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Dynamical approach to weakly dissipative granular collisions
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Granular systems present surprisingly complicated dynamics. In particular, nonlinear interactions and energy
dissipation play important roles in these dynamics. Usually (but admittedly not always), constant coefficients
of restitution are introduced phenomenologically to account for energy dissipation when grains collide. The
collisions are assumed to be instantaneous and to conserve momentum. Here, we introduce the dissipation
through a viscous (velocity-dependent) term in the equations of motion for two colliding grains. Using a
first-order approximation, we solve the equations of motion in the low viscosity regime. This approach allows us
to calculate the collision time, the final velocity of each grain, and a coefficient of restitution that depends on the
relative velocity of the grains. We compare our analytic results with those obtained by numerical integration of
the equations of motion and with exact ones obtained by other methods for some geometries.

DOI: 10.1103/PhysRevE.92.012201 PACS number(s): 45.70.−n, 46.55.+d, 45.50.Tn

I. INTRODUCTION

The characterization of granular matter is extremely broad
and includes essentially any conglomeration of discrete macro-
scopic particles. These can be as small as grains of sand and as
large as asteroids, and they can be in a condensed or gas-like
phase. The condensed phases may exhibit characteristics of
solids or fluids or gases or various combinations thereof.
Granular matter is important in more industrial applications
than can be listed here and exhibits a huge variety of interesting
behaviors that have provided food for thought for centuries.
Behaviors such as the so-called jamming transition and the
formation of patterns are frequent subjects of current research,
as is the propagation of energy in granular materials.

A feature common to granular matter is the fact that energy
is lost every time grains collide. Indeed, the grains have to be
very hard and difficult to compress for a collision not to lead
to a loss of energy. Yet it is usually the case that momentum
is conserved in these inelastic collisions. The conservative
limit, where only elastic collisions are involved, is famously
illustrated by Newton’s cradle, consisting of a row of very
hard balls that just touch, each hanging on a string of the same
length attached to a common support. When the ball at one
end is picked up and released so that it collides with the next
ball, the energy passes down the row until the last ball flies
up to the same height as the first ball before it was released
(the other balls remain at rest). The last ball then flies back,
the energy is transferred across the row again, and the first ball
flies up to the same height [1–3]. This continues, although not
forever because of course some small amount of energy must
be lost at each collision event.

The prototypical phenomenological description of energy
loss involves the coefficient of restitution ε in the equation that
describes a collision between two grains,

vf 2 − vf 1 = ε(vi1 − vi2). (1)

Here the v’s represent the velocities, the subscripts i and f

stand for initial (before collision) and final (after collision), and

the numbers label particles 1 and 2. This description leads to
an energy loss at each collision of 1 − ε2 of the kinetic energy
of the center of mass before the collision. For a successfully
built Newton’s cradle, ε is exceedingly small.

The coefficient of restitution is most often treated as a
parameter independent of the velocities. And yet, it is broadly
recognized that this cannot be totally correct because it leads
to problematic features in the asymptotic behavior such as
the so-called inelastic collapse in a granular gas because
there may be an infinite number of collisions in a finite
time [4,5]. Indeed, when one considers realistic interaction
models, it is in fact universally the case that interactions of
any two compressible grains are nonlinear. For instance, the
interactions between two spherical objects obey Hertz’s law,
where the repulsion is proportional to the compression to the
power 3/2 rather than the more familiar Hook’s law where
the repulsion is simply proportional to the compression. The
consequence of this nonlinearity is that the duration of a
collision depends on the initial velocities of the particles before
the collision. Therefore, when a dissipative collision occurs,
the mechanism responsible for the dissipation of energy acts
for different lengths of time depending on the initial velocities,
leading to distinct energy losses, and consequently to a
velocity-dependent coefficient of restitution. It is interesting
to note that Hertz’s law is frequently used together with a
velocity-independent coefficient of restitution.

The history of the analysis of the effect of velocity-
dependent frictional forces on the coefficient of restitution
is long and varied. Here we only summarize some of its salient
points. Hertz’s law assumes that there are no attractive surface
forces in lightly loaded spherical granules. Perhaps the earliest
work to recognize that such forces lead to a finite contact area
between surfaces under zero load (adhesion), and that this in
turn modifies the external force required to separate two bodies
of given surface energy and geometry, is that of Johnson et al.
(commonly known as JKR theory) [6]. This in turn modifies
the velocity dependence of the coefficient of restitution, as
analyzed in detail by Brilliantov et al. [7]. While this correction
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may be small, even negligible, between granules of high elastic
modulus such as metals or glass, it is considerable in soft
granules such as rubber and agrees well with experiments
in these cases. Much of the literature on this topic is based
on spherical granules, but other shapes are also discussed in
this context. For instance, the work of Walton and Braun on
frictional disks is noteworthy [8], as is the work of Herbold
and Nesterenko [9]. In Ref. [10] the coefficient of restitution
for spherical granules obeying Hertz’s law for the elastic
portion of the interactions plus a velocity-dependent frictional
force was obtained exactly as an infinite series. The series
cannot be summed analytically and converges very slowly,
and truncation of the series leads to unphysical divergences. A
compact Padé approximation to the series makes it possible to
perform much more efficient event-driven molecular dynamics
simulations, as well as direct Monte Carlo methods, than
was possible with earlier methods, and provides excellent
results when compared to those obtained from numerical
integrations of the equations of motion [11]. Determination
of the velocity dependence of the restitution coefficient has
recently become increasingly detailed and addresses a more
varied range of particle sizes and compositions. For instance,
experimental determination [12] and molecular dynamics
calculations [13] of the velocity dependence of the coefficient
of restitution of argon nanoparticles have shown that these
nanoparticles are hard and highly elastic at collision velocities
smaller than the size-dependent yield velocity, while they
progressively soften as the collision velocity increases beyond
the yield velocity.

In this contribution, our goal is not to arrive at a more effi-
cient approach for numerical simulations but rather to present
a perturbative but very broadly applicable methodology to
analytically analyze the consequences of a general viscoelastic
model of dissipation on the outcome of a collision in the low
dissipation regime. Our study provides an alternative approach
to the problem. We arrive at approximate but accurate analytic
expressions for the initial velocity dependence not only for
the coefficient of restitution but also for the duration of a
collision and for the velocities of the granules at the end of the
collision for large ranges of parameter values. Our results have
interesting implications for the understanding of a full range
of realistic collisions, which should be useful for the study of
granular gases and for pulse propagation in granular chains.
Examples of granular systems with low intergranular friction
include sand, glass beads, and steel beads.

We accomplish three objectives, all in the limit of low but
nonzero dissipative forces. The first, presented in Sec. II, is to
discuss the equations of motion that describe the collision of
two not necessarily spherical grains. The scenario is this: the
two grains are initially just touching. Grain 1 has velocity v1

and grain 2 has velocity v2. How these grains came to have
these velocities is not important. If our two grains are elements
in a granular gas, they may, for example, have arrived at this
point due to previous collisions with other grains. Or, one
might be preparing an experiment with just two grains, where
one grain is given a kick of some kind at time t = 0 to cause it
to start moving with velocity v1 while the other is initially
at rest (v2 = 0). The equations of motion then determine
the further evolution of the two granules. In particular, we
are able to calculate the relative velocities of the granules

at the end of a collision as a function of the initial relative
velocities.

Our second objective, detailed in Sec. III, is to use this result
to calculate the duration of a collision as a function of the initial
velocities. This makes explicit our assertion that collisions are
in general not instantaneous and that their duration in fact
depends on the initial velocities of the colliding granules. As
pointed out above, this in turn leads to a velocity-dependent
coefficient of restitution.

Our third objective is to calculate the coefficient of
restitution and the velocities of the colliding granules at the end
of the collision. This is presented in Sec. IV. In the absence of
dissipative forces the coefficient of restitution is equal to unity.
We are able to explicitly calculate the lowest-order corrections
to this and thus to obtain an explicit form for the dependence
of the coefficient of restitution on the initial velocity difference
of the granules.

Finally, Sec. V contains a summary of the paper and
comments on the possible generalizations of this study.

II. THE MODEL

Viscoelastic forces for the collision of two spheres include
two terms. The first is due to the elastic repulsion between the
two particles and has its origins in Hertz’s theory [14,15].
The second term stands for the viscous dissipation via a
dashpot [16,17]. Hence, the contact force can be written as

F = −r(x1 − x2)n−1 − γ (x1 − x2)α(ẋ1 − ẋ2). (2)

Here x is the displacement of a particle from its initial position
at the beginning of a collision. A dot denotes a derivative with
respect to time, and the subscripts on x label the two particles.
The coefficient r is a constant dependent on Young’s modulus
and Poisson’s ratio. For instance, for colliding spheres of radii
R1 and R2, this constant is given by

r = 2

5D12

√
2R1R2

R1 + R2
, (3)

where

D12 = 3

4

(
1 − σ 2

1

E1
+ 1 − σ 2

2

E2

)
, (4)

σi is Poisson’s ratio, and Ei is the Young’s modulus of sphere
i. Returning to Eq. (2), γ is the coefficient of viscosity, α is
a constant that defines the specific viscoelastic model, and n

depends on the topology of the contact between the particles.
For spheres, n is equal to 5/2 [14,15] and α to 1/2 [18,19], but
we leave them as n and α for the sake of generality. We say
that particle 1 is to the left of particle 2, and that our system of
coordinates increases from left to right. When we work with
two equal spheres so that R1 = R2, σ1 = σ2, and E1 = E2,
we drop the subscript on D, that is, we set D11 ≡ D.

The equations of motion for two particles of mass m1 and
m2 during a collision are

m1ẍ1 = −r(x1 − x2)n−1 − γ (x1 − x2)α(ẋ1 − ẋ2),

m2ẍ2 = r(x1 − x2)n−1 + γ (x1 − x2)α(ẋ1 − ẋ2). (5)
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From Eq. (5), conservation of momentum immediately fol-
lows,

m1ẍ1 + m2ẍ2 = 0, (6)

so that m1ẋ1 + m2ẋ2 = const. Equation (5) also leads to an
uncoupled equation for the difference variable z = x1 − x2,

z̈ = − r

μ
zn−1 − γ

μ
zαż, (7)

where μ is the reduced mass μ−1 = m−1
1 + m−1

2 . For the
latter equation, the initial conditions are z(0) = 0 because we
deal with configurations where the granules are initially just
touching each other, and ż(0) = vi1 − vi2 ≡ v0. Here vi1 and
vi2 are the initial velocities of the two colliding granules.

An analytic solution z(t) of Eq. (7) for arbitrary n and α

seems not to be available. However, we have been able to
obtain the velocities at the end of the collision as a function
of the initial velocities in the low-viscosity limit. We rewrite
Eq. (7) as a first-order differential equation of the velocity as
a function of the position. Defining v = ż, and noting that

z̈ = dv

dt
= dv

dz

dz

dt
= v

dv

dz
, (8)

we rewrite Eq. (7) as

v
dv

dz
= − r

μ
zn−1 − γ

μ
zαv. (9)

In the absence of dissipation (γ = 0), this equation admits two
solutions for v(z),

v±(z) = ±
√

v2
0 − 2rzn

μn
. (10)

Obviously, the positive sign should be considered during
compression, and the negative sign during decompression.

Our approximation in the low-dissipation regime starts by
writing the velocity as a perturbation on the nondissipative
solution. Consequently, during compression we have

v(z) = v+(z) + γ vcomp(z), (11)

where vcomp(z) is a function to be determined. Substituting the
trial solution Eq. (11) in Eq. (9), and collecting the terms of
order γ , we have

r

μ
zn−1vcomp +

(
2rzn

μn
− v2

0

)(
zα

μ
+ v′

comp

)
= 0, (12)

where a prime denotes a derivative with respect to z. Fur-
thermore, the condition vcomp(0) = 0 is necessary to satisfy
the initial conditions. The solution of Eq. (12) with the initial
conditions vcomp(0) = 0, when added to v+(z), then gives us
the compression velocity to first order in the dissipation,

v(z) =
√

v2
0 − 2rzn

μn
− γ

z1+α
[
2(1 + α) + n 2F1

(
1, 1

2 + 1+α
n

; 1 + 1+α
n

; 2rzn

nμv2
0

)]
(1 + α)(2 + n + 2α)μ

, (13)

where 2F1 is a hypergeometric function [20].
Next we move on to the decompression, which starts with v = 0 and z = zmax. To calculate the maximum compression zmax,

we again look for a first-order correction in γ ,

zmax =
(

nμv2
0

2r

)1/n

(1 − γ zc), (14)

where zc is a constant to be determined and (nμv2
0/2r)

1/n
is the maximum compression in the absence of dissipation, obtained

by setting v±(z) = 0 in Eq. (10). The relative velocity must vanish for the maximum compression. This is the point at which the
colliding grains stop moving and begin to separate. Therefore, we evaluate Eq. (13) at z = zmax as given in Eq. (14), expand to
first order in γ , and set the left-hand side equal to zero. Solving the resulting equation for zc and inserting the result in Eq. (14),
we find for the maximum compression

zmax =
(

nμv2
0

2r

) 1
n

⎡
⎣1 − γ

2− 1+n+α
n

√
π

(
nμ

r

) 1+α
n v0

2−n+2α
n �

(
1+α

n

)
n2μ�

(
3
2 + 1+α

n

)
⎤
⎦. (15)

While it might be tempting to assume that the collision ends when z = 0, that is, when the particles lose contact, this would
neglect the fact that the particles have not recovered their original shape at this point [10]. The effect of neglecting this contribution
leads to serious spurious attractive forces. The collision actually ends when the force is zero, z̈ = 0, at which point the initial
shape is recovered. Setting z̈ = 0, z = zf , and ż = vf in Eq. (7), where the subscript f stands for f inal, we have

zf =
(−γ vf

r

) 1
n−1−α

. (16)

In what follows we restrict n to values n > α + 1, so that zf is small for low viscosity.
We write the perturbative solution for the decompression velocity in the low-viscosity case as

v(z) = v−(z) + γ vdecomp(z). (17)
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Again substituting into Eq. (9) and expanding the latter to first order in γ , we find

vdecomp(z) = C√
nμv2

0 − 2rzn

− 4rz1+n+α

(2 + n + 2α)μ
(
2rzn − nμv2

0

) −
z1+α

[
2 + 2α + n 2F1

(
1, 1

2 + 1+α
n

; 1 + 1+α
n

; 2rzn

nμv2
0

)]
(1 + α)(2 + n + 2α)μ

. (18)

Here C is a constant to be determined by the continuity of
the solution Eqs. (18) and (13) at zmax. Remembering that
v(zmax) = 0, where zmax is given by Eq. (15), and expanding
up to first order in γ , C is found to be

C = 2− α+1
n

√
π (nμ)(− 1

2 + α+1
n

)r− α+1
n v

n+2α+2
n

0 �
(

α+1
n

)
�

(
α+1

n
+ 3

2

) . (19)

To use this result to calculate the leading contribution to the
final relative velocity we write

vf = v(zf ) = v(0) + v′(0)zf , (20)

since zf is small. A prime denotes a derivative with respect
to the argument z. Since the force is zero at the end of the
collision, we have

z̈ = 0 = dż/dt = dż/dz dz/dt = v′(zf )v(zf )

= [v(0) + v′(0)zf ][v′(0) + v′′(0)zf ]

= v(0)v′(0) + {v(0)v′′(0) + [v′(0)]2} + O
(
z2
f

)
. (21)

This equation has two solutions for v′(0): either v′ = −v(0)/zf

or v′ = 0. The first leads to a final relative velocity that
vanishes, which is not physical in our perturbative approach
where we expect the final relative velocity to go to −v0 when
γ → 0. We must thus choose v′(0) = 0 [or, more rigorously,

v′(0) = O(z2
f )]. Therefore,

vf = v(0) + O
(
z3
f

) = v(0) + O[γ 3/(n−1−α)]. (22)

We choose values of n and α such that 0 < n − 1 − α < 3. For
spheres with n = 5/2 and α = 1/2 this condition is clearly
satisfied. We later also consider n = 5/2, α = 0 (used by
others), for which the condition is also satisfied. The correction
in the final velocity can then be neglected in our analysis to
first order in γ . The first term, v(0), is obtained by substituting
Eq. (19) into Eq. (18), using this result together with Eq. (17),
and taking the limit z → 0. We then obtain

vf = −v0 + γ

( nμv2
0

2r

) 1+α
n

√
π�

(
1 + 1+α

n

)
μ�

(
3
2 + 1+α

n

) . (23)

III. COLLISION TIME

Our next objective is to calculate the collision time, which
we do in two parts. First we calculate the compression time of
the collision as the two grains compress one another and then,
as the grains move apart, the attendant decompression time.
The collision time is then the sum of the two.

First we calculate the compression time as

Tcompression =
∫ zmax

0

1

v(z)
dz, (24)

where, to order γ , 1
v(z) is obtained from Eq. (13) as

1

v(z)
= 1√

v2
0 − 2rzn

nμ

+ γ
z1+α

[
2(1 + α) + n 2F1

(
1, 1

2 + 1+α
n

; 1 + 1+α
n

; 2rzn

nμv2
0

)]
(1 + α)(2 + n + 2α)μ

(
v2

0 − 2rzn

nμ

) . (25)

Substituting this into Eq. (24) and integrating leads to a
contribution of order γ 0 and a cancellation of two terms of
order γ 1/2. Consequently, the compression time does not show
any γ dependence up to first order:

Tcompression = 2− 1
n n−1+ 1

n

√
πr− 1

n μ
1
n v0

−1+ 2
n �

(
1
n

)
�

(
1
2 + 1

n

) + O(γ 3/2).

(26)

Next we move on to decompression, which starts with v = 0
and z = zmax (maximum compression) and ends when z̈ = 0
(force is zero), at which point z = zf as given in Eq. (16).
Hence, the decompression time is

Tdecompression =
∫ zf

zmax

dz

v(z)
=

∫ 0

zmax

dz

v(z)
+

∫ zf

0

dz

v(z)
. (27)

We first deal with the first integral. Since the zeroth-order
term of the velocity during decompression, Eq. (17), is the

negative of the compression velocity in Eq. (13), and the limits
of integration of the compression and the first term in the
decompression times are switched, the latter time is the same
as the compression time up to terms of order γ 3/2.

This still leaves the second term in the decompression time
given in Eq. (27). Since zmax is small,

∫ zf

0

dz

v(z)
�

zf − 0

v(zf )
� −zf

v0
= − 1

v0

(
γ v0

r

) 1
n−1−α

. (28)

For n − 1 − α > 0, this correction is indeed small and our per-
turbative approach is valid. In particular, for spherical grains
n = 5/2, and the particular values of α = 1/2 (commonly used
in the literature) and α = 0 (used by others, see below), the
value of the exponent of γ is 2/3 and 1, respectively. This in
turn implies that this term is a small perturbation.

We have thus established that for the parameters used
herein, the decompression time is equal to the compression
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time up to order γ 2/3 or order γ depending on the value
of α. Hence the total collision time to this order is twice
the compression time plus an additional contribution to the
decompression time,

T = 21− 1
n n−1+ 1

n

√
πr− 1

n μ
1
n v0

−1+ 2
n �

(
1
n

)
�

(
1
2 + 1

n

) − 1

v0

(
γ v0

r

) 1
n−1−α

,

(29)

and we have arrived at our second objective. We have not
found any other calculation of the velocity-dependence of the
collision time in the literature.

In a recent paper, the merits and problems of different
choices of the parameter α, and even a generalization of
the above model, were discussed [17]. Here, for n = 5/2
we consider two choices of this parameter that have been
commonly used in the literature to test Eq. (2). The simplest
case, α = 0, was proposed in Ref. [21] and further developed
in Ref. [22], but in our subsequent results below we see that
this choice leads to problematic outcomes. The case α = 1/2,
proposed independently in Refs. [18,23], is more widespread
in the granular gas community. Yet another combination of
exponents was found experimentally for chains of o-rings
in Ref. [9] and analyzed theoretically in Ref. [24]. In this
model dissipation was not included, but the elastic force is
a double power-law rather than a single one, with exponents
5/2 and 7. In the latter work it was shown that depending on
the characteristics of the o-rings and the experimental setup,
either the one or the other contribution can be dominant. In
Fig. 1 we show the duration of the collision for two equal
spherical grains (n = 5/2) as a function of the relative velocity
at the beginning of the collision for both values of α. As
can be seen in the figure, for small γ the data is very well

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10

T

v0

0.4
0.6
0.8

1
1.2
1.4

-2 -1 0 1 2

ln
T

ln v0

FIG. 1. Collision duration for several values of γ (from top
to bottom, 0.0001, 0.001, 0.01, and 0.1) and two different values
of α (0 for lower group and 1/2 for higher group), obtained via
numerical integration of the equations of motion (symbols) and from
our theory (line). The line represents the theoretical prediction of
Eq. (29). The inset shows the same data on a log-log scale. In this
figure, the parameters are as follows: m1 = m2 = 1, R1 = R2 = 1,
and 2/(5D) = 1. As predicted, for these values of γ and α the
collision durations are essentially independent of these parameters.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 2 4 6 8 10

T

v0

FIG. 2. Duration of collisions for several values of R2 (from
bottom to top, R2 varies from 0.1 to 0.9 in steps of 0.1) obtained via
numerical integration of the equations of motion. The lines represent
the theoretical prediction Eq. (29). In this figure the parameters are as
follows: m1 = 1, R1 = 1, α = 1/2, γ = 0.001, and 2/(5D12) = 1.
The densities of the two colliding spheres are equal.

predicted by our approximation, independently of the exponent
α (the approximation only starts to deviate from the theoretical
prediction for γ = 0.1, represented by the plus signs). This
α-independence of the duration of the collision is one of
the striking predictions of our theory. Another interesting
characteristic of our solution is the power-law dependence
of T on the initial relative velocity v0, as evidenced in the inset
of Fig. 1.

In Fig. 2 we again show T as a function of v0, but this time
for spheres of different sizes. Fixing the radius of granule 1
and varying the radius of granule 2 (assuming that they have
the same density), we can see that the collision takes longer
for larger values of R2.

IV. FINAL VELOCITIES AND COEFFICIENT
OF RESTITUTION

We next turn our attention to the final velocities. From the
conservation of momentum, we know that the total momentum
at the beginning and end of the collision must be the same,

m1vi1 + m2vi2 = m1vf 1 + m2vf 2, (30)

where the subscripts i and f once again label the initial and
final velocities of the grains. On the other hand, we also know
from the definition of z(t) that

ż(T ) = vf = vf 1 − vf 2. (31)

Solving the set of the two equations given above for vf 1 and
vf 2, and using Eq. (17), we find

vf 1 = m1 − m2

m1 + m2
v1 + 2m2

m1 + m2
v2

+ 2− α+1
n m2

m1 + m2

√
π�

(
α+1

n

)(
r

μn

)1− α+1
n

r�
(

α+1
n

+ 3
2

) (vi1 − vi2)
2(α+1)

n γ,
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0.997

0.9975
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0.9995
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ε

v0

FIG. 3. Coefficient of restitution as a function of the initial
relative velocity. Each curve corresponds to a different value of α

(from bottom to top on the left side, α varies from 0 to 0.9 in steps of
0.1). The other parameters are: γ = 0.001, m1 = m2 = 1, R1 = R2 =
1, and 2/(5D) = 1. The lines correspond to the theoretical prediction
of Eq. (33).
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(32)

As expected, the result for an elastic collision is recovered
when γ = 0. Further, the influence of the dissipation is greater
on the lighter particle, and the influence of the initial condition
on the change in the final velocities due to dissipation depends
only on the relative velocity.

We conclude this section by using the above results in
Eq. (1) to calculate the coefficient of restitution and thus
completing our third and principal objective:

ε = 1 − γ
2− α+1

n

√
π�

(
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n

)(
r

μn

)1− α+1
n

r�
(

α+1
n

+ 3
2

) (vi1 − vi2)
−n+2α+2

n .

(33)

In Fig. 3 we show the coefficient of restitution for several
values of α. The agreement is equally good for all of them. An
important characteristic of ε is that its qualitative dependence
on the initial relative velocity is drastically different for α larger
than or smaller than (n − 2)/2 (in the case of spheres, this
value is 1/4): α smaller than this value leads to the unphysical
situation of negative coefficients of restitution for very small
relative velocities. For larger α, the collision approaches
the elastic case for small relative velocities. Perhaps most
importantly, the power (−n + 2α + 2)/n of the initial relative
velocities of the two granules is equal to 1/5 with the physically
justified values n = 5/2 and α = 1/2 for spheres; see, e.g.,
Eq. (12) in Ref. [25]. In addition to recovering this exponent,
as in Eq. (14) of that reference, we also obtain the linear
dependence of the correction of the coefficient of restitution
on the coefficient of viscosity γ .
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(b) α = 1/2

FIG. 4. Coefficient of restitution as a function of the initial
relative velocity. Each curve corresponds to a different value of the
radius of granule 2 (from bottom to top, R2 varies from 0.5 to 1.4 in
steps of 0.1). The other parameters are: γ = 0.001, m1 = 1, R1 = 1,
and 2/(5D12) = 1. The densities of the two colliding spheres are
equal. The lines correspond to the theoretical prediction of Eq. (33).

In Fig. 4, we show the coefficient of restitution as a function
of v0 for particles of different sizes (same density) for α = 0
and α = 1/2. It is evident from the figure that ε increases with
the radius in both cases. However, the qualitative behavior is
independent of the sizes of the grains.

V. CONCLUSIONS

We have succeeded in calculating quantities that charac-
terize the collision of two granules that lead to the loss of
energy (but not momentum) to the environment via viscous
dissipation. We started with an equation of motion (Newton’s
Law) containing a kinetic energy contribution, a force due to
the elastic repulsion between the two granules, and a dashpot
viscous dissipation term. In addition to parameters related
to the shape and size of the granules, the model contains
two important parameters: a coefficient of viscosity γ , and
a constant α that defines the specific viscoelastic model, cf.
Eq (2). Our calculations are perturbative in the coefficient of
viscosity; that is, we present lowest-order corrections to elastic
(energy-conserving) collisions.
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A collision begins with the two granules just touching
head-on toward each other with a relative velocity v0. This
velocity and configuration define the collision strength. The
collision begins at this initial moment with compression of the
granules until their relative velocity is zero (at which point
the compression is a maximum). Decompression then follows,
until the force between the granules vanishes, at which point
the collision ends.

Integration of the equations of motion leads to analytic
results for several important quantities usually specified simply
as phenomenological parameters. The first is the relative
velocity of the granules during compression and during
decompression. We calculate the final relative velocity as a
function of the separation of the centers of the granules and
find the dependence on initial relative velocity and on the
parameters γ and α, cf. Eq. (23); if the collision were elastic,
the final and initial relative velocities would of course just
be the negatives of one another. Additional useful results are
the final velocities of each grain, for which we obtain explicit
expressions as a function of the parameters and of the initial
velocities of each grain, cf. Eq. (32). These are important for
simulations of granular gases.

The third quantity we calculate is the duration of the
collision; cf. Eq. (29). In most phenomenologies, collisions
are assumed to be instantaneous. Collisions are of course not
instantaneous.

Finally, we find an analytic expression for the coefficient of
restitution ε defined in Eq. (1). This coefficient, usually chosen
phenomenologically, recognizes the inelasticity of granular
collisions. We have found the dependence of this coefficient on
particle shape (via the exponent in the force that determines the
topology of the contact between the granules), its dependence

on Young’s modulus and Poisson’s ratio, and most importantly,
on the initial relative velocity and on the parameters γ (to
lowest order) and α that define the viscoelastic model; cf.
Eq. (33). If γ = 0 the coefficient of restitution is unity, that
is, there is no energy loss in the collision. Similarly, if the
initial velocities of the two granules are equal, the coefficient
is trivially unity again. The dependencies on these quantities
are nontrivial and, we submit, essentially impossible to arrive
at phenomenologically. This then provides a physical basis for
the usual phenomenological choice ε < 1. While our results
are perturbative in γ and thus not as general for elastic
spheres (n = 5/2, α = 1/2) as is the infinite series developed
in Ref. [10], our model allows different values of n and α and
yields relatively simple explicit results for the initial velocity
dependence of the final velocities of the colliding granules, of
the duration of a collision, and of the coefficient of restitution.

In this paper we have only dealt with two colliding
granules, taking into account the energy loss due to an explicit
viscoelastic force in the equations of motion. This renders our
results immediately applicable to granular gases where at low
densities binary collisions are the most common interactions.
The generalization to a granular chain or to even higher
dimensional granular arrays is not trivial, cf. Ref. [25], but
is now made considerably easier by the fact that we have
explicitly found the principal ingredients of the problem. There
is nevertheless a great deal of work to be done, especially
toward higher-dimensional generalizations.
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Phys. Rev. E 53, 5382 (1996).
[19] W. A. M. Morgado and I. Oppenheim, Phys. Rev. E 55, 1940

(1997).
[20] G. B. Arfken, H. J. Weber, and F. Harris, Mathematical Methods

for Physicists, 5th ed. (Academic Press, San Diego, 2000).
[21] J. Lee and H. J. Herrmann, J. Phys. A: Math. Gen. 26, 373

(1993).
[22] A. Rosas, A. H. Romero, V. F. Nesterenko, and K. Lindenberg,

Phys. Rev. Lett. 98, 164301 (2007).
[23] G. Kuwabara and K. Kono, Japan. J. Appl. Phys. 26, 1230

(1987).
[24] Italo’Ivo Lima Dias Pinto, A. Rosas, A. H. Romero, and K.

Lindenberg, Phys. Rev. E 82, 031308 (2010).
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