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Abstract

We introduce a new mechanism of selective attention
among perceptual groups as part of a computational
model of early vision. In this model, selection of ob-
Jects is a two-stage process: perceptual grouping is first
performed in parallel in connectionist networks which
dynamically bind together the neural activities triggered
in response to related features in the image; secondly,
by locking its output on the quasi-peridic bursts of
activity associated with a single perceptual group, a
dynamic network called the phase-tracker of attention
produces a temporal filter which retains the selected
group for further processing, while rejecting the unat-
tended ones. Simulations show that the network’s be-
havior matches known psychological data that fit in
the descriptive framework of object-based theories of
visual attention.

Introduction

In most elaborate perceptual systems with limited pro-
cessing resources, mechanisms that focus the attention
on small parts of the sensory inputs are often neces-
sary in order to cope with the complexity of the sensed
world. The importance of attention in everyday activ-
ity has been a major impetus for its extensive study
by psychologists and neurophysiologists (Eriksen &
St-James, 1986; Crick, 1984; Duncan, 1984; Treis-
man & Gelade, 1980). As a result of their work, a
number of theories have been developed, that fall in
general under either one of two broad classes, known
as the location-based and object-based theories of vi-
sual attention (Duncan, 1984). The first class stipu-
lates that, at any given moment, attention is entirely
allocated to a single convex region of space. In this
model, the spatial dimension is the basic cue used to
direct attention, which is therefore often compared to a
mental spotlight. The psychological evidence that sup-
ports location-based theories along with the spotight
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metaphor is reminiscent of a variety of experimental
paradigms, including response competition (Eriksen &
St-James, 1986), spatial precueing, and visual search
(Treisman & Gelade, 1980). Location-based theories
may be contrasted with object-based theories, which
assume that attention can be allocated to one or more
perceptual groups, regardless of their spatial locations.
Object-based theories describe early perception as a
two-stage process: the segmentation of images into
distinct perceptual groups is done according to low-
level, data-driven mechanisms of perceptual organiza-
tion that exploit detected properties of proximity, con-
tinuity, similarity, or common motion, among others.
In contrast with the parallel preattentive stage, a sec-
ond stage of visual processing, called focal attention,
is serial and consists in the selection and analysis of a
particular perceptual group (Neisser & Becklen, 1975).

The experimental evidence in support of an object-
based form of attention is multiple. It indicates in par-
ticular that subjects are better able to report two prop-
erties of the same object than one from each of two
objects that are at the same spatial location (Duncan,
1984). Rock and Gutman (1981) also observed that
subjects who were directed to atiend to only one of
two overlapping and novel figures (say the red figure
among a red and green one) showed no recognition of
form for the unattended one. Such result is not pre-
dicted by standard location-based theories of attention.
More recently, Driver and Baylis (1989) showed that
in response competition experiments, the grouping of
target and distracting elements by common motion can
have more influence than their proximity. These results
are consistent with the hypothesis that attention can be
directed to perceptual groups whose components are
not spatially contiguous. Despite these and many other
experimental facts, very little has been done to address
the computational and neurological issues raised by the
existence of an object-based form of attention. This sit-
uation contrasts with the flurry of recent work devoted
to the modeling of location-based mechanisms of at-
tention (Ahmad, 1991; Mozer, 1988).

The goal of this paper is to map the conceptual
framework of object-based theories into a crisp compu-
tational model which has better predictive value. Note



Figure 1 : Functional model of selective attention.

that in this framework, the objects that the focal atten-
tion can select or discard are defined at a preattentive
stage. Thus, one expects mechanisms of attention to
be intimately tied to the ones underlying perceptual
organization. In what follows, this relationship is un-
raveled in terms of compatible mechanisms of interac-
tions among neurons. In our model, the organization of
visual scenes is based on a biologically inspired mech-
anism of labeling of perceptual groups (Gray et al.,
1989; von der Malsburg, 1981), in which neural assem-
blies express their membership 1o a perceptual group by
firing simultaneously and in a pseudo-periodic fashion,
while being out of synchrony with neurons stimulated
by other groups or a background. A number of au-
thors have recently demonstrated the feasibility of per-
ceptual grouping via synchronization of neural activ-
ity in large heterogeneous networks(Lumer & Huber-
man, 1992; Sporns, Tononi, & Edelman, 1991; Baldi
& Meir, 1990). We refer to (Lumer 1992) for a de-
scription of how this mechanism is implemented in our
model. In this paper, we focus more specifically on the
issue of internal access to perceptual groups constructed
in this way: given implicit temporal labels, i.e. the rel-
ative phases of neural oscillations distributed across a
population of detectors, we still face the problem of
how to use them explicitly in a mechanism of visual
attention that selects among groups for further process-
ing. A solution to this problem is proposed in the next
section in the form of a dynamic network called the
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Figure 2 : Connectionist phase-tracker.

phase-tracker of attention. This system is then tested
on examples which mimic the conditions and observed
behaviors in a number of psychological experiments.
The paper ends with a short discussion about the im-
plications of our work.

The Phase-Tracker

We develop and study below a computational model
of a two-staged visual system of the kind described by
Neisser (1975) and others.

A coarse schematic representation of the model is
given in Figure 1. Let us assume that the segmenta-
tion of perceived images is achieved at a preattentive
stage via the synchronization of neurons that fire peri-
odically in response to the local properties of a same
object. The discussion of how this is actually done
is reported elsewhere (Lumer, 1992). In the present
context, suffices it to notice that the cumulated activity
emerging from the preattentive stage evolves in time
as one or several intertwined and periodically bursting
signals superimposed over a low level stochastic noise.
The noisy activity results from the asynchronous firing
of cells stimulated by an incoherent percept or back-
ground. Each periodic burst of activity, on the other
hand, is associated with a single perceptual group so
that its phase can serve as a unique label referencing
that group.



In order to make use of such a label to select a
desired object, we imagine the following process: the
cumulated activity from the preattentive stage is fed
into a specialized network, called the phase-tracker
of attention. This system is capable of locking its
output on the periodic burst of activity associated with
the target object so that the output equals 1 when the
periodic signal is bursting and 0 otherwise. That way,
the phase-tracker defines explicitly, that is in terms
of its output, the temporal windows during which the
neural assemblies representing the target object are
firing. If the projections from the preattentive stage
onto the input layers of the higher levels of perception
are modulated by the output of the phase-tracker, all
the non-target objects present in the image will remain
undetected beyond the preattentive stage.

A simple implementation of a phase-tracking sys-
tem is shown on the right hand side of Figure 2. It
consists of a hybrid dynamic network exhibiting tran-
sient states, delayed propagation and feedforward as
well as feedback connections. Each unit in the net-
work connects its total input (i.e. presynaptic) activity,
x, with its (postsynaptic) output, y, via a sharp thresh-
olding function that is defined as

y = fo(z) (1)
where .
fo(z) = { [l] :J{f::rzw?se. @

The input to the phase-tracker, s(¢), is propagated
along a left and a right branch. The two branches act as
rising and falling edge detectors, respectively. Let us
first take a closer look at how the rising edge detector
works. The presynaptic connection to cell 1 (see Figure
2) produces the first order difference of the input signal.
When larger than the threshold 4, this difference causes
cell 1 to fire. Stated more formally, the output of cell 1,
y:(1), is related to the input signal s(t) by the relation

y(t) = fa(s(t) — s(t — At)) 3)

where At is a positive time delay. With a proper value
assigned to A, cell 1 will tum on as a result of any
sharp increase of its input. It therefore plays the role
of a rising edge detector.

The output of cell 1 is fed into cell 2, which pos-
sesses a dynamical threshold. The properties of net-
works of cells with dynamical thresholds have recently
been studied by a number of people (Abbot, 1990;
Homn & Usher, 1989). In essence, a dynamic threshold
is a transient feedback link from the thresholding cell
onto itself. It is usually modeled as a leaky integrator
which gets charged by the output activity of its cell.

Once charged, such threshold inhibits any further fir-
ing of its cell for a period determined by the constants
of the integrator. In particular, the amplitude of the
dynamical threshold of cell 2, R(t) evolves in discrete
time steps according to

Ry(t+1)= Vewa(t) +e ™" Ry(t) (4

where y; is the output of cell 2, Vg the gain and 73
the time constant of the leaky integrator. With the
notations of Eq. (1), the output of cell 2 then reads as

y2(t) = fo(yl(t) — Ra(t)). )]

The pulse sent by cell 2 upon detection of a rising
input turns on the output of the phase-tracker , that is
cell 3. The subsequent inhibition of cell 2 prevents
further increases in the input signal from affecting the
output of the phase-tracker for a period of time Tp.
This refractory period is related to the parameters of
cell 2 via

Tr = Ceil (m:n(l‘:"a) + 1) (6)

where the function Ceil(.) rounds its argument up to
the nearest integer value and accounts for the discrete
nature of the dynamics. Because of the static feedback
connection from cell 3 onto itself, its output remains at
a high level until a pulse from the falling edge detector
resets it to zero. The falling edge detector is very
similar to the rising edge detector. By changing the
sign of the first order difference computed at the input
of the right branch with respect to that used in the left
branch, its output will fire in response to any sharp
decrease of the input to the phase-tracker.

Consider thus a periodic signal placed at the input
of the phase-tracker, which consists of bursts lasting
for an interval of time g and separated from each other
by regular intervals T,. The rising edge of the first
burst causes the phase-tracker to turn on, a state which
is kept by the system until the burst dies off, at which
point the falling edge detector emits a pulse and the
output of the phase-tracker switches to a low value.
The phase-tracker is then inhibited during an interval of
time Ty following the rise of the detected burst. It will
therefore accurately track the phase of the incoming
signal provided that the refractory period is shorter than
T,. Furthermore, other signals added to the input in
between two successive bursts of the tracked activity
will be ignored by the system as long as they precede
or follow a detected burst by an interval of time larger
than T, — Tg. This difference defines the resolution of
the phase-tracker and constrains in part the number of




objects which can be separated by the mechanism of
attention proposed in this section. This point will be
expanded later in the paper.

The regimes just outlined are illustrated on the left
side of Figure 2. The lower plot shows the temporal
evolution of the incoming signal, s(z). The resulting
output of the phase-tracker is represented in the upper
plot while the middle one gives the evolution of the
dynamical threshold of cell 2. The horizontal line in
this figure indicates the threshold value under which
the rising edge detector is enabled.

Network Simulations

We have implemented the phase-tracker as part of a
connectionist architecture of early perception (Lumer,
1992). In brief, local attributes of 2D-images are
detected in parallel by cells organized in a number
of feature maps. The segmentation of images via
synchronization of activity is done in grouping maps
whose outputs are projected in a one to one fashion
on the maps which define the first stage of the higher
levels of perception. The inputs to the grouping maps
can be restricted by a coarse location-based mechanism
of attention which works cooperatively with the phase-
tracker. More will be said about spatial attention in
the final part of the paper. The cumulated output from
the grouping maps is fed into the phase-tracker. A
simple control mechanism allows the use of top-down
information in the selection of objects with specified
features: a global detector is associated with each map
at the entrance of the higher levels of perception and
signals whether the corresponding feature is present in
the group currently selected. If this is the case and the
feature does not match the description of a target object,
the state of the phase-tracker is automatically reset so
as to track the next label which is available at its input.
To get a rough estimate of the time scales involved in
the studied mechanism of selection, we equate one time
step in our simulation with 1 msec of real time. The
time constants of the grouping cells are set so that the
cells fire once every 25 cycles, that is at a frequency
of 40Hz. This number is consistent with the observed
frequencies of neural oscillations in the primary visual
cortex of cats (Gray et al.,, 1989). The resolution of
the phase-tracker, as defined above, is equal to 1 msec.
Finally, the visual field in the simulations is an array
with 16 by 16 pixels.

The system was tested on a number of examples in
which the phase-tracker takes advantage of the tempo-
ral separation of perceptual groups that cannot be easily
discriminated spatially. Thus, a simple spatial spotlight
of attention will fail in these cases. In particular, we
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Figure 3 : Image containing three blocks moving upward
separated from each other by objects moving downward.

have demonstrated the ability of our system to selec-
tively focus on either one of two overlapping figures
distinguished from each other by their respective col-
ors. This behavior is in agreement with psychological
observations (Rock & Gutman, 1981). Similarly, atten-
tion can be restricted to a non-contiguous set of objects
animated by a common motion in a setting that mim-
ics, albeit in a caricatural fashion, recent experiments
performed by Driver and Baylis (1989). To save space,
we will only detail the second example. The image in
Figure 3 is composed of five 2x2 objects. The center
and two far end elements are animated by a common
upward motion while the intermediate objects move
downward. The control system is instructed to focus
only on the objects moving upward during the first 100
iterations before shifting attention to the other group of
objects. Figure 4 displays the input (lower plot) and
output (upper plot) of the phase-tracker as a function
of time. After a transient period of about 25 itera-
tions during which the temporal labels are formed, the
phase-tracker locks on the index to the objects moving
upward (their shared label is represented in grey for
illustrative purpose only). Attention is released from
this group at /=100 msec and redirected towards the
objects moving downward after an equivalent time of
about 20 msec (the corresponding label for these ob-
jects is shown in black). Notice that the locking of the
phase-tracker on a label translates into the selection for
further processing of the entire group indexed by that
particular label.
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Figure 4 : Tracking of objects with common motion.

Discussion

In this paper, we have presented a non-spatial process
of selection among perceptual groups, which over-
comes the shortcomings of location-based models of
visual attention. The proposed mechanism of selective
attention presupposes the segmentation and labelling
of perceptual groups via synchronization of the neu-
rons responding to the local properties within a group.
Our work is therefore complementary to the flurry of
recent reports showing that this type of grouping can
be achieved using simple dynamical networks. Indeed,
any improvement of image segmentation via dynamic
grouping will augment the potential of selection by the
phase-tracker. Furthermore, the use of oscillatory dy-
namics in our model leaves the door open for a better
modelling of the cortical tissues in which these regimes
have been observed.

The embedding of the phase-tracker in a connec-
tionist architecture of early visual processing reveals
its capabilities and limitations. With the parameters
used for our simulations, we observed that the bursts
of activity, or labels, associated with a single percep-
tual group have a temporal duration on the order of 3
time steps. Furthermore, the resolution of the phase-
tracker, as defined in the second section, is equal to one
time steps. We therefore know that each unambiguous
label produced by the segmentation system occupies on
the time axis about 4 time steps. Since the consecu-
tive firings of grouping cells are spaced by 25 time
steps, we conclude that selection cannot operate on
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more than approximately 6 perceptual groups whose
labels are placed at the input of the phase-tracker. This
observation places a strong constraint on the interac-
tion between a coarse mechanism of spatial orienta-
tion and selection: the former must be tuned so as to
limit the number of objects that the dual mechanisms
of segmentation and selection operate on at any given
moment. To our knowledge, this constitutes the first
embodied prediction of a possible interdependence be-
tween two modes of attention, i.e. location-based and
object-based, that have traditionally been considered as
orthogonal. We expect that future work, both experi-
mental and computational, will further elucidate this
relation.

Another very interesting observation can be drawn
from the fact that the combined mechanisms of seg-
mentation and selection have a maximum “capacity”
of about 6 elements. Indeed, in trying to determine
how the time required to quantify a collection of n
items presented to view was function of n, it was found
(Chi & Klahr, 1975) that a striking discontinuity occurs
in the region of n=6t1. This phenomenon, known as
subitizing, is characterized by a very rapid apprehen-
sion of the number of items below the discontinuity,
while the reaction time increases linearly with the num-
ber of elements by a much larger increment above the
critical point. It is tempting to speculate that a transi-
tion from an object-based form of attention to a serial
scanning of spatial locations in the display might be
related to the observed phenomenon. We also notice
that sensory segmentation and selective attention are
not the unique attributes of vision. For example, the
auditory modality parses complex sound fields into in-
dependent streams, each one being associated with a
specific external source. This capability is best illus-
trated in cocktail parties where one is able to distinguish
several voices, and selectively attend to one, among
a noisy crowd. Since the processes of segmentation
of the auditory fields have been modelled as neural
oscillators which either synchronize or desynchronize
their phases (von der Malsburd & Schneider, 1986), a
phase-tracker could likewise be used in this context to
implement selective attention.

Last but not least, this paper illustrates the rich-
ness of computational mechanisms which can be de-
rived from the use of dynamical networks having tran-
sient states. As connectionist models of cognition be-
come larger and develop modularity, the issues of com-
munication and coordination between the heterogenous
modules become central. In this context, the connec-
tionist equivalents of communication devices, such as
signal multiplexers, clock synchronizers, and phase-
locked loops of the kind stwudied here, are expected
to play a fundamental role.
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