a)

≥ exp (− min
i1,i2∈[K]

KL(i1, i2)N
s
t1
)

(b)

≥ exp (−(logT )1−α), (6.149)

where (a) follows from (6.148) and the fact that t ≥ t1 ≥ T/2 ≥ t∗, and (b) follows from (6.24)

4In [106], Ns
t is the number of observed true rewards collected so far. In our model, since the algorithm only

gets 0 when the reward is not verified, regardless of which action is selected. Such uninformative reward feedback
will not make a difference, and the number of observed true rewards in our case is thus precisely Ns

t .
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and the fact that N s
t1
≤ N s

T . Using (6.149), the total expected regret in the interval I is at least

min
i 6=i∗

∆(i)
∑
t∈I

P(it 6= i∗)

(a)

≥ min
i 6=i∗

∆(i)
T mini1,i2∈[K] KL(i1, i2)

4(logT )1−α
exp (−(logT )1−α), (6.150)

where (a) follows from the fact that the size of I is T mini1,i2∈[K] KL(i1, i2)/(4(logT )
1−α).

Since the number of intervals with no verification is (logT )1−α/mini1,i2∈[K] KL(i1, i2), the

regret of the algorithm is at least

min
i 6=i∗

∆(i)
∑
I

∑
t∈I

P(it 6= i∗)

≥min
i 6=i∗

∆(i)
T

4
exp (−(logT )α)

(a)

≥ min
i 6=i∗

∆(i)(logT )β, (6.151)

where (a) follows from the fact that (logT )α + β log(4 logT ) ≤ logT . The statement of the

theorem follows.

6.11.7 Proof of Corollary 25.1

Proof. Let δ = (logT )−α/2. Using Markov’s inequality, and the fact that the expected number

of verification is at most (logT )1−α/mini1,i2∈[K] KL(i1, i2), we have

P(N s
T ≥ (logT )1−α/2) ≤ (logT )1−α

(logT )1−α/2
= δ. (6.152)

Using Theorem 25 and (6.152), we have that

RUCB(T ) ≥ c3(1− δ)(logT )β

(a)

≥ (1− (log 2)−α/2)(logT )β

= c4(logT )
β, (6.153)

237



where c4 is a numerical constant, and (a) follows from the fact that logT is an increasing function

of T . The statement of the corollary follows.
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Chapter 7

Attacks in Episodic Reinforcement Learn-

ing

7.1 Introduction

Learning algorithms are often used in web services [245, 2, 129], conversational AI [50],

sensor networks [212], medical trials [21], and crowdsourcing systems [174]. The distributed

nature of these applications makes these algorithms prone to third party attacks. For example, in

web services decision making critically depends on reward collection, and this is prone to attacks

that can impact observations and monitoring, delay or temper rewards, produce link failures,

and generally modify or delete information through hijacking of communication links [2, 37].

Making these systems secure requires an understanding of the regime where the systems may be

vulnerable, as well as designing ways to mitigate these attacks. The present paper focuses on

the former aspect, namely understanding of the regime where the systems can be attacked, in an

episodic Reinforcement Learning (RL) setting.

We consider poisoning attack, also referred as man in the middle (MITM) attack. In this

attack, there are three agents: the environment, the learner (RL algorithm), and the attacker. The

learner interacts with the environment for T episodes, and each episode has H steps. In episode

t ≤ T at step h ≤ H , the learner observes the state st(h) ∈ S of the environment, selects an action

at(h) among A choices, the environment then generates a reward rt(st(h), at(h)) and changes

its state based on an underlying Markov Decision Process (MDP), and attempts to communicate
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it to the learner. However, an adversary acts as a “man in the middle” between the learner and

the environment. It can observe and may manipulate the action at(h) to a
o
t (h) ∈ A which will

generate reward rt(st(h), a
o
t (h)) corresponding to the manipulated action. The adversary may

also intercept the reward rt(st(h), a
o
t (h)) by adding contamination noise εt,h(st(h), at(h)). In

this case, the learner only observes the contaminated reward rot (st(h), at(h)) = rt(st(h), a
o
t (h))+

εt,h(st(h), at(h)). We study the amount of contamination
∑

t,h |εt,h(st(h), at(h))| and the number

of action manipulations
∑

t,h 1(at(h) 6= aot (h)).

Reward poisoning attack is a special case of the MITM attack where aot (h) = at(h),

and has been studied previously in both RL and Multi-Armed Bandits (MAB) settings [97,

171, 172]. Likewise, action manipulation attack is a special case of the MITM attack where

εt,h(st(h), at(h)) = 0, and has been previously studied for MAB setting [137]. Another variant

of action manipulation attack, previously studied in RL [172], is manipulation of the transition

dynamics. This can be equivalently considered as manipulating the action at(h) to another action,

not necessarily in A. MITM attacks has also been previously considered in cyber-physical

systems [112, 182]. Given that RL algorithms are increasingly used in critical applications,

including cyber-physical systems [128], it is of utmost importance to investigate the security

threat to RL algorithms against different forms of poisoning attacks.

We consider MITM attacks in two different settings: unbounded rewards and bounded

rewards, which turns out to differ fundamentally. In unbounded reward setting, the contami-

nation εt,h(st(h), at(h)) is unconstrained whereas in bounded reward setting, the contaminated

reward rot (st(h), a
o
t (h)) is constrained to be in the interval [0, 1], just like the original rewards

rt(st(h), a
o
t (h)). This constrained situation limits the attacker’s contamination at every round,

and turns out to be provably more difficult to attack. In each setting, we shall start as a warm-up

with the so-called “white-box” attacks in which the attacker is assumed to posses full knowledge

of the underlying MDP. We then show how to adapt such white-box attacks to the more realistic

black-box setting in which the attacker does not know, and needs to learn, the underlying MDP

as well.

240



Table 7.1. Comparison of the attack cost in the episodic RL and MAB setting when the attacker

has no information about the learning algorithm.

Settings Reward Attack Upper Bound

White-box in RL Unbounded Reward Manipulation O(
√
T ) [172]

White-box in RL Unbounded Dynamics Manipulation

( under sufficient condi-

tions only)

O(
√
T ) [172]

Black-box in RL Unbounded Reward Manipulation O(
√
T ) (This work)

Black-box and White

Box in RL

Bounded Reward Manipulation Infeasible (This work)

Black-box and White

Box in RL

Bounded Action Manipulation Infeasible (This work)

Black-box and White

Box in RL

Bounded Reward and Action Ma-

nipulation

O(
√
T ) (This work)

7.1.1 Contribution

We consider poisoning attacks with the objective of forcing the learner to execute a target

policy π+. More specifically, for all h ≤ H and s ∈ S, if πh(s) 6= π+
h (s), then the attack aims

to induce values satisfying

V π
h (s) < V π+

h (s), (7.1)

where policy π of an agent is a collection of H functions {πh : S → A}, and value function

V π
h (s) is the expected reward under policy π, starting from state s at step h, until the end of the

episode.

Reward manipulation attack are studied in [172] for RL, and a white-box attack is

proposed in unbounded reward setting. This white-box attack is order optimal in the amount of

contamination. Extending this research agenda, we propose black-box attack for episodic RL,

and show that the proposed attack can attack any no-regret learning algorithm in Õ(
√
T ) amount

of contamination, which is order-optimal upto logarithmic factor.

Similar to previous work such as [172], we study the feasibility of attack in bounded

reward setting under the constraints that the reward manipulation, namely εt,h(st(h), at(h)) 6= 0,

and action manipulation, namely at(h) 6= aot (h), can occur only if the selected action is different
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from the desired action, namely at(h) 6= π+
h (st(h)). We show that the reward manipulation attack

does not suffice, namely there exist an MDP and a target policy π+ which cannot be attacked

by the attacker, namely (7.1) cannot be achieved, by manipulating the rewards. Similarly,

we show that the action manipulation attack does not suffice as well, namely there exist an

MDP and a target policy π+ which cannot be attacked by the attacker, namely (7.1) cannot be

achieved, by manipulating the actions. Hence, the attacker needs a combined power of reward

manipulation and action manipulation attack. Indeed, we propose an MITM attack in bounded

reward setting, which requires O(
√
T ) amount of reward contamination and O(

√
T ) number of

action manipulations to attack any no-regret learning algorithm.

An interesting conceptual message from our results is that bounded reward setting appears

more difficult to attack than the unbounded reward setting. We also summarize our results in

Table 7.1 by comparing them with the relevant literature.

7.1.2 Related Work

In online bandit learning, reward manipulation attack has been studied extensively in

Multi-Armed Bandits [97, 135, 253], where the attacker’s objective is to mislead the learner to

choose a suboptimal action. Additionally, the action manipulation attack has also been studied

in Multi-Armed Bandits [137] where the attacker can manipulate (or override) the action of the

learner, and the number of action manipulations required by the attacker is O(logT ). All these

attacks are studied in a Black-box setting, where the attacker does not posses any knowledge

about the underlying reward distributions.

In online RL setting, studies related to poisoning attacks have only started recently, and

have primarily focused on white-box settings, where the attacker has complete knowledge of

the underlying MDP models, with unbounded rewards [172, 171]. In such white-box attacks,

[172] show that reward poisoning attack requires Θ(
√
T ) amount of contamination to attack any

no-regret learning algorithm; they also show that dynamic manipulation attack can achieve the

same success with similar amount of cost in unbounded reward setting under some sufficient
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conditions. [242] study the feasibility of the reward poisoning attack in white box setting for

Q-learning, and the attacker is constrained by the amount of contamination. In a slightly different

thread, [92] analyse the degradation of the performance of Temporal difference learning and

Q-learning under falsified rewards.

To our knowledge, [173] is the only work that studies poisoning attack in black-box

setting for policy teaching in RL. However, they focused on the settings with L online learners,

and the objective of their attacker is to force all these learners to execute a target policy π+. They

proposed an attack with Õ(T logL+ L
√
T ) amount of contamination when L is large enough.

However, our work focuses on attacking a single learner and thus our setting is not comparable

to [173]. However, we can indeed apply our attack repeatedly to different learners to obtain an

effective attack strategy for the setup of [173], which leads to an attack cost of Õ(L
√
T ) (note

however, the attack of [173] cannot work for small L, e.g., L = 1 as in our setup). This improves

their attack cost by an additive amount O(T logL). Our more efficient attack is due to a more

efficient design for the adversary to explore and learn the MDP.

Test-time adversarial attacks against reinforcement learning (RL) has also been studied.

Here, however, the policy π of the RL agent is pre-trained and fixed, and the objective of the

attacker is to manipulate the perceived state of the RL agent in order to induce undesired action

[91, 133, 122, 22]. Such test-time attacks do not modify the the policy π, whereas training-time

attacks we study in this paper aims at poisoning the learned policy directly and thus may have

a longer-term bad effects. There have also been studies on reward poisoning against Batch RL

[142, 241] where the attacker can modify the pre-collected batch data set at once. The focus of

the present work is on online attack where the poisoning is done on the fly.

7.2 Problem Formulation

We consider the setting of episodic Markov Decision Process (MDP) (S,A, H,P , µ),

where S is the set of states with |S| = S,A is the set of actions with |A| = A,H is the number of
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steps in each episode, P is the transition metric such that P(.|s, a) gives the transition distribution

over the next state if action a is taken in the current state s, and µ : S ×A → R is the expected

reward of state action pair (s, a).

An RL agent (or learner) interacts with the MDP for T episodes, and each episode consists

of H steps. In each episode of the MDP, an initial state st(1) can be fixed or selected from any

distribution. In episode t and step h, the learner observes the current state st(h) ∈ S, selects

an action at(h) ∈ A, and incurs a noisy reward rt,h(st(h), at(h)). Additionally, we have that

E[rt,h(st(h), at(h))] = µ(st(h), at(h)). Finally, both P and µ are unknown to the agent.

We consider episodic RL under MITM attacks. The attacker can manipulate the action

at(h) selected by the learner to another action a
o
t (h) ∈ A. The MDP thus undergoes transition

to next state based on the action aot (h), namely the next state is drawn from the distribution

P(.|st(h), aot (h)). The reward observation rt(st(h), aot (h)) is generated. If aot (h) 6= at(h), then

the episode t and step h is said to be under action manipulation attack. Hence, the number of

action manipulations is
∑T

t=1

∑H
h=1 1(a

o
t (h) 6= at(h)).

The adversary can intercept the reward observation rt(st(h), a
o
t (h)) and contaminate it

by adding noise εt,h(st(h), at(h)). Learner observes reward r
o
t (st(h), at(h)), where

rot,h(st(h), at(h)) = rt,h(st(h), a
o
t (h)) + εt,h(st(h), at(h)), (7.2)

where the contamination εt(st(h), at(h)) added by the attacker can be a function of all the

states visited previously, and the actions selected previously by the learner and the attacker. If

εt,h(st(h), at(h)) 6= 0, then the episode t and step h is said to be under reward manipulation

attack. Hence, the number of reward manipulations is
∑T

t=1

∑H
h=1 1(εt,h(st(h), at(h)) 6= 0),

and the amount of contamination is
∑T

t=1

∑H
h=1 |εt,h(st(h), at(h))|.

Reward poisoning attack is a special case of MITM attack, where the adversary cannot

manipulate the action which implies at(h) = aot (h). Action manipulation attack is a special case

of MITM attack, where the adversary cannot contaminate the reward observation which implies
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εt,h(st(h), at(h)) = 0.

A (deterministic) policy π of an agent is a collection of H functions {πh : S → A}. The

value function V π
h (s) is the expected reward under policy π, starting from state s at step h, until

the end of the episode, namely

V π
h (s) = E[

H∑
h′=h

µ(sh′ , πh′(sh′))|sh = s], (7.3)

where sh′ denotes the state at step h′ of the episode. Likewise, the Q-value function Qπ
h(s, a)

is the expected reward under policy π, starting from state s and action a, until the end of the

episode, namely

Qπ
h(s, a) = µ(s, a) + E[

H∑
h′=h+1

µ(sh′ , πh′(sh′))|sh = s, ah = a], (7.4)

where ah′ denotes the action at step h′ of the episode. Since S, A and H are finite, there exists

an optimal policy π∗ such that V π∗

h (s) = supπ V
π
h (s).

The regret RA(T,H) of any algorithm A is the difference between the total expected

true reward from the best fixed policy π∗ in the hindsight, and the expected true reward over T

episodes, namely

RA(T,H) =
T∑
t=1

(
V π∗

1 (st(1))− V πt
1 (st(1))

)
. (7.5)

The objective of the learner is to minimize the regret RA(T,H). In contrast, the objective of

the attacker is to poison the environment with an objective of teaching/forcing the learner to

execute a target policy π+ at least Ω(T ) times, more specifically for all h ≤ H and s ∈ S, if

πh(s) 6= π+
h (s), then

V π
h (s) < V π+

h (s). (7.6)
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7.3 Reward Poisoning Attacks in Unbounded Reward Set-

ting

In this section, we focus on unbounded reward setting, namely for all (s, a) ∈ S ×A, we

have rt,h(s, a) follows sub-gaussian distribution with mean µ(s, a) and standard deviation σ. We

show that the attacker can achieve its objective using reward manipulation only. In other words,

action manipulation is not needed. Additionally, the amount of contamination needed is Õ(
√
T ).

7.3.1 White-Box Attacks:a Warm-up

In white-box attack setting, the attacker posses the knowledge about the expected reward

and the transition dynamics of the MDP. In this section, we propose a whitebox attack which

utilizes this information about the MDP, and achieves an order optimal attack cost. This attack is

different from the white-box attack proposed in [172], and is adapted to the white-box setting in

episodic RL.

Given the target policy π+ and an input parameter ε > 0, for all st(h) ∈ S, at(h) ∈ A

and h ≤ H , our proposed attack strategy is

rot (st(h), at(h)) =


rt(st(h), at(h)) if at(h) = π+

h (st(h)),

Q̃π+

h (st(h), π
+
h (st(h))) otherwise

−Es′∼P (s′|st(h),at(h))[Ṽ
π+

h+1(s
′)]− ε

(7.7)

where Q̃π
h(s, a) is the expected reward in state s for action a for the above reward observation

under policy π, and Ṽ π
h (s) is the expected reward in state s for the above reward observation

under policy π. These values will not be same as the ones defined in (7.3) and (7.4) since the

reward observations are manipulated. We remark that the rot (st(h), at(h)) can be computed

through a backward induction procedure starting from horizon H . At any step h in the episode,

the definition of rot (st(h), at(h)) depends linearly on the Q-values at h, which then depends
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linearly on rot (st(h), at(h)). Therefore, r
o
t (st(h), at(h)) at any horizon h can be computed by

solving a linear system.

During the attack in (7.7), the reward observations are manipulated only if the action

selected by the learner is not the same as the desired action by π+. The above reward manipulation

strategy ensures that the target policy π+ is the optimal policy based on the observed reward

observations, namely for all h ≤ H , and (s, a) ∈ S ×A such that a 6= π+
h (s), we have

Q̃h(s, a) ≤ Q̃h(s, π
+
h (s))− ε. (7.8)

This implies that the parameter ε in the above attack can be tuned to obtain a desired difference

between the expected rewards of the optimal policy and any other policy. This requirement been

studied in form of ε-robust policy in [172].

Following theorem provides an upper bound on the amount of contamination for an

order-optimal learning algorithm.

Theorem 27. For any learning algorithm whose regret in the absence of attack is given by

RA(T,H) = O(
√
THα), (7.9)

with probability at least 1− δ, where α ≥ 1 is a numerical constant; and for any sub-optimal

target policy π+ and ε > 0, if an attacker follows strategy (7.7), then with probability at least

1− δ, the number of reward manipulation attacks will be

T∑
t=1

H∑
h=1

1(εt,h(st(h), at(h)) 6= 0) = O
(√

THα/ε
)
, (7.10)

the amount of contamination

T∑
t=1

H∑
h=1

|εt,h(st(h), at(h))| = Õ
(√

THα+1 +
√
THα+1/ε

)
, (7.11)
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∑T
t=1

∑H
h=1 1(at(h) = π+

h (st(h))) = Ω(T ), and attacker achieves its objective in (7.6).

Similar to the white-box attack in [172], Theorem 27 shows that the attacker can achieve

its objective in O(
√
T ) attack cost in episodic RL. The attack cost is of the same order as the

lower bound in [172, Theorem 1].

7.3.2 Black-Box Attack: the more realistic setting

In the black box attack setting, similar to the learner, the attacker does not know the

expected reward and the transition dynamics of the MDP. Extending the white-box attack in

(7.7), we propose a black-box attack which learns about the MDP, and has almost the same attack

cost as the white-box attack, with an additional O(
√
logT ) factor.

Given the target policy π+ and the input parameter ε > 0, our proposed attack strategy

is presented in Algorithm 13. Unlike the white box attack, the attack in the black box setting

evolves in two phases: initialization phase and exploitation phase. In the initialization phase, the

objective of the attacker is to obtain at least one observation of the reward from the environment

corresponding to every (s, a) ∈ S × A pair. This helps in initializing the estimate µ̂(s, a) of

the true mean µ(s, a) for each (s, a) ∈ S ×A pair. In Algorithm 13, the attacker achieves this

by contaminating the observed reward rot (s, a) ∼ Bern(0.5) for each (s, a) pair, where Bern(p)

denotes the Bernoulli distribution with mean p. This contamination ensures that the expected

reward of each (s, a) pair selected by the the learner appears identical, and thus promotes the

exploration of all the (s, a) pairs.

The initialization phase stops if the reward corresponding to each (s, a) pair is observed

at least once, namely N(s, a) ≥ 1, ∀(s, a) ∈ S × A in Algorithm 13, where N(s, a) denotes

the number of times the (s, a) pair is selected. The attacker then turns to the exploitation phase,

and utilizes its estimate of µ̂(s, a), µ̂UCB(s, a) and µ̂LCB(s, a), defined in (7.12), (7.13) and

(7.14) respectively, to contaminate the reward observations. These estimates are initialized

in the initialization phase, and are updated in each episode t ≤ T and at each step h ≤ H .

The parameters µ̂UCB(s, a), and µ̂LCB(s, a) are Upper Confidence Bound (UCB) and Lower
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Algorithm 13. Black box attack strategy

For all (s, a, h) ∈ S ×A× [H], µ̂(s, a) = 0, µ̂UCB(s, a) = 0, µ̂LCB(s, a) = 0 and N(s, a) = 0.
for episode t ≤ T do

Observe the initial state st(1)
for h ≤ H do

Observe the selected action at(h), reward r(st(h), at(h)) and next state st(h+ 1).
Update N(st(h), at(h)) = N(st(h), at(h)) + 1

µ̂(st(h), at(h)) =
µ̂(st(h), at(h))(N(st(h), at(h))− 1) + r(st(h), at(h))

N(st(h), at(h))
(7.12)

µ̂UCB(st(h), at(h)) = µ̂(st(h), at(h)) + σ
√
4 log(2THSA)/N(st(h), at(h)), (7.13)

µ̂LCB(st(h), at(h)) = µ̂(st(h), at(h))− σ
√
4 log(2THSA)/N(st(h), at(h)), (7.14)

if ∃(s, a) ∈ S ×A, such that N(s, a) = 0 then
Contaminate the reward observation such that rot (st(h), at(h)) = Bern(1/2).

else

if at(h) = π+
h (st(h)) then

Do not contaminate, namely rot (st(h), at(h)) = rt(st(h), at(h)).
else

Contaminate the reward observation such that

rot (st(h), at(h)) = µ̂LCB(st(h), π
+
h (st(h))) + (H − h) min

s,a∈S×A
µ̂LCB(s, a)

− (H − h) max
s,a∈S×A

µ̂UCB(s, a)− ε. (7.15)

end if

end if

end for

end for

Confidence Bound (LCB) of µ(s, a). Therefore, as we will show, with high probability we have

µ̂LCB(s, a) ≤ µ(s, a) ≤ µ̂UCB(s, a). (7.16)

In this phase, the reward observations are contaminated only if the action selected by the

learner is not the same as the action desired by the target policy, namely at(h) 6= π+
h (st(h)). In this

scenario, the reward observation rot (st(h), at(h)) is defined in (7.15). This reward contamination

is motivated from the white box attack (7.7). Comparing (7.15) and (7.7), we show that with
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high probability

µ̂LCB(st(h), π
+
h (st(h))) + (H − h) min

s,a∈S×A
µ̂LCB(s, a) ≤ Q̃π+

h (st(h), π
+
h (st(h))). (7.17)

Additionally, we have that with high probability

(H − h) max
s,a∈S×A

µ̂UCB(s, a) ≥ Es′∼P(s′|st(h),at(h))[Ṽ
π+

h+1(s
′)]. (7.18)

Combining (7.17) and (7.18), we have that with high probability, the rewards contamination in

the black box attack, given by (7.15), is greater than the reward contamination in the white box

attack, given by (7.7). This would imply that the proposed black box attack is successful since

the white-box attack was successful.

In the following theorem, similar to the white box attack, our proposed black box attack

has almost the same amount of contamination, upto logarithmic factor, as white box attack.

Theorem 28. Consider any learning algorithm A such that its regret in the absence of attack is

RA(T,H) = O(
√
THα), (7.19)

with probability at least 1− δ for any T ≥ t0, where α ≥ 1 is a numerical constant; and for any

sub-optimal target policy π+, ε > 0 and T ≥ t20, if an attacker follows strategy in Algorithm 13,

then with probability at least 1− δ − 2/(HSAT ), the number of reward manipulation will be

T∑
t=1

H∑
h=1

1(εt,h(st(h), at(h)) 6= 0) = O
(√

THα/ε
)
, (7.20)

the amount of contamination is

T∑
t=1

H∑
h=1

|εt,h(st(h), at(h)| = O
(√

THα+1(ε+
√
log(HTSA))/ε

)
, (7.21)
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∑T
t=1

∑H
h=1 1(at(h) = π+

h (st(h))) = Ω(T ), and the attacker achieves its objective in (7.6).

Theorem 28 shows that the attacker can achieve its objective in Õ(
√
T ) attack cost in

episodic RL. Comparing Theorem 27 and Theorem 28, we have that an additional multiplicative

factor in the amount of contamination (7.21) is incurred by the black box attack in comparison to

the white box attack. However, this factor is small, more precisely O(
√
logT ).

Remark 1. Reward poisoning attack has also been studied in black-box setting recently in RL

by [173]. They consider attacking L online learners whereas we only has one learner. The

attack objective of [173] is to force all these learning algorithms to execute the target policy

π+. We now highlight the key differences between our attack strategy and the strategy of [173].

Their attacker explores until the parameters of the MDP are estimated with precision, and that

exploration phase last O(T logL) rounds, which is linear in T . On contrary, our exploration

phase, which is the initialization phase, is completed within O(
√
T ) episodes since it requires

only a single observation for each (s, a) pair, and does not wait for the precise estimate of the

parameters associated with the MDP. Our attack strategy compensate for this lack of precision

by adding a negative bias O(
√
logT ) to the reward observation. Thus, our attack strategy saves

the cost of learning in exploration phase. Additionally, unlike [173], our attack strategy does

not attempt to learn the transition dynamics, which reduces the number of learning parameters.

All these together makes our attack more effective. Indeed, the attack cost of the proposed attack

in [173] is Õ(T logL+ L
√
T ). However, if our attack is applied to L learners, the attack cost

is Õ(L
√
T ), which is better by an additive factor O(T logL). This is a significant save when

T � L (i.e., L = o(T )).

7.4 Attacks in Bounded Reward Setting

7.4.1 Insufficiency of (Only) Reward or Action Manipulation

In this section, we focus on bounded reward setting, namely for all (s, a) ∈ S ×A, we

have rt,h(s, a) ∈ [0, 1] with mean µ(s, a) ∈ (0, 1]. We first show that there exist MDPs and
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target policies π+ such that for any reward manipulation attack and action manipulation attack,

the objective of the attacker, namely (7.6), cannot be achieved.

In the reward manipulation attack, the attacker is subject to following constraints

rot (st(h), at(h)) = rt(st(h), at(h)) if at(h) = π+
h (st(h)), and r

o
t (st(h), at(h)) ∈ [0, 1], (7.22)

or equivalently,

εt(st(h), at(h)) = 0 if at(h) = π+
h (st(h)),

and εt(st(h), at(h)) ∈ [−rt(st(h), at(h)), 1− rt(st(h), at(h))]. (7.23)

Thus, the reward observation can be manipulated only if the selected action is not the same

as the target action of the policy, namely at(h) 6= π+
h (st(h)). This constraint is crucial for

obtaining sub-linear attack cost. The key idea is that if the objective in (7.6) is achieved by

contaminating the reward of action π+
h (st(h)), then the learner would execute the policy π

+ with

high probability, namely Ω(T ) times, and the total contamination may grow linearly with T . This

constraint (or strategy of not contamination π+
h (st(h))) is also applied in the previous literature

in RL [172] and MAB [97, 143], where the reward manipulation are performed on non-desirable

actions.

Similar to reward manipulation attack, in the action manipulation attack, the attacker is

subject to following constraints

aot (h) = at(h) if at(h) = π+
h (st(h)). (7.24)

Thus, the action can be manipulated only if the selected action is not the same as the target action

of the policy.

The following theorem establishes that only the reward manipulation or only the action

manipulation cannot always guarantee successful attacks in bounded reward setting.
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Theorem 29. In bounded reward setting, we have

1. There exists an MDP and a target policy π+ such that any reward manipulation attack

satisfying (7.22) cannot be successful, namely achieve the objective in (7.6).

2. There exists an MDP and a target policy π+ such that any action manipulation attack

satisfying (7.24) cannot be successful, namely achieve the objective in (7.6).

7.4.2 Efficient Attack by Combining Reward & Action Manipulation

We now show that the attacker can achieve its objective by combining the strength of

both reward manipulation and action manipulation attacks. Additionally, the attack cost, namely

sum of the amount of contamination and the number of action manipulation, is Õ(
√
T ).

Here we start directly with the black-box attack here. For curious readers, we provide

a discussion about the less realistic yet simpler white-box attack in Appendix 7.7.4. Given the

target policy π+, for all st(h) ∈ S , at(h) ∈ A and h ≤ H , the attack strategy is

aot (h) =


at(h) if at(h) = π+

h (s),

π+
h (s) if at(h) 6= π+

h (s),

(7.25)

and

rot (st(h), at(h)) =


rt(st(h), at(h)) if at(h) = π+

h (s),

0 if at(h) 6= π+
h (s).

(7.26)

In this attack, the adversary manipulates both the action and the reward observation if at(h) 6=

π+
h (s). The adversary manipulates the action to π

+
h (s) to control the transition dynamics, and at

the same time manipulates the reward observation to zero so that the action at(h) appears to be

sub-optimal in comparison to the action π+
h (s).

The bounded reward setting is difficult to attack since it cannot be always attacked by

the reward manipulation or action manipulation alone. However, once the strength of reward
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manipulation and action manipulation are available together, a simple attack in (7.25) and (7.26)

can achieve the objective in (7.6), and does not require learning the parameters of the MDP.

The following theorem establishes that the attack cost is O(
√
T ), which is sub-linear in

T .

Theorem 30. For any learning algorithm A such that for all T ≥ t0, the regret in the absence

of attack is

RA(T,H) = O(
√
THα), (7.27)

with probability at least 1− δ, where α ≥ 1 is a numerical constant; and for any sub-optimal

target policy π+, if an attacker follows strategy in (7.25) and (7.26), then with probability at

least 1− δ, the number of reward manipulation attacks will be

T∑
t=1

H∑
h=1

1(εt,h(st(h), at(h)) 6= 0) = O
(√

THα/min
h,s

µ(s, π+
h (s))

)
, (7.28)

the amount of contamination is

T∑
t=1

H∑
h=1

|εt,h(st(h), at(h)| = O
(√

THα/min
h,s

µ(s, π+
h (s))

)
, (7.29)

the number of action manipulation attacks is

T∑
t=1

H∑
h=1

1(aot (h) 6= at(h)) = O
(√

THα/min
h,s

µ(s, π+
h (s))

)
, (7.30)

∑T
t=1

∑H
h=1 1(at(h) = π+

h (st(h))) = Ω(T ), and the attacker achieves its objective in (7.6).

Comparing Theorem 30 and our white-box attack in Appendix 7.7.4, we can conclude

that the attack cost of both black-box and white-box attack in this setting is O(
√
T ). Unlike the

unbounded reward setting, in bounded reward setting, the attack cost of the white-box and black

box attack only vary by a numerical constant. This is due to the fact that amount of contamination
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in each round is bounded above by unity.

7.5 Conclusion and Future Directions

This paper tries to understand poisoning attacks in reinforcement learning. Towards that

end, we propose a reward manipulation attack for unbounded reward setting which successfully

fool any no-regret RL algorithm to pull a target policy with Õ(
√
T ) attack cost. Extending

the study to bounded reward setting, we show that the adversary cannot achieve its objective

using either reward manipulation or action manipulation attack even in white-box setting, where

the information about the MDP is assumed to be known. Hence, to contaminate a no-regret

RL algorithm, the adversary needs to combine the power of reward manipulation and action

manipulation. Indeed, we show that an attack that uses both reward manipulation and action

manipulation can achieve adversary’s objective with O(
√
T ) attack cost.

We studied the in-feasibility of the attack under the constraint that the adversary can

attack only if at(h) 6= π+
h (s). Since this is a common constraint in the literature [172] and some

efficient attacks in MAB also satisfy this constraint [97, 143], it would be interesting to establish

theoretically that this constraint is also necessary for designing an attack with sub-linear cost.

The study of infeasibility or feasibility of attack can be extended to dynamic manipulation attacks

in RL. On the other hand, our results reveals the vulnerability of no-regret learning algorithms in

RL. We hope this could spur more research on designing more robust algorithms for RL settings

through ideas such as limited reward verification and corruption robustness [139, 78, 27].
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7.7 Appendix

7.7.1 Proof of Theorem 27

Proof. First, we will show that the optimal policy under the reward manipulation attack in (7.7)

is π+, namely for all π 6= π+, h ≤ H and s ∈ S , we have

Ṽ π+

h (s) > Ṽ π
h (s). (7.31)

We will show this by induction. We will show that (7.31) holds for h = H . Then, we will show

that (7.31) holds for h < H if it holds for h+ 1. At h = H , for all π, using (7.7), we have that

Q̃π
H(s, a) =


µ(s, a) if a = π+

H(s),

µ(s, π+
H(s))− ε if otherwise.

(7.32)

This implies that for h = H , we have that (7.31) holds, and for all (s, a) ∈ S × A such that

a 6= π+
H(s), we have

Q̃π
H(s, a) = Q̃π+

H (s, π+
H(s))− ε. (7.33)

Now, consider any h < H . Let (7.31) holds for h+ 1. Using (7.7), for all π, we have that

Q̃π
h(s, a) =


µ(s, a) + Es′∼P (s′|s,a)[Ṽ

π
h+1(s

′)] if a = π+
h (s),

Q̃π+

h (s, π+
h (s))− Es′∼P (s′|s,a)[Ṽ

π+

h+1(s
′)] + Es′∼P (s′|s,a)[Ṽ

π
h+1(s

′)]− ε if otherwise.

(7.34)

Since (7.31) holds for h+ 1, we have that for a = π+
h (s)

Q̃π
h(s, a) < µ(s, a) + Es′∼P (s′|s,a)[Ṽ

π+

h+1(s
′)] = Q̃π+

h (s, a). (7.35)
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Additionally, for a 6= π+
h (s), we have

Q̃π
h(s, a) = Q̃π+

h (s, π+
h (s))− Es′∼P (s′|s,a)[Ṽ

π+

h+1(s
′)] + Es′∼P (s′|s,a)[Ṽ

π
h+1(s

′)]− ε,

= Q̃π+

h (s, π+
h (s)) + Es′∼P (s′|s,a)[Ṽ

π
h+1(s

′)− Ṽ π+

h+1(s
′)]− ε,

(a)
< Q̃π+

h (s, π+
h (s))− ε, (7.36)

where (a) follows from the fact that (7.31) holds for h + 1. Hence, the first step of the proof

follows.

Let ∆(a) = mins,h,π Q̃
π+

h (s, π+
h (s)) − Q̃π

h(s, a). Using (7.36), for a 6= π+
h (s), we have

that

∆(a) ≥ ε. (7.37)

Now, using (7.37), we have that

T∑
t=1

H∑
h=1

ε1(at(h) 6= π+
h (st(h))) ≤ RA(T,H),

= O(
√
THα), (7.38)

with probability 1− δ, where the last inequality follows from (7.9). This along with (7.7) implies

that (7.10) follows since the contamination happens only if at(h) 6= π+
h (s).

Additionally, for all h ≤ H and (st(h), at(h)) ∈ S × A such that at(h) 6= π+
h (s), we

have that the amount of contamination is

∣∣Q̃π+

h (st(h), π
+
h (st(h)))− Es′∼P (s′|st(h),at(h))[Ṽ

π+

h+1(s
′)]− ε− µ(st(h), at(h))]

∣∣
≤
∣∣Q̃π+

h (st(h), π
+
h (st(h)))− Es′∼P (s′|st(h),at(h))[Ṽ

π+

h+1(s
′)]
∣∣+ ε+max

s,a

∣∣µ(s, a)∣∣
≤ (H + 1)max

s,a

∣∣µ(s, a)∣∣+ ε. (7.39)
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This along with (7.38) implies that with probability 1− δ,

T∑
t=1

H∑
h=1

|εt,h(st(h), at(h))| = O

(
((H + 1)max

s,a

∣∣µ(s, a)∣∣+ ε)

√
THα

ε

)
. (7.40)

Hence, we have that (7.11) follows. Finally, we have that with probability 1− δ

T∑
t=1

H∑
h=1

1(at(h) = π+
h (st(h))) = TH −

T∑
t=1

H∑
h=1

1(at(h) 6= π+
h (st(h)))

= Ω(T ), (7.41)

where the last equality follows from (7.38). Hence, the statement of the theorem follows.

7.7.2 Proof of Theorem 28

The following lemma will be used in our proof.

Lemma 30. For all (s, a) ∈ S ×A, T ≥ 1 and H ≥ 1, we have that

P
(
|µ̂(s, a)− µ(s, a)| > σ

√
4 log(2THSA)/Nt,h(s, a)

)
≤ 1

(THSA)2
. (7.42)

Proof. The above lemma following using concentration inequality for sub-gaussian random

variable.

Proof of Theorem 28. Let

T ∗ = max{t ≤ T : ∃(s, a) ∈ S × A, we have Nt,h(s, a) = 0}, (7.43)

where Nt,h(s, a) is the number of times action a is selected in state s until the step h in episode t.

Firstly, we show that with high probability, we have T ∗ ≤
√
T . Then, the analysis of

the amount of contamination and number of attacks is divided into two parts: computing these

quantities before the episode T ∗ and computing these quantities after the episode T ∗.
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First, we will show that with probability 1− δ,

T ∗ ≤ t0 ≤
√
T . (7.44)

Using (7.19), we have that with probability 1− δ,

SubOpt(t0, ε, δ) = O(
√
TH/ε), (7.45)

where SubOpt(t0, ε, δ) is the number of times suboptimal actions contributing at least ε to the

regret are selected. This along with [173, Lemma 5.1] implies that until round t0, with probability

1− δ/(SA), we have

Nt0,H(s, a) ≥
c2 log

2(δ/4SAβ)

log(8SA/δ) + 1.34 log(δ/4SAβ)
> 0, (7.46)

where c2 is a positive numerical constant, and β ≤ δ/4SA. Since Nt0,H(s, a) are all integers,

using the union bound, with probability 1− δ, we have for all (s, a) ∈ S ×A,

Nt0,H(s, a) ≥ 1. (7.47)

Thus, we have that (7.44) follows using the fact that T ≥ t20.

Until round T ∗, using the fact that reward observation are σ2-subgaussian random variable,

we have that

P
(
|rt(s, a)− µ(s, a)| > σ

√
4 log(2HSAT )

)
≤ 1/(HSAT )2. (7.48)

Let event

E = {∀t ≤ T ∗, h ≤ H : |rt(st(h), at(h))− µ(st(h), at(h))| ≤ σ
√

4 log(2HSAT )} (7.49)
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If E is true, then we have that the amount of contamination is at most

T ∗H(1 +max
s,a
|µ(s, a)|+ σ

√
4 log(2HSAT )). (7.50)

Now, using (7.48), we have that

P(Ē) ≤ 1/HSAT, (7.51)

where Ē denotes the complement of event E . This along with (7.44) implies that the amount of

contamination until T ∗ is at most

T ∗∑
t=1

H∑
h=1

|εt,h(st(h), at(h)| = O(
√
TH(1 +max

s,a
|µ(s, a)|+

√
4 log(2HSAT ))), (7.52)

with probability 1− δ − 1/(HSAT ). Likewise, the number of attacks until T ∗ is

T ∗∑
t=1

H∑
h=1

1(εt,h(st(h), at(h) 6= 0) ≤
√
TH, (7.53)

with probability 1− δ.

After round T ∗, let the event

E2 = {∀T ∗ ≤ t ≤ T, h ≤ H, s ∈ S, a ∈ A : µ̂LCB
t,h (s, a) ≤ µ(s, a) ≤ µ̂UCB

t,h (s, a)}, (7.54)

where µ̂LCB
t,h (s, a) and µ̂UCB

t,h (s, a) is the estimate µ̂LCB(s, a) and µ̂UCB(s, a) in Algorithm 13 in

episode t at step h.

Using Lemma 30, we have that

P
(
Ē2
)
≤ 1/(HSAT ). (7.55)
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If event E2 occurs, then for all T ∗ < t ≤ T and h ≤ H , we have that

µ̂LCB
t,h (st(h), π

+
h (st(h))) + (H − h) min

s,a∈S×A
µ̂LCB
t,h (s, a)

≤ µ(st(h), π
+
h (st(h))) + (H − h) min

s,a∈S×A
µ(s, a),

≤ Q̃π+

h (st(h), π
+
h (st(h))). (7.56)

Also, if event E2 occurs, then for all T ∗ < t ≤ T and h ≤ H , we have that

(H − h) max
s,a∈S×A

µ̂UCB
t,h (s, a) ≥ (H − h) max

s,a∈S×A
µ(s, a)

≥ Es′∼P(s′|st(h),at(h))[Ṽ
π+

h+1(s
′)]. (7.57)

Now, combining (7.56) and (7.57), under event E2, for all T ∗ < t ≤ T and h ≤ H , we have that

rot (st(h), at(h))

= µ̂LCB
t,h (st(h), π

+
h (st(h))) + (H − h) min

s,a∈S×A
µ̂LCB
t,h (s, a)− (H − h) max

s,a∈S×A
µ̂UCB
t,h (s, a)− ε

≤ Q̃π+

h (st(h), π
+
h (st(h)))− Es′∼P(s′|st(h),at(h))[Ṽ

π+

h+1(s
′)]− ε.

(7.58)

Now, similar to (7.31), using (7.58), we can show that under event E2, we have

V π+

h (s) = sup
π

V π
h (s). (7.59)

Additionally, similar to (7.37), we also have that under event E2, we have

∆(a) = min
s,h,π

Q̃π+

h (s, π+
h (s))− Q̃π

h(s, a) ≥ ε. (7.60)
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Now, using (7.60), under event E2, we have that with probability 1− δ,

T∑
t=T ∗

H∑
h=1

ε1(at(h) 6= π+
h (st(h))) ≤ RA(T,H) = O(

√
THα). (7.61)

Thus, combining (7.55) and (7.61), we have that with probability 1− δ − 1/(THSA),

T ∗∑
t=1

H∑
h=1

1(εt,h(st(h), at(h) 6= 0) ≤ O(
√
TH/ε). (7.62)

The amount of contamination after T ∗ is

|rot (st(h), at(h))− rt(st(h), at(h))|
(a)

≤ |rot (st(h), at(h))− µ(st(h), at(h))|+ σ
√

4 log(2HSAT )

≤ |µ(st(h), at(h))|+ |rot (st(h), at(h))|+ σ
√

4 log(2HSAT ),

(b)

≤ |µ(st(h), at(h))|+ (2H + 1)max
s,a
|µ(s, a)|+ ε+ (4H + 3)σ

√
4 log(2HSAT ),

≤ (2H + 2)max
s,a
|µ(s, a)|+ ε+ (4H + 3)σ

√
4 log(2HSAT ), (7.63)

where (a) follows from (7.48), and (b) follows under event E2. This implies that the total amount

of contamination following T ∗ is

T ∗∑
t=1

H∑
h=1

|εt,h(st(h), at(h)| = O

(√
THα(H + ε+Hσ

√
log(HTSA))/ε

)
, (7.64)

with probability 1− δ − 2/(HSAT ).

Combining (7.53) and (7.62), we have that (7.20) follows. Also, combining (7.52) and

(7.64), we have that (7.21) follows. Finally, we have that with probability 1− δ

T∑
t=1

H∑
h=1

1(at(h) = π+
h (st(h))) = TH −

T∑
t=1

H∑
h=1

1(at(h) 6= π+
h (st(h)))

= Ω(T ), (7.65)
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where the last equality follows from (7.61). The statement of the theorem follows.

7.7.3 Proof of Theorem 29

Insufficiency of (only) reward manipulation

In this example, S = {s1, s2} and A = {a1, a2}. The transition dynamics is

P(s1|s1, a1) = 1,P(s2|s1, a1) = 0,P(s1|s1, a2) = 0,P(s2|s1, a2) = 1, (7.66)

P(s1|s2, a1) = 0,P(s2|s2, a1) = 1,P(s1|s2, a2) = 1,P(s2|s2, a2) = 0. (7.67)

Also, we have

µ(s1, a1) = ε1 = 0.25, µ(s1, a2) = 1, µ(s2, a1) = ε2 = .6, µ(s2, a2) = 1 (7.68)

Let H = 2. The target policy π+ for the attacker is

∀h ≤ H : π+
h (s1) = a1 and π

+
h (s2) = a1. (7.69)

Similar to [172], the attacker is subject to following constraints

rot (st(h), at(h)) = rt(st(h), at(h)) if at(h) = π+
h (st(h)), and r

o
t (st(h), at(h)) ∈ [0, 1], (7.70)

or equivalently,

εt(st(h), at(h)) = 0 if at(h) = π+
h (st(h)),

and εt(st(h), at(h)) ∈ [−rt(st(h), at(h)), 1− rt(st(h), at(h))]. (7.71)
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The objective of the attacker is that for all π 6= π+, h ≤ H and s ∈ S ,

V π
h (s) < V π+

h (s). (7.72)

Let policy π̃ be

h = 1 : π̃h(s1) = a2 and π̃h(s2) = a2,

h = 2 : π̃h(s1) = a1 and π̃h(s2) = a1. (7.73)

At h = H − 1 = 1, for all reward manipulation attack satisfying (7.70), we will show that

V π̃
h (s1) > V π+

h (s1). (7.74)

At h = H − 1 = 1, we have

V π+

h (s1) = µ(s1, a1) + µ(s1, a1) = 2ε1. (7.75)

Additionally, we have

V π̃
h (s1)

(a)
= rot (s1, a2) + ε2,

(b)

≥ ε2, (7.76)

where (a) follows from the facts that π̃H−1(s1) = a2 6= π+
H(s1), which implies that the attacker

can manipulate this observation, the next state at stepH is s2, and π̃H(s2) = a1 = π+
H(s2), which

implies that the attacker can not manipulate this observation, and (b) follows from the fact that

rot (s1, a2) ∈ [0, 1] using (7.70).

Now, since ε1 = 0.25 and ε2 = 0.6, comparing (7.75) and (7.76), we have that

V π̃
H−1(s1) > V π+

H−1(s1). (7.77)
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This implies that for any reward manipulation attack in bounded setting satisfying (7.70), there

exists a policy π 6= π+, a step h ≤ H and a state s1 ∈ S such that

V π
h (s) > V π+

h (s). (7.78)

Insufficiency of (only) Action Manipulation

The MDP construction and target policy π+ are the same as the one in Theorem 29. Let

H = 2. We also consider policy π̃ as follows

h = 1 : π̃h(s1) = a2 and π̃h(s2) = a2,

h = 2 : π̃h(s1) = a1 and π̃h(s2) = a1. (7.79)

At h = H − 1 = 1, for all reward manipulation attack satisfying (7.70), we will show that

V π̃
h (s1) > V π+

h (s1). (7.80)

At h = H − 1 = 1, we have

V π+

h (s1) = µ(s1, a1) + µ(s1, a1) = 2ε1. (7.81)

Additionally, we have

V π̃
h (s1)

(a)

≥ min{µ(s1, a1) + µ(s1, a1), µ(s1, a2) + µ(s2, a1)}
(b)

≥ min{2ε1, 1 + ε2} (7.82)

where (a) follows from the facts that π̃H−1(s1) = a2 6= π+
H(s1), which implies that the attacker

can manipulate the action, namely at(h) = a1 or at(h) = a2, and if at(h) = a1 (or at(h) = a2),

then V π̃
h (s1) is 2µ(s1, a1) (or µ(s1, a2) + µ(s2, a1)), and (b) follows from (7.68).
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Now, since ε1 = 0.25 and ε2 = 0.6, comparing (7.81) and (7.82), we have that

V π̃
H−1(s1) ≥ V π+

H−1(s1). (7.83)

This implies that for any action manipulation attack in bounded setting satisfying (7.70), there

exists a policy π 6= π+, a step h ≤ H and a state s1 ∈ S such that

V π
h (s) ≥ V π+

h (s). (7.84)

7.7.4 White-box Attack in Bounded Reward Setting

The attack strategy is

aot (h) =


at(h) if at(h) = π+

h (s),

π+
h (s) if at(h) 6= π+

h (s),

(7.85)

and

rot (st(h), at(h)) =


rt(st(h), at(h)) if at(h) = π+

h (st(h)),

Q̃π+

h (st(h), π
+
h (st(h))) otherwise

−Es′∼P(s′|st(h),π+
h (st(h)))

[V̄ π+

h+1(s
′)]− ε

(7.86)

where Q̄π
h(s, a) is the expected reward in state s for action a introduced by the above reward and

action manipulation under policy π, and V̄ π
h (s) is the expected reward in state s for the above

reward and action manipulation under policy π.

Theorem 31. For any learning algorithm A such thatt for all T ≥ t0, the regret in the absence

of attack is

RA(T,H) = O(
√
THα), (7.87)
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with probability at least 1− δ, where α ≥ 1 is a numerical constant; and for any sub-optimal

target policy π+ and 0 < ε ≤ minh≤H,s∈S µ(s, π
+
h (s)), if an attacker follows strategy in (7.85)

and (7.86), then with probability at least 1− δ, the number of reward manipulation attacks will

be
T∑
t=1

H∑
h=1

1(εt,h(st(h), at(h)) 6= 0) = O
(√

THα/ε
)
, (7.88)

the amount of contamination is

T∑
t=1

H∑
h=1

|εt,h(st(h), at(h)| = O
(√

THα/ε
)
, (7.89)

the number of action manipulation attacks is

T∑
t=1

H∑
h=1

1(aot (h) 6= at(h)) = O
(√

THα/ε
)
, (7.90)

and
∑T

t=1

∑H
h=1 1(at(h) = π+

h (st(h))) = Ω(T ).

Proof. First, we will show that the optimal policy under action and reward manipulation attack

in (7.85) and (7.86) is π+, namely for all π 6= π+, h ≤ H and s ∈ S , we have

V̄ π+

h (s) > V̄ π
h (s). (7.91)

We will show this by induction. We will that that (7.91) holds for h = H . Then, we will show

that (7.91) holds for h < H if it holds for h + 1. At h = H , for all π, using (7.85) and (7.86),

we have that

Q̄π
H(s, a) =


µ(s, a) if a = π+

H(s),

µ(s, π+
H(s))− ε if otherwise,

(7.92)

since episode terminates at step H . This implies that for h = H , we have that (7.91) holds, and
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for all (s, a) ∈ S ×A such that a 6= π+
H(s), we have

Q̄π
H(s, a) = Q̄π+

H (s, π+
H(s))− ε. (7.93)

Now, consider any h < H . Let (7.91) holds for h + 1. Using (7.85) and (7.86), for all π, we

have that

Q̄π
h(s, a) =



µ(s, a) + Es′∼P (s′|s,a)[V̄
π
h+1(s

′)] if a = π+
h (s),

Q̄π+

h (s, π+
h (s))− Es′∼P (s′|s,π+

h (s))[V̄
π+

h+1(s
′)] otherwise

+Es′∼P (s′|s,π+
h (s))[V̄

π
h+1(s

′)]− ε

(7.94)

Since (7.91) holds for h+ 1, we have that for a = π+
h (s),

Q̄π
h(s, a) < µ(s, a) + Es′∼P (s′|s,a)[V̄

π+

h+1(s
′)] = Q̄π+

h (s, a). (7.95)

Additionally, for a 6= π+
h (s), we have

Q̄π
h(s, a) = Q̄π+

h (s, π+
h (s))− Es′∼P (s′|s,π+

h (s))[V̄
π+

h+1(s
′)] + Es′∼P (s′|s,π+

h (s))[V̄
π
h+1(s

′)]− ε,

= Q̄π+

h (s, π+
h (s)) + Es′∼P (s′|s,π+

h (s))[V̄
π
h+1(s

′)− V̄ π+

h+1(s
′)]− ε,

(a)
< Q̄π+

h (s, π+
h (s))− ε,

(7.96)

where (a) follows from the fact that (7.91) holds for h + 1. Hence, the first step of the proof

follows.

Additionally, the attack satisfies the constraint that rot (s, at(h)) ∈ [0, 1]. For at(h) 6=
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π+
h (st(h)), we have

rot (st(h), at(h)) = Q̄π+

h (st(h), π
+
h (st(h)))− Es′∼P (s′|st(h),π+

h (st(h)))
[V̄ π+

h+1(s
′)]− ε,

(a)
= µ(st(h), π

+
h (st(h)))− ε,

(b)

≥ 0, (7.97)

where (a) follows from the fact that

Q̄π+

h (st(h), π
+
h (st(h))) = µ(st(h), π

+
h (st(h))) + Es′∼P (s′|at(h),π+

h (st(h)))
[V̄ π+

h+1(s
′)], (7.98)

and (b) follows from the fact that 0 < ε ≤ minh≤H,s∈S µ(s, π
+
h (s)). Additionally, we have

rot (st(h), at(h)) = µ(st(h), at(h))− ε ≤ 1, (7.99)

since µ(st(h), at(h)) ∈ (0, 1].

Let ∆(a) = mins,h,π Q̄
π+

h (s, π+
h (s))− Q̄π

h(s, a). Using (7.96), we have that

∆(a) ≥ ε. (7.100)

Now, using (7.100), we have that

T∑
t=1

H∑
h=1

ε1(at(h) 6= π+
h (st(h))) ≤ RA(T,H),

= O(
√
THα), (7.101)

with probability 1− δ, where the last inequality follows from (7.87). This along with (7.85) and

(7.86) implies that (7.88) and (7.90) follows since the contamination happens only if at(h) 6=

π+
h (s).

Additionally, for all h ≤ H and (st(h), at(h)) ∈ S × A such that at(h) 6= π+
h (s), we
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have that the amount of contamination is at most one, which implies (7.89) follows.

Finally, we have that with probability 1− δ

T∑
t=1

H∑
h=1

1(at(h) = π+
h (st(h))) = TH −

T∑
t=1

H∑
h=1

1(at(h) 6= π+
h (st(h)))

= Ω(T ), (7.102)

where the last equality follows from (7.101). Hence, the statement of the theorem follows.

7.7.5 Proof of Theorem 30

Proof. First, we will show that the optimal policy under action and reward manipulation attack

in (7.85) and (7.86) is π+, namely for all π 6= π+, h ≤ H and s ∈ S , we have

V̄ π+

h (s) > V̄ π
h (s). (7.103)

We will show this by induction. We will that that (7.103) holds for h = H . Then, we will show

that (7.103) holds for h < H if it holds for h+ 1. At h = H , for all π, using (7.25) and (7.26),

we have that

Q̄π
H(s, a) =


µ(s, a) if a = π+

H(s),

0 otherwise,

(7.104)

since episode terminates at step H . This implies that for h = H , we have that (7.103) holds, and

for all (s, a) ∈ S ×A such that a 6= π+
H(s), we have

Q̄π
H(s, a) = 0. (7.105)

Now, consider any h < H . Let (7.103) holds for h+ 1. Using (7.25) and (7.26), for all π, we

have that

Q̄π
h(s, a) =


µ(s, a) + Es′∼P (s′|s,a)[V̄

π
h+1(s

′)] if a = π+
h (s),

0 + Es′∼P (s′|s,π+
h (s))[V̄

π
h+1(s

′)] if otherwise.

(7.106)
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Since (7.103) holds for h+ 1, we have that for a = π+
h (s),

Q̄π
h(s, a) < µ(s, a) + Es′∼P (s′|s,a)[V̄

π+

h+1(s
′)] = Q̄π+

h (s, a). (7.107)

Additionally, for a 6= π+
h (s), we have

Q̄π
h(s, a) = Es′∼P (s′|s,π+

h (s))[V̄
π
h+1(s

′)],

(a)
< Es′∼P (s′|s,π+

h (s))[V̄
π+

h+1(s
′)],

(b)
< Q̄π+

h (s, π+
h (s)), (7.108)

where (a) follows from the fact that (7.103) holds for h+ 1, and (b) follows from the definition

of Q̄π+

h (s, π+
h (s)). Hence, the first step of the proof follows.

Additionally, the attack satisfies the constraint that rot (s, at(h)) ∈ [0, 1].

Let ∆(a) = mins,h,π Q̄
π+

h (s, π+
h (s))− Q̄π

h(s, a). Using the fact that r
o
t (st(h), at(h)) = 0

if at(h) 6= π+
h (st(h)) , we have that

∆(a) ≥ min
h,s

µ(s, π+
h (s)). (7.109)

Now, using (7.109), we have that

T∑
t=1

H∑
h=1

min
h,s

µ(s, π+
h (s))1(at(h) 6= π+

h (st(h))) ≤ RA(T,H),

= O(
√
THα), (7.110)

with probability 1− δ, where the last inequality follows from (7.27). This along with (7.25) and

(7.26) implies that (7.28) and (7.30) follows since the contamination happens only if at(h) 6=

π+
h (s).

Additionally, for all h ≤ H and (st(h), at(h)) ∈ S × A such that at(h) 6= π+
h (s), we

have that the amount of contamination is at most one, which implies (7.29) follows.

271



Finally, we have that with probability 1− δ

T∑
t=1

H∑
h=1

1(at(h) = π+
h (st(h))) = TH −

T∑
t=1

H∑
h=1

1(at(h) 6= π+
h (st(h)))

= Ω(T ), (7.111)

where the last equality follows from (7.110). Hence, the statement of the theorem follows.
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Chapter 8

Learning-based attacks in Cyber-Physical

Systems

8.1 Introduction

Attacks directed to Cyber-Physical Systems (CPS) can have catastrophic consequences

ranging from hampering the economy through financial scams, to possible losses of human lives

through hijacking autonomous vehicles and drones, see [167, 201, 86]. In this framework, two

important problems arise: understanding of the regime where the system can be attacked, and

designing ways to mitigate these attacks and render the system secure, see [142, 243, 97, 240,

43, 217, 64, 146, 111, 113, 183]. Techniques developed to secure CPS include watermarking,

moving target and baiting, and typically require either a loss of performance, or additional

resources available at the controller, see [192, 153, 98, 67].

In this paper, we focus on the former aspect of the problem, namely understanding the

regime under which the system can be attacked. We focus on linear plants and on an important

and widely used class of attacks based on the “man-in-the-middle” (MITM) technique. In this

case, the attacker takes over the physical plant’s control and feedback signals, and acts as a

malicious controller for the plant and fictitious plant for the controller. By doing so, it overrides

the control signals with malicious inputs aimed at destroying the plant; and it overrides the

feedback signals to the controller, trying to mimic the safe and legitimate operation of the system.

In learning based MITM attack, we assume that the attacker has full access to both sensor and
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control signals, but the plant dynamics are unknown to the attacker. Thus, the attacker needs to

learn about the plant in order to being able to generate the fictitious signals to the controller that

allow the attacker to remain undetected for the time needed to cause harm. On the other hand,

the controller has perfect (or nearly perfect) knowledge of the system dynamics and is actively

looking out for an anomalous behaviour in the feedback signals from the plant. This assumed

information pattern is justified, since the controller is typically tuned in much longer than the

attacker, and has knowledge of the system dynamics to a far greater precision than the attacker.

Following the detection of the attacker, the controller can shut the plant down, or switch to a

“safe” mode where the system is secured using additional resources, and the attacker is prevented

from causing additional ”harm” to the plant, see [51, 226, 208, 82].

We consider a learning-based MITM attack that evolves in two phases: exploration and

exploitation. In the exploration phase, the attacker observes the plant state and control inputs, and

learns the plant dynamics. In the exploitation phase, the attacker hijacks the plant, and utilizes

the learned estimate to feed the fictitious feedback signals to the controller. During this phase,

the attacker may also refine its estimate by continuing to learn. Within this context, our results

are as follows: first, we provide a lower bound on the expected ε-deception time, namely the

time required by the controller to make a decision regarding the presence of an attacker with

confidence at least 1 − ε log(1/ε). This bound is expressed in terms of the parameters of the

attacker’s learning algorithm and the controller’s strategy. Second, we show that there exists a

learning-based attack and a detection strategy such that a matching upper bound on the expected

ε-deception time is obtained. We then show that for a wide range of learning algorithms, if the

expected ε-deception time is at least of duration D, then the duration of the exploration phase

of the attacker must be at least Ω(D/ log(1/ε)), as ε→ 0. We establish that this bound is also

order-optimal since there exists a learning algorithm such that if the duration of the exploration

phase is O(D/ log(1/ε)) as ε→ 0, then the expected ε-deception time is at least D. Finally, we

show that if the controller wants to detect the attacker in at most D duration with confidence at

least 1− ε log(1/ε), then the expected energy expenditure on the control signal must be at least
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of order Ω(D/ log(1/ε)), as ε→ 0.

8.2 Related Work

There is a wide range of recent research on learning-based control for linear systems

[47, 191, 23, 66, 110, 220, 95, 44, 61, 127, 35]. In these works, learning algorithms are proposed

to design controllers in the presence of uncertainty. In contrast, in our setting we assume that the

controller has full knowledge of the system dynamics, while the attacker may take advantage of

these algorithms. Thus, our focus is not on the optimal control design given the available data,

but rather on the trade-offs between the attacker’s learning capability, the controller’s detection

strategy, and the control cost.

The MITM attack has been extensively studied in control systems for two special cases,

namely, the replay attack and the statistical duplicate attack. The detection of replay attacks

has been studied in [152, 153, 151], and ways to mitigate these attacks have been studied in

[249]. Likewise, the ways to detect and mitigate statistical duplicate attacks has been studied

in [192, 204, 170]. These works do not consider learning-enabled attackers, and analyze the

performance of the controller for only a specific detection strategy. In contrast, we investigate

learning-enabled attacks, and present trade-offs between the attacker’s learning capability through

observations, the controller detection strategy, and the control cost. Learning based attacks have

been recently considered in [111, 113, 251]. In [111, 113], a variance based detection strategy

has been investigated to present bounds on the probabilities of detection (or false alarm) of the

attacker. In [251], an optimization-based controller is proposed that has the additional capability

of injecting noise to interfere with the learning process of the attacker. Here, we consider a wider

class of learning-based attacks and detection strategies, and provide tight trade-offs for these

attacks.

Multiple variants of MITM attacks are studied in Reinforcement Learning (RL). In [172],

the work studies the MITM attacks under the assumption that the attacker has perfect knowledge

275



of the underlying MDP. The results are further extended to the setting where attacker has no

knowledge of the underlying MDP [173]. This is analogues to studying learning based attacks in

RL where the attacker eavesdrops on the actions performed by the learner and manipulates the

feedback from the environment. In [242], the work studies the feasibility of MITM attack under

the constraint on the amount of contamination introduced by the attacker in the feedback signal.

The relationship between the problem of designing optimal MITM attack in RL and the problem

of designing optimal control is discussed in [250]. Finally, the learning based MITM attacks are

also an active area of research in the Multi-Armed Bandits (MAB), see [97, 141, 27, 183]. In the

same spirit of our work, these works study the feasibility of the attacks, and provide bounds on

the amount of contamination needed by the attacker to achieve its objective. However, these

works do not consider the possibility of the detection of the attacker. In this work, we focus on

understanding the regime where the system can be attacked without the detection of the attacker.

8.3 Problem Setup

We consider the networked control system depicted in Figure 8.1 and Figure 8.2, where

the plant dynamics are described by a discrete-time and linear time-invariant (LTI) system,

namely at time k ∈ N, we have

Xk+1 = AXk + Uk +Wk, (8.1)

whereXk, Uk,Wk are vectors of dimensionM × 1 representing the plant state, control input, and

plant disturbance respectively, and A is a matrix of dimensionM ×M , representing the open-

loop gain of the plant. At time k, the controller observes the feedback signal Yk and generates a

control signal Uk as a function of Y1:k = {Y1, . . . , Yk}. The initial state X0 is known to both the

controller and the attacker, and is independent of the disturbance sequence {Wk}∞k=1, whereWk

is i.i.d. Gaussian noise N (0, σ2IM) with PDF known to both the parties, and IM is the identity

matrix of dimensionM ×M . Our results can also be extended to the scenario where the PDF of
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Figure 8.1. Exploration Phase.

Figure 8.2. Exploitation Phase.

the noise known to the attacker is different from the actual PDF of the noise (or PDF known to

the controller). With a slight loss of generality, we assume that U0 = W0 = 0 for analysis.

The controller attempts to detect the presence of the attacker based on the observations

Y1:k. When the controller detects an attack, it shuts the system down and prevents the attacker

from causing further “damage” to the plant. The controller is aware of the plant dynamics in

(8.1), and knows the gain A. This is justified because one can assume that the controller is tuned

to the plant for a long duration and thus has knowledge of A to a great precision. On the other

hand, the attacker only knows the form of the state evolution equation (8.1), but does not know

the gain matrix A.

8.4 Learning based Attacks

We consider learning based attacks that evolve in two phases.
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Phase 1: Exploration. Let L be the duration of the exploration phase. For all k ≤ L, as

illustrated in Figure 8.1, the attacker passively eavesdrops on the control input Uk and the plant

state Yk = Xk with the objective of learning the open loop gain of the plant. We let Âk be the

attacker’s estimate of A at time step k. The duration L can be considered as the cost incurred by

the attacker, since its actions are limited to eavesdropping during this phase.

Phase 2: Exploitation. The exploration phase is followed by the exploitation phase. For

all k ≥ L+ 1, as illustrated in Figure 8.2, the attacker hijacks the system and feeds a malicious

control signal Ũk to the plant in order to destroy the plant. Additionally, the attacker may continue

to learn about A, and utilizes its estimate Âk to design a fictitious feedback signal Yk = Vk in

Figure 8.2 to deceive the controller, namely

Vk+1 = ÂkVk + Uk + W̃k, (8.2)

where for all k ≥ L + 1, W̃k are i.i.d. with fW̃ = fW = N (0, σ2IM) . Let R denote an attack

strategy whose feedback signal satisfies (8.2). Thus, for all L > 0, our class of learning based

attacks is

A(L) = {R : for all k ≤ L, Yk = Xk and for all k ≥ L+ 1, Yk = Vk}. (8.3)

Note that in the class A(L), the learning of A may or may not continue during the exploitation

phase. Additionally, the attacker may use different learning algorithms in the two phases.

If the attacker learns A perfectly, i.e. Âk = A, then (8.2) will perfectly mimic the plant

behavior, making it impossible for the controller to detect the attacker. Otherwise, the controller

can attempt to detect the presence of the attacker by testing for statistical deviations from the

typical behavior in (8.1). The following example illustrates this point.

Example 1. Let R∗ ∈ A(L) be an attack whose learning is only limited to the exploration phase,

namely Âk = ÂL for all k ≥ L + 1. Also, let ‖ · ‖op be the operator norm induced by the
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Euclidean norm ‖ · ‖2 when applied to a matrix. In the exploration phase there is no interference

from the attacker and for all k ≤ L, the observation Yk = Xk satisfies

Yk+1 − AYk − Uk = Wk ∼ i.i.d. fW . (8.4)

In the exploitation phase, for all k ≥ L+ 1, the controller observation Yk = Vk satisfies

Vk+1 − AVk − Uk = Vk+1 − AVk + ÂLVk − ÂLVk − Uk = W̃k +
(
ÂL − A

)
Vk, (8.5)

where (8.5) follows from (8.4). Since W̃k and Wk have the same distribution and ‖Ax‖2 ≤

‖A‖op‖x‖2 holds, the controller can test the statistical deviation of (8.4) from (8.5). In this case,

the detection of the attack is controlled by two factors: the estimation error ‖ÂL −A‖op and the

fictitious signal Vk.

At the controller’s side, the detection becomes easier when the error ‖ÂL−A‖op increases.

Thus, at the attacker’s side it is desirable to reduce the error ‖ÂL − A‖op. This can be done by

increasing the duration L, and incurring an additional learning cost.

The detection is also easier if the energy of the fictitious signal Vk is large. Since Vk is a

function of the control signal Uk−1, it follows that the energy spent by the controller can help in

the detection of the attacker.

We then conclude that the probability of successful detection (or the time required to

detect the attacker with a given confidence) should reveal a trade-off between the duration L

of the exploration phase (or the estimation error ‖ÂL − A‖op), and the energy of the fictitious

signal (or of the control signal). In this paper we quantify both upper bound and lower bound on

this trade-off.

8.4.1 Performance Measures

Definition 3. The decision time τ is the time at which the controller makes a decision regarding

the presence or absence of the attacker.
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Definition 4. The probability of deception is the probability of the attacker deceiving the con-

troller and remaining undetected at the decision time τ , namely P τ
Dec , P(Θ̂τ = 0|Θτ = 1),

where Θ̂τ denotes the decision of the controller at the decision time τ , and the hijack indicator

Θk at time k is

Θk ,


0, ∀j ≤ k : Yj = Xj ;

1, otherwise.

(8.6)

Likewise, the probability of false alarm is the probability of detecting the attacker when it is not

present at the decision time τ , namely P τ
FA , P(Θ̂τ = 1|Θτ = 0).

In the class A(L) in (8.3), for all k ≤ L, we have that Θk = 0 (exploration phase); and

for all k ≥ L+ 1, we have Θk = 1 (exploitation phase).

Definition 5. For all attacks in the class A(L) and 0 < ε < 1, the ε-deception time T (ε) is

the time required by the controller to make a decision, with P τ
Dec ≤ ε log(1/ε), where τ =

L+ T (ε) + 1.

Thus, T (ε) is the largest possible duration during which the attacker can deceive the

controller, and remain undetected with confidence at least 1− ε log(1/ε), namely for all L+1 ≤

k ≤ T (ε) + L, we have

P(Θ̂k = Θk|Θk = 1) = P(Θ̂k = 1|Θk = 1) < 1− ε log(1/ε). (8.7)

Definition 6. For all n > L, the expected deception cost of the attacker until time n is defined as

C(n) ,
1

n
E
[ n∑

k=L+1

V T
k−1(Âk−1 − A)T (Âk−1 − A)Vk−1

2σ2

]
. (8.8)

8.4.2 Main results

We start with defining a non-divergent learning algorithm.
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Definition 7. A learning algorithm is non-divergent if its estimation error is non-increasing in

the duration of the learning, namely for all k2 > k1, we have ‖Âk2 − A‖op ≤ ‖Âk1 − A‖op.

We introduce the following notation. Let p0(y1:τ ) be the conditional probability of y1:τ

given the attacker did not hijack the system, namely Θ1 = . . .ΘL = ΘL+1 = . . .Θτ = 0, where

y1:τ denotes the realization of the random variables Y1, . . . , Yτ . Likewise, let p1(y1:τ ) be the

conditional probability of y1:τ given the attacker has hijacked the system, namely Θ1 = . . . =

ΘL = 0 and ΘL+1 = . . .Θτ = 1. The following proposition characterises the KL divergence

D(p1(Y1:τ )||p0(Y1:τ )) between p1(Y1:τ ) and p0(Y1:τ ), and is useful to derive our main results.

Proposition 3. For all attacks in the class A(L) and n > L, the cumulative KL divergence is

D(p1(Y1:n)||p0(Y1:n)) = nC(n). (8.9)

The KL divergence between the distributions p0 and p1 is characterized by C(n), and is

the key quantity to establish both the lower bound and the upper bound on T (ε). If the PDF of

the noise known to the attacker is different from the actual PDF of the noise (or the PDF known

to the controller), Proposition 3 can be modified to include this discrepancy, and an additional

non-negative term would be added to C(n). The bounds on T (ε) will follow along the same

lines.

The following theorem presents a lower bound on E[T (ε)] that holds for any detection

strategy. The bound is expressed in terms of C(n), which depends on the attacker’s learning

algorithm, the fictitious signal and the control signal in (8.2).

Theorem 32. For all attacks in A(L) and τ > L, if

P τ
Dec = O(|ε log ε|) and P τ

FA = O(|ε log ε|), as ε→ 0, (8.10)
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then the deception time T (ε) = τ − L− 1 is

E[T (ε)] ≥ log(1/ε)

C(n0)
+ o(log(1/ε)) as ε→ 0, (8.11)

where n0 = max {n > L : nC(n) < log(1/ε)} .

It follows that for any detection strategy with probability of errorO(|ε log ε|), the expected

ε-deception time is at least Ω (log(1/ε)/C(n0)). The next theorem establishes that the lower

bound in Theorem 32 is tight.

Theorem 33. There exists an attack in A(L) and a detection strategy such that at τ > L, we

have

P τ
Dec = O(ε) and P τ

FA = O(ε), as ε→ 0, (8.12)

and the deception time T (ε) = τ − L− 1 is

E[T (ε)] ≤ log(1/ε)

C(n0 + 1)
+ o(log(1/ε)), as ε→ 0. (8.13)

In Theorems 32 and 33, as ε→ 0, we have that C(n0)→ C(n0 + 1), and |ε| ≤ |ε log ε|.

Thus, the lower bound and the upper bound in Theorems 32 and 33 are tight. It turns out that the

attack achieving the upper bound on E[T (ε)] in Theorem 33 learns about A in the exploration

phase only, and focuses on destabilizing the system in the exploitation phase. The corresponding

detection strategy is a classic sequential probability ratio test ([222]), which computes the ratio

of the posterior probability of the two hypotheses, namely the attacker is present or absent, and

makes a decision when this ratio crosses the threshold log(1/ε). While this strategy has been

previously studied under the assumption that the samples y1:n are identically and independently

distributed (i.i.d) ([45, 178, 177, 179]), here we extend the analysis to the samples dependent on

both the control input and the state of the feedback signal at the controller.
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We point out that to extend these results to non-linear systems, a key step would be

finding an analogue of Proposition 3 in a non-linear setting. This proposition relates the KL

divergence to the expected deception cost C(n), which is a function of the fictitious signal and

the error in the estimation of A. For non-linear systems, an equivalent relationship needs to

be derived between the KL divergence, the fictitious signal and the error in the estimation of

non-linear system dynamics. The proof of the Theorems 32 and 33 can then be obtained using a

similar argument, given an analogue of Proposition 3 for non-linear systems.

Next, we derive some useful implications of Theorems 32 and 33. For simplicity of

presentation, in the following we restrict the class of learning algorithms in the exploration phase,

although results can also be extended to more general settings.

Definition 8. A learning algorithm is said to be convergent if there exists an α ≥ 1 such that for

all η > 0 and time step k > 0, we have

P(‖Âk − A‖op > η) ≤ c

(η2k)α
. (8.14)

It follows that any convergent learning algorithm provides an unbiased estimate of A as

the learning time k →∞, and the operator norm of the estimation error converges to the interval

[−η,+η] at rate O(1/(η2k)α). There are many convergent learning algorithms. For example, for

scalar systems and measurable control policy, the Least Squares (LS) algorithm in [184] satisfies

P(|Âk − a| > η) ≤ 2

(1 + η2)k/2
. (8.15)

For the vector case sufficiently large learning time k, if the control input is Uk = −K̄Xk and

A− K̄ is a marginally stable matrix, then the LS algorithm in [203] satisfies

P(‖Âk − A‖op > η) ≤ c1
eη2k

, (8.16)

283



where c1 > 0 is a constant.

The following theorem provides a lower bound on the duration of the exploration phase

for the attacker to achieve a given expected ε-deception time.

Theorem 34. For all 0 < δ < 1 andD > 0, and all attacks inA(L) using a convergent learning

algorithm in the exploration phase and a non-divergent learning algorithm in the exploitation

phase, if E[T (ε)] ≥ D + o(1) as ε → 0, then with probability at least 1 − δ the following

asymptotic inequality holds

L ≥ DC̃(n0)

log(1/ε)

(
c

δ

)1/α

+ o

(
1

log(1/ε)

)
, as ε→ 0, (8.17)

where C̃(n) = E
[∑n

k=L+1 V
T
k−1Vk−1

]
/(2σ2n).

The following theorem establishes that the lower bound on L in Theorem 34 is order

optimal, and a matching order-optimal bound on L holds for the LS algorithm in [203].

Theorem 35. For all 0 < δ < 1 and D > 0, using the LS algorithm in [203] in the exploration

phase only, and assuming the control input is Uk = −K̄Xk, where A− K̄ is a marginally stable

matrix, if

L = DC̃(n0) log(c1/δ)/ log(1/ε) + o(1/ log(1/ε)) as ε→ 0, (8.18)

then, with probability at least 1− δ we have

E[T (ε)] ≥ D + o(1), as ε→ 0. (8.19)

The choice of the control policy can play a crucial role in the reduction of the deception

time. However, this can occur at the expense of the energy used to construct the control signal

Uk. The following theorem provides a lower bound on the amount of energy that the controller

needs to spend to achieve a desired expected ε-deception time.
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Theorem 36. For all D > 0, and for all attacks in A(L) using a non-divergent learning

algorithm in the exploitation phase, if E[T (ε)] ≤ D + o(1) as ε → 0, and for all k > L, the

control policy satisfies

E[V T
k ÂT

k ÂkVk] + σ2 + 2E[V T
k ÂT

kUk] ≤ 0, (8.20)

then the expected energy of the control signal is

R(n0) ≥
2σ2 log(1/ε)

‖ÂL − A‖2opD
+ o(log(1/ε)), as ε→ 0, (8.21)

where R(n0) , E
[∑n0−1

k=L UT
k−1Uk−1

]
/n0.

Theorem 36 shows that the expected energy of the control signal until a time between

L ≤ k ≤ n0 is inversely proportional to the upper bound D on the deception time. Since L is

unknown to the controller, it follows that the controller should maintain a high level of expected

signal energy E[U2
k ] at every time instance k to ensure a small deception time.

8.5 Simulations

In this section, we provide two numerical examples. Although our theoretical results are

valid for a large class of learning algorithms and any detection strategy chosen by the controller,

we validate them here using LS algorithm and a covariance detector.

First we start with an example for scalar system, where we use the empirical performance

of a variance-test to illustrate our results. Specifically, at a decision time τ , the controller tests the

empirical variance for unexpected behaviour over a detection window [0, τ ], using a confidence

interval 2γ > 0 around the expected variance. More precisely, at decision time τ , Θ̂τ = 0 if

1

τ

τ∑
k=0

[Yk+1 − aYk − Uk]
2 ∈ (Var[W ]− γ,Var[W ] + γ), (8.22)
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otherwise Θ̂τ = 1. In this case, since the system disturbances are i.i.d. GaussianN (0, σ2), using

Chebyshev’s inequality, we have

P τ
FA ≤

Var[W 2]

γ2T
=

3σ4

γ2T
. (8.23)

In our simulations, the attacker learns in the exploration phase only, and uses the LS learning

algorithm. At the end of the exploration phase, we have

ÂL =

∑L−1
k=1 (Xk+1 − Uk)Xk∑L−1

k=1 X
2
k

. (8.24)

Our simulation parameters are the following: γ = 0.1, decision time τ = 800, A = 1.1,

and {Wk} are i.i.d. Gaussian N (0, 1). Using (8.23), the false-alarm rate is negligible for these

parameters.

Figure 8.3 compares the attacker’s success rate as a function of the duration L of the

exploration phase for three different control policies Uk = −AYk + Γk such that for all k, I)

Γk = 0, II) Γk are i.i.d. Gaussian N (0, 9), III) Γk are i.i.d. Gaussian N (0, 16). As illustrated in

Figure 8.3, the attacker’s success rate increases as the duration of exploration phase increases.

This is because the attacker’s estimation error |ÂL − A| reduces as L increases, which makes

it difficult for the controller to detect the attacker. This is in accordance with the theoretical

findings in Theorem 34. Also, for a fixed L, the attacker’s success rate decreases as the input

control energy increases. The increase in the control energy increases the energy of the fictitious

signal which increases the probability of detection, and is in accordance with Theorem 36.

Next, we provide an example of vector system, and analyze the empirical performance of

the covariance test against the learning-based attack. In vector systems, the error matrix is

∆ , Σ− 1

τ

τ∑
k=1

[Yk+1 − AYk − Uk] [Yk+1 − AYk − Uk]
> , (8.25)
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Figure 8.3. Attacker’s success rate versus L.

Similar to (8.22), at decision time τ , we have Θ̂τ = 0 if ‖∆‖op ≤ γ, and Θ̂τ = 1, otherwise.

Similar to the scalar system, the attacker learns in the exploration phase only, and uses the LS

learning algorithm, which implies that

ÂL =


0n×n, det(GL−1) = 0;

L−1∑
k=1

(Xk+1 − Uk)X
>
k G

−1
L−1, otherwise,

(8.26)

where Gτ ,
∑τ

k=1 XkX
>
k . Our simulation parameters are the following: γ = 0.1, A =

[1 2 ; 3 4], Σ = [1 0 ; 0 1], and Uk = −0.9AYk.

Figure 8.4 compares the attacker’s success rate, as a function of sizes of detection window

τ for different duration L of the exploration phase. The false-alarm rate decreases to zero as

the duration of the τ detection window tends to infinity, similarly to the argument for scalar

systems. Thus, as the size of the detection window grows, the success rate of learning-based

attacks increases. Finally, as as seen in Figure 8.4, as the duration of the exploration phase L

increases, the attacker’s success rate increases, since the attacker improves its estimate of A as L

increases. This is in line with the theoretical findings in Theorem 34.
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Figure 8.4. Attacker’s success rate versus τ .

8.6 Conclusions and Future Directions

We have presented tight lower and upper bounds on the expected deception time for

learning based MITM attacks, as the probability of correct detection tends to one. Additionally,

we provided an order-optimal characterization of the length of the attacker’s exploration phase and

computed a lower bound on the control cost. In the future, we plan to study online phase learning

based attacks, where the attacker can choose to switch between exploration and exploitation

phases dynamically. We also plan to study methods to mitigate these attacks and render the

system secure. The extension of our results to partially-observable linear vector systems where

the input (actuation) gain is unknown, and the characterization of securable and unsecurable

subspaces, similar to [193], is another possible research direction. Further extensions to nonlinear

systems are also of interest.
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8.8 Appendix

8.8.1 Proof of Proposition 3

Proof. Since the attacker does not intervene before k ≤ L, we have that for all k ≤ L,

D(p1(Y1:k)||p0(Y1:k)) = 0. (8.27)

Thus, for all k > L, using the chain rule, we have

D(p1(Y1:n)||p0(Y1:n)) =
n∑

k=L+1

D(p1(Yk|Y1:k−1)||p0(Yk|Y1:k−1)). (8.28)

Also, if Θk = 1, then for all k > L, we have

Yk|(Yk−1, Uk−1, Âk−1) ∼ N (Âk−1Yk−1 + Uk−1, σ
2IM), (8.29)

since Yk = Vk for all k > L. Similarly, if Θk = 0, then for all k > L, we have

Yk|(Yk−1, Uk−1, Âk−1) ∼ N (AYk−1 + Uk−1, σ
2IM). (8.30)

The result now follows by using the fact that for all k > L, we have Yk = Vk .

We continue by noticing that the control input Uk lies in sigma field of past observations,

namely Uk is measurable with respect to sigma field generated by Y1:k−1. Thus, combining (8.28),

(8.29) and (8.30), for all k > L, we have that

D(p1(Yk|Y1:k−1)||p0(Yk|Y1:k−1)) = E
[
Y T
k−1(Âk−1 − A)T (Âk−1 − A)Yk−1

2σ2

]
. (8.31)
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Using (8.28) and (8.31), for all n > L, we have

D(p1(Y1:n)||p0(Y1:n)) = E
[ n∑

k=L+1

Y T
k−1(Âk−1 − A)T (Âk−1 − A)Yk−1

2σ2

]
. (8.32)

8.8.2 Proof of the Theorem 32

Proof. The proof of the theorem consists of two parts. First, for all attacks in the classA(L) and

0 < c < 1, we show that if the probability of error is small, namely P(Θ̂τ 6= Θτ ) = O(|ε log ε|),

then the log-likelihood ratio log(p1(y1:τ )/p0(y1:τ )) should be greater than (1− c) log(1/ε) with

high probability as ε→ 0, namely

log
p1(y1:τ )

p0(y1:τ )
≥ (1− c) log(1/ε) (8.33)

must hold with high probability, as ε→ 0. Second, we show that there exists 0 < c̄ < 1 such

that for all 0 < c ≤ c̄ and T (ε) < (1 − c) log(1/ε)/C(n0), it is unlikely that the inequality in

(8.33) is satisfied.

Using (8.10), for all k ≥ L+1, we have that both type I and type II errors of the hypothesis

test Θk = 1 vs. Θk = 0 are O(|ε log ε|). Thus, using [45, Lemma 4], for all 0 < c < 1, we have

P
(
Sτ ≤ −(1− c) log ε

)
= O(−εc log ε), (8.34)

where

Sn = log
p1(y1:n)

p0(y1:n)
=

n∑
k=1

log

(
p1(yk|y1:k−1)

p0(yk|y1:k−1)

)
. (8.35)

Therefore, as ε → 0, the probability in (8.34) tends to 0, which concludes the first part of the

proof.
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Now, we show that for all 0 < c < 1, we have

lim
n′→∞

P
(
max

1≤k≤n′
Sk ≥ (D(p1(y1:n′)||p0(y1:n′)) + n′c)

)
= 0, (8.36)

where D(p1(y1:n′)||p0(y1:n′)) denotes the KL divergence between the distributions p1 and p0 of

Y1:n′ . We have

Sn =
n∑

k=1

(
log

(
p1(yk|y1:k−1)

p0(yk|y1:k−1)

)
−D(p1(Yk|Y1:k−1)||p0(Yk|Y1:k−1))

)

+
n∑

k=1

D(p1(Yk|Y1:k−1)||p0(Yk|Y1:k−1))

= Mn
1 +Mn

2 , (8.37)

where

Mn
1 =

n∑
k=1

(
log

(
p1(yk|y1:k−1)

p0(yk|y1:k−1)

)
−D(p1(Yk|Y1:k−1)||p0(Yk|Y1:k−1))

)
,

(8.38)

is a martingale with mean 0 with respect to filtration Fk = σ(Y1:k−1), and

Mn
2 =

n∑
k=1

D(p1(Yk|Y1:k−1)||p0(Yk|Y1:k−1)),

(a)
= D(p1(Y1:n)||p0(Y1:n)), (8.39)

where (a) follows from the chain rule of KL-Divergence. Now, if the event in (8.36) occurs for

a fixed n1, namely

Mn1
1 +Mn1

2 ≥ D(p1(Y1:n1)||p0(Y1:n1)) + n1c, (8.40)

then it implies thatMn1
1 ≥ n1c. Since Yk|Y1:k−1 has a normal distribution using (8.29) and (8.30),
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there exists a constant b > 0 such that the probability in (8.36) simplifies as

P
(
max

1≤k≤n′
Sk ≥ (D(p1(y1:n′)||p0(y1:n′)) + n′c)

)
≤ P( max

1≤k≤n′
Mk

1 ≥ n′c)

(a)

≤ b/n′c2, (8.41)

where (a) follows from the Doob-Kolmogorov extension of Chebyshev’s inequality in [56], and

the fact thatMk
1 is a martingale with 0 mean. Hence, we have that (8.36) follows.

Now, we have

n0C(n0) < log(1/ε). (8.42)

Therefore, there exists 0 < c̄ < 1 such that

n0C(n0) + n0c̄ = (1− c̄) log(1/ε). (8.43)

Now, using Proposition 3, for all 0 < c ≤ c̄, we have

P(N ≤ n0) ≤ P
(
N ≤ n0 and S

N ≥ n0(C(n0) + c)
)

+ P
(
SN ≤ n0(C(n0) + c)

)
≤ P

(
max

1≤k≤n0

Sk ≥ n0(C(n0) + c)
)

+ P
(
SN ≤ n0(C(n0) + c)

)
, (8.44)

and the first and the second terms at the right-hand side of (8.44) approach zero by (8.36) and

(8.34), respectively.
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8.8.3 Proof of the Theorem 33

Proof. InA(L), consider an attack R∗ such that for all k > L, we have Âk = ÂL. For all k > L,

if Θk = 1, then we have

Yk|Y1:k−1 ∼ N (ÂLYk−1 + Uk−1, σ
2IM). (8.45)

Similarly, if Θk = 0, then

Yk|Y1:k−1 ∼ N (AYk−1 + Uk−1, σ
2IM). (8.46)

Consider a the following detection strategy, also known as Sequential Probability Ratio

Test (SPRT), at the controller as follows. At time n, if

n∑
k=1

log

(
p1(yk|y1:k−1)

p0(yk|y1:k−1)

)
≥ log(1/ε), (8.47)

then Θ̂n = 1, and if
n∑

k=1

log

(
p0(yk|y1:k−1)

p1(yk|y1:k−1)

)
≥ log(1/ε), (8.48)

then Θ̂n = 0. Otherwise, n is not a decision time and the test continues.

We will show that for the attack R∗ and the detection strategy SPRT, the statement of the

theorem holds.

For SPRT, the probability of error, both P τ
Dec and P

τ
FA, is at most O(ε), and the proof is

along the same direction as [179, Theorem 1]. Now, let us prove the bound on T (ε). Given the

system is under attack, let the decision time τ of SPRT be

T = min

{
n :

n∑
k=1

log

(
p1(yk|y1:k−1)

p0(yk|y1:k−1)

)
≥ log(1/ε)

}
. (8.49)

Using [45, Lemma 2], for system under attack A(L) and for all c > 0, there exist a b > 0 such
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that

P
( n∑

k=1

log

(
p1(yk|y1:k−1)

p0(yk|y1:k−1)

)
< (D(p1(Y1:n)||p0(Y1:n))− nc)

)
≤ e−bn. (8.50)

Using the definition of n0, for all n̄ > n0 we have

log(1/ε) ≤ n̄C(n̄) = D(p1(Y1:n̄)||p0(Y1:n̄)), (8.51)

where the equality follows from Proposition 3. Using (8.50) and (8.51), For all c > 0 and

n ≥ (1 + c)(n0 + 1) log(1/ε)/D(p1(Y1:n0+1)||p0(Y1:n0+1)), we have

P
( n∑

k=1

log

(
p1(yk|y1:k−1)

p0(yk|y1:k−1)

)
< log(1/ε)

)
≤ e−bn. (8.52)

Then, using Proposition 3, the statement of the theorem follows.

8.8.4 Proof of Theorem 34

Proof. If the learning algorithm in the exploration phase is a convergent algorithm, the learning

algorithm in the exploitation phase is a non-divergent algorithm, then for all 0 < δ < 1, we have

C(n0)
(a)

≤ ‖ÂL − A‖2op
1

n0

E
[ n0∑

k=L+1

V T
k−1Vk−1

2σ2

]
,

(b)

≤
(

c1/α

Lδ1/α

)
C̃(n0), (8.53)

with probability at least 1− δ, where (a) follows from the fact that

||Ax||2 ≤ ||A||op||x||2, (8.54)
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and the learning algorithm in the exploitation phase is non-divergent, and (b) follows from

Definition 8 of convergent algorithms. Thus, we have

log(1/ε)

C(n0)
≥ log(1/ε)

C̃(n0)

(
Lδ1/α

c1/α

)
, (8.55)

with probability at least 1− δ. Using Theorem 32 and (8.55), if

(1 + o(1))
log(1/ε)

C̃(n0)

(
Lδ1/α

c1/α

)
> D(1 + o(1)), as ε→ 0, (8.56)

then E[T (ε)] > D + o(1) as ε→ 0. This along with (8.55) implies that

L ≥ (1 + o(1))DC̃(n0)

log(1/ε)

c1/α

δ1/α
, as ε→ 0, (8.57)

with probability at least 1− δ.

8.8.5 Proof of Theorem 35

Proof. Consider the LS learning algorithm in [203] which satisfies

P(‖Âk − A‖op > η) ≤ c1
eη2k

, (8.58)

For η =
√
log(c1/δ)/L, similar to (8.53), we have that

C(n0) ≤
log(c1/δ)

L
C̃(n0), (8.59)

with probability at least 1− δ. Thus, we have

log(1/ε)

C(n0)
≥ log(1/ε)

C̃(n0)

L

log(c1/δ)
, (8.60)
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with probability at least 1− δ. Thus, for L = (1 + o(1))DC̃(n0) log(c1/δ)/ log(1/ε) as ε→ 0,

using Theorem 32, we have that

E[T (ε)] ≥ (1 + o(1)) log(1/ε)

C(n0)
≥ D(1 + o(1)) = D + o(1), as ε→ 0, (8.61)

with probability at least 1− δ. The statement of the theorem follows.

8.8.6 Proof of Theorem 36

Proof. Since W̃k is independent of Uk and Vk and E[W̃k] = 0, we have

E[V T
k+1Vk+1]− E[UT

k Uk] = E[V T
k ÂT

k ÂkVk] + σ2 + 2E[V T
k ÂT

kUk]. (8.62)

Using (8.20), we have

E[V T
k+1Vk+1] ≤ E[UT

k Uk], (8.63)

which implies

C(n0)
(a)

≤
‖ÂL − A‖2op

n0

E
[ n0∑

k=L+1

V T
k−1Vk−1

2σ2

]
(b)

≤
‖ÂL − A‖2op

n0

E
[ n0−1∑

k=L

UT
k−1Uk−1

2σ2

]
, (8.64)

where (a) follows from the fact that ||Ax||2 ≤ ||A||op||x||2, and (b) follows from (8.63). Since

E[T (ε)] ≤ D + o(1) as ε→ 0, using Theorem 32 and (8.64), we have that

D + o(1) ≥ (1 + o(1))2σ2 log(1/ε)

‖ÂL − A‖2opR(n0)
, as ε→ 0. (8.65)

Hence, the statement of the theorem follows.

296



Chapter 9

Non-Stochastic Information Theory

9.1 Introduction

This paper introduces elements of a non-stochastic information theory that parallels

Shannon’s probabilistic theory of information, but that provides strict deterministic guarantees

for every codeword transmission. When Shannon laid the mathematical foundations of com-

munication theory he embraced a probabilistic approach [199]. A tangible consequence of this

choice is that in today’s communication systems performance is guaranteed in an average sense,

or with high probability. Occasional violations from a specification are permitted, and cannot

be avoided. This approach is well suited for consumer-oriented digital communication devices,

where the occasional loss of data packets is not critical, and made Shannon’s theory the golden

standard to describe communication limits, and to construct codes that achieve these limits.

The probabilistic approach, however, has also prevented Shannon’s theory to be relevant in

systems where occasional decoding errors can result in catastrophic failures; or in adversarial

settings, where the behavior of the channel may be unknown and cannot be described by a

probability distribution. The basic consideration that is the leitmotiv of this paper is that the

probabilistic framework is not a fundamental component of Shannon’s theory, and that the path

laid by Shannon’s work can be extended to embrace a non-stochastic setting.

The idea of adopting a non-stochastic approach in information theory is not new. A

few years after introducing the notion of capacity of a communication system [199], Shannon
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introduced the zero-error capacity [198]. While the first notion corresponds to the largest rate of

communication such that the probability of decoding error tends to zero, the second corresponds

to the largest rate of communication such that the probability of decoding error equals zero. Both

definitions of capacity satisfy coding theorems: Shannon’s channel coding theorem states that

the capacity is the supremum of the mutual information between the input and the output of the

channel [199]. Nair introduced a non-stochastic mutual information functional and established

an analogous coding theorem for the zero-error capacity in a non-stochastic setting [158]. While

Shannon’s theorem leads to a single letter expression, Nair’s result is multi-letter, involving the

non-stochastic information between codeword blocks of n symbols. The zero-error capacity can

also be formulated as a graph-theoretic property and the absence of a single-letter expression

for general graphs is well known [198, 187]. Extensions of Nair’s nonstochastic approach to

characterize the zero-error capacity in the presence of feedback from the receiver to the transmitter

using nonstochastic directed mutual information have also been considered [157].

A parallel non-stochastic approach is due to Kolmogorov who, motivated by Shannon’s

results, introduced the notions of ε-entropy and ε-capacity in the context of functional spaces [209].

He defined the ε-entropy as the logarithm base two of the covering number of the space, namely

the logarithm of the minimum number of balls of radius ε that can cover the space. Determining

this number is analogous to designing a source codebook such that the distance between any

signal in the space and a codeword is at most ε. In this way, any transmitted signal can be

represented by a codeword point with at most ε-distortion. Notions related to the ε-entropy

are the Hartley entropy [80] and the Rényi differential (0th-order) entropy [186]. They arise

for random variables with known range but unknown distribution, and are defined by taking

the logarithm of the cardinality (for discrete variables), or Lebesgue measure (for continuous

variables) of their range. Thus, their definition does not require any statistical structure. Using

these entropies, non-stochastic measures of mutual information have been constructed [200, 117].

Unfortunately, the absence of coding theorems makes the operational significance of these

definitions lacking.
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Rather than using mutual information and entropy, Kolmogorov gave an operational

definition of the ε-capacity as the logarithm base two of the packing number of the space,

namely the logarithm of the maximum number of balls of radius ε that can be placed in the

space without overlap. Determining this number is analogous to designing a channel codebook

such that the distance between any two codewords is at least 2ε. In this way, any transmitted

codeword that is subject to a perturbation of at most ε can be recovered at the receiver without

error. It follows that the ε-capacity corresponds to the zero-error capacity of an additive channel

having arbitrary, bounded noise of support at most [0, ε]. Lim and Franceschetti extended

this concept introducing the (ε, δ) capacity [132], defined as the logarithm base two of the

largest number of balls of radius ε that can be placed in the space with average codeword

overlap of at most δ. In this setting, δ measures the amount of error that can be tolerated when

designing a codebook in a non-stochastic setting. Neither the Kolmogorov capacity, nor its

(ε, δ) generalization have a corresponding information-theoretic characterization in terms of

mutual information and an associated coding theorem. This is offered in the present paper. Some

possible applications of non-stochastic approaches arising in the context of estimation, control,

security, communication over non-linear optical channels, and robustness of neural networks are

described in [188, 189, 230, 28, 228, 218, 65]; and some are also discussed in the context of the

presented theory at the end of the paper.

The rest of the paper is organized as follows. Section II provides a summary of our

contributions; Section III introduces the mathematical framework of non-stochastic uncertain

variables that is used throughout the paper. Section IV introduces the concept of non-stochastic

mutual information. Section V gives an operational definition of capacity of a communication

channel and relates it to the mutual information. Section VI extends results to more general

channel models; and section VII concentrates on the special case of stationary, memoryless,

uncertain channels. Sufficient conditions are obtained to obtain single-letter expressions for

this case. Section VIII considers some examples of channels and computes the corresponding

capacity. Finally, Section IX discusses some possible application of the developed theory, and
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Section X draws conclusions and discusses future directions. A subset of the results has been

presented in [176].

9.2 Contributions

We introduce a notion of δ-mutual information between non-stochastic, uncertain vari-

ables. In contrast to Nair’s definition [158], which only allows to measure information with

full confidence, our definition considers the information revealed by one variable regarding the

other with a given level of confidence. We then introduce a notion of (ε, δ)-capacity, defined

as the logarithm base two of the largest number of balls of radius ε that can be placed in the

space such that the overlap between any two balls is at most a ratio of δ and the total number of

balls. In contrast to the definition of Lim and Franceschetti [132], which requires the average

overlap among all the balls to be at most δ, our definition requires to bound the overlap between

any pair of balls. For δ = 0, our capacity definition reduces to the Kolmogorov ε-capacity, or

equivalently to the zero-error capacity of an additive, bounded noise channel, and our mutual

information definition reduces to Nair’s one [158]. We establish a channel coding theorem in

this non-stochastic setting, showing that the largest mutual information, with confidence at least

(1− δ), between a transmitted codeword and its received version corrupted with noise at most ε,

is the (ε, δ)-capacity. We then extend this result to more general non-stochastic channels, where

the noise is expressed in terms of a set-valued map N(·) associating each transmitted codeword

to a noise region in the received codeword space, that is not necessarily a ball of radius ε.

Next, we consider the class of non-stochastic, memoryless, stationary uncertain channels.

In this case, the noise N(·) experienced by a codeword of n symbols factorizes into n identical

terms describing the noise experienced by each codeword symbol. This is the non-stochastic

analogous of a discrete memoryless channel (DMC), where the current output symbol depends

only on the current input symbol and not on any of the previous input symbols, and the noise

distribution is constant across symbol transmissions. It differs from Kolmogorov’s ε-noise
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channel, where the noise experienced by one symbol affects the noise experienced by other

symbols. In Kolmogorov’s setting, the noise occurs within a ball of radius ε. It follows that

for any realization where the noise along one dimension (viz. symbol) is close to ε, the noise

experienced by all other symbols lying in the remaining dimensions must be close to zero. In

contrast, for non-stochastic, memoryless, stationary channels, the noise experienced by any

transmitted symbol is described by a single, non-stochastic set-value map from the transmitted

alphabet to the received symbol space. We provide coding theorems in this setting in terms of

the δ-mutual information rate between received and transmitted codewords. Finally, we provide

sufficient conditions for the factorization of the mutual information and to obtain a single-letter

expression for the non-stochastic capacity of stationary, memoryless, uncertain channels. We

provide examples in which these conditions are satisfied and compute the corresponding capacity,

and we conclude with a discussion of some possible applications of the presented theory.

9.3 Uncertain variables

We start by reviewing the mathematical framework used in [158] to describe non-

stochastic uncertain variables (UVs). An UV X is a mapping from a sample space Ω to a

set X , i.e. for all ω ∈ Ω, we have x = X(ω) ∈X . Given an UV X , the marginal range of X

is

JXK = {X(ω) : ω ∈ Ω}. (9.1)

The joint range of two UVs X and Y is

JX,Y K = {(X(ω), Y (ω)) : ω ∈ Ω}. (9.2)

Given an UV Y , the conditional range of X given Y = y is

JX|yK = {X(ω) : Y (ω) = y, ω ∈ Ω}, (9.3)
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and the conditional range of X given Y is

JX|Y K = {JX|yK : y ∈ JY K}. (9.4)

Thus, JX|Y K denotes the uncertainty in X given the realization of Y and JX,Y K represents the

total joint uncertainty of X and Y , namely

JX,Y K = ∪y∈JY KJX|yK× {y}. (9.5)

Finally, two UVs X and Y are independent if for all x ∈ JXK

JY |xK = JY K, (9.6)

which also implies that for all y ∈ JY K

JX|yK = JXK. (9.7)

9.4 δ-Mutual information

9.4.1 Uncertainty function

We now introduce a class of functions that are used to express the amount of uncertainty

in determining one UV given another. In our setting, an uncertainty function associates a positive

number to a given set, which expresses the “massiveness” or “size” of that set.

Definition 9. Given any set X , mX : S ⊆ X → R+
0 is an uncertainty function if it is finite

and strongly transitive, namely:

For all S ⊆X ,S 6= ∅, we have

0 < mX (S ) <∞, mX (∅) = 0. (9.8)
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For all S1,S2 ⊆X , we have

max{mX (S1),mX (S2)} ≤ mX (S1 ∪S2). (9.9)

In the case X is measurable, an uncertainty function can easily be constructed using a

measure. In the case X is a bounded (not necessarily measurable) metric space and the input set

S contains at least two points, an example of uncertainty function is the diameter.

9.4.2 Association and dissociation between UVs

We now introduce notions of association and dissociation between UVs. In the following

definitions, we let mX (.) and mY (.) be uncertainity functions defined over sets X and Y

corresponding to UVs X and Y . We use the notation A � δ to indicate that for all a ∈ A we

have a > δ. Similarly, we use A � δ to indicate that for all a ∈ A we have a ≤ δ. For A = ∅,

we assume A � δ is always satisfied, while A � δ is not. Whenever we consider i 6= j, we

also assume that yi 6= yj and xi 6= xj .

Definition 10. The sets of association for UVs X and Y are

A (X;Y ) =

{
mX (JX|y1K ∩ JX|y2K|)

mX (JXK)
: y1, y2 ∈ JY K

}
\
{
0
}
, (9.10)

A (Y ;X) =

{
mY (JY |x1K ∩ JY |x2K|)

mY (JY K)
: x1, x2 ∈ JXK

}
\
{
0
}
. (9.11)

Definition 11. For any δ1, δ2 ∈ [0, 1), UVs X and Y are disassociated at levels (δ1, δ2) if the

following inequalities hold:

A (X;Y ) � δ1, (9.12)

A (Y ;X) � δ2, (9.13)

303



(a) (b) (c)

Figure 9.1. Illustration of disassociation between UVs. Case (a): variables are maximally

disassociated and all conditional ranges completely overlap. Case (b): variables are

disassociated at some levels (δ1, δ2), and there is some overlap between at least two conditional
ranges. Case (c): variables are not disassociated at any levels, and there is no overlap between

the conditional ranges.

and this case we write (X,Y )
d↔ (δ1, δ2).

Having UVs X and Y be disassociated at levels (δ1, δ2) indicates that at least two con-

ditional ranges JX|y1K and JX|y2K have nonzero overlap, and that given any two conditional

ranges, either they do not overlap or the uncertainty associated to their overlap is greater than a δ1

fraction of the total uncertainty associated to JXK; and that the same holds for conditional ranges

JY |x1K and JY |x2K and level δ2. The levels of disassociation can be viewed as lower bounds

on the amount of residual uncertainty in each variable when the other is known. If X and Y

are independent, then all the conditional ranges completely overlap, A (X;Y ) and A (Y ;X)

contain only the element one, and the variables are maximally disassociated (see Figure 9.1a). In

this case, knowledge of Y does not reduce the uncertainty of X , and vice versa. On the other

hand, when the uncertainty associated to any of the non-zero intersections of the conditional

ranges decreases, but remains positive, then X and Y become less disassociated, in the sense

that knowledge of Y can reduce the residual uncertainty of X , and vice versa (see Figure 9.1b).

When the intersection between every pair of conditional ranges becomes empty, the variables

cease being disassociated (see Figure 9.1c).
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An analogous definition of association is given to provide upper bounds on the residual

uncertainty of one uncertain variable when the other is known.

Definition 12. For any δ1, δ2 ∈ [0, 1], we say that UVsX and Y are associated at levels (δ1, δ2)

if the following inequalities hold:

A (X;Y ) � δ1, (9.14)

A (Y ;X) � δ2, (9.15)

and in this case we write (X,Y )
a↔ (δ1, δ2).

The following lemma provides necessary and sufficient conditions for association at

given levels to hold. These conditions are stated for all points in the marginal ranges JY K and JXK.

They show that in the case of association one can also include in the definition the conditional

ranges that have zero intersection. This is not the case for disassociation.

Lemma 31. For any δ1, δ2 ∈ [0, 1], (X,Y )
a↔ (δ1, δ2) if and only if for all y1, y2 ∈ JY K, we

have

mX (JX|y1K ∩ JX|y2K|)
mX (JXK)

≤ δ1, (9.16)

and for all x1, x2 ∈ JXK, we have

mY (JY |x1K ∩ JY |x2K|)
mY (JY K)

≤ δ2. (9.17)

Proof. The proof is given in Appendix 9.12.1.

An immediate, yet important consequence of our definitions is that both association and

disassociation at given levels (δ1, δ2) cannot hold simultaneously. We also have that, given any

two UVs, one can always choose δ1 and δ2 to be large enough such that they are associated

at levels (δ1, δ2). In contrast, as the smallest value in the sets A(X;Y ) and A(Y ;X) tends to
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Figure 9.2. Illustration of the possible time intervals for the walkers on the path.

zero, the variables eventually cease being disassociated. Finally, it is possible that two uncertain

variables are neither associated nor disassociated at given levels (δ1, δ2).

Example 2. Consider three individuals a, b and c going for a walk along a path. Assume they

take at most 15, 20 and 10 minutes to finish their walk, respectively. Assume a starts walking at

time 5:00, b starts walking at 5:10 and c starts walking at 5:20. Figure 9.2 shows the possible

time intervals for the walkers on the path. Let an uncertain variable W represent the set of

walkers that are present on the path at any time, and an uncertain variable T represent the time

at which any walker on the path finishes its walk. Then, we have the marginal ranges

JW K = {{a}, {b}, {c}, {a, b}, {b, c}}, (9.18)

JT K = [5:00, 5:30]. (9.19)

We also have the conditional ranges

JT |{a}K = [5:00, 5:15], (9.20)

JT |{b}K = [5:10, 5:30], (9.21)
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JT |{c}K = [5:20, 5:30], (9.22)

JT |{a, b}K = [5:10, 5:15], (9.23)

JT |{b, c}K = [5:20, 5:30]. (9.24)

For all t ∈ [5:00, 5:10), we have

JW |tK = {{a}}, (9.25)

for all t ∈ [5:10, 5:15], we have

JW |tK = {{a, b}, {a}, {b}}, (9.26)

for all t ∈ (5:15, 5:20), we have

JW |tK = {{b}}, (9.27)

and for all t ∈ [5:20, 5:30], we have

JW |tK = {{b, c}, {b}, {c}}. (9.28)

Now, let the uncertainty function of a time set S be

mT (S ) =


L(S ) + 10 if S 6= ∅,

0 otherwise ,

(9.29)

where L(·) is the Lebesgue measure. Let the uncertainty functionmW (.) associated to a set of
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individuals be the cardinality of the set. Then, the sets of association are

A (W ;T ) = {1/5, 3/5}, (9.30)

A (T ;W ) = {3/8, 1/2}. (9.31)

It follows that that for all δ1 < 1/5 and δ2 < 3/8, we have

(W,T )
d↔ (δ1, δ2), (9.32)

and the residual uncertainty inW given T is at least δ1 fraction of the total uncertainty inW ,

while the residual uncertainty in T givenW is at least δ2 fraction of the total uncertainty in T .

On the other hand, for all δ1 ≥ 3/5 and δ2 ≥ 1/2 we have

(W,T )
a↔ (δ1, δ2), (9.33)

and the residual uncertainty inW given T is at most δ1 fraction of the total uncertainty inW ,

while the residual uncertainty in T givenW is at most δ2 fraction of the total uncertainty in T .

Finally, if 1/5 ≤ δ1 < 3/5 or 3/8 ≤ δ2 < 1/2, thenW and T are neither associated nor

disassociated.

9.4.3 δ-mutual information

We now introduce the mutual information between uncertain variables in terms of some

structural properties of covering sets. Intuitively, for any δ ∈ [0, 1] the δ-mutual information,

expressed in bits, represents the most refined knowledge that one uncertain variable provides

about the other, at a given level of confidence (1− δ). We express this idea by considering the

quantization of the range of uncertainty of one variable, induced by the knowledge of the other.

Such quantization ensures that the variable can be identified with uncertainty at most δ. The
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notions of association and disassociation introduced above are used to ensure that the mutual

information is well defined, namely it can be positive, and enjoys a certain symmetric property.

Definition 13. δ-Connectedness and δ-isolation.

• For any δ ∈ [0, 1], points x1, x2 ∈ JXK are δ-connected via JX|Y K, and are denoted

by x1
δ

! x2, if there exists a finite sequence {JX|yiK}Ni=1 of conditional sets such that

x1 ∈ JX|y1K, x2 ∈ JX|yNK and for all 1 < i ≤ N , we have

mX (JX|yiK ∩ JX|yi−1K)
mX (JXK)

> δ. (9.34)

If x1
δ

! x2 and N = 1, then we say that x1 and x2 are singly δ-connected via JX|Y K, i.e.

there exists a y such that x1, x2 ∈ JX|yK.

• A set S ⊆ JXK is (singly) δ-connected via JX|Y K if every pair of points in the set is

(singly) δ-connected via JX|Y K.

• Two sets S1,S2 ⊆ JXK are δ-isolated via JX|Y K if no point in S1 is δ-connected to any

point in S2.

Definition 14. δ-overlap family.

For any δ ∈ [0, 1], a JX|Y K δ-overlap family of JXK, denoted by JX|Y K∗δ , is a largest family of

distinct sets covering JXK such that:

1. Each set in the family is δ-connected and contains at least one singly δ-connected set of

the form JX|yK.

2. The measure of overlap between any two distinct sets in the family is at most δmX (JXK).

3. For every singly δ-connected set, there exist a set in the family containing it.

The first property of the δ-overlap family ensures that points in the same set of the family

cannot be distinguished with confidence at least (1− δ), while also ensuring that each set cannot
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be arbitrarily small. The second and third properties ensure that points that are not covered by

the same set of the family can be distinguished with confidence at least (1− δ). It follows that

the cardinality of the covering family represents the most refined knowledge at a given level of

confidence (1− δ) that we can have about X , given the knowledge of Y . This also corresponds

to the most refined quantization of the set JXK induced by Y . This interpretation is analogous

to the one in [158], extending the concept of overlap partition introduced there to a δ-overlap

family in this work. The stage is now set to introduce the δ-mutual information in terms of the

δ-overlap family.

Definition 15. The δ-mutual information provided by Y about X is

Iδ(X;Y ) = log2 |JX|Y K∗δ| bits, (9.35)

if a JX|Y K δ-overlap family of JXK exists, otherwise it is zero.

We now show that when variables are associated at level (δ, δ2), then there exists a

δ-overlap family, so that the mutual information is well defined.

Theorem 37. If (X,Y )
a↔ (δ, δ2), then there exists a δ-overlap family JX|Y K∗δ .

Proof. We show that

JX|Y K = {JX|yK : y ∈ JY K} (9.36)

is a δ-overlap family. First, note that JX|Y K is a cover of JXK, since JXK = ∪y∈JY KJX|yK.

Second, each set in the family JX|Y K is singly δ-connected via JX|Y K, since trivially any two

points x1, x2 ∈ JX|yK are singly δ-connected via the same set. It follows that Property 1 of

Definition 14 holds.

Now, since (X,Y )
a↔ (δ, δ2), then by Lemma 31 for all y1, y2 ∈ JY K we have

mX (JX|y1K ∩ JX|y2K)
mX (JXK)

≤ δ, (9.37)
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which shows that Property 2 of Definition 14 holds. Finally, it is also easy to see that Property 3

of Definition 14 holds, since JX|Y K contains all sets JX|yK.

Next, we show that a δ-overlap family also exists when variables are disassociated at

level (δ, δ2). In this case, we also characterize the mutual information in terms of a partition of

JXK.

Definition 16. δ-isolated partition.

A JX|Y K δ-isolated partition of JXK, denoted by JX|Y Kδ, is a partition of JXK such that any two

sets in the partition are δ-isolated via JX|Y K.

Theorem 38. If (X,Y )
d↔ (δ, δ2), then we have:

1. There exists a unique δ-overlap family JX|Y K∗δ .

2. The δ-overlap family is the δ-isolated partition of largest cardinality, namely for any

JX|Y Kδ, we have

|JX|Y Kδ| ≤ |JX|Y K∗δ|, (9.38)

where the equality holds if and only if JX|Y Kδ = JX|Y K∗δ .

Proof. First, we show the existence of a δ-overlap family. For all x ∈ JXK, let C (x) be the set

of points that are δ-connected to x via JX|Y K, namely

C (x) = {x1 ∈ JXK : x δ
! x1}. (9.39)

Then, we let

C = {C (x) : x ∈ JXK}, (9.40)

and show that this is a δ-overlap family. First, note that since JXK = ∪S∈CS , we have that C is

a cover of JXK. Second, for all C (x) ∈ C there exists a y ∈ JY K such that x ∈ JX|yK, and since

any two points x1, x2 ∈ JX|yK are singly δ-connected via JX|Y K, we have that JX|yK ⊆ C (x).
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It follows that every set in the family C contains at least one singly δ-connected set. For all

x1, x2 ∈ C (x), we also have x1
δ

! x and x
δ

! x2. Since (X,Y )
d↔ (δ, δ2), by Lemma 34 in

Appendix 9.12.4 this implies x1
δ

! x2. It follows that every set in the family C is δ-connected

and contains at least one singly δ-connected set, and we conclude that Property 1 of Definition

14 is satisfied.

We now claim that for all x1, x2 ∈ JXK, if

C (x1) 6= C (x2), (9.41)

then

mX (C (x1) ∩ C (x2)) = 0. (9.42)

This can be proven by contradiction. LetC (x1) 6= C (x2) and assume thatmX (C (x1)∩C (x2)) 6=

0. By (9.8) this implies that C (x1) ∩ C (x2) 6= ∅. We can then pick z ∈ C (x1) ∩ C (x2), such

that we have z
δ

! x1 and z
δ

! x2. Since (X,Y )
d↔ (δ, δ2), by Lemma 34 in Appendix 9.12.4

this also implies x1
δ

! x2 , and therefore C (x1) = C (x2), which is a contradiction. It follows

that if C (x1) 6= C (x2), then we must havemX (C (x1) ∩ C (x2)) = 0, and therefore

mX (C (x1) ∩ C (x2))

mX (JXK)
= 0 ≤ δ. (9.43)

We conclude that Property 2 of Definition 14 is satisfied.

Finally, we have that for any singly δ-connected set JX|yK, there exist an x ∈ JXK such

that x ∈ JX|yK, which by (9.39) implies JX|yK ⊆ C (x). Namely, for every singly δ-connected

set, there exist a set in the family containing it. We can then conclude that C satisfies all the

properties of a δ-overlap family.

Next, we show that C is a unique δ-overlap family. By contradiction, consider another

δ-overlap family D. For all x ∈ JXK, let D(x) denote a set in D containing x. Then, using the
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definition of C (x) and the fact that D(x) is δ-connected, it follows that

D(x) ⊆ C (x). (9.44)

Next, we show that for all x ∈ JXK, we also have

C (x) ⊆ D(x), (9.45)

from which we conclude that D = C.

The proof of (9.45) is also obtained by contradiction. Assume there exists a point

x̃ ∈ C (x) \D(x). Since both x and x̃ are contained in C (x), we have x̃
δ

! x. Let x∗ be a point

in a singly-connected set that is contained in D(x), namely x∗ ∈ JX|y∗K ⊆ D(x). Since both x

and x∗ are in D(x), we have that x
δ

! x∗. Since (X,Y )
d↔ (δ, δ2), we can apply Lemma 34 in

Appendix 9.12.4 to conclude that x̃
δ

! x∗. It follows that there exists a sequence of conditional

ranges {JX|yiK}Ni=1 such that x̃ ∈ JX|y1K and x∗ ∈ JX|yNK, which satisfies (9.34). Since x∗

is in both JX|yNK and JX|y∗K, we have JX|yNK ∩ JX|y∗K 6= ∅ and since (X,Y )
d↔ (δ, δ2), we

have

mX (JX|yNK ∩ JX|y∗K)
mX (JXK)

> δ. (9.46)

Without loss of generality, we can then assume that the last element of our sequence is JX|y∗K.

By Property 3 of Definition 14, every conditional range in the sequence must be contained in

some set of the δ-overlap family D. Since JX|y∗K ⊆ D(x) and JX|y1K 6⊆ D(x), it follows that

there exist two consecutive conditional ranges along the sequence and two sets of the δ-overlap

family covering them, such that JX|yi−1K ⊆ D(xi−1), JX|yiK ⊆ D(xi), and D(xi−1) 6= D(xi).
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Then, we have

mX (D(xi−1) ∩D(xi))

= mX ((JX|yi−1K ∩ JX|yiK) ∪ (D(x∗
i−1) ∩D(x∗

i )))

(a)

≥ mX (JX|yi−1K ∩ JX|yiK)
(b)
> δmX (JXK), (9.47)

where (a) follows from (9.9) and (b) follows from (9.34). It follows that

mX (D(xi−1) ∩D(xi))

mX (JXK)
> δ, (9.48)

and Property 2 of Definition 14 is violated. Thus, x̃ does not exists, which implies C (x) ⊆ D(x).

Combining (9.44) and (9.45), we conclude that the δ-overlap family C is unique.

We now turn to the proof of the second part of the Theorem. Since by (9.43) the uncertainty

associated to the overlap between any two sets of the δ-overlap family C is zero, it follows that C

is also a partition.

Now, we show that C is also a δ-isolated partition. This can be proven by contradiction.

Assume C is not a δ-isolated partition. Then, there exists two distinct sets C (x1),C (x2) ∈ C

such that C (x1) and C (x2) are not δ-isolated. This implies that there exists a point x̄1 ∈ C (x1)

and x̄2 ∈ C (x2) such that x̄1
δ

! x̄2. Using the fact that C (x1) and C (x2) are δ-connected and

Lemma 34 in Appendix 9.12.4, this implies that all points in the set C (x1) are δ-connected to all

points in the set C (x2). Now, let x
∗
1 and x∗

2 be points in a singly δ-connected set contained in

C (x1) and C (x2) respectively, namely x
∗
1 ∈ JX|y∗1K ⊆ C (x1) and x

∗
2 ∈ JX|y∗2K ⊆ C (x2). Since

x∗
1

δ
! x∗

2, there exists a sequence of conditional ranges {JX|yiK}Ni=1 satisfying (9.34), such that

x1 ∈ JX|y1K and x2 ∈ JX|yNK. Without loss of generality, we can assume JX|y1K = JX|y∗1K and

JX|y2K = JX|y∗2K. Since C is a partition, we have that JX|y∗1K ⊆ C (x1) and JX|y∗2K 6⊆ C (x1).

It follows that there exist two consecutive conditional ranges along the sequence {JX|yiK}Ni=1
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and two sets of the δ-overlap family C covering them, such that JX|yi−1K ⊆ C (xi−1) and

JX|yiK ⊆ C (xi), and C (xi−1) 6= C (xi). Similar to (9.47), we have

mX (C (xi−1) ∩ C (xi))

mX (JXK)
> δ, (9.49)

and Property 2 of Definition 14 is violated. Thus, C (x1) and C (x2) do not exist, which implies

C is δ-isolated partition.

Let P be any other δ-isolated partition. We wish to show that |C| ≥ |P|, and that the

equality holds if and only if P = C. First, note that every set C (x) ∈ C can intersect at most

one set in P , otherwise the sets in P would not be δ-isolated. Second, since C is a cover of JXK,

every set in P must be intersected by at least one set in C. It follows that

|C| ≥ |P|. (9.50)

Now, assume the equality holds. In this case, there is a one-to-one correspondence P : C → P ,

such that for all x ∈ JXK, we have C (x) ⊆P(C (x)), and since both C and P are partitions of

JXK, it follows that C = P . Conversely, assuming C = P , then |C| = |P| follows trivially.

We have introduced the notion of mutual information from Y to X in terms of the

conditional range JX|Y K. Since in general we have JX|Y K 6= JY |XK, one may expect the

definition of mutual information to be asymmetric in its arguments. Namely, the amount of

information provided about X by the knowledge of Y may not be the same as the amount of

information provided about Y by the knowledge of X . Although this is true in general, we show

that for disassociated UVs symmetry is retained, provided that when swapping X with Y one

also rescales δ appropriately. The following theorem establishes the symmetry in the mutual

information under the appropriate scaling of the parameters δ1 and δ2. The proof requires the

introduction of the notions of taxicab connectedness, taxicab family, and taxicab partition, which

are given in Appendix 9.12.6.
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Theorem 39. If (X,Y )
d↔ (δ1, δ2), and a (δ1, δ2)-taxicab family of JX,Y K exists, then we have

Iδ1(X;Y ) = Iδ2(Y ;X). (9.51)

9.5 (ε,δ)-Capacity

We now give an operational definition of capacity of a communication channel and

relate it to the notion of mutual information between UVs introduced above. Let X be a totally

bounded, normed metric space such that for all x ∈X we have ‖x‖ ≤ 1, where ‖.‖ represents

norm. This normalization is for convenience of notation and all results can easily be extended

to metric spaces of any bounded norm. Let X ⊆ X be a discrete set of points in the space,

which represents a codebook. Any point x ∈ X represents a codeword that can be selected at the

transmitter, sent over the channel, and received with noise perturbation at most ε. Namely, for

any transmitted codeword x ∈ X , we receive a point in the set

Sε(x) = {y ∈X : ‖x− y‖ ≤ ε}. (9.52)

It follows that all received codewords lie in the setY =
⋃

x∈X Sε(x), whereY ⊆ Y = X .

Transmitted codewords can be decoded correctly as long as the corresponding uncertainty sets at

the receiver do not overlap. This can be done by simply associating the received codeword to the

point in the codebook that is closest to it.

For any x1, x2 ∈ X , we now let

eε(x1, x2) =
mY (Sε(x1) ∩ Sε(x2))

mY (Y )
, (9.53)

where mY (.) is an uncertainity function defined over the space Y . We also assume without

loss of generality that the uncertainty associated to the whole space Y of received codewords

is mY (Y ) = 1. Finally, we let Vε ⊆ Y be the smallest uncertainty set corresponding to a
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Figure 9.3. The size of the equivocation set is inversely proportional to the amount of

adversarial effort required to induce an error.

transmitted codeword, namely Vε = Sε(x
∗), where x∗ = argminx∈X mY (Sε(x)). The quantity

1 − eε(x1, x2) can be viewed as the confidence we have of not confusing x1 and x2 in any

transmission, or equivalently as the amount of adversarial effort required to induce a confusion

between the two codewords. For example, if the uncertainty function is constructed using a

measure, then all the erroneous codewords generated by an adversary to decode x2 instead than

x1 must lie inside the equivocation set depicted in Figure 9.3, whose relative size is given by

(9.53). The smaller the equivocation set is, the larger must be the effort required by the adversary

to induce an error. If the uncertainty function represents the diameter of the set, then all the

erroneous codewords generated by an adversary to decode x2 instead than x1 will be close to

each other, in the sense of (9.53). Once again, the closer the possible erroneous codewords are,

the harder must be for the adversary to generate an error, since any small deviation allows the

decoder to correctly identify the transmitted codeword.

We now introduce the notion of distinguishable codebook, ensuring that every codeword

cannot be confused with any other codeword, rather than with a specific one, at a given level of

confidence.

Definition 17. (ε, δ)-distinguishable codebook.

For any 0 < ε ≤ 1, 0 ≤ δ < mY (Vε), a codebook X ⊆ X is (ε, δ)-distinguishable if for all

x1, x2 ∈ X , we have eε(x1, x2) ≤ δ/|X |.
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For any (ε, δ)-distinguishable codebook X and x ∈ X , we let

eε(x) =
∑

x′∈X :x′ 6=x

eε(x, x
′). (9.54)

It now follows from Definition 17 that

eε(x) ≤ δ, (9.55)

and each codeword in an (ε, δ)-distinguishable codebook can be decoded correctly with con-

fidence at least 1− δ. Definition 17 guarantees even more, namely that the confidence of not

confusing any pair of codewords is uniformly bounded by 1− δ/|X |. This stronger constraint

implies that we cannot “balance” the error associated to a codeword transmission by allowing

some decoding pair to have a lower confidence and enforcing other pairs to have higher confi-

dence. This is the main difference between our definition and the one used in [132] which bounds

the average confidence, and allows us to relate the notion of capacity to the mutual information

between pairs of codewords.

Definition 18. (ε, δ)-capacity.

For any totally bounded, normed metric space X , 0 < ε ≤ 1, and 0 ≤ δ < mY (Vε), the

(ε, δ)-capacity of X is

Cδ
ε = sup

X∈X δ
ε

log2 |X | bits, (9.56)

where X δ
ε = {X : X is (ε, δ)-distinguishable} is the set of (ε, δ)-distinguishable codebooks.

The (ε, δ)-capacity represents the largest number of bits that can be communicated by

using any (ε, δ)-distinguishable codebook. The corresponding geometric picture is illustrated in

Figure 9.4. For δ = 0, our notion of capacity reduces to Kolmogorov’s ε-capacity, that is the

logarithm of the packing number of the space with balls of radius ε.

In the definition of capacity, we have restricted δ < mY (Vε) to rule out the case when the
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Figure 9.4. Illustration of the (ε, δ)-capacity in terms of packing ε-balls with maximum overlap

δ.

decoding error can be at least as large as the error introduced by the channel, and the (ε, δ)-capacity

is infinite. Also, note thatmY (Vε) ≤ 1 since Vε ⊆ Y and (9.9) holds.

We now relate our operational definition of capacity to the notion of UVs and mutual

information introduced in Section 9.4. Let X be the UV corresponding to the transmitted

codeword. This is a map X : X → X and JXK = X ⊆ X . Likewise, let Y be the UV

corresponding to the received codeword. This is a map Y : Y → Y and JY K = Y ⊆ Y . For

our ε-perturbation channel, these UVs are such that for all y ∈ JY K and x ∈ JXK, we have

JY |xK = {y ∈ JY K : ‖x− y‖ ≤ ε}, (9.57)

JX|yK = {x ∈ JXK : ‖x− y‖ ≤ ε}, (9.58)

see Figure 9.5. Clearly, the set in (9.57) is continuous, while the set in (9.58) is discrete.

To measure the levels of association and disassociation between X and Y , we use an

uncertainty function mX (.) defined over X , and mY (.) defined over Y . We introduce the

feasible set

Fδ = {X : JXK ⊆X , and either (X,Y )
d↔ (0, δ/|JXK|)

or (X,Y )
a↔ (1, δ/|JXK|)}, (9.59)
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Figure 9.5. Conditional ranges JY |xK and JX|yK due to the ε-perturbation channel.

representing the set of UVs X such that the marginal range JXK is a discrete set representing a

codebook, and the UV can either achieve (0, δ/|JXK|) levels of disassociation or (1, δ/|JXK|)

levels of association with Y . In our channel model, this feasible set also depends on the ε-

perturbation through (9.57) and (9.58).

We can now state the non-stochastic channel coding theorem for our ε-perturbation

channel.

Theorem 40. For any totally bounded, normed metric space X , ε-perturbation channel satisfy-

ing (9.57) and (9.58), 0 < ε ≤ 1 and 0 ≤ δ < mY (Vε), we have

Cδ
ε = sup

X∈Fδ̃,δ̃≤δ/mY (JY K)
Iδ̃/|JXK|(Y ;X) bits. (9.60)

Proof. First, we show that there exists a UV X and δ̃ ≤ δ/mY (JY K) such that X ∈ Fδ̃, which

implies that the supremum is well defined. Second, for all X and δ̃ such that

X ∈ Fδ̃, (9.61)

and

δ̃ ≤ δ/mY (JY K), (9.62)
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we show that

Iδ̃/|JXK|(Y ;X) ≤ Cδ
ε . (9.63)

Finally, we show the existence of X ∈ Fδ̃ and δ̃ ≤ δ/mY (JY K) such that Iδ̃/|JXK|(Y ;X) = Cδ
ε .

Let us begin with the first step. Consider a point x ∈X . Let X be a UV such that

JXK = {x}. (9.64)

Then, we have that the marginal range of the UV Y corresponding to the received variable is

JY K = JY |xK, (9.65)

and therefore for all y ∈ JY K, we have

JX|yK = {x}. (9.66)

Using Definition 10 and (9.64), we have that

A (Y ;X) = ∅, (9.67)

because JXK consists of a single point, and therefore the set in (9.11) is empty.

On the other hand, using Definition 10 and (9.66), we have

A (X;Y ) =


{1} if ∃y1, y2 ∈ JY K,

∅ otherwise.

(9.68)

Using (9.67) and since A � δ holds for A = ∅, we have

A (Y ;X) � δ/(|JXK|mY (JY K)). (9.69)
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Similarly, using (9.68), we have

A (X;Y ) � 1. (9.70)

Now, combining (9.69) and (9.70), we have

(X,Y )
a↔ (1, δ/(|JXK|mY (JY K))). (9.71)

Letting δ̃ = δ/mY (JY K), this implies that X ∈ Fδ̃ and the first step of the proof is complete.

To prove the second step, we define the set of discrete UVs

G = {X : JXK ⊆X ,∃δ̃ ≤ δ/mY (JY K) such that ∀S1,S2 ∈ JY |XK,

mY (S1 ∩S2)/mY (JY K) ≤ δ̃/|JXK|}, (9.72)

which is a larger set than the one containing all UVs X that are (1, δ̃/|JXK|) associated to Y .

Now, we will show that if an UVX ∈ G , then the corresponding codebook X ∈X δ
ε . IfX ∈ G ,

then there exists a δ̃ ≤ δ/mY (JY K) such that for all S1,S2 ∈ JY |XK we have

mY (S1 ∩S2)

mY (JY K)
≤ δ̃

|JXK|
. (9.73)

It follows that for all x1, x2 ∈ JXK, we have

mY (JY |x1K ∩ JY |x2K)
mY (JY K)

≤ δ̃

|JXK|
. (9.74)

Using X = JXK, (9.57), JY K = Y =
⋃

x∈X Sε(x) andmY (Y ) = 1, for all x1, x2 ∈ X we have

mY (Sε(x1) ∩ Sε(x2))

mY (Y )
≤ δ̃mY (JY K)

|X |
(a)

≤ δ

|X |
, (9.75)
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where (a) follows from δ̃ ≤ δ/mY (JY K). Putting things together, it follows that

X ∈ G =⇒ X ∈X δ
ε (9.76)

Consider now a pair X and δ̃ such that δ̃ ≤ δ/mY (JY K) and X ∈ Fδ̃

If (X,Y )
d↔ (0, δ̃/|JXK|), then using Lemma 33 in Appendix 9.12.4 there exist two UVs

X̄ and Ȳ , and δ̄ ≤ δ/mY (JȲ K) such that

(X̄, Ȳ )
a↔ (1, δ̄/|JX̄K|), (9.77)

and

|JY |XK∗
δ̃/|JXK|| = |JȲ |X̄K∗δ̄/|JX̄K||. (9.78)

On the other hand, if (X,Y )
a↔ (1, δ̃/|JXK|), then (9.77) and (9.78) also trivially hold. It then

follows that (9.77) and (9.78) hold for all X ∈ Fδ̃. We now have

Iδ̃/|JXK|(Y ;X) = log(|JY |XK∗
δ̃/|JXK||)

(a)
= log(|JȲ |X̄K∗δ̄/|JX̄K||)
(b)

≤ log(|JX̄K|)
(c)
= log(|X̄ |)
(d)

≤ Cδ
ε , (9.79)

where (a) follows from (9.77) and (9.78), (b) follows from Lemma 35 in Appendix 9.12.4 since

δ̄ ≤ δ/mY (JȲ K) < mY (Vε)/mY (JȲ K), (c) follows by defining the codebook X̄ corresponding

to the UV X̄ , and (d) follows from the fact that using (9.77) and Lemma 31, we have X̄ ∈ G,

which implies by (9.76) that X̄ ∈X δ
ε .

Finally, let

X ∗ = argsupX∈X δ
ε
log(|X |), (9.80)
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which achieves the capacity Cδ
ε . Let X

∗ be the UV whose marginal range corresponds to the

codebook X ∗. It follows that for all S1,S1 ∈ JY ∗|X∗K, we have

mY (S1 ∩S1)

mY (Y )
≤ δ

|JX∗K|
, (9.81)

which implies using the fact thatmY (Y ) = 1,

mY (S1 ∩S1)

mY (JY ∗K)
≤ δ

|JX∗K|mY (JY ∗K)
. (9.82)

Letting δ∗ = δ/mY (JY ∗K), and using Lemma 31, we have that (X∗, Y ∗)
a↔ (1, δ∗/|JX∗K|),

which implies X∗ ∈ ∪δ̃≤δ/mY (JY ∗KFδ̃ and the proof is complete.

Theorem 40 characterizes the capacity as the supremum of the mutual information over

all UVs in the feasible set. The following theorem shows that the same characterization is

obtained if we optimize the right hand side in (9.60) over all UVs in the space. It follows that by

Theorem 40, rather than optimizing over all UVs representing all the codebooks in the space, a

capacity achieving codebook can be found within the smaller class ∪δ̃≤δ/mY (Vε)
Fδ̃ of feasible

sets with error at most δ/mY (Vε), since for all JY K ⊆ Y ,mY (Vε) ≤ mY (JY K).

Theorem 41. The (ε, δ)-capacity in (9.60) can also be written as

Cδ
ε = sup

X:JXK⊆X ,

δ̃≤δ/mY (JY K)

Iδ̃/|JXK|(Y ;X) bits. (9.83)

Proof. Consider an UV X 6∈ ∪δ̃≤δ/mY (JY K)Fδ̃, where Y is the corresponding UV at the re-

ceiver. The idea of the proof is to show the existence of an UV X̄ ∈ ∪δ̃≤δ/mY (JȲ K)Fδ̃ and the

corresponding UV Ȳ at the receiver, and

δ̄ = δ̃mY (JY K)/mY (JȲ K) ≤ δ/m(JȲ K), (9.84)
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such that the cardinality of the overlap partitions

|JȲ |X̄K∗δ̄/|JX̄K|| = |JY |XK∗
δ̃/|JXK||. (9.85)

Let the cardinality

|JY |XK∗
δ̃/|JXK|| = K. (9.86)

By Property 1 of Definition 14, we have that for all Si ∈ JY |XK∗
δ̃/|JXK|, there exists an xi ∈ JXK

such that JY |xiK ⊆ Si. Now, consider another UV X̄ whose marginal range is composed ofK

elements of JXK, namely

JX̄K = {x1, . . . xK}. (9.87)

Let Ȳ be the UV corresponding to the received variable. Using the fact that for all x ∈X , we

have JȲ |xK = JY |xK since (9.57) holds, and using Property 2 of Definition 14, for all x, x′ ∈ JX̄K,

we have that

mY (JȲ |xK ∩ JȲ |x′K)
mY (JY K)

≤ δ̃

|JXK|
(a)

≤ δ̃

|JX̄K|
, (9.88)

where (a) follows from the fact that JX̄K ⊆ JXK using (9.87). Then, for all x, x′ ∈ JX̄K, we have

that

mY (JȲ |xK ∩ JȲ |x′K)
mY (JȲ K)

≤ δ̃mY (JY K)
|JX̄K|mY (JȲ K)

=
δ̄

|JX̄K|
, (9.89)

since δ̄ = δ̃mY (JY K)/mY (JȲ K). Then, by Lemma 31 it follows that

(X̄, Ȳ )
a↔ (1, δ̄/|JX̄K|). (9.90)
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Since δ̃ ≤ δ/mY (JY K), we have

δ̄ ≤ δ/mY (JȲ K) < mY (Vε)/mY (JȲ K). (9.91)

Therefore, X̄ ∈ Fδ̄ and δ̄ ≤ δ/mY (JȲ K). We now have that

|JȲ |X̄K∗δ̄/|JX̄K||
(a)
= |JX̄K|
(b)
= |JY |XK∗

δ̃/|JXK||, (9.92)

where (a) follows by applying Lemma 36 in Appendix 9.12.4 using (9.90) and (9.91), and (b)

follows from (9.86) and (9.87). Combining (9.92) with Theorem 40, the proof is complete.

Finally, we make some considerations with respect to previous results in the literature.

First, we note that for δ = 0, all of our definitions reduce to Nair’s ones and Theorem 40 recovers

Nair’s coding theorem [158, Theorem 4.1] for the zero-error capacity of an additive ε-perturbation

channel.

Second, we point out that the (ε, δ)-capacity considered in [132] defines the set of (ε, δ)-

distinguishable codewords such that the average overlap among all codewords is at most δ. In

contrast, our definition requires the overlap for each pair of codewords to be at most δ/|X |. The

following theorem provides the relationship between our Cδ
ε and the capacity C̃δ

ε considered

in [132], which is defined using the Euclidean norm.

Theorem 42. Let C̃δ
ε be the (ε, δ)-capacity defined in [132]. We have

Cδ
ε ≤ C̃δ/(2mY (Vε))

ε , (9.93)

and

C̃δ
ε ≤ CδmY (Vε)22C̃

δ
ε+1

ε . (9.94)
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Proof. For every codebook X ∈X δ
ε and x1, x2 ∈ X , we have

eε(x1, x2) ≤ δ/|X |. (9.95)

SincemY (Y ) = 1, this implies that for all x1, x2 ∈ X , we have

mY (Sε(x1) ∩ Sε(x2)) ≤ δ/|X |. (9.96)

For all X ∈X , the average overlap defined in [132, (53)] is

∆ =
1

|X |
∑
x∈X

eε(x)

2mY (Vε)
. (9.97)

Then, we have

∆ =
1

2|X |mY (Vε)

∑
x1,x2∈X

mY (Sε(x1) ∩ Sε(x2))

(a)

≤ δ|X |2

2|X |2mY (Vε)

≤ δ

2mY (Vε)
, (9.98)

where (a) follows from (9.96). Thus, we have

Cδ
ε ≤ C̃δ/(2mY (Vε))

ε , (9.99)

and (9.93) follows.

Now, let X be a codebook with average overlap at most δ, namely

1

2|X |mY (Vε)

∑
x1,x2∈X

mY (Sε(x1) ∩ Sε(x2)) ≤ δ. (9.100)
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This implies that for all x1, x2 ∈ X , we have

|X |mY (Sε(x1) ∩ Sε(x2))

mY (Y )
≤ 2δ|X |2mY (Vε)

mY (Y )

(a)
= 2δ|X |2mY (Vε)

≤ δ22C̃
δ
ε+1mY (Vε), (9.101)

where (a) follows from the fact thatmY (Y ) = 1. Thus, we have

C̃δ
ε ≤ Cδ22C̃

δ
ε+1mY (Vε)

ε , (9.102)

and (9.94) follows.

9.6 (N, δ)-Capacity of General Channels

We now extend our results to more general channels where the noise can be different

across codewords, and not necessarily contained within a ball of radius ε.

Let X ⊆X be a discrete set of points in the space, which represents a codebook. Any

point x ∈ X represents a codeword that can be selected at the transmitter, sent over the channel,

and received with perturbation. A channel with transition mapping N : X → Y associates to

any point in X a set in Y , such that the received codeword lies in the set

SN(x) = {y ∈ Y : y ∈ N(x)}. (9.103)

Figure 9.6 illustrates possible uncertainty sets associated to three different codewords.

All received codewords lie in the set Y =
⋃

x∈X SN(x), where Y ⊆ Y . For any x1, x2

∈ X , we now let

eN(x1, x2) =
mY (SN(x1) ∩ SN(x2))

mY (Y )
, (9.104)

wheremY (.) is an uncertainty function defined overY . We also assumewithout loss of generality
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Figure 9.6. Uncertainty sets associated to three different codewords. Sets are not necessarily

balls, they can be different across codewords, and also be composed of disconnected subsets.

that the uncertainty associated with the space Y of received codewords ismY (Y ) = 1. We also

let VN = N(x∗), where x∗ = argminx∈X mY (N(x)). Thus, VN is the set corresponding to the

minimum uncertainty introduced by the noise mapping N .

Definition 19. (N, δ)-distinguishable codebook.

For any 0 ≤ δ < mY (VN), a codebook X ⊆X is (N, δ)-distinguishable if for all x1, x2 ∈ X ,

we have eN(x1, x2) ≤ δ/|X |.

Definition 20. (N, δ)-capacity.

For any totally bounded, normed metric space X , channel with transition mapping N , and

0 ≤ δ < mY (VN), the (N, δ)-capacity of X is

Cδ
N = sup

X∈X δ
N

log2 |X | bits, (9.105)

where X δ
N = {X : X is (N, δ)-distinguishable}.

We now relate our operational definition of capacity to the notion of UVs and mutual

information introduced in Section 9.4. As usual, letX be the UV corresponding to the transmitted

codeword and Y be the UV corresponding to the received codeword. For a channel with transition
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mapping N , these UVs are such that for all y ∈ JY K and x ∈ JXK, we have

JY |xK = {y ∈ JY K : y ∈ N(x)}, (9.106)

JX|yK = {x ∈ JXK : y ∈ N(x)}. (9.107)

To measure the levels of association and disassociation between UVs X and Y , we use an

uncertainty functionmX (.) defined over X , andmY (.) is defined over Y . The definition of

feasible set is the same as the one given in (9.59). In our channel model, this feasible set depends

on the transition mapping N through (9.106) and (9.107).

We can now state the non-stochastic channel coding theorem for channels with transition

mapping N .

Theorem 43. For any totally bounded, normed metric spaceX , channel with transition mapping

N satisfying (9.106) and (9.107), and 0 ≤ δ < mY (VN), we have

Cδ
N = sup

X∈Fδ̃,δ̃≤δ/mY (JY K)
Iδ̃/|JXK|(Y ;X) bits. (9.108)

The proof is along the same lines as the one of Theorem 40 and is omitted.

Theorem 43 characterizes the capacity as the supremum of the mutual information over

all codebooks in the feasible set. The following theorem shows that the same characterization

is obtained if we optimize the right hand side in (9.108) over all codebooks in the space. It

follows that by Theorem 43, rather than optimizing over all codebooks, a capacity achieving

codebook can be found within the smaller class ∪δ̃≤δ/mY (VN )Fδ̃ of feasible sets with error at

most δ/mY (VN).

Theorem 44. The (N, δ)-capacity in (9.108) can also be written as

Cδ
N = sup

X:JXK⊆X ,

δ̃≤δ/mY (JY K)

Iδ̃/|JXK|(Y ;X) bits. (9.109)
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The proof is along the same lines as the one of Theorem 41 and is omitted.

9.7 Capacity of Stationary Memoryless Uncertain Channels

We now consider the special case of stationary, memoryless, uncertain channels.

Let X ∞ be the space of X -valued discrete-time functions x : Z>0 → X , where

Z>0 is the set of positive integers denoting the time step. Let x(a : b) denote the function

x ∈X ∞ restricted over the time interval [a, b]. Let X ⊆X ∞ be a discrete set which represents

a codebook. Also, let X (1 : n) = ∪x∈Xx(1 : n) denote the set of all codewords up to time

n, and X (n) = ∪x∈Xx(n) the set of all codeword symbols in the codebook at time n. The

codeword symbols can be viewed as the coefficients representing a continuous signal in an

infinite-dimensional space. For example, transmitting one symbol per time step can be viewed

as transmitting a signal of unit spectral support over time. The perturbation of the signal at the

receiver due to the noise can be described as a displacement experienced by the corresponding

codeword symbols x(1), x(2), . . .. To describe this perturbation we consider the set-valued map

N∞ : X ∞ → Y ∞, associating any point in X ∞ to a set in Y ∞. For any transmitted codeword

x ∈ X ⊆X ∞, the corresponding received codeword lies in the set

SN∞(x) = {y ∈ Y ∞ : y ∈ N∞(x)}. (9.110)

Additionally, the noise set associated to x(1 : n) ∈ X (1 : n) is

SN∞(x(1 : n)) = {y(1 : n) ∈ Y n : y ∈ N∞(x)}, (9.111)

where

Y n = Y × Y × · · · × Y︸ ︷︷ ︸
n

. (9.112)

We are now ready to define stationary, memoryless, uncertain channels.
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Definition 21. A stationary memoryless uncertain channel is a transition mappingN∞ : X ∞ →

Y ∞ that can be factorized into identical terms describing the noise experienced by the codeword

symbols. Namely, there exists a set-valued map N : X → Y such that for all n ∈ Z>0 and

x(1 : n) ∈X ∞, we have

SN∞(x(1 : n)) = N(x(1))× . . .×N(x(n)). (9.113)

According to the definition, a stationary memoryless uncertain channel maps the nth

input symbol into the nth output symbol in a way that does not depend on the symbols at other

time steps, and the mapping is the same at all time steps. Since the channel can be characterized

by the mapping N instead of N∞, to simplify the notation in the following we use SN(.) instead

of SN∞(.).

Another important observation is that the ε-noise channel that we considered in Section 9.5

may not admit a factorization like the one in (9.113). For example, consider the space to be

equipped with the L2 norm, the codeword symbols to represent the coefficients of an orthogonal

representation of a transmitted signal, and the noise experienced by any codeword to be within

a ball of radius ε. In this case, if a codeword symbol is perturbed by a value close to ε the

perturbation of all other symbols must be close to zero. On the other hand, the general channels

considered in Section 9.6 can be stationary and memoryless, if the noise acts on the coefficients

in a way that satisfies (9.113).

For stationary memoryless uncertain channels, all received codewords lie in the set Y =

∪x∈XSN(x), and the received codewords up to time n lie in the setY(1 : n) = ∪x∈XSN(x(1 : n)).

Then, for any x1(1 : n), x2(1 : n) ∈ X (1 : n), we let

eN(x1(1 : n), x2(1 : n)) =
mY (SN(x1(1 : n)) ∩ SN(x2(1 : n)))

mY (Y n)
. (9.114)

We also assume without loss of generality that at any time step n, the uncertainty associated
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to the space Y n of received codewords is mY (Y n) = 1. We also let VN = N(x∗), where

x∗ = argminx∈X mY (N(x)). Thus, VN is the set corresponding to the minimum uncertainty

introduced by the noise mapping at a single time step. Finally, we let

V n
N = VN × VN × · · · × VN︸ ︷︷ ︸

n

. (9.115)

Definition 22. (N, δn)-distinguishable codebook.

For all n ∈ Z>0 and 0 ≤ δn < mY (V n
N ), a codebook Xn = X (1 : n) is (N, δn)-distinguishable

if for all x1(1 : n), x2(1 : n) ∈ Xn, we have

eN(x1(1 : n), x2(1 : n)) ≤ δn/|Xn|. (9.116)

It immediately follows that for any (N, δn)-distinguishable codebook Xn, we have

eN(x(1 : n)) =
∑

x′(1:n)∈Xn:
x′(1:n) 6=x(1:n)

eN(x(1 : n), x′(1 : n)) ≤ δn, (9.117)

so that each codeword in Xn can be decoded correctly with confidence at least 1− δn. Definion

22 guarantees even more namely, that the confidence of not confusing any pair of codewords is

at least 1− δn/|Xn|.

We now associate to any sequence {δn} the largest distinguishable rate sequence {Rδn},

whose elements represent the largest rates that satisfy that confidence sequence.

Definition 23. Largest {δn}-distinguishable rate sequence.

For any sequence {δn}, the largest {δn}-distinguishable rate sequence {Rδn} is such that for all

n ∈ Z>0 we have

Rδn = sup
Xn∈X δn

N (n)

log |Xn|
n

bits per symbol, (9.118)
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where

X δn
N (n) = {Xn : Xn is (N, δn)-distinguishable}. (9.119)

We say that any constant rate R that lays below the largest {δn}-distinguishable rate

sequence is {δn}-distinguishable. Such a {δn}-distinguishable rate ensures the existence of a

sequence of distinguishable codes that, for all n ∈ Z>0, have rate at least R and confidence at

least 1− δn.

Definition 24. {δn}-distinguishable rate.

For any sequence {δn}, a constant rate R is said to be {δn}-distinguishable if for all n ∈ Z>0,

we have

R ≤ Rδn . (9.120)

We call any {δn}-distinguishable rate R achievable, if δn → 0 as n→∞. An achievable

rate R ensures the existence of a sequence of distinguishable codes of rate at least R whose

confidence tends to one as n→∞. It follows that in this case we can achieve communication at

rate R with arbitrarily high confidence by choosing a sufficiently large codebook.

Definition 25. Achievable rate.

A constant rate R is achievable if there exists a sequence {δn} such that δn → 0 as n→∞, and

R is {δn}-distinguishable.

We now give a first definition of capacity as the supremum of the {δn}-distinguishable

rates. Using this definition, transmitting at constant rate below capacity ensures the existence of

a sequence of codes that, for all n ∈ Z>0, have confidence at least 1− δn.

Definition 26. (N, {δn})∗ capacity.

For any stationary memoryless uncertain channel with transition mapping N , and any given

334



sequence {δn}, we let

CN({δn})∗ = sup{R : R is {δn}-distinguishable} (9.121)

= inf
n∈Z>0

Rδn bits per symbol. (9.122)

Another definition of capacity arises if rather than the largest lower bound to the sequence

of rates one considers the least upper bound for which we can transmit satisfying a given

confidence sequence. Using this definition, transmitting at constant rate below capacity ensures

the existence of a code that satisfies at least one confidence value along the sequence {δn}.

Definition 27. (N, {δn})∗ capacity.

For any stationary memoryless uncertain channel with transition mapping N , and any given

sequence {δn}, we define

CN({δn})∗ = sup
n∈Z>0

Rδn bits per symbol. (9.123)

Definitions 26 and 27 lead to non-stochastic analogues of Shannon’s probabilistic and

zero-error capacities, respectively.

First, consider Definition 26 and take the supremum of the achievable rates, rather than

the supremum of the {δn}-distinguishable rates. This means that we can pick any confidence

sequence such that δn tends to zero as n→∞. In this way, we obtain the non-stochastic analogue

of Shannon’s probabilistic capacity, where δn plays the role of the probability of error and the

capacity is the largest rate that can be achieved by a sequence of codebooks with an arbitrarily

high confidence level.

Definition 28. (N, {↓ 0})∗ capacity.

For any stationary memoryless uncertain channel with transition mapping N , we define the
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(N, {↓ 0})∗ capacity as

CN({↓ 0})∗ = sup{R : R is achievable} (9.124)

= sup
{δn}:δn=o(1)

CN({δn})∗. (9.125)

Next, consider Definition 27 in the case {δn} is a constant sequence, namely for all

n ∈ Z>0 we have δn = δ ≥ 0. In this case, transmitting below capacity ensures the existence of

a finite-length code that has confidence at least 1− δ.

Definition 29. (N, δ)∗ capacity.

For any stationary memoryless uncertain channel with transition mapping N , and any sequence

{δn} such that for all n ∈ Z>0 we have δn = δ ≥ 0, we define

Cδ∗
N = sup

n∈Z>0

Rδn bits per symbol. (9.126)

Letting δ = 0, we obtain the zero-error capacity. In this case, below capacity there exists

at a code with which we can transmit with full confidence.

We point out the key difference between Definitions 28 and 29. Transmitting below the

(N, {↓ 0})∗ capacity, allows to achieve arbitrarily high confidence by increasing the codeword

size. In contrast, transmitting below the (N, δ)∗ capacity, ensures the existence of a fixed

codebook that has confidence at least 1− δ.

We now relate our notions of capacity to the mutual information rate between transmitted

and received codewords. Let X be the UV corresponding to the transmitted codeword. This

is a map X : X ∞ → X and JXK = X ⊆ X ∞. Restricting this map to a finite time n ∈ Z>0

yields another UV X(n) and JX(n)K = X (n) ⊆X . Likewise, a codebook segment is an UV

X(a : b) = {X(n)}a≤n≤b, of marginal range

JX(a : b)K = X (a : b) ⊆X b−a+1. (9.127)

336



Likewise, let Y be the UV corresponding to the received codeword. It is a map Y : Y ∞ → Y

and JY K = Y ⊆ Y ∞. Y (n) and Y (a : b) are UVs, and JY (n)K = Y ⊆ Y ∞ and JY (a : b)K =

Y(a : b) ⊆ Y b−a+1. For a stationary memoryless channel with transition mappingN , these UVs

are such that for all n ∈ Z>0, y(1 : n) ∈ JY (1 : n)K and x(1 : n) ∈ JX(1 : n)K, and we have

JY (1 : n)|x(1 : n)K ={y(1 : n) ∈ JY (1 : n)K : y(1 : n) ∈ SN(x(1 : n))}, (9.128)

JX(1 : n)|y(1 : n)K ={x(1 : n) ∈ JX(1 : n)K : y(1 : n) ∈ SN(x(1 : n))}. (9.129)

Now, we define the largest δn-mutual information rate as the supremum mutual informa-

tion per unit-symbol transmission that a codeword X(1 : n) can provide about Y (1 : n) with

confidence at least 1− δn/|JX(1 : n)K|.

Definition 30. Largest δn-information rate.

For all n ∈ Z>0, the largest δn-information rate from X(1 : n) to Y (1 : n) is

RI
δn = sup

X(1:n):JX(1:n)K⊆X n,

δ̃≤δn/mY (JY (1:n)K)

Iδ̃/|JX(1:n)K|(Y (1 : n);X(1 : n))

n
. (9.130)

We let the feasible set at time n be

Fδ(n) = {X(1 : n) : JX(1 : n)K ⊆X n, and either

(X(1 : n), Y (1 : n))
d↔ (0, δ/|JX(1 : n)K|) or

(X(1 : n), Y (1 : n))
a↔ (1, δ/|JX(1 : n)K|)}. (9.131)

In the following theorem we establish the relationship between Rδn and R
I
δn
.

Theorem 45. For any totally bounded, normed metric space X , disrete-time space X ∞,
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stationary memoryless uncertain channel with transition mapping N satisfying (9.128) and

(9.129), and sequence {δn} such that for all n ∈ Z>0 we have 0 ≤ δn < mY (V n
N ), we have

Rδn = sup
X(1:n)∈Fδ̃(n),

δ̃≤δn/mY (JY (1:n)K)

Iδ̃/|JX(1:n)K|(Y (1 : n);X(1 : n))

n
. (9.132)

We also have

Rδn = RI
δn . (9.133)

Proof. The proof of the theorem is similar to the one of Theorem 40 and is given in Appendix

9.12.2.

The following coding theorem is now an immediate consequence of Theorem 45 and of

our capacity definitions.

Theorem 46. For any totally bounded, normed metric space X , disrete-time space X ∞,

stationary memoryless uncertain channel with transition mapping N satisfying (9.128) and

(9.129), and sequence {δn} such that for all n ∈ Z>0, 0 ≤ δn < mY (V n
N ) and 0 ≤ δ < mY (V n

N ),

we have

1) CN({δn})∗ = inf
n∈Z>0

RI
δn , (9.134)

2) CN({δn})∗ = sup
n∈Z>0

RI
δn , (9.135)

3) CN({↓ 0})∗ = sup
{δn}:δn=o(1)

inf
n∈Z>0

RI
δn , (9.136)

4) Cδ∗
N = sup

n∈Z>0

RI
δn : ∀n ∈ Z>0, δn = δ. (9.137)

Theorem 46 provides a multi-letter expressions of capacity, since the information rateRI
δn

depends on Iδ̃/|JX(1:n)K|(Y (1 : n);X(1 : n)) according to (9.130). Next, we establish conditions

on the uncertainty function, confidence sequence, and class of stationary, memoryless channels
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leading to the factorization of the mutual information and to single-letter expressions.

9.7.1 Factorization of the Mutual Information

To obtain sufficient conditions for the factorization of the mutual information we need to

assume to work with a product uncertainty function.

Assumption 3. (Product uncertainty function). The uncertainty function of a cartesian product

of n sets can be factorized in the product of its terms, namely for any n ∈ Z>0 and S ⊆ JY K

such that

S = S1 ×S2 × . . .×Sn, (9.138)

we have

mY (S ) = mY (S1)×mY (S2)× . . .×mY (Sn). (9.139)

We also need to assume that the product uncertainty function satisfies a union bound.

Assumption 4. (Union bound). For all S1,S2 ⊆ JY K, we have

mY (S1 ∪S2) ≤ mY (S1) +mY (S2). (9.140)

Before stating the main result of this section, we prove the following useful lemma.

Lemma 32. Let X(1 : n) and Y (1 : n) be two UVs such that

JX(1 : n)K = JX(1)K× JX(2)K . . .× JX(n)K, (9.141)

and for all x(1 : n) ∈ JX(1 : n)K, we have

JY (1 : n)|x(1 : n)K = JY (1)|x(1)K× . . . JY (n)|x(n)K. (9.142)
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Let

0 ≤ δ < min
1≤i≤n,

x(i)∈JX(i)K

mY (JY (i)|x(i)K). (9.143)

Finally, let either

(X(1 : n), Y (1;n))
d↔ (0, δn), or (9.144)

(X(1 : n), Y (1;n))
a↔ (1, δn). (9.145)

Under Assumption 3, we have:

1. The cartesian product
∏n

i=1JY (i)|X(i)K∗δ is a covering of JY (1 : n)K.

2. Every S ∈
∏n

i=1JY (i)|X(i)K∗δ is δn-connected and contains at least one singly δn-

connected set of the form JY (1 : n)|x(1 : n)K.

3. For every singly δn-connected set of the form JY (1 : n)|x(1 : n)K, there exist a set in∏n
i=1JY (i)|X(i)K∗δ containing it, namely for all x(1 : n) ∈ JX(1 : n)K, there exists a set

S ∈
∏n

i=1JY (i)|X(i)K∗δ such that JY (1 : n)|x(1 : n)K ⊆ S .

4. For all S1,S2 ∈
∏n

i=1JY (i)|X(i)K∗δ , we have

mY (S1 ∩S2)

mY (JY (1 : n)K)
≤ δ(δ̂(n))n−1, (9.146)

where

δ̂(n) = max
1≤i≤n,

S∈JY (i)|X(i)K∗δ

mY (S )

mY (JY (i)K)
. (9.147)

Proof. The proof is given in Appendix 9.12.3.

Under Assumption 3 and Assumption 4, given two UVs that can be written in Cartesian

product form and that are either associated at level (0, δn) or disassociated at level (1, δn), we

now obtain an upper bound on the mutual information at level δn in terms of the sum of the mutual
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information at level δ of their components. An analogous result in the stochastic setting states

that the mutual information between two n-dimensional random variables Xn = {X1, . . . , Xn}

and Y n = {Y1, . . . , Yn} is at most the sum of the component-wise mutual information, namely

I(Xn;Y n) ≤
n∑

i=1

I(Xi;Yi), (9.148)

where I(X;Y ) represents the Shannon mutual information between two random variablesX and

Y . In contrast to the stochastic setting, here the mutual information is associated to a confidence

parameter δn that is re-scaled to δ when this is decomposed into the sum of n terms.

Theorem 47. Let X(1 : n) and Y (1 : n) be two UVs such that

JX(1 : n)K = JX(1)K× JX(2)K . . . JX(n)K, (9.149)

and for all x(1 : n) ∈ JX(1 : n)K, we have

JY (1 : n)|x(1 : n)K = JY (1)|x(1)K× . . . JY (n)|x(n)K. (9.150)

Also, let

0 ≤ δ <
min1≤i≤n,x(i)∈JX(i)K mY (JY (i)|x(i)K)

max1≤i≤n |JX(i)K|
. (9.151)

Finally, let either

(X(1 : n), Y (1 : n))
d↔ (0, δn), or (9.152)

(X(1 : n), Y (1 : n))
a↔ (1, δn). (9.153)

Under Assumptions 3 and 2, we have

Iδn(Y (1 : n);X(1 : n)) ≤
n∑

i=1

Iδ(Y (i);X(i)). (9.154)
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Proof. First, we will show that for all S ∈
∏n

i=1JY (i)|X(i)K∗δ , there exists a point xS (1 : n) ∈

JX(1 : n)K and a set D(S ) ∈ JY (1 : n)|X(1 : n)K∗δn such that

JY (1 : n)|xS (1 : n)K ⊆ S , (9.155)

JY (1 : n)|xS (1 : n)K ⊆ D(S ). (9.156)

Using this result, we will then show that

|
n∏

i=1

JY (i)|X(i)K∗δ| ≥ |JY (1 : n)|X(1 : n)K∗δn|, (9.157)

which immediately implies (9.154).

Let us begin with the first step. We have

δ
(a)
<

min1≤i≤n,x(i)∈JX(i)K mY (JY (i)|x(i)K)
max1≤i≤n |JX(i)K|

(b)

≤ min
1≤i≤n,x(i)∈JX(i)K

mY (JY (i)|x(i)K), (9.158)

where (a) follows from (9.151), and (b) follows from the fact that for all 1 ≤ i ≤ n, we have

|JX(i)K| ≥ 1.

Now, consider a set S ∈
∏n

i=1JY (i)|X(i)K∗δ . Using (9.158), by Lemma 32 part 2) we

have that there exist a point x′(1 : n) ∈ JX(1 : n)K such that

JY (1 : n)|x′(1 : n)K ⊆ S . (9.159)
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Now, using (9.158), part 1) in Lemma 32, and Definition 14, we have

∪S∈
∏n

i=1JY (i)|X(i)K∗δS = JY (1 : n)K

= ∪D∈JY (1:n)|X(1:n)K∗δnD . (9.160)

Using (9.160) and Property 3 of Definition 14, there exists a set D(x′(1 : n)) ∈ JY (1 : n)|X(1 :

n)K∗δn such that

JY (1 : n)|x′(1 : n)K ⊆ D(x′(1 : n)). (9.161)

Letting xS (1 : n) = x′(1 : n) and D(S ) = D(x′(1 : n)) in (9.159) and (9.161), we have that

(9.155) and (9.156) follow.

We now proceed with proving (9.157). We distinguish two cases. In the first case, there

exists two sets S ∈
∏n

i=1JY (i)|X(i)K∗δ and D1 ∈ JY (1 : n)|X(1 : n)K∗δn such that

D1 ∩S \D(S ) 6= ∅. (9.162)

In the second case, the sets S and D1 satisfying (9.162) do not exist. We will show that the first

case is not possible, and in the second case, we have that (9.157) holds.

To rule out the first case, consider two points

y1(1 : n) ∈ JY (1 : n)|xS (1 : n)K ⊆ D(S ) (9.163)

and

y2(1 : n) ∈ D1 ∩S \D(S ). (9.164)
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If (X(1 : n), Y (1 : n)
a↔ (1, δn), then we have

δn|JX(1 : n)K|
(a)
<

(
min1≤i≤n,x(i)∈JX(i)K mY (JY (i)|x(i)K)

max1≤i≤n |JX(i)K|

)n

|JX(1 : n)K|

(b)

≤
(

min
1≤i≤n,

x(i)∈JX(i)K

mY (JY (i)|x(i)K)
)n

(c)

≤ min
x(1:n)∈JX(1:n)K

mY (JY (1 : n)|x(1 : n)K)

(d)

≤
minx(1:n)∈JX(1:n)K mY (JY (1 : n)|x(1 : n)K)

mY (JY (1 : n)K)
, (9.165)

where (a) follows from (9.151), (b) follows from (9.149), and the fact that

|JX(1)K× JX(2)K . . . JX(n)K| ≤ (max
1≤i≤n

|JX(i)K|)n, (9.166)

(c) follows from (9.150) and Assumption 3, and (d) follows from (9.9), and the facts that

JY (1 : n)K ⊆ Y n and mY (Y n) = 1. Combining (9.165), Assumption 4 and Lemma 37 in

Appendix 9.12.4, we have that there exists a point y(1 : n) ∈ JY (1 : n)|xS (1 : n)K such that for

all JY (1 : n)|x(1 : n)K ∈ JY (1 : n)|X(1 : n)K \ {JY (1 : n)|xS (1 : n)K}, we have.

y(1 : n) /∈ JY (1 : n)|x(1 : n)K. (9.167)

Without loss of generality, let

y1(1 : n) = y(1 : n). (9.168)

It now follows that y1(1 : n) and y2(1 : n) cannot be δn-connected. This follows because

y1(1 : n) ∈ JY (1 : n)|xS (1 : n)K, (9.169)
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y2(1 : n) 6∈ JY (1 : n)|xS (1 : n)K, (9.170)

(9.167) and (X(1 : n), Y (1 : n)
a↔ (1, δn), so that there does not exist a sequence {JY (1 :

n)|xi(1 : n)K}Ni=1 such that for all 1 < i ≤ N

mY (JY (1 : n)|xi(1 : n)K ∩ JY (1 : n)|xi−1(1 : n)K)
mY (JY (1 : n)K)

> δn. (9.171)

On the other hand, if (X(1 : n), Y (1 : n)
d↔ (0, δn), then using Theorem 38, we have that

JY (1 : n)|X(1 : n)K∗δn is a δn-isolated partition. Thus, y1(1 : n) and y2(1 : n) are not δn-

connected, since y1(1 : n) ∈ D(S ) and y2(1 : n) ∈ D1 ∩ S \ D(S ). However, since

y1(1 : n), y2(1 : n) ∈ S and S is δn-connected using (9.158) and 2) in Lemma 32, we have

that y1(1 : n)
δn
! y2(1 : n). This contradiction implies that D1 and S do not exist.

In the second case, if S and D1 do not exist, then for all S ′ ∈
∏n

i=1JY (i)|X(i)K∗δ and

D ′ ∈ JY (1 : n)|X(1 : n)K∗δn , we have

D ′ ∩S ′ \D(S ′) = ∅, (9.172)

which implies that

S ′ (a)
= ∪D ′∈JY (1:n)|X(1:n)K∗δn (S

′ ∩D ′)

(b)

⊆ ∪D ′∈JY (1:n)|X(1:n)K∗δn

(
D(S ′) ∪ (S ′ ∩D ′ \D(S ′)

)
= D(S ′) ∪D ′∈JY (1:n)|X(1:n)K∗δn (S ′ ∩D ′ \D(S ′))

(c)
= D(S ′), (9.173)

where (a) follows from (9.160), (b) follows from the trivial fact that for any three sets A , B
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and C ,

A ∩B ⊆ C ∪ (A ∩B \ C ), (9.174)

and (c) follows from (9.172). Combining (9.173) and (9.160), we have that

|
n∏

i=1

JY (i)|X(i)K∗δ| ≥ |JY (1 : n)|X(1 : n)K∗δn|. (9.175)

The statement of the theorem now follows.

The following corollary shows that the bound in Theorem 47 is tight in the zero-error

case.

Corollary 47.1. Let X(1 : n) and Y (1 : n) satisfy (9.149) and (9.150). Under Assumptions 3

and 4, we have that

I0(Y (1 : n);X(1 : n)) =
n∑

i=1

I0(Y (i);X(i)). (9.176)

Proof. The proof is along the same lines as the one of Theorem 47. For allX(1 : n) and Y (1 : n),

if A(Y ;X) = ∅, then

(X(1 : n), Y (1 : n))
a↔ (1, 0), (9.177)

otherwise

(X(1 : n), Y (1 : n))
d↔ (0, 0). (9.178)

Hence, either (9.152) or (9.153) holds for δ = 0. Now, by replacing δ = 0 in 1)− 4) of Lemma

32, we have that
∏n

i=1JY (i)|X(i)K∗0 satisfies all the properties of a 0-overlap family. Combining

this fact and Theorem 47, the statement of the corollary follows.

9.7.2 Single letter expressions

We are now ready to present sufficient conditions leading to single-letter expressions

for C({δn})∗, Cδ∗
N , C({δn})∗ and CN({↓ 0})∗. Under these conditions, the multi dimensional
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optimization problem of searching for a codebook that achieves capacity over a time interval of

size n can be reduced to searching for a codebook over a single time step.

First, we start with the single-letter expression for C({δn})∗.

Theorem 48. For any stationary memoryless uncertain channel N and for any 0 ≤ δ1 <

mY (VN), let X̄ ∈ Fδ̄(1) be an UV over one time step associated with a one-dimensional

codebook that achieves the capacity CN({δ1})∗ = CN({δ1})∗ = Rδ1 , and let Ȳ be the UV

corresponding to the received codeword, namely

CN({δ1})∗ = Iδ̄/|JX̄K|(Ȳ ; X̄)

= sup
X(1)∈Fδ̃(1):

δ̃≤δ1/mY (JY (1)K)

Iδ̃/|JX(1)K|(Y (1);X(1)). (9.179)

If for all one-dimensional codewords x ∈X \JX̄K there exists a set S ∈ JȲ |X̄K∗
δ̄/|JX̄K| such that

the uncertainty region JY |xK ⊆ S , δ̄(1+ 1/|JX̄K|) ≤ δ1/mY (JȲ K) , and for all n > 1 we have

0 ≤ δn ≤ (δ̄mY (VN)/|JX̄K|)n, then under Assumptions 3 and 4 we have that the n-dimensional

capacity

CN({δn})∗= Iδ̄/|JX̄K|(Ȳ ; X̄). (9.180)

Proof. Let

JX̄(1 : n)K = JX̄K× · · · × JX̄K︸ ︷︷ ︸
n

, (9.181)

and

JȲ (1 : n)K = JȲ K× · · · × JȲ K︸ ︷︷ ︸
n

. (9.182)
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For all n > 0, we have

δn ≤
(
δ̄mY (VN)

|JX̄K|

)n

(a)

≤
(

δ1mY (VN)

|JX̄K|mY (JȲ K)

)n

(b)

≤
(

δ1
|JX̄K|

)n

(c)
< (mY (VN))

n

(d)
= mY (V n

N ), (9.183)

where (a) follows from the fact that δ̄ ≤ δ1/mY (JȲ K), (b) follows frommY (VN) ≤ mY (JȲ K),

(c) follows from δ1 < mY (VN) and |JX̄K| ≥ 1, and (d) follows from Assumption 3.

We now proceed in three steps. First, using (9.183) and Theorem 45, we have

CN({δn})∗ = sup
n∈Z>0

Rδn ≥ Rδ1 = RI
δ1
= Iδ̄/|JX̄K|(Ȳ ; X̄). (9.184)

Second, we will show that for all n ∈ Z>0, we have

sup
X(1:n):JX(1:n)K⊆X n,

δ̃≤δn/mY (JY (1:n)K)

Iδ̃/|JX(1:n)K|(Y (1 : n);X(1 : n)) ≤ nIδ̄/|JX̄K|(Ȳ ; X̄). (9.185)

Finally, using (9.183), Theorem 45 and (9.185), for all n ∈ Z>0, we have that

Rδn = RI
δn ≤ Iδ̄/|JX̄K|(Ȳ ; X̄), (9.186)

which implies

CN({δn})∗ = sup
n∈Z>0

Rδn ≤ Iδ̄/|JX̄K|(Ȳ ; X̄). (9.187)

Using (9.184) and (9.187), the result (9.180) follows.

Now, we only need to prove (9.185). We will prove this by contradiction. Consider an
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UV X(1 : n) and

δ′ ≤ δn/mY (JY (1 : n)K), (9.188)

such that

|JY (1 : n)|X(1 : n)K∗δ′/|JX(1:n)K|| > |
n∏

i=1

JȲ |X̄K∗δ̄/|JX̄K||. (9.189)

We will show that (9.189) cannot hold using the following four claims, whose proofs appear in

Appendix 9.12.5.

• Claim 1: If (9.189) holds, then there exists two UVs X̃(1 : n) and Ỹ (1 : n) such that

letting

δ̃ =
δ′mY (JY (1 : n)K)
mY (JỸ (1 : n)K)

, (9.190)

we have

δ̃ ≤ δn

mY (JỸ (1 : n)K)
, (9.191)

(X̃(1 : n), Ỹ (1 : n))
a↔ (1, δ̃/|JX̃(1 : n)K|), (9.192)

and

|JỸ (1 : n)|X̃(1 : n)K∗
δ̃/|JX̃(1:n)K||>|

n∏
i=1

JȲ |X̄K∗δ̄/|JX̄K||. (9.193)

• Claim 2: For all x̃(1 : n) ∈ JX̃(1 : n)K, there exists a set S ∈
∏n

i=1JȲ |X̄K∗
δ̄/|JX̄K| such

that

JỸ (1 : n)|x̃(1 : n)K ⊆ S . (9.194)

• Claim 3: Using Claims 1 and 2, there exists a set S ∈
∏n

i=1JȲ |X̄K∗
δ̄/|JX̄K| and two points
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x̃1(1 : n), x̃2(1 : n) ∈ JX̃(1 : n)K such that

JỸ (1 : n)|x̃1(1 : n)K, JỸ (1 : n)|x̃2(1 : n)K ⊂ S . (9.195)

Also, there exists a 1 ≤ i∗ ≤ n such that

mY (JỸ (i∗)|x̃1(i
∗)K ∩ JỸ (i∗)|x̃2(i

∗)K)
(mY (JỸ (1 : n)K))1/n

≤ δ̄

|JX̄K|
. (9.196)

• Claim 4: Using Claim 3, we have that there exist two UVs X ′ and Y ′, and δ∗ ≤

δ1/mY (JY ′K) such that

|JY ′|X ′K∗δ∗/|JX′K|| > |JȲ |X̄K∗δ̄/|JX̄K||. (9.197)

The result in Claim 4 contradicts (9.179). It follows that (9.189) cannot hold and the proof of

Theorem 48 is complete.

Since Cδ∗
N is a special case of CN({δn})∗ for which the sequence δn is constant, it seem

natural to use Theorem 48 to obtain a single-letter expression for Cδ∗
N as well. However, the range

of δn in Theorem 48 restricts the obtained single-letter expression for this case to the zero-error

capacity C0∗
N only. To see this, note that δn in Theorem 48 is constrained to

δn ≤ (δ̄mY (VN)/|JX̄K|)n < (m2
Y (VN)/mY (JȲ K))n. (9.198)

It follows that if mY (VN) < mY (Y ) = 1, then we have δn = o(1) as n→∞. Hence, in this

case a single letter expression for Cδ∗
N can only be obtained for δ = 0. On the other hand, if

mY (VN) = mY (Y ), then for any 0 ≤ δ < mY (VN) the codebook can only contain a single

codeword and in this case we have Cδ∗
N = 0. We conclude that the only non-trivial single-letter
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expression is obtained for the zero-error capacity, as stated next.

Corollary 48.1. For any stationary memoryless uncertain channel N , let X̄ ∈ F0(1) be an

UV over one time step associated with a one-dimensional codebook that achieves the capacity

CN({0})∗ = CN({0})∗ = R0, and let Ȳ be the UV corresponding to the received codeword,

namely

CN({0})∗ = I0(Ȳ ; X̄)

= sup
X(1)∈F0(1)

I0(Y (1);X(1)). (9.199)

If for all one-dimensional codewords x ∈X \ JX̄K, there exists a set S ∈ JȲ |X̄K∗
δ̄/|JX̄K| such

that the uncertainty region JY |xK ⊆ S , then under Assumptions 3 and 4 we have that the

n-dimensional zero-error capacity

C0∗
N = I0(Ȳ ; X̄). (9.200)

Next, we present the sufficient conditions leading to the single letter expression for

C({δn})∗.

Theorem 49. For any stationary memoryless uncertain channel N , and for any 0 ≤ δ1 <

mY (VN), let X̄ ∈ Fδ̄(1) be an UV over one time step associated with a one-dimensional

codebook that achieves the capacity CN({δ1})∗ = CN({δ1})∗ = Rδ1 , and let Ȳ be the UV

corresponding to the received codeword, namely

CN({δ1})∗ = Iδ̄/|JX̄K|(Ȳ ; X̄)

= sup
X(1)∈Fδ̃(1),

δ̃≤δ1/mY (JY (1)K)

Iδ̃/|JX(1)K|(Y (1);X(1)). (9.201)
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Let

δ̂ = max
S∈JȲ |X̄K∗

δ̄/|JX̄K|

mY (S )

mY (JȲ K)
. (9.202)

If for all n > 1, we have δ̄(δ̂|JX̄K|)n−1 ≤ δn < 1, then under Assumption 3 we have that the

n-dimensional capacity

CN({δn})∗ = Iδ̄/|JX̄K|(Ȳ ; X̄). (9.203)

Proof. First, we show that for all n ∈ Z>0 and δn ≥ δ̄(δ̂|JX̄K|)n−1, there exists a codebook

X̃ (1 : n) ∈X δn
N (n) such that

|X̃ (1 : n)| = |
n∏

i=1

JȲ |X̄K∗δ̄/|JX̄K||. (9.204)

This, along with Definition 23, implies that for all n ∈ Z>0 and δn ≥ δ̄(δ̂|JX̄K|)n−1, we have

Rδn ≥ Iδ̄/|JX̄K|(Ȳ ; X̄), (9.205)

and therefore

CN({δn})∗ = inf
n∈Z>0

Rδn ≥ Iδ̄/|JX̄K|(Ȳ ; X̄). (9.206)

Second, we show that

CN({δn})∗ ≤ Iδ̄/|JX̄K|(Ȳ ; X̄). (9.207)

Thus, combining (9.206) and (9.207), we have that (9.203) follows and the proof is complete.

We now start with the first step of showing (9.206). Without loss of generality, we

assume that JȲ |X̄K∗
δ̄/|JX̄K| > 1, otherwise

Iδ̄/|JX̄K|(Ȳ ; X̄) = 0, (9.208)
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and (9.203) holds trivially by the definition of CN({δn})∗. Let

JX̄(1 : n)K = JX̄K× · · · × JX̄K︸ ︷︷ ︸
n

, (9.209)

and

JȲ (1 : n)K = JȲ K× · · · × JȲ K︸ ︷︷ ︸
n

. (9.210)

Then, using 4) in Lemma 32 and the fact that N is a stationary memoryless channel, for all

S1,S2 ∈
∏n

i=1JȲ |X̄K∗
δ̄/|JX̄K|, we have

mY (S1 ∩S2)

mY (JȲ (1 : n)K)
≤ δ̄δ̂n−1

|JX̄K|
(a)

≤ δn
(|JX̄K|)n

(b)
=

δn
|JX̄(1 : n)K|

, (9.211)

where (a) follows from the assumption in the theorem that δn ≥ δ̄(δ̂|JX̄K|)n−1, and (b) follows

from (9.209).

Using 2) in Lemma 32, we have that for all Si ∈
∏n

i=1JȲ |X̄K∗
δ̄/|JX̄K|, there exists xi(1 :

n) ∈ JX̄(1 : n)K such that

JȲ (1 : n)|xi(1 : n)K ⊆ Si. (9.212)

Now, let

K = |
n∏

i=1

JȲ |X̄K∗δ̄/|JX̄K||. (9.213)

Consider a new UV X̃(1 : n) whose marginal range is composed of K elements of JX̄(1 : n)K,

namely

JX̃(1 : n)K = {x1(1 : n), . . . xK(1 : n)}. (9.214)

Let Ỹ (1 : n) be the UV corresponding to the received variable. For all x(1 : n) ∈ JX̃(1 : n)K,
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we have JỸ (1 : n)|x(1 : n)K = JȲ (1 : n)|x(1 : n)K since N is a stationary memoryless channel.

Using (9.211), (9.212), it now follows that for all x(1 : n), x′(1 : n) ∈ JX̃(1 : n)K, we have

mY (JỸ (1 : n)|x(1 : n)K ∩ JỸ (1 : n)|x′(1 : n)K)
mY (JȲ (1 : n)K)

≤ δn
|JX̄(1 : n)K|

(a)

≤ δn

|JX̃(1 : n)K|
, (9.215)

where (a) follows from the fact that using (9.214), we have JX̃(1 : n)K ⊆ JX̄(1 : n)K. This

implies that for all x(1 : n), x′(1 : n) ∈ JX̃(1 : n)K,

eN(x(1 : n), x′(1 : n)) =
mY (SN(x(1 : n)) ∩ SN(x

′(1 : n)))

mY (Y n)

(a)
=

mY (JỸ (1 : n)|x(1 : n)K ∩ JỸ (1 : n)|x′(1 : n)K)
mY (Y n)

(b)

≤ δn

|JX̃(1 : n)K|
mY (JȲ (1 : n)K)

mY (Y n)

(c)

≤ δn

|JX̃(1 : n)K|
, (9.216)

where (a) follows from the fact that N is stationary memoryless and for all x(1 : n) ∈X n, we

have

JY (1 : n)|x(1 : n)K = SN(x(1 : n)), (9.217)

(b) follows from (9.215), and (c) follows from (9.9) and JȲ (1 : n)K ⊆ Y n. This implies that the

codebook X̃ (1 : n) corresponding to the UV X̃(1 : n) is (N, δn)-distinguishable.

It follows that (9.205) and (9.206) hold and the first step of the proof follows.
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Now, we prove the second step. We have

CN({δn})∗ = inf
n∈Z>0

Rδn

(a)

≤ Rδ1

(b)
= RI

δ1

(c)
= Iδ̄/|JX̄K|(Ȳ ; X̄), (9.218)

where (a) follows from the fact that

inf
n∈Z>0

Rδn ≤ Rδ1 , (9.219)

(b) follows from the fact that since δ1 < mY (VN), we have that

Rδ1 = RI
δ1
, (9.220)

using Theorem 45, (c) follows from the fact that

RI
δ1
= Iδ̄/|JX̄K|(Ȳ ; X̄), (9.221)

using (9.132), (9.133) and (9.201). Hence, the second step of the proof follows.

Finally, we present the sufficient conditions leading to the single letter expression for

CN({↓ 0})∗.

Theorem 50. Let 0 ≤ δ1 < mY (VN). For any stationary memoryless uncertain channel N , let

X∗ ∈ Fδ∗(1) be an UV over one time step associated with a one-dimensional codebook that

achieves the largest one-dimensional δ1-capacity, and let Y
∗ be the UV corresponding to the re-

ceived codeword, namely X∗ achieves supδ1<mY (VN ) CN({δ1})∗ = supδ1<mY (VN )CN({δ1})∗ =
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supδ1<mY (VN ) Rδ1 , and we have

sup
δ1<mY (VN )

CN({δ1})∗ = Iδ∗/|JX∗K|(Y
∗;X∗)

= sup
δ1<mY (VN )

sup
X(1)∈Fδ̃(1),

δ̃≤δ1/mY (JY (1)K)

Iδ̃/|JX(1)K|(Y (1);X(1)). (9.222)

Let

δ̂∗ = max
S∈JY ∗|X∗K∗

δ∗/|JX∗K|

mY (S )

mY (JY ∗K)
. (9.223)

If δ̂∗|JX∗K| < 1, then under Assumption 3 we have that the n-dimensional capacity

CN({↓ 0})∗ = Iδ∗/|JX∗K|(Y
∗;X∗). (9.224)

Proof. Consider a sequence of {δn} such that δ1 = δ∗ and δn = δ∗(δ̂∗|JX∗K|)n−1 for n > 1.

Then, using Theorem 49 for this sequence {δn}, we have that

CN({δn})∗ = Iδ∗/|JX∗K|(Y
∗;X∗). (9.225)

Now, since δ̂∗|JX∗K| < 1 using the assumption in the theorem, we have

lim
n→∞

δn = 0. (9.226)

Using (9.225) and (9.226), we have that

CN({↓ 0})∗ = sup
{δ′n}:δ′n=o(1)

CN({δ′n})∗

≥ CN({δn})∗

=Iδ∗/|JX∗K|(Y
∗;X∗). (9.227)
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We also have

CN({↓ 0})∗ = sup
{δ′n}:δ′n=o(1)

inf
n∈Z>0

Rδ′n

(a)

≤ sup
{δ′n}:δ′n=o(1)

Rδ′1

(b)
= sup

{δ′n}:δ′n=o(1)

RI
δ′1

(c)
= sup

δ′1<mY (VN )

RI
δ′1

(d)
= Iδ∗/|JX∗K|(Y

∗;X∗), (9.228)

where (a) follows from the fact that

inf
n∈Z>0

Rδ′n ≤ Rδ′1
, (9.229)

(b) follows from the fact that since δ′1 < mY (VN), we have

Rδ′1
= RI

δ′1
, (9.230)

using Theorem 45, (c) follows from the fact that RI
δ′1
is only dependent on δ′1 in the sequence

{δ′n}, and (d) follows from (9.132), (9.133), and the definition of Iδ∗/|JX∗K|(Y
∗;X∗) in (9.222).

Combining (9.227) and (9.228), the statement of the theorem follows.

Table 9.1 shows a comparison between the sufficient conditions required to obtain single

letter expressions for CN({δn})∗, C0∗
N , CN({δn})∗ and CN({↓ 0})∗. We point out that while in

Theorems 48 and 49 any one-dimensional δ1-capacity achieving codebook can be used to obtain

the single-letter expression, in Theorem 50 the single-letter expression requires a codebook

that achieves the largest capacity among all δ1-capacity achieving codebooks. The sufficient

conditions include in all cases Assumption 3, which is required to factorize the uncertainty
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Table 9.1. Comparison of the Sufficient Conditions for the Existence of a Single-Letter

expression

Sufficient Conditions CN ({δn})∗ C0∗
N CN ({δn})∗ CN ({↓ 0})∗

(Theorem

48)

(Corollary

48.1)

(Theorem

49)

(Theorem

50)

mY Satisfies Assumption 1

mY Satisfies Assumption 2

1D Uncertainty Region Constraint

Upper bound on δ1
Upper bound on {δn}n>1

Lower bound on {δn}n>1

Upper bound on δ̄

Upper bound on δ̂∗

function over n dimensions, and leads to the key Lemma 32, and also to the upper bound on

the mutual information between associated, or disassociated UVs in terms of the sum of the

component-wise mutual information expressed by Theorem 47. The remaining conditions differ

due to the different definitions of capacity.

9.8 Examples

To cast our sufficient conditions for the existence of single letter expressions of capacity

in a concrete setting, we now provide some examples and compute the corresponding capacity.

In the following, we represent stationary memoryless uncertain channels in graph form.

Let G(V,E) be a directed graph, where V is the set of vertices and E is the set of edges. The

vertices represent input and output codeword symbols, namely V = X ∪ Y . A directed edge

from node x ∈X to node y ∈ Y , denoted by x→ y, shows that given symbol x is transmitted,

y may be received at the output of the channel. It follows that for all x ∈ X , the channel

transition map representing the noise experienced by each codeword is given by

N(x) = {y : (x→ y) ∈ E}. (9.231)
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Example 3. We consider a channel with

X = Y = {1, 2, 3, . . . , 19}. (9.232)

To define the channel transition map, we let for all x ∈ {1, 2, 3, 4, 5, 6}

N(x) = {1, 2, 3, 4, 5, 6, 11}, (9.233)

for all x ∈ {7, 8, 9, 10, 11, 12}

N(x) = {7, 8, 9, 10, 11, 12, 2}, (9.234)

and for all x ∈ {13, 14, 15, 16, 17, 18, 19}

N(x) = {13, 14, 15, 16, 17, 18, 19}. (9.235)

The corresponding graph is depicted in Figure 9.7. For any Yn ⊆ Y n, we define the uncertainty

functionmY (Yn) in terms of cardinality

mY (Yn) =
|Yn|
|Y n|

. (9.236)

Note that for all n ∈ Z>0, we havemY (Y n) = 1.

It is easy to show thatmY (.) satisfies Assumption 3. Namely, for n = 1, we have that for

all Y ⊆ Y ,

mY (Y) = |Y|
|Y |

. (9.237)
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Figure 9.7. Channel described in Example 3. It consists of three complete graphs, and some

additional edges. The thick solid arrow into node y = 11 represents multiple edges connecting
all the nodes in the set {1, 2, 3, 4, 5, 6} to node 11. Similarly, all the nodes in the set
{7, 8, 9, 10, 11, 12} are connected to node 2.

Let Yn = Y(1)× Y(2) . . .× Y(n), where Y(i) ⊆ Y . Then, we have

mY (Yn) = mY (Y(1)× Y(2) . . .× Y(n))

=
|Y(1)× Y(2) . . .× Y(n)|

|Y n|
(a)
=
|Y(1)|
|Y |

|Y(2)|
|Y |

. . .
|Y(n)|
|Y |

(b)
= mY (Y(1))mY (Y(2)) . . .mY (Y(n)), (9.238)

where (a) follows from the fact that for any two sets S1 and S2, |S1×S2| = |S1||S2|, and (b)

follows from (9.237). It follows thatmY (.) satisfies Assumption 3.

A similar argument shows that mY (.) also satisfies Assumption 4. Namely, let Yn =
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Y(1) ∪ Y(2) . . . ∪ Y(n), where Y(i) ∈ Y . Then, we have

mY (Yn) = mY (Y(1) ∪ Y(2) . . . ∪ Y(n))

=
|Y(1) ∪ Y(2) . . . ∪ Y(n)|

|Y |
(a)

≤ |Y(1)|
|Y |

+
|Y(2)|
|Y |

+ . . .+
|Y(n)|
|Y |

(b)
= mY (Y(1)) +mY (Y(2)) + . . .+mY (Y(n)), (9.239)

where (a) follows from the fact that for any two sets S1 and S2, |S1 ∪S2| ≤ |S1|+ |S2|, and

(b) follows from (9.237). It follows thatmY (.) satisfies Assumption 4.

We now compute the capacity CN({δn})∗ for δ1 = 2/9 and for all n > 1 δn = (7/342)n.

Since VN contains seven elements, we have that mY (VN) = 7/19, and δ1 < mY (VN).

Consider an UV X̄ representing a one-dimensional codebook such that

JX̄K = {1, 7, 13}. (9.240)

It follows that the corresponding output UV Ȳ is such that

JȲ K = {1, 2, 3, . . . , 18, 19}. (9.241)

Letting δ̄ = 1/6, we have that δ̄/|JXK| = 1/18 and the overlap family

JȲ |X̄K∗1/18 = {S1,S2}, (9.242)

where

S1 = ∪x∈{1,7}N(x), (9.243)

S2 = ∪x∈{13}N(x). (9.244)
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We now show that X̄ satisfies the sufficient conditions in Theorem 48. First, we note

that for all x ∈ {2, 3, 4, 5, 6, 8, 9, 10, 11, 12}, we have that JȲ |xK ⊆ S1, and for all x ∈

{14, 15, 16, 17, 18, 19}, we have JȲ |xK ⊆ S2. It follows that for all x ∈X \ JX̄K = {2, 3, 4, 5,

6, 8, 9, 10, 11, 12, 14, 15, 16, 17, 18, 19}, the uncertainity region JȲ |xK ⊆ S , where the set S ∈

JȲ |X̄K∗
δ̄/|JX̄K|. Second, we have that

δ̄(1 + 1/|JX̄K|) = 2/9 ≤ δ1/mY (JȲ K). (9.245)

Third, we note that δ̄ = 1/6,

δ̄mY (VN)/|JX̄K| = 7/342. (9.246)

It follows that for all n > 1, we have that δn ≤ (δ̄mY (VN)/|JX̄K|)n.

Since all the sufficient conditions in Theorem 48 are satisfied, we have

CN({δn})∗ = log2 |JȲ |X̄K∗1/18| = 1. (9.247)

Example 4. We now consider the same channel as in Example 3, shown in Figure 9.7, and we

compute the capacity C0∗
N . We consider the one-dimensional codebook X̄ in (9.240), and the

corresponding output UV Ȳ in (9.241). Then, we have

JȲ |X̄K∗0 = {S1,S2}, (9.248)

where

S1 = ∪x∈{1,7}N(x), (9.249)

S2 = ∪x∈{13}N(x). (9.250)
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We now show that X̄ satisfies the sufficient conditions in Corollary 48.1. We note that for all x ∈

{2, 3, 4, 5, 6, 8, 9, 10, 11, 12}, we have that JȲ |xK ⊆ S1, and for all x ∈ {14, 15, 16, 17, 18, 19},

we have JȲ |xK ⊆ S2. It follows that for all x ∈X \ JX̄K = {2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 14, 15,

16, 17, 18, 19}, the uncertainity region JȲ |xK ⊆ S , where S ∈ JȲ |X̄K∗0.

Since all the sufficient conditions in Corollary 48.1 are satisfied, we have

C0∗
N = log2 |JȲ |X̄K∗0| = 1. (9.251)

Example 5. We now consider the same channel as in Example 3, shown in Figure 9.7, and we

compute the capacity CN({δn})∗ for δ1 = (2/6)3 and for all n > 1 δn = (2/6)3((7/19)33)n−1.

For any Yn ⊆ Y n, we define the uncertainty functionmY (Yn) in terms of cardinality

mY (Yn) =

(
|Yn|
|Y n|

)3

. (9.252)

Note that for all n ∈ Z>0, we have mY (Y n) = 1. It is easy to show that mY (.) satisfies

Assumption 3. For n = 1, we have that for all Y ⊆ Y ,

mY (Y) =
(
|Y|
|Y |

)3

. (9.253)

Let Yn = Y(1)× Y(2) . . .× Y(n), where Y(i) ∈ Y . Then, we have

mY (Yn) = mY (Y(1)× Y(2) . . .× Y(n))

=

(
|Y(1)× Y(2) . . .× Y(n)|

|Y n|

)3

(a)
=

(
|Y(1)|
|Y |

)3( |Y(2)|
|Y |

)3

. . .

(
|Y(n)|
|Y |

)3

(b)
= mY (Y(1))mY (Y(2)) . . .mY (Y(n)), (9.254)

where (a) follows from the fact that for any two sets S1 and S2, |S1×S2| = |S1||S2|, and (b)
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follows from (9.253). It follows thatmY (.) satisfies Assumption 3.

SincemY (VN) = (7/19)3, we have δ1 < mY (VN). We consider an UV X̄ representing

a one-dimensional codebook, a corresponding output UV Ȳ , and δ̄ = (2/6)3, so that

JX̄K = {1, 7, 13}, (9.255)

JȲ K = {1, 2, . . . , 19}, (9.256)

JȲ |X̄K∗1/81 = {S1,S2,S3}, (9.257)

where

S1 = ∪x∈{1}N(x), (9.258)

S2 = ∪x∈{7}N(x), (9.259)

S3 = ∪x∈{13}N(x). (9.260)

Since δ̄ = δ1 = (2/6)3, we have

δ̂ = max
S∈JȲ |X̄K∗

δ̄/|JX̄K|

mY (S )

mY (JȲ K)
=

(
7

19

)3

. (9.261)

It follows that for all n > 1, we have δn ≥ δ̄(δ̂|JX̄K|)n−1 and all the sufficient conditions in

Theorem 49 are satisfied, so that

CN({δn})∗ = log2 |JȲ |X̄K∗1/81| = log2(3). (9.262)
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Example 6. We again consider the same channel and the same uncertainty function as in

Example 5, shown in Figure 9.7 and (9.252), respectively. We compute the capacity CN({↓ 0})∗.

Consider an UV X∗ representing a one-dimensional codebook such that

JX∗K = {1, 7, 13}. (9.263)

It follows that the corresponding output UV Y ∗ is such that

JY ∗K = {1, 2, 3 . . . 19}. (9.264)

Letting δ∗ = (2/6)3, we have that δ∗/|JX∗K| = 1/81 and the overlap family is

JY ∗|X∗K∗δ∗/|JX∗K|=1/81 = {S1,S2,S3}, (9.265)

where

S1 = ∪x∈{1}N(x), (9.266)

S2 = ∪x∈{7}N(x), (9.267)

S3 = ∪x∈{13}N(x). (9.268)

Since VN contains seven elements, we have thatmY (VN) = (7/19)3, and δ∗ < mY (VN). Also,

we have that

δ̂∗ = max
S∈JY ∗|X∗K∗

δ∗/|JX∗K|

mY (S )

mY (JY ∗K)
=

(
7

19

)3

. (9.269)

It follows that δ̂∗|JX∗K| < 1.
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Since all the sufficient conditions in Theorem 50 are satisfied, we have

CN({↓ 0})∗ = log2 |JȲ |X̄K∗2/18| = log2(3). (9.270)

9.8.1 Discussion

The results in our examples show that for the channel presented in Figure 9.7, and the

uncertainty function (9.236), there exists a vanishing sequence δ1 = 2/9, {δn}∞2 = {(7/342)n}

such that

C0∗
N = CN({δn})∗. (9.271)

For the same channel and uncertainty function, there is another vanishing sequence δ1 =

4/9, {δn}∞2 = {(14/342)n}, such that

C0∗
N < CN({δn})∗. (9.272)

On the other hand, for the same channel using the uncertainty function (9.252), there

exists a vanishing sequence δ1 = (2/6)3, {δn}∞2 = {(2/6)3(3(7/19)3)n−1} such that

CN({δn})∗ = CN({↓ 0})∗. (9.273)

For the same channel and uncertainty function (9.252), there exists another sequence δ1 =

(2/19)3, {δn}∞2 = (2/19)3(3(12/19)3)n−1 such that

CN({δn})∗ < CN({↓ 0})∗. (9.274)

9.9 Applications

We now discuss some applications of the developed non-stochastic theory.
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9.9.1 Error Correction in Adversarial Channels

Various adversarial channel models have been considered in the literature. A popular

one considers a binary alphabet, and a codeword of length n that is sent from the transmitter to

the receiver. The channel can flip at most a fraction 0 < τ ≤ 1 of the n symbols in an arbitrary

fashion [6]. In this case, the input and output spaces are X n = Y n = {0, 1}n, and a codebook

is Xn ⊆X n. Due to the constraint on the total number of bit flips, the channel is non-stationary

and with memory. For any x ∈ X n, we can let the norm be the Hamming distance from the

n-dimensional all zero vector representing the origin of the space, namely

‖x‖ = H(x, {0}n) ≤ n. (9.275)

In this framework, for any transmitted codeword x ∈ Xn, the set of possible received codewords

is

Sτn(x) = {y ∈ Y n : H(x, y) ≤ τn}, (9.276)

where τn is the analogous of a noise range εn = εn in the non-stochastic channel model described

in Section 9.5.

For all x1, x2 ∈ Xn, the equivocation region corresponds to Sτn(x1) ∩ Sτn(x2) and for

any S ⊆ Y n, we can define the uncertainty function

mY n(S ) =


D(S ) + 1, if S 6= ∅,

0, otherwise ,

(9.277)

where D indicates diameter, namely

D(S ) = max
y1,y2∈S

H(y1, y2). (9.278)
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With this definition, we have that

mY n(Y n) = n+ 1. (9.279)

For all x1, x2 ∈ Xn, we let the error

eτn(x1, x2) =
mY n(Sτn(x1) ∩ Sτn(x2))

n+ 1
. (9.280)

As usual, we say that a codebook Xn is (τn, δn)-distinguishable if eτn(x1, x2) ≤ δn/|Xn|, and

for all n ∈ Z>0 the (τn, δn) capacity is

Cδn
τn = sup

Xn∈X δn
τn

log2(|Xn|), (9.281)

where X δn
τn = {Xn : Xn is (τn, δn)-distinguishable}.

We now show that any (τn, δn)-distinguishable codebook Xn can be used to correct a

certain number of bit flips. This number depends on how far apart any two codewords are, and a

lower bound on this distance can be expressed in terms of the diameter of the equivocation set and

of the amount of perturbation introduced by the channel, see Figure 9.8. The following theorem

provides a lower bound on the Hamming distance H(x1, x2) between any two codewords. The

number of bit flips that can be corrected can then be computed using the well-known formula

b(H(x1, x2) − 1)/2c. Finally, we point out that non-stochastic, adversarial, error correcting

codes are of interest and have been studied in the context of multi-label classification in machine

learning [65], and to improve the robustness of neural networks to adversarial attacks [218].

Theorem 51. Given a channel satisfying (9.276), if a codebook Xn is (τn, δn)-distinguishable,

then for all x1, x2 ∈ Xn, we have

H(x1, x2) ≥
(

2τn

n+ 1
− δn
|Xn|

)
(n+ 1) + 1. (9.282)
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Figure 9.8. The Hamming distance between any two overlapping codewords depends on the

code parameters τn and δn.

Proof. Let Xn ∈X δ
τn. Then, for all x1, x2 ∈ Xn, we have

eτn(x1, x2) =
mY n(Sτn(x1) ∩ Sτn(x2))

n+ 1
,

≤ δn
|Xn|

. (9.283)

First, we consider the case when

x1, x2 ∈ Sτn(x1) ∩ Sτn(x2). (9.284)

Let B(x1, x2) be the boundary of the equivocation set, namely

B(x1, x2) = {x ∈ Sτn(x1) ∩ Sτn(x2)) : ∃x′ /∈ Sτn(x1) ∩ Sτn(x2))

such that H(x, x′) = 1}. (9.285)

By (9.284), there exist A,B ∈ B(x1, x2) such that

H(A,B) = H(A, x1) +H(x1, x2) +H(x2, B). (9.286)
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Then, we have

H(A,B) = H(A, x1) +H(x1, x2) +H(x2, B)

(a)
= 2τn− 2H(x1, x2) +H(x1, x2)

= 2τn−H(x1, x2), (9.287)

where (a) follows from the fact that A,B ∈ B(x1, x2), which implies

H(A, x1) = H(A, x2)−H(x1, x2) = τn−H(x1, x2), (9.288)

and

H(B, x2) = H(B, x1)−H(x1, x2) = τn−H(x1, x2). (9.289)

We now have that

H(x1, x2) = 2τn−H(A,B)

(a)

≥ 2τn−D(Sτn(x1) ∩ Sτn(x2)), (9.290)

where (a) follows from the fact that using A,B ∈ Sτn(x1) ∩ Sτn(x2)), we have H(A,B) ≤

D(Sτn(x1) ∩ Sτn(x2)).

Now, we consider the case when

x1, x2 /∈ Sτn(x1) ∩ Sτn(x2). (9.291)

In this case, we have

H(x1, x2) ≥ 2τn−D(Sτn(x1) ∩ Sτn(x2)). (9.292)

The result now follows by combining (9.290), (9.292) and (9.283).
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9.9.2 Robustness of Neural Networks to Adversarial Attacks

Motivated by security considerations, the robustness of neural networks to adversarial

examples has recently received great attention [228, 227, 224]. While different algorithms have

been proposed to improve robustness [227, 224], studies quantifying the limits of robustness

have been limited [228, 205]. We argue that the non-stochastic framework introduced in this

paper can be a viable way to quantify robustness, and can be used as a baseline to evaluate the

performance of different algorithmic solutions.

We follow the framework of [228] and consider a neural network trained to classify the

incoming data among L possible labels in the set L = {1, 2, . . . , L}. Let x0 ∈ Rd denote an

input data point consisting of a feature vector of d dimensions. A neural network can be modelled

using a classification function f : Rd → RL whose `th component f`(·) indicates the belief that

a given data point is of label `. The network classifies each input data point x0 as being of label

c(x0) = argmax`∈{1,...,L}f`(x0). (9.293)

We let D(`) ⊆ D denote the set of points in a data set D that are classified as being of

label `, namely

D(`) = {x0 ∈ D : c(x0) = `}. (9.294)

When the points in this set are subject to an ε-attack, they become part of the perturbed input

data set

Sε(`) = {x ∈ Rd : ‖x− x0‖ ≤ ε, x0 ∈ D(`)}. (9.295)
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An ε-attack on input point x0 is successful if there exists a noise vector e ∈ Rd such that

c(x0) 6= c(x0 + e), and ‖e‖ ≤ ε. (9.296)

For any two labels `1, `2 ∈ {1, 2, . . . , L}, we let

Pε(`1, `2) ={x ∈ Sε(`1) : either c(x) = `1 or c(x) = `2}. (9.297)

Then, Pε(`1, `2) ∩ Pε(`2, `1) represents the set of points in Sε(`1) and Sε(`2) that can lead to a

successful ε-attack.

For all `1, `2 ∈ {1, 2, . . . , L}, we let the error

eε(`1, `2) =
mL (Pε(`1, `2) ∩ Pε(`2, `1))

mL (L )
. (9.298)

Finally, we say that a subset of labels (viz. a codebook)L ⊆ L is (ε, δ)-robust if for all `1, `2 ∈ L,

we have eε(`1, `2) ≤ δ/|L|. This implies that whenever a label in an (ε, δ)-robust codebook is

assigned to any input point that is subject to an attack, this is the same as the label assigned to

the same input in the absence of the attack, with confidence at least 1− δ.

We can then define the (ε, δ)- robust capacity of the neural network as the logarithm

of the maximum number of labels that can be robustly classified with confidence 1− δ in the

presence of an ε-attack, namely

Cδ
ε (D) = sup

L∈L δ
ε (D)

log2(|L|), (9.299)

where L δ
ε (D) = {L : L is (ε, δ)-robust}. This capacity represents the largest amount of

information that the labeling task of the neural network can convey, at a given level of confidence,

under a perturbation attack. This information is independent of whether the neural network

classifies the input data correctly or not.
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For ε = 0, for any two labels `1, `2 ∈ L , we have that D(`1) = Sε(`1) and Pε(`1, `2) =

D(`1), which implies that

Pε(`1, `2) ∩ Pε(`2, `1) = ∅, (9.300)

and the capacity Cδ
ε (D) = log2(L), regardless of the value of δ. This means that in the absence

an attack, the amount of information conveyed by the network is simply the logarithm of the

number of labels it classifies the data into.

The framework described above has been studied in the special case of δ = 0 and for a

single input data point x0 in [228]. Our (ε, δ)- robust capacity generalizes the notion of robustness

from a single point x0 to the whole data set D and can quantify the overall robustness of a neural

network.

9.9.3 Performance of Classification Systems

The non-stochastic (N, δ) capacity can also be used as a performance measure of clas-

sification systems operating on a given data set. Consider a system trained to classify the

incoming data among L possible labels in the set L = {1, 2, . . . , L}. Let x0 be an input data

point, and c(x0) be the label assigned by the neural network to x0. For a given data set D, let

N(`) ⊆ {1, 2, . . . , L} denote the subset of labels such that

N(`) ={`′ ∈ L : there exists a data point x0 ∈ D such that

the correct label of x0 is ` and c(x0) = `′}. (9.301)

If ` ∈ N(`), then there exists a data point that is correctly classified as `. If `′ ∈ N(`) such that

`′ 6= `, then there exists a data point that is incorrectly classified as `′, and the correct label of

this data point is `.

For any two labels `1, `2 ∈ L , we have the equivocation region N(`1) ∩N(`2), and we

let the error

eN(`1, `2) =
|N(`1) ∩N(`2)|

|L |
. (9.302)
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We say that a subset of labels L ⊆ L is (N, δ)-classifiable if for all `1, `2 ∈ L, we have

eN(`1, `2) ≤ δ/|L|, and the (N, δ)-capacity of the classification system is

Cδ
N = sup

L∈L δ
N

log2(|L|), (9.303)

where L δ
N = {L : L is (N, δ)-classifiable}. Given the set of labels, this capacity quantifies the

amount of information that the classifier is able to extract from a given data set, in terms of the

logarithm of the largest number of labels that can be identified with confidence greater than

1− δ. In contrast to the robust capacity described in Section 9.9.2, here the capacity refers to

the ability of the network to perform the classification task correctly in the absence of an attack,

rather than to its ability of performing classification consistently (but not necessarily correctly)

in the presence of an attack.

9.10 Conclusion

In this paper, we presented a non-stochastic theory of information that is based on a

notion of information with worst-case confidence that is independent of stochastic modeling

assumptions. Using the non-stochastic variables framework of Nair [157], we showed that

the capacity of several channel models equals the largest amount of information conveyed by

the transmitter to the receiver, with a given level of confidence. These results are the natural

generalization of Nair’s ones, obtained in a zero-error framework, and provide an information-

theoretic interpretation for the geometric problem of sphere packing with overlap, studied by

Lim and Franceschetti [132]. More generally, they show that the path laid by Shannon can be

extended to a non-stochastic setting, which is an idea that dates back to Kolmogorov [119].

Non-stochastic approaches to information, and their usage to quantify the performance

of engineering systems have recently received attention in the context of estimation, control,

security, communication over non-linear optical channels, and learning systems [188, 189, 230,

28, 228, 218, 65]. We hope that the theory developed here can be useful in some of these contexts.
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To this end, we pointed out some possible applications in the context of classification systems

and communication over adversarial channels.

While refinements and extension of the theory are certainly of interest, further exploration

of application domains is of paramount importance. There is evidence in the literature for the need

of a non-stochastic approach to study the flow of information in complex systems, and there is a

certain tradition in computer science and especially in the field of online learning to study various

problems in both a stochastic and a non-stochastic setting [17, 3, 181, 175, 174]. Nevertheless,

it seems that only a few isolated efforts have been made towards the formal development of

a non-stochastic information theory. A wider involvement of the community in developing

alternative, even competing, theories is certainly advisable to eventually fulfill the need of several

application areas.
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9.12 Appendix

9.12.1 Proof of Lemma 31

Proof. Let (X,Y )
a↔ (δ1, δ2). Then,

A (X;Y ) � δ1, (9.304)
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A (Y ;X) � δ2. (9.305)

Let

S1 =

{
(y1, y2) :

mX (JX|y1K ∩ JX|y2K|)
mX (JXK)

= 0

}
. (9.306)

Then, for all (y1, y2) ∈ S1, we have

mX (JX|y1K ∩ JX|y2K|)
mX (JXK)

= 0 ≤ δ1. (9.307)

Also, if (y1, y2) ∈ S1, then

mX (JX|y1K ∩ JX|y2K|)
mX (JXK)

/∈ A (X;Y ), (9.308)

and if (y1, y2) /∈ S1, then using (9.8), we have

mX (JX|y1K ∩ JX|y2K|)
mX (JXK)

∈ A (X;Y ). (9.309)

This along with (9.304) and (9.307) implies that (9.16) follows.

Likewise, let

S2 =

{
(x1, x2) :

mY (JY |x1K ∩ JY |x2K|)
mY (JY K)

= 0

}
. (9.310)

Then, for all (x1, x2) ∈ S2,

mY (JY |x1K ∩ JY |x2K|)
mY (JY K)

= 0 ≤ δ2. (9.311)
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Also, if (x1, x2) ∈ S2, then

mY (JY |x1K ∩ JY |x2K|)
mY (JY K)

/∈ A (Y ;X), (9.312)

and if (y1, y2) /∈ S2, then using (9.8), we have

mY (JY |x1K ∩ JY |x2K|)
mY (JY K)

∈ A (Y ;X). (9.313)

This along with (9.305) and (9.311) implies that (9.17) follows.

Now, we prove the opposite direction of the statement. Given that for all y1, y2 ∈ JY K,

we have

mX (JX|y1K ∩ JX|y2K|)
mX (JXK)

≤ δ1, (9.314)

and for all x1, x2 ∈ JXK, we have

mY (JY |x1K ∩ JY |x2K|)
mY (JY K)

≤ δ2. (9.315)

Then, using the definition of A (X;Y ) and A (Y ;X), we have

A (X;Y ) � δ1, (9.316)

A (Y ;X) � δ2. (9.317)

The statement of the lemma follows.

9.12.2 Proof of Theorem 45

Proof. We will show (9.132). Then, using Lemma 36 in Appendix 9.12.4, (9.133) follows using

the same argument as in the proof of Theorem 44.
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We proceed in three steps. First, we show that for all n > 0, there exists an UV X(1 : n)

and δ̃ ≤ δn/mY (JY (1 : n)K) such that X(1 : n) ∈ Fδ̃(n), which implies Fδ̃(n) is not empty,

so that the supremum is well defined. Second, for all n > 0, and X(1 : n) and δ̃ such that

X(1 : n) ∈ Fδ̃(n), (9.318)

and

δ̃ ≤ δn/mY (JY (1 : n)K), (9.319)

we show that

Iδ̃/|JX(1:n)K|(Y (1 : n);X(1 : n))

n
≤ Rδn .

Finally, for all n > 0, we show the existence of X(1 : n) ∈ Fδ̃(n) and δ̃ ≤ δn/mY (JY (1 : n)K)

such that

Iδ̃/|JX(1:n)K|(Y (1 : n);X(1 : n))

n
= Rδn . (9.320)

Let us begin with the first step. Consider a point x(1 : n) ∈X n. Let X(1 : n) be a UV

such that

JX(1 : n)K = {x(1 : n)}. (9.321)

Then, we have that the marginal range of the UV Y (1 : n) corresponding to the received variable

is

JY (1 : n)K = JY (1 : n)|x(1 : n)K, (9.322)

and therefore for all y(1 : n) ∈ JY (1 : n)K, we have

JX(1 : n)|y(1 : n)K = {x(1 : n)}. (9.323)
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Using Definition 10 and (9.321), we have that

A (Y (1 : n);X(1 : n)) = ∅, (9.324)

because JX(1 : n)K consists of a single point, and therefore the set in (9.11) is empty.

On the other hand, using Definition 10 and (9.323), we have

A (X(1 : n);Y (1 : n)) =


{1} if ∃y1(1 : n), y2(1 : n) ∈ JY (1 : n)K,

∅ otherwise.

(9.325)

Using (9.324) and since A � δ holds for A = ∅, we have

A (Y (1 : n);X(1 : n)) � δn/(|JX(1 : n)K|mY (JY (1 : n)K)). (9.326)

Similarly, using (9.325) we have

A (X(1 : n);Y (1 : n)) � 1. (9.327)

Now, combining (9.326) and (9.327), we have

(X(1 : n), Y (1 : n))
a↔ (1, δn/(|JX(1 : n)K|mY (JY (1 : n)K))). (9.328)

Letting δ̃ = δn/mY (JY (1 : n)K), this implies that X(1 : n) ∈ Fδ̃(n) and the first step of the

proof is complete.

To prove the second step, we define

G (n) =

{
X(1 : n) : JX(1 : n)K ⊆X n, ∃δ̃ ≤ δn/mY (JY (1 : n)K) such that

∀S1,S2 ∈ JY (1 : n)|X(1 : n)K,
mY (S1 ∩S2)

mY (JY (1 : n)K)
≤ δ̃

|JX(1 : n)K|

}
, (9.329)
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which is a larger set than the one containing all UVs X(1 : n) that are (1, δ̃/|JX(1 : n)K|)

associated to Y (1 : n). Similar to (9.76), it can be shown that

X(1 : n) ∈ G (n) =⇒ X (1 : n) ∈X δn
N (n) (9.330)

Consider now a pair X(1 : n) and δ̃ such that δ̃ ≤ δn/mY (JY (1 : n)K), and

X(1 : n) ∈ Fδ̃(n). (9.331)

If (X(1 : n), Y (1 : n))
d↔ (0, δ̃/|JX(1 : n)K|), then using Lemma 33 in Appendix 9.12.4, there

exist UVs X̄(1 : n) and Ȳ (1 : n) and δ̄ ≤ δn/mY (JȲ (1 : n)K) such that

(X̄(1 : n), Ȳ (1 : n))
a↔ (1, δ̄/|JX̄(1 : n)K|), (9.332)

and

|JY (1 : n)|X(1 : n)K∗
δ̃/|JX(1:n)K|| = |JȲ (1 : n)|X̄(1 : n)K∗δ̄/|JX̄(1:n)K||. (9.333)

On the other hand, if (X(1 : n), Y (1 : n))
a↔ (1, δ̃/|JX(1 : n)K|), then (9.332) and (9.333) also

trivially hold. It then follows that (9.332) and (9.333) hold for all X(1 : n) ∈ Fδ̃(n). We now

have

Iδ̃/|JX(1:n)K|(Y (1 : n);X(1 : n)) = log(|JY (1 : n)|X(1 : n)K∗
δ̃/|JX(1:n)K||)

(a)
= log(|JȲ (1 : n)|X̄(1 : n)K∗δ̄/|JX̄(1:n)K||)
(b)

≤ log(|JX̄(1 : n)K|)
(c)
= log(|X̄ (1 : n)|)
(d)

≤ nRδn , (9.334)
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where (a) follows from (9.332) and (9.333), (b) follows from Lemma 35 in Appendix 9.12.4 since

δ̄ ≤ δn/mY (JȲ (1 : n)K) < mY (V n
N )/mY (JȲ (1 : n)K), (c) follows by defining the codebook

X̄ (1 : n) corresponding to the UV JX̄(1 : n)K , and (d) follows from the fact that using (9.332)

and Lemma 31, we have X̄(1 : n) ∈ G(n), which implies by (9.330) that X̄ (1 : n) ∈X δn
N (n).

For any n ∈ Z>0, let

X ∗
n = argsupXn∈X δn

N (n)

log(|Xn|)
n

, (9.335)

which achieves the rate Rδn . Let X∗ be the UV whose marginal range corresponds to the

codebook X ∗
n . It follows that for all S1,S1 ∈ JY ∗|X∗K, we have

mY (S1 ∩S1)

mY (Y n)
≤ δn
|JX∗K|

, (9.336)

which implies using the fact thatmY (Y n) = 1,

mY (S1 ∩S1)

mY (JY ∗K)
≤ δn

(|JX∗K|mY (JY ∗K))
. (9.337)

Letting δ∗ = δn/mY (JY ∗K), and using Lemma 31, we have that (X∗, Y ∗)
a↔ (1, δ∗/|JX∗K|),

which implies

X∗ ∈ ∪δ̃≤δn/mY (JY ∗K)Fδ̃(n), (9.338)

and (9.132) follows.
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9.12.3 Proof of Lemma 32

Proof. Let us begin with part 1). We have

JY (1 : n)K = ∪x(1:n)∈JX(1:n)KJY (1 : n)|x(1 : n)K

(a)
= ∪x(1:n)∈JX(1:n)KJY (1)|x(1)K× . . .× JY (n)|x(n)K
(b)
= ∪x(1)∈JX(1)KJY (1)|x(1)K× . . .× ∪x(n)∈JX(n)KJY (n)|x(n)K

= JY (1)K× JY (2)K× . . .× JY (n)K,
(9.339)

where (a) follows from (9.142), and (b) follows from (9.141). Now, we have

⋃
S∈

∏n
i=1JY (i)|X(i)K∗δ

S
(a)
=

n∏
i=1

(
⋃

S∈JY (i)|X(i)K∗δ

S )

(b)
=

n∏
i=1

JY (i)K

(c)
= JY (1 : n)K, (9.340)

where (a) follows from the fact that the cartesian product is distributive over union, namely

∪(i,j)∈I×JAi ×Bj = (∪i∈IAi)× (∪j∈JBj), (9.341)

(b) follows from the fact that for all 1 ≤ i ≤ n, JY (i)|X(i)K∗δ is a covering of JY (i)K by Definition

14, and (c) follows from (9.339). Hence, part 1) follows.

Now, we prove part 2). Here, we will first show that for all S ∈
∏n

i=1JY (i)|X(i)K∗δ ,

we have that S is δn-connected. Second, we will show that S contains at least one singly

δn-connected set.

Let us begin with the first step of part 2). Consider a set S ∈
∏n

i=1JY (i)|X(i)K∗δ . Then,
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there exists a sequence {Si}ni=1 such that

S = S1 ×S2 × . . .×Sn, (9.342)

and for all 1 ≤ i ≤ n,

Si ∈ JY (i)|X(i)K∗δ . (9.343)

Now, consider two points y1(1 : n), y2(1 : n) ∈ S . Then, using (9.142), (9.339) and (9.342),

for all 1 ≤ i ≤ n, we have that

y1(i), y2(i) ∈ Si. (9.344)

Also, since Si is δ-connected using (9.343) and Property 1 of Definition 14, we have

y1(i)
δ

! y2(i), (9.345)

namely there exists a sequence {JY (i)|xk(i)K}N(i)
k=1 such that

y1(i) ∈ JY (i)|x1(i)K, y2(i) ∈ JY (i)|xN(i)(i)K, (9.346)

and for all 1 ≤ k < N(i),

mY (JY (i)|xk(i)K ∩ JY (i)|xk+1(i)K)
mY (JY (i)K)

> δ. (9.347)

Without loss of generality, let

N(1) ≤ N(2) ≤ . . . ≤ N(n). (9.348)
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Now, consider the following sequence of conditional ranges

JY (1 : n)|x1(1), x1(2) . . . x1(n)K,

JY (1 : n)|x2(1), x2(2) . . . x2(n)K,

. . .

JY (1 : n)|xN(1)(1), xN(1)(2) . . . xN(1)(n)K,

JY (1 : n)|xN(1)(1), xN(1)+1(2) . . . xN(1)+1(n)K,

. . .

JY (1 : n)|xN(1)(1), xN(2)(2) . . . xN(n)(n)K. (9.349)

In this sequence, for all 1 ≤ k < N(n), if xk(i) = xk+1(i), then we have

mY (JY (i)|xk(i)K ∩ JY (i)|xk+1(i)K)
mY (JY (i)K)

(a)
=

mY (JY (i)|xk(i)K)
mY (JY (i)K)

(b)
>

δ

mY (JY (i)K)
(c)

≥ δ

mY (Y )
(d)
> δ, (9.350)

where (a) follows from the fact that xk(i) = xk+1(i), (b) follows from (9.143), (c) follows

from the fact that JY (i)K ⊆ Y and (9.9) holds, and (d) follows from the fact thatmY (Y ) = 1.

Additionally, in the sequence (9.349), for all 1 ≤ k < N(n), if xk(i) 6= xk+1(i), then we have

that (9.347) holds. This along with (9.350) implies that for all 1 ≤ k < N(n), we have

mY (JY (i)|xk(i)K ∩ JY (i)|xk+1(i)K)
mY (JY (i)K)

> δ. (9.351)
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Now, using (9.142) and (9.346), we have

y1(1 : n) ∈ JY (1 : n)|x1(1), . . . x1(n)K, (9.352)

and

y2(1 : n) ∈ JY (1 : n)|xN(1)(1), . . . xN(n)(n)K. (9.353)

Also, for all 1 ≤ k < N(n), the uncertainty associated with the intersection of the two consecutive

conditional ranges in the sequence (9.349) is

mY (JY (1 : n)|xk(1 : n)K ∩ JY (1 : n)|xk+1(1 : n)K)
mY (JY (1 : n)K)

(a)
=

n∏
i=1

mY (JY (i)|xk(i)K ∩ JY (i)|xk+1(i)K)
mY (JY (i)K)

(b)
> δn, (9.354)

where (a) follows from Assumption 3, (9.142), (9.339) and the fact that

n∏
i=1

Si ∩
n∏

i=1

Ti = (S1 ∩T1)× . . .× (Sn ∩Tn), (9.355)

(b) follows from (9.351). Hence, using (9.352), (9.353) and (9.354), we have

y1(1 : n)
δn
! y2(1 : n). (9.356)

Hence, S is δn-connected.

Now, let us prove the second step of part 2). For all 1 ≤ i ≤ n, since JY (i)|X(i)K∗δ

satisfies Property 1 of Definition 14, there exists an xi ∈ JX(i)K such that

JY (i)|xiK ⊆ Si. (9.357)
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Therefore, for x(1 : n) = [x1, x2, . . . , xn], we have

JY (1 : n)|x(1 : n)K
(a)
= JY (1)|x(1)K× . . .× JY (n)|x(n)K
(b)
= JY (1)|x1K× . . .× JY (n)|xnK
(c)

⊆ S1 ×S2 × . . .Sn

(d)
= S , (9.358)

where (a) follows from (9.142), (b) follows from the fact that x(1 : n) = [x1, x2, . . . , xn], (c)

follows from (9.357), and (d) follows from (9.342). Hence, S contains at least one singly

δn-connected set, which concludes the second step of part 2).

Now, let us prove part 3). For all 1 ≤ i ≤ n, since JY (i)|X(i)K∗δ satisfies Property 3 of

Definition 14, for all x(i) ∈ JX(i)K, there exist a set S (x(i)) ∈ JY (i)|X(i)K∗δ such that

JY (i)|x(i)K ⊆ S (x(i)). (9.359)

Then for all x(1 : n) ∈ JX(1 : n)K, we have

JY (1 : n)|x(1 : n)K
(a)
= JY (1)|x(1)K× . . .× JY (n)|x(n)K
(b)

⊆ S (x(1))× . . .×S (x(n))

∈
n∏

i=1

JY (i)|X(i)K∗δ , (9.360)

where (a) follows from (9.142), and (b) follows from (9.359). Hence, part 3) follows.

Finally, let us prove part 4). Consider two distinct sets S1,S2 ∈
∏n

i=1JY (i)|X(i)K∗δ .

Then, we have

S1 = S11 ×S12 × . . .S1n, (9.361)

S2 = S21 ×S22 × . . .S2n, (9.362)
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where for all 1 ≤ i ≤ n

S1i,S2i ∈ JY (i)|X(i)K∗δ . (9.363)

Since S1 6= S2, there exists 1 ≤ i∗ ≤ n such that

S1i∗ 6= S2i∗ . (9.364)

Then, by Property 2 of Definition 14 and (9.363), we have

mY (S1i∗ ∩S2i∗)

mY (JY (i∗)K)
≤ δ. (9.365)

Also, using (9.147), we have that for all 1 ≤ i ≤ n,

mY (S1i)

mY (JY (i)K)
≤ δ̂(n). (9.366)

Then, we have

mY (S1 ∩S2)

mY (JY (1 : n)K)
(a)
=

mY ((S11 × . . .S1n) ∩ (S21 × . . .S2n))

mY (JY (1 : n)K)
(b)
=

mY ((S11 ∩S21)× . . .× (S1n ∩S2n))

mY (JY (1 : n)K)
(c)
=

mY (S11 ∩S21) . . .mY (S1n ∩S2n)∏n
i=1 mY (JY (i)K)

(d)

≤ mY (S1i∗ ∩S2i∗)

mY (JY (i∗)K)

∏
i 6=i∗

mY (S1i)

mY (JY (i)K)

(e)

≤ δ(δ̂(n))n−1,
(9.367)

where (a) follows from (9.361) and (9.362), (b) follows from the fact that for all sequences of

sets {Si}ni=1 and {Ti}ni=1 , we have

n∏
i=1

Si ∩
n∏

i=1

Ti = (S1 ∩T1)× . . .× (Sn ∩Tn), (9.368)
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(c) follows from Assumption 3 and (9.339), (d) follows from (9.9) and the fact that for all

1 ≤ i ≤ n, S1i ∩ S2i ⊆ S1i, and (e) follows from (9.365) and (9.366). Hence, part 4)

follows.

9.12.4 Auxiliary Results

Lemma 33. Given a δ < mY (VN), two UVs X and Y satisfying (9.57) and (9.58), and a

δ̃ ≤ δ/mY (JY K) such that

(X,Y )
d↔ (0, δ̃/|JXK|). (9.369)

Then, there exists two UVs X̄ and Ȳ satisfying (9.57) and (9.58), and there exists a δ̄ ≤

δ/mY (JȲ K) such that

(X̄, Ȳ )
a↔ (1, δ̄/|JX̄K|), (9.370)

and

|JY |XK∗
δ̃/|JXK|| = |JȲ |X̄K∗δ̄/|JX̄K||. (9.371)

Proof. Let the cardinality

|JY |XK∗
δ̃/|JXK|| = K. (9.372)

By Property 1 of Definition 14, we have that for all Si ∈ JY |XK∗
δ̃/|JXK|, there exists a xi ∈ JXK

such that JY |xiK ⊆ Si. Now, consider a new UV X̄ whose marginal range is composed of K

elements of JXK, namely

JX̄K = {x1, x2, . . . , xK}. (9.373)

Let Ȳ be the UV corresponding to the received variable. Using the fact that for all x ∈X , we

have JȲ |xK = JY |xK since (9.57) holds, and using Property 2 of Definition 14, for all x, x′ ∈ JX̄K,

388



we have

mY (JȲ |xK ∩ JȲ |x′K)
mY (JY K)

≤ δ̃

|JXK|
(a)

≤ δ̃

|JX̄K|
, (9.374)

where (a) follows from the fact that JX̄K ⊆ JXK using (9.373). Then, for all x, x′ ∈ JX̄K, we

have that

mY (JȲ |xK ∩ JȲ |x′K)
mY (JȲ K)

≤ δ̃mY (JY K)
|JXK|mY (JȲ K)

(a)

≤ δ̄

|JX̄K|
, (9.375)

where δ̄ = δ̃mY (JY K)/mY (JȲ K). Then, by Lemma 31 it follows that

(X̄, Ȳ )
a↔ (1, δ̄/|JX̄K|). (9.376)

Since δ̃ ≤ δ/mY (JY K), we have

δ̄ ≤ δ/mY (JȲ K) < mY (Vε)/mY (JȲ K). (9.377)

Using (9.376) and (9.377), we now have that

|JȲ |X̄K∗δ̄/|JX̄K||
(a)
= |JX̄K|
(b)
= |JY |XK∗

δ̃/|JXK||, (9.378)

where (a) follows from Lemma 36 in Appendix 9.12.4, and (b) follows from (9.372) and (9.373).

Hence, the statement of the lemma follows.

Lemma 34. Let

(X,Y )
d↔ (δ, δ2). (9.379)

389



If x
δ

! x1 and x
δ

! x2, then we have that x1
δ

! x2.

Proof. Let {JX|yiK}Ni=1 be the sequence of conditional range connecting x and x1. Likewise, let

{JX|ỹiK}Ñi=1 be the sequence of conditional range connecting x and x2.

Now, by Definition 13, we have

x1 ∈ JX|yNK, (9.380)

x2 ∈ JX|ỹÑK, (9.381)

x ∈ JX|y1K, (9.382)

and

x ∈ JX|ỹ1K (9.383)

Then, using (9.8), we have that

mX (JX|y1K ∩ JX|ỹ1K|
mX (JXK)

> 0, (9.384)

which implies that

mX (JX|y1K ∩ JX|ỹ1K|
mX (JXK)

∈ A (X;Y ). (9.385)

Using the fact that

(X,Y )
d↔ (δ, δ2), (9.386)

we will now show that

{JX|yNK, JX|yN−1K, . . . JX|y1K, JX|ỹ1K, . . . JX|ỹÑK}, (9.387)
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is a sequence of conditional ranges connecting x1 and x2. Using (9.385) and (9.386), we have

that

mX (JX|y1K ∩ JX|ỹ1K|
mX (JXK)

> δ. (9.388)

Also, for all 1 < i ≤ N and 1 < j ≤ Ñ , we have

mX (JX|yiK ∩ JX|yi−1K|
mX (JXK)

> δ, (9.389)

and

mX (JX|ỹjK ∩ JX|ỹj−1K|
mX (JXK)

> δ. (9.390)

Also, we have

x1 ∈ JX|yNK, and x2 ∈ JX|ỹÑK. (9.391)

Hence, combining (9.388), (9.389), (9.390) and (9.391), we have that x1
δ

! x2 via (9.387).

Lemma 35. Consider two UVs X and Y . Let

δ∗ =
miny∈JY K mX (JX|yK)

mX (JXK)
. (9.392)

If δ1 < δ∗, then we have

|JX|Y K∗δ1| ≤ |JY K|. (9.393)

Proof. We will prove this by contradiction. Let

|JX|Y K∗δ1| > |JY K|. (9.394)

Then, by Property 1 of Definition 14, there exists two sets S1,S2 ∈ JX|Y K∗δ1 and one singly

δ1-connected set JX|yK such that

JX|yK ⊆ S1, and JX|yK ⊆ S2. (9.395)
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Then, we have

mX (S1 ∩S2)

mX (JXK)

(a)

≥ mX (JX|yK)
mX (JXK)

(b)

≥ δ∗

(c)
> δ1, (9.396)

where (a) follows from (9.395) and (9.9), (b) follows from (9.392), and (c) follows from the fact

that δ1 < δ∗. However, by Property 2 of Definition 14, we have

mX (S1 ∩S2)

mX (JXK)
≤ δ1. (9.397)

Hence, we have that (9.396) and (9.397) contradict each other, which implies (9.394) does not

hold. Hence, the statement of the theorem follows.

Lemma 36. Consider two UVs X and Y . Let

δ∗ =
miny∈JY K mX (JX|yK)

mX (JXK)
. (9.398)

For all δ1 < δ∗ and δ2 ≤ 1, if (X,Y )
a↔ (δ1, δ2), then we have

|JX|Y K∗δ1| = |JY K|. (9.399)

Additionally, JX|Y K is a δ1-overlap family.

Proof. We show that

JX|Y K = {JX|yK : y ∈ JY K} (9.400)

is a δ1-overlap family. First, note that JX|Y K is a cover of JXK, since JXK = ∪y∈JY KJX|yK.

Second, each set in the family JX|Y K is singly δ1-connected via JX|Y K, since trivially any two

points x1, x2 ∈ JX|yK are singly δ1-connected via the same set. It follows that Property 1 of
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Definition 14 holds.

Now, since (X,Y )
a↔ (δ1, δ2), then by Lemma 31 for all y1, y2 ∈ JY K we have

mX (JX|y1K ∩ JX|y2K)
mX (JXK)

≤ δ1, (9.401)

which shows that Property 2 of Definition 14 holds. Finally, it is also easy to see that Property

3 of Definition 14 holds, since JX|Y K contains all sets JX|yK. Hence, JX|Y K satisfies all the

properties of δ1-overlap family, which implies

|JX|Y K| ≤ |JX|Y K∗δ1|. (9.402)

Since |JX|Y K| = |JY K|, using Lemma 35, we also have

|JX|Y K| ≥ |JX|Y K∗δ1|. (9.403)

Combining (9.402), (9.403) and the fact that JX|Y K satisfies all the properties of δ1-overlap

family, the statement of the lemma follows.

Lemma 37. Consider two UVs X and Y . Let

δ∗ =
miny∈JY K mX (JX|yK)

mX (JXK)
. (9.404)

For all δ1 < δ∗ and δ2 ≤ 1, if (X,Y )
a↔ (δ1/|JY K|, δ2), then under Assumption 4, for all

JX|yK ∈ JX|Y K, there exists a point x ∈ JX|yK such that for all JX|y′K ∈ JX|Y K \ {JX|yK},

x /∈ JX|y′K. (9.405)

Proof. We will prove this by contradiction. Consider a set JX|yK. Let x satisfying (9.405) do
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not exist. Then, for all x′ ∈ JX|yK, there exists a set JX|y′K ∈ JX|Y K \ {JX|yK} such that

x′ ∈ JX|y′K. (9.406)

Thus, we have

mX (∪JX|y′K∈JX|Y K\{JX|yK}(JX|yK ∩ JX|y′K))
(a)

≥ mX (JX|yK)
(b)

≥ δ∗mX (JXK)
(c)
> δ1mX (JXK), (9.407)

where (a) follows from (9.406), (b) follows from (9.404), and (c) follows from the fact that

δ1 < δ∗. On the other hand, since (X,Y )
a↔ (δ1/|JY K|, δ2), we have

mX (∪JX|y′K∈JX|Y K\{JX|yK}(JX|yK ∩ JX|y′K))
(a)

≤
∑

JX|y′K∈JX|Y K\{JX|yK}

mX (JX|yK ∩ JX|y′K)

(b)

≤ |JY K|δ1mX (JXK)/|JY K|

= δ1mX (JXK),

(9.408)

where (a) follows from Assumption 4, (b) follows from Lemma 31. It follows that (9.407) and

(9.408) contradict each other, and therefore x satisfying (9.405) exists. The statement of the

lemma follows.

9.12.5 Proof of 4 claims in Theorem 48

Proof of Claim 1. By Property 1 of Definition 14, we have that for all Si ∈ JY (1 : n)|X(1 :

n)K∗δ′/|JX(1:n)K|, there exists a x̃i(1 : n) ∈ JX(1 : n)K such that JY (1 : n)|x̃i(1 : n)K ⊆ Si. Now,

consider a new UV X̃(1 : n) whose marginal range is composed of elements of JX(1 : n)K,

namely

JX̃(1 : n)K = {x̃1(1 : n), . . . x̃K(1 : n)}, (9.409)
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where

K = |JY (1 : n)|X(1 : n)K∗δ′/|JX(1:n)K||. (9.410)

Let Ỹ (1 : n) be the UV corresponding to the received variable. Then, similar to (9.88), by

Property 2 of Definition 14 and since N is stationary memoryless channel, for all x(1 : n), x′(1 :

n) ∈ JX̃(1 : n)K, we have

mY (JỸ (1 : n)|x(1 : n)K ∩ JỸ (1 : n)|x′(1 : n)K)
mY (JY (1 : n)K)

≤ δ′

|JX(1 : n)K|
(a)

≤ δ′

|JX̃(1 : n)K|
, (9.411)

where (a) follows from the fact that JX̃(1 : n)K ⊆ JX(1 : n)K. Similar to (9.89), for all

x(1 : n), x′(1 : n) ∈ JX̃(1 : n)K, we have that

mY (JỸ (1 : n)|x(1 : n)K ∩ JỸ (1 : n)|x′(1 : n)K)
mY (JỸ (1 : n)K)

≤ δ′mY (JY (1 : n)K)
|JX̃(1 : n)K|mY (JỸ (1 : n)K)

=
δ̃

|JX̃(1 : n)K|
, (9.412)

where

δ̃ =
δ′mY (JY (1 : n)K)
mY (JỸ (1 : n)K)

. (9.413)

Then, by Lemma 31 it follows that

(X̃(1 : n), Ỹ (1 : n))
a↔ (1, δ̃/|JX̃(1 : n)K|). (9.414)

Using (9.188), we also have

δ̃ ≤ δn

mY (JỸ (1 : n)K)
. (9.415)
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Additionally, we have

δ̃ ≤ δn

mY (JỸ (1 : n)K)
(a)

≤
(
δ̄mY (VN)

|JX̄K|

)n
1

mY (JỸ (1 : n)K)
(b)

≤ (δ̄mY (VN))
n

mY (JỸ (1 : n)K)
(c)
<

(mY (VN))
n

mY (JỸ (1 : n)K)
(d)
=

mY (V n
N )

mY (JỸ (1 : n)K)
, (9.416)

where (a) follows from the assumption in the theorem that

0 ≤ δn ≤ (δ̄mY (VN)/|JX̄K|)n, (9.417)

(b) follows from the fact that |JX̄K| ≥ 1, (c) follows from the fact that using δ1 < mY (VN), we

have

δ̄ ≤ δ1
mY (JȲ K)

<
mY (VN)

mY (JȲ K)
≤ 1, (9.418)

and (d) follows from Assumption 3. Now, we have

|JỸ (1 : n)|X̃(1 : n)K∗
δ̃/|JX̃(1:n)K||

(a)
= |JX̃(1 : n)K|
(b)
= |JY (1 : n)|X(1 : n)K∗

δ̃/|JX(1:n)K||, (9.419)

where (a) follows by combining (9.414), (9.416) and Lemma 36, and (b) follows from (9.409)

and (9.410). This along with (9.189) implies that we have

|JỸ (1 : n)|X̃(1 : n)K∗
δ̃/|JX̃(1:n)K|| > |

n∏
i=1

JȲ |X̄K∗δ̄/|JX̄K||. (9.420)

This concludes the proof of Claim 1. �
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Proof of Claim 2. Since (9.414) and (9.416) holds, using Lemma 36, we have

JỸ (1 : n)|X̃(1 : n)K∗
δ̃/|JX̃(1:n)K| = JỸ (1 : n)|X̃(1 : n)K. (9.421)

Using (9.421) and Property 1 of Definition 14, we have that for all S ∈ JỸ (1 : n)|X̃(1 :

n)K∗
δ̃/|JX̃(1:n)K|, there exists a x̃(1 : n) ∈ JX̃(1 : n)K such that

S = JỸ (1 : n)|x̃(1 : n)K. (9.422)

Now, for all x ∈X , let S (x) ∈ JȲ |X̄K∗
δ̄/|JX̄K| be such that

JȲ |xK ⊆ S (x). (9.423)

For all x ∈ X \ JX̄K, the set S (x) exists from the assumption in the theorem. Also, for all

x ∈ JX̄K, the set S (x) exists using Property 3 in Definition 14. Hence, for all x ∈X , we have

that S (x) satisfying (9.423) exists.

Hence, for all x̃(1 : n) ∈ JX̃(1 : n)K, we have that

JỸ (1 : n)|x̃(1 : n)K
(a)
= JỸ (1)|x̃(1)K× . . .× JỸ (n)|x̃(n)K
(b)

⊆ S (x(1))× . . .×S (x(n))

(c)
∈

n∏
i=1

JȲ |X̄K∗δ̄/|JX̄K|, (9.424)

where (a) follows from the fact that N is a stationary memoryless uncertain channel, (b) follows

from the fact that for all x ∈X , S (x) exists, and (c) follows from the fact that for all x ∈X ,

S (x) ∈ JȲ |X̄K∗
δ̄/|JX̄K|. Hence, Claim 2 is proved. �
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Proof of Claim 3. Combining (9.420) and (9.421), we have that

|JỸ (1 : n)|X̃(1 : n)K| >
n∏

i=1

JȲ |X̄K∗δ̄/|JX̄K|. (9.425)

This along with (9.424) implies that there exists a set S ∈
∏n

i=1JȲ |X̄K∗
δ̄/|JX̄K| which contains at

least two sets D1,D2 ∈ JỸ (1 : n)|X̃(1 : n)K∗
δ̃/|JX̃(1:n)K|, namely

D1 ⊂ S , (9.426)

D2 ⊂ S . (9.427)

Using (9.422), without loss of generality, let

D1 = JỸ (1 : n)|x̃1(1 : n)K, (9.428)

D2 = JỸ (1 : n)|x̃2(1 : n)K. (9.429)

Also, let

S = S1 × . . .×Sn, (9.430)

where S1, . . . ,Sn ∈ JȲ |X̄K∗
δ̄/|JX̄K|. Also, we have

δ̄

|JX̄K|
≤ δ̄ ≤ δ1

mY (JȲ K)
<

mY (VN)

mY (JȲ K)
. (9.431)

398



Now, we have

δ̃

|JX̃(1 : n)K|
≤ δn

mY (JỸ (1 : n)K)
(a)

≤
(
δ̄mY (VN)

|JX̄K|

)n
1

mY (JỸ (1 : n)K)
(b)

≤
(

δ̄

|JX̄K|

)n

, (9.432)

where (a) follows from the assumption in the theorem that

δn ≤
(
δ̄mY (VN)

|JX̄K|

)n

, (9.433)

and (b) follows from the fact that using Assumption 3, we have

mY (V n
N ) = (mY (VN))

n ≤ mY (JỸ (1 : n)K). (9.434)

Combining Lemma 31 and (9.414), we have

mY (JỸ (1 : n)|x̃1(1 : n)K ∩ JỸ (1 : n)|x̃2(1 : n)K)
mY (JỸ (1 : n)K)

≤ δ̃

|JX̃(1 : n)K|
(a)

≤
(

δ̄

|JX̄K|

)n

, (9.435)

where (a) follows from (9.432). This implies that there exists a 1 ≤ i∗ ≤ n such that

mY (JỸ (i∗)|x̃1(i
∗)K ∩ JỸ (i∗)|x̃2(i

∗)K)
(mY (JỸ (1 : n)K))1/n

≤ δ̄

|JX̄K|
, (9.436)
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otherwise (9.435) does not hold, namely

mY (JỸ (1 : n)|x̃1(1 : n)K ∩ JỸ (1 : n)|x̃2(1 : n)K)
mY (JỸ (1 : n)K)

(a)
=

n∏
i=1

(
mY (JỸ (i)|x̃1(i)K ∩ JỸ (i)|x̃2(i)K)

(mY (JỸ (1 : n)K))1/n

)
,

(b)
>

(
δ̄

|JX̄K|

)n

, (9.437)

where (a) follows from Assumption 3 and the fact that N is stationary memoryless, (b) follows

from the hypothesis that i∗ satisfying (9.436) does not exist. �

Proof of Claim 4. Now, consider a UV X ′ such that

JX ′K = (JX̄K \ {x ∈X : JY |xK ⊆ Si∗}) ∪ {x̃1(i
∗)} ∪ {x̃2(i

∗)}. (9.438)

For JX ′
1K = (JX̄K \ {x ∈X : JY |xK ⊆ Si∗}), the δ′1- overlap family of JY ′

1 |X ′
1K satisfies

|JȲ |X̄K∗δ̄/|JX̄K|| − 1
(a)

≤ |JY ′
1 |X ′

1K
∗
δ′1
|, (9.439)

where

δ′1 = (δ̄mY (JȲ K))/(|JX̄K|mY (JY ′
1K), (9.440)

and (a) follows from the fact that

S1 = {S ′ ∈ JȲ |X̄K∗δ̄/|JX̄K| : S ′ 6= Si∗} (9.441)

satisfies all the properties of JY ′
1 |X ′

1K∗δ′1 in Definition 14.

Now, consider the UV X ′ such that JX ′K = JX ′
1K ∪ {x̃1(i

∗)} ∪ {x̃2(i
∗)}. We will show
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that

S3 = S1 ∪ {JỸ (i∗)|x̃1(i
∗)K} ∪ {JỸ (i∗)|x̃2(i

∗)K}. (9.442)

satisfies the property of JY ′|X ′K∗
δ∗/|JX̄′K|, where

δ∗ =
δ̄|JX ′K|mY (JȲ K)
|JX̄K|mY (JY ′K)

. (9.443)

Using (9.426), (9.427) and Claim 2, we have

JỸ (i∗)|x̃1(i
∗)K, JỸ (i∗)|x̃2(i

∗)K ⊆ Si∗ . (9.444)

This along with the fact that JȲ |X̄Kδ̄/|JX̄K| is an overlap family implies that for all S
′ ∈ S1,

mY (JỸ (i∗)|x̃1(i
∗)K ∩S ′) ≤ δ̄mY (JȲ K)

|JX̄K|
, (9.445)

and

mY (JỸ (i∗)|x̃2(i
∗)K ∩S ′) ≤ δ̄mY (JȲ K)

|JX̄K|
. (9.446)

Also, we have that

mY (JỸ (i∗)|x̃1(i
∗)K ∩ JỸ (i∗)|x̃2(i

∗)K)
(a)

≤ δ̄(mY (JỸ (1 : n)K))1/n

|JX̄K|
(b)

≤ δ̄(mY (JȲ (1 : n)K))1/n

|JX̄K|
(c)
=

δ̄mY (JȲ K)
|JX̄K|

, (9.447)

where (a) follows from (9.436), (b) follows from (9.9) and JỸ (1 : n)K ⊆ JY (1 : n)K by Claim 2,

and (c) follows from Assumption 3 and (9.182). Additionally, JỸ (i∗)|x̃1(i)K and JỸ (i∗)|x̃2(i)K

are singly δ∗/|JX̄ ′K| connected sets. This along with (9.445), (9.446) and (9.447) implies that S3
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satisfies all the properties of JY ′|X ′K∗δ∗/|JX′K|. It follows that

|JY ′|X ′K∗δ∗/|JX′K|| ≥ |S3|
(a)
= |S1|+ 2

(b)
= |JȲ |X̄K∗δ̄/|JX̄K||+ 1, (9.448)

where (a) follows from (9.442), and (b) follows from (9.441).

Now, we will show that

|JX ′K| ≤ |JX̄K|+ 1. (9.449)

We split the analysis into two mutually exclusive cases: x̃1(i
∗) ∈ JX̄K or x̃2(i

∗) ∈ JX̄K; and

x̃1(i
∗), x̃2(i

∗) /∈ JX̄K. In the first case, if x̃1(i
∗) ∈ JX̄K or x̃2(i

∗) ∈ JX̄K, then using (9.438), we

have

|JX ′K| ≤ |JX̄K|+ 1. (9.450)

In the second case, if x̃1(i
∗), x̃2(i

∗) /∈ JX̄K, then using (9.444), there exists a non-empty set

P ⊆ JX̄K such that

JỸ (i∗)|x̃1(i
∗)K ∪ JỸ (i∗)|x̃2(i

∗)K ⊆ ∪x∈PJȲ |xK. (9.451)

Also, there exists a x′ ∈ P such that

JȲ |x′K ⊆ Si∗ . (9.452)
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This can be proved by contradiction. Let x′ ∈ P satisfying (9.452) does not exist. We have

mY (∪S ′∈JȲ |X̄K∗
δ̄/|JX̄K|:S

′ 6=Si∗
(Si∗ ∩S ′))

(a)

≥ mY (∪x:x∈P(Si∗ ∩ JȲ |xK))
(b)

≥ mY (JỸ (i∗)|x̃1(i
∗)K ∪ JỸ (i∗)|x̃2(i

∗)K)
(c)

≥ mY (VN)

(d)
> δ1

(e)

≥ δ̄mY (JȲ K),
(9.453)

where (a) follows from the fact that combining P ⊆ JXK, Property 3 of Definition 14, and the

hypothesis that x′ does not exist, we have

∪x∈PJȲ |xK ⊆ S ′ ∈ ∪JȲ |X̄K∗
δ̄/|JX̄K|:S

′ 6=Si∗
S ′, (9.454)

(b) follows from (9.444) and (9.451), (c) follows from (9.9) and the fact that for all x ∈X ,

mY (VN) ≤ mY (JY |xK), (9.455)

(d) follows from the fact that δ1 < mY (VN), and (e) follows from the fact that δ̄ ≤ δ1/mY (JȲ K).

On the other hand, since JȲ |X̄K∗
δ̄/|JX̄K| is an overlap family, we have

mY (∪S ′∈JȲ |X̄K∗
δ̄/|JX̄K|:S

′ 6=Si∗
(Si∗ ∩S ′))

(a)

≤
∑

S ′∈JȲ |X̄K∗
δ̄/|JX̄K|:

S ′ 6=Si∗

mY (Si∗ ∩S ′)

(b)

≤
δ̄|JȲ |X̄K∗

δ̄/|JX̄K||mY (JȲ K)

|JX̄K|
(c)

≤ δ̄mY (JȲ K), (9.456)

403



where (a) follows from Assumption 4, (b) follows from Property 2 of Definition 14, and (c)

follows from the fact that using (9.431), Lemma 35 holds. Hence, (9.453) and (9.456) contradict

each other, which implies x′ satisfying (9.452) exists. Now, using (9.452) and (9.438) , we have

that

|JX ′K| ≤ |JX̄K|+ 1. (9.457)

Hence, (9.449) holds.

Finally, we have

δ∗ =
δ̄|JX ′K|mY (JȲ K)
|JX̄K|mY (JY ′K)

(a)

≤ δ̄mY (JȲ K)
mY (JY ′K)

(
1 +

1

|JX̄K|

)
(b)

≤ δ1
mY (JY ′K)

, (9.458)

where (a) follows from (9.449), and (b) follows from the assumption in the theorem that δ̄(1 +

1/|JX̄K|) ≤ δ1/mY (JȲ K). Now, using (9.448) and (9.458), we have that there exists a δ∗ ≤

δ1/mY (JY ′K) such that

|JY ′|X ′K∗δ∗/|JX′K|| > |JȲ |X̄K∗δ̄/|JX̄K||. (9.459)

This concludes the proof of Claim 4. �

9.12.6 Taxicab symmetry of the mutual information

Definition 31. (δ1, δ2)-taxicab connectedness and (δ1, δ2)-taxicab isolation.

• Points (x, y), (x′, y′) ∈ JX,Y K are (δ1, δ2)-taxicab connected via JX,Y K, and are denoted

by (x, y)
δ1,δ2! (x′, y′), if there exists a finite sequence {(xi, yi)}Ni=1 of points in JX,Y K such

that (x, y) = (x1, y1), (x
′, y′) = (xN , yN) and for all 2 < i ≤ N , we have either

A1 = {xi = xi−1 and
mX (JX|yiK ∩ JX|yi−1K)

mX (JXK)
> δ1},
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or

A2 = {yi = yi−1 and
mY (JY |xiK ∩ JY |xi−1K)

mY (JY K)
> δ2}.

If (x, y)
δ1,δ2! (x′, y′) and N = 2, then we say that (x, y) and (x′, y′) are singly (δ1, δ2)-

taxicab connected, i.e. either y = y′ and x, x′ ∈ JX|yK or x = x′ and y, y′ ∈ JY |xK.

• A set S ⊆ JX,Y K is (singly) (δ1, δ2)-taxicab connected via JX,Y K if every pair of points

in the set is (singly) (δ1, δ2)-taxicab connected in JX,Y K.

• Two sets S1,S2 ⊆ JX,Y K are (δ1, δ2)-taxicab isolated via JX,Y K if no point in S1 is

(δ1, δ2)-taxicab connected to any point in S2.

Definition 32. Projection of a set

• The projection S +
x of a set S ⊆ JX,Y K on the x-axis is defined as

S +
x = {x : (x, y) ∈ S }. (9.460)

• The projection S +
y of a set S ⊆ JX,Y K on the y-axis is defined as

S +
y = {y : (x, y) ∈ S }. (9.461)

Definition 33. (δ1, δ2)-taxicab family

A (δ1, δ2)-taxicab family of JX,Y K, denoted by JX,Y K∗(δ1,δ2), is a largest family of distinct sets

covering JX,Y K such that:

1. Each set in the family is (δ1, δ2)-taxicab connected and contains at least one singly δ1-

connected set of form JX|yK× {y}, and at least one singly δ2-connected set of the form

JY |xK× {x}.
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2. The measure of overlap between the projections on the x-axis and y-axis of any two distinct

sets in the family are at most δ1mX (JXK) and δ2mY (JY K) respectively.

3. For every singly (δ1, δ2)-connected set, there exists a set in the family containing it.

We now show that when (X,Y )
d↔ (δ1, δ2) hold, the cardinality of (δ1, δ2)-taxicab family

is same as the cardinality of the JX|Y K δ1-overlap family and JY |XK δ2-overlap family.

Proof of Theorem 39

We will show that |JX,Y K∗(δ1,δ2)| = |JX|Y K∗δ1|. Then, |JX,Y K∗(δ1,δ2)| = |JY |XK∗δ2| can be derived

along the same lines. Hence, the statement of the theorem follows.

First, we will show that

D = {S +
x : S ∈ JX,Y K∗(δ1,δ2)}, (9.462)

satisfies all the properties of JX|Y K∗δ1 .

Since JX,Y K∗(δ1,δ2) is a covering of JX,Y K, we have

∪S +
x ∈DS +

x = JXK, (9.463)

which implies D is a covering of JXK.

Consider a set S ∈ JX,Y K∗(δ1,δ2). For all (x, y), (x
′, y′) ∈ S , (x, y) and (x′, y′) are

(δ1, δ2)-taxicab connected. Then, there exists a taxicab sequence of the form

(x, y), (x1, y), (x1, y1), . . . (xn−1, y
′), (x′, y′).

such that either A1 or A2 in Definition 31 is true. Then, the sequence {y, y1, . . . , yn−1, y
′} yields

406



a sequence of conditional range {JX|ỹjK}n+1
j=1 such that for all 1 < j ≤ n+ 1,

mX (JX|ỹjK ∩ JX|ỹj−1K)
mX (JXK)

> δ1, (9.464)

x ∈ JX|ỹ1K, and x′ ∈ JX|ỹn+1K. (9.465)

Hence, x
δ1! x′ via JX|Y K. Hence, S +

x is δ1-connected via JX|Y K. Also, S contains at least

one singly δ1-connected set of the form JX|yK× {y}, which implies JX|yK ⊆ S +
x . Hence, S +

x

contains at least one singly δ1-connected set of the form JX|yK. Hence, D satisfies Property 1 in

Definition 14.

For all S1,S2 ∈ JX,Y K∗(δ1,δ2), we have

mX (S +
1,x ∩S +

2,x) ≤ δ1mX (JXK), (9.466)

using Property 2 in Definition 33. Hence, D satisfies Property 2 in Definition 14.

Using Property 3 in Definition 33, we have that for all JX|yK× {y}, there exists a set

S (y) ∈ JX,Y K∗(δ1,δ2) containing it. This implies that for all JX|yK ∈ JX|Y K, we have

JX|yK ⊆ S (y)+x . (9.467)

Hence, D satisfies Property 3 in Definition 14.

Thus, D satisfies all the three properties of JX|Y K∗δ1 . This implies along with Theorem

38 that

|D| = |JX|Y K∗δ1|, (9.468)

which implies |JX,Y K∗(δ1,δ2)| = |JX|Y K∗δ1|. Hence, the statement of the theorem follows. �
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