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Candice J. Coppola?, Emma C. Dean'’, Shan Jiang®, Daniel Savic?, Ali Mortazavi®,

Barbara J. Wold®, Richard M. Myers'™ & Eric M. Mendenhall"?*

Transcription factors are DNA-binding proteins that have key roles in gene
regulation'?. Genome-wide occupancy maps of transcriptional regulators are
important for understanding gene regulation and its effects on diverse biological
processes®®. However, only a minority of the more than 1,600 transcription factors
encoded in the human genome has been assayed. Here we present, as part of the
ENCODE (Encyclopedia of DNA Elements) project, data and analyses from
chromatinimmunoprecipitation followed by high-throughput sequencing
(ChIP-seq) experiments using the human HepG2 cell line for 208 chromatin-
associated proteins (CAPs). These comprise 171 transcription factors and

37 transcriptional cofactors and chromatin regulator proteins, and represent
nearly one-quarter of CAPs expressed in HepG2 cells. The binding profiles of these
CAPs form major groups associated predominantly with promoters or enhancers,
or with both. We confirm and expand the current catalogue of DNA sequence motifs

for transcription factors, and describe motifs that correspond to other
transcription factors that are co-enriched with the primary ChIP target. For
example, FOX family motifs are enriched in ChIP-seq peaks of 37 other CAPs.

We show that motif content and occupancy patterns can distinguish between
promoters and enhancers. This catalogue reveals high-occupancy target regions
at which many CAPs associate, although each contains motifs for only a minority
of the numerous associated transcription factors. These analyses provide a
more complete overview of the gene regulatory networks that define this cell
type, and demonstrate the usefulness of the large-scale production efforts of the
ENCODE Consortium.

There are an estimated 1,639 transcription factors (TFs) in the human
genome?, and up to 2,500 CAPs whenwe include transcriptional cofac-
tors, RNA polymerase-associated proteins, histone-binding regulators,
and chromatin-modifying enzymes"’. A typical TF binds to ashort DNA
sequence motif, and, invivo, some TFs exhibit additional chromosomal
occupancy mediated by their interactions with other CAPs®'°, CAPs are
vital for orchestrating cell type- and cell state-specific gene regulation,
including the temporal coordination of gene expression in develop-
mental processes, environmental responses, and disease states> '3,

Identifying genomic regions withwhich a TF is physically associated,
referred to as TF binding sites (TFBSs), is an important step towards
understanding its biological roles. The most common genome-wide
assay for identifying TFBSsis ChIP-seq' . In addition to highlighting

potentially active regulatory DNA elements by direct measurement,
ChiIP-seq data can define DNA sequence motifs that can be used, often
inconjunctionwith expression dataand chromatin accessibility maps,
to infer likely binding events in other cellular contexts without per-
forming direct assays. Although motifs identified by ChIP-seq are
often representative of direct binding, this is not always the case, as
co-occurrence of other TFs could lead to the enrichment of their motifs.
Furthermore, the ChIP-seq method identifies both protein-DNA and,
indirectly, protein-protein interactions, such that indirect and even
long-distance interactions (for example, looping of distal elements)
can be captured as ChIP-seq enrichments.

Along-term goal is comprehensive mapping of all CAPs in all cell
types, but amore immediate aspiration is to create a catalogue of all
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Fig.1|Overview and analysis of HepG2 datasets. a, The 208 chromatin-
associated factors assayed in HepG2 cells, organized by expression (FPKM),
and denoting whether the factors were assayed by ChIP-seq or CETCh-seq.

b, Scatter plotofall 208 factors, showing broad distribution of fraction of
called peaksatexpressed TSSs (+3 kb from TSS) against total peak number;
points beyond the maximum possible fraction are possible owing to multiple
peaksatsingle TSS regions. ¢, Plot showing PCA of genomic segments
(n=282,105) with more than two factors bound, highlighting the separation on
the basis of the number of factorsbound. d, Same plotasin c showing promoter
versus distal location. e, Same plot asin cshowing PC2 versus PC3 and
highlighting the presence of CTCF.

CAPs expressed in a single cell type. The resulting consolidation of
hundreds of genome-wide maps for a single cellular context prom-
ises insights into CAP networks that are otherwise not possible. Such
comprehensive data will also provide the backdrop for understanding
large-scale functional element assays, and should improve the abil-
ity to infer TFBSs in other cell types that are less amenable to direct
measurements.

Here we present an analysis of 208 CAP occupancy maps in the
hepatocellular carcinoma cell line HepG2 performed as part of the
ENCODE project, composed of 92 traditional ChIP-seq experiments
with factor-specific antibodies and 116 CRISPR epitope tagging ChIP-
seq (CETCh-seq) experiments'”*®, Of all human CAPs, approximately
960 are expressed in HepG2 cells above a threshold RNA value of 1FPKM
(fragments per kilobase of transcript per million mapped reads), the
lowest level at which we can routinely generate successful ChIP-seq
and CETCh-seqresults. This resource contains ChIP-seqand CETCh-
seq maps for about 22% of these 960 CAPs, of which 171 are sequence-
specific TFsand 37 are histone-binding or histone-modifying proteins,
or other chromatinregulators or transcription cofactors (Fig. 1a, Sup-
plementary Table1). This large and unbiased samplingin one cell type
allowed usto approach analysis from complementary directions, begin-
ning with patterns of CAP occupancy and co-occupancy to find prefer-
ential associations with each other and with promoters, enhancers, or
insulator functions, andin the other direction, working from genomic
loci, sequence motifs, and epigenomic states to explain occupancy.
These publicly available ENCODE occupancy data, together with the

analyses and insights presented here, comprise akey resource for the
scientific community.

« We analyse ChIP-seq and CETCh-seq maps for about 22% of TFs and
other CAPs expressed inthe humanHepG2 cell line.

*We use clustering to classify major groups of CAPs, including those
thatare promoter-or enhancer-associated, or that are associated with
both promoters and enhancersto asimilar extent.

« Using this large amount of data, we demonstrate that DNA sequence
motifs or ChIP-seqpeak calls can distinguish between promoters and
enhancers.

«We show that high-occupancy target (HOT) regions are driven by
strong motifs for one or afew TFs and weaker, more degenerate motifs
for many other CAPs.

CAPssegregateregulatory element states

As aninitial analysis, we investigated how the binding of each of the
208 CAPsisdistributed inthe genomerelative to knowntranscriptional
promoters. We calculated the fraction of each of the called peaks of
each CAP thatwas within 3 kilobases (+3 kb) of transcription start sites
(TSSs), analysing only the TSSs of genes expressed (=1 TPM (transcripts
perkilobase million)) in HepG2 cells (Fig.1b) and, separately, all anno-
tated TSSs regardless of expression (Extended Data Fig. 1a). Individual
CAPs exhibited variable proportions of promoter-associated peaks,
independent of the number of peaks called in an experiment.

To further summarize the occupancy landscape, we merged all the
called peaks from every experiment into non-overlapping 2-kb win-
dows, limited to those windows in which two or more CAPs had acalled
peak, and performed principal component analysis (PCA) on these DNA
segments, using the presence or absence of each CAP at each genomic
segment. This analysis captured global patterns of ChIP-seq peaks, with
principal component1(PC1) explaining about 28% of the variance and
correlating strongly with the number of unique CAPs associated witha
givengenomicregion (Fig.1c). PC2 separates promoter-proximal from
promoter-distal peaks, underscoring the relevance of promoters asa
predictor of genomic state and CAP occupancy (Fig. 1d). Notably, the
shape of'this plot suggests that, as the number of CAPs associated ata
locus increases, the promoter-proximal and promoter-distal regions
lose separation along PC2.In addition, PC2 plotted against PC3 shows
strong segregation based on occupancy of the factor CTCF (Fig. 1e),
suggesting that discrete genomic demarcations are attributable to this
factor, as expected givenits insulator and loop-anchoring functions.

To assess the epigenomic context of each binding site, we used
IDEAS (integrative and discriminative epigenome annotation system),
amachine-learning method for biochemical mark-based genomic seg-
mentation'. This IDEAS HepG2 epigenomic segmentation inferred 36
genomic states based on eight histone modifications, RNA polymerase
ChIP-seq, CTCF ChIP-seq, and DNA accessibility data sets (DNase and
formaldehyde-assisted isolation of regulatory elements (FAIRE)). Nota-
bly, IDEAS states for HepG2 cells were classified using mainly histone
marks, augmented by only two chromatin-associated ChIP-seq maps
includedinourdataset (CTCF and RNA polymerase). These segregate
the anticipated major classes of correlations between epigenomic
statesinthe IDEAS segmentation and CAP associations, such as enrich-
ment of H3K4me3 at annotated promoters and H3K27ac at candidate
active enhancers, as well as open chromatin status as assayed by DNA
accessibility experiments, typical of TF-bound DNA. As expected, the
resulting IDEAS states classified only aminority of the HepG2 genome
as potential cis-regulatory elements (Extended Data Fig. 1b).

We calculated the relative IDEAS state enrichments of the peak calls
foreach CAP, and clustered the CAPs by these enrichments. The result-
ing matrix delineated several clear bins of genomic state associations,
expanding and refining the previously noted preferential proximal ver-
sus distal genomic associations of CAPs?. Specifically, we found a sub-
set of CAPs thatare preferentially associated with promoters, another
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eachfactor.c, Predictive ability of random forest classification of genomic
regions as either enhancer or promoter on the basis of the number of factors
used to train the algorithm; n=100iterations, lines from minimum to
maximum with medianindicated.

subset associated with candidate active enhancers, and a third group
distributed across both proximal promoter regions and candidate
active enhancers (Fig. 2a). We also found two smaller CAP-associated
clusters: one associated with heterochromatin and repressed marks
(including BMI1 and EZH2, both part of Polycomb repressive com-
plexes), and one with CTCF regions (including CTCF and the known
cohesin complex proteins RAD21 and SMC3; Fig. 2a, Supplementary
Table 2). These categories contain members of different classes of CAPs,
and point to distinct gene regulatory pathways. APCA based on these
IDEAS states also recapitulated these clusters (Extended Data Fig. 1c).

Forroughly 40% of the CAPs assayed, most called peaks werein IDEAS
promoter-like regions, while about 30% of CAPs were predominantly
associated with IDEAS enhancer-like regions (Fig. 2b). Although these
preferences are part of a continuous distribution, the unsupervised
clustering using all IDEAS genomic states suggests that subsets of
CAPS show stronglocalization preferences. We analysed whether the
promoter-associated CAPs associated predominantly with CpG-island
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promoters by annotating promoter regions according to previous
classifications for low, intermediate, and high CpG content™?.. The
promoter-associated CAPs also cluster preferentially with promoters
with high CpG content (Extended DataFig. 2a, Supplementary Table 3).
However, the GC content of motifs for CAPsin the promoter-associated
cluster is not significantly different from that of CAPs associated with
both promoters and enhancers, suggesting that motif GC content alone
does not drive the clustering (Extended Data Fig. 2b).

The CAPsthat associate with both promoters and enhancers do not
have apparentbiasinrelation to the GC content of promoters. Previous
publications have noted similarities between promoters and enhanc-
ers, ascribing enhancer activity to promoters, and transcription occurs
directly atenhancersin the form of enhancer RNA (eRNA) and even as
alternative promoters? 2, The subset of CAPs identified as associating
with both promoters and enhancers may point to specific genomic loci
orgeneregulatory networks wherein the lines between promoters and
enhancers are most blurred.

Because CAPs localize to specific genomic states, we were able to
reproducibly trainrandom forest models to predict the IDEAS state of
agenomic region using binding information for only a small number
of CAPs (Fig. 2c). The prediction method was successful when using
a combination of TFs with chromatin regulators and other extended
CAPs, but was also successful when trained only on direct DNA-binding
TFsoronlyonnon-TFs. Eachapproachrequired asubset of roughly any
30 CAPs to achieve approximately 80% accuracy.

CAP distributioninregulatory elements

Although the 208 CAPs do not represent a complete catalogue of all
expressed CAPsin HepG2 cells, we investigated how much of the regu-
lationinthis celllineis captured by this partial compendium. We used
IDEAS to define aset 0of 370,570 putative HepG2 cis-regulatory elements
classified as promoters, ‘strong’ enhancers, or ‘weak’ enhancers, with
merging of similar features within 100 base pairs (bp), resulting in a
broad size distribution from 200 bp to12-16 kb. We then calculated how
many CAPs were associatedin eachregion (Extended DataFig.1d). On
average there were seven CAPs associated at any putative regulatory
region. Approximately 67% of the regions did not contain any called
peaks; however, the vast majority of these (about 85.5%) were classified
as ‘weak’ or ‘poised’ enhancers by the IDEAS segmentation. Conversely,
elements classified as promoters or ‘strong’ enhancers by IDEAS were
enriched for occupancy by higher numbers of CAPs (Extended Data
Fig. 1d). Of the IDEAS-determined active promoter-like regions, 61%
contained a called peak for at least one CAP in this data set, and of the
strong enhancer-like regions, 75% contained at least one called peak.
Because most promoters and strong IDEAS-modelled enhancers had
one or more CAPs associated, and these elements had an average of
15and 18 unique associated CAPs per region, respectively, these data
capture asubstantial overview of the CAP regulatory networkin HepG2
cells.

Motif analysis reveals CAP associations

We assessed motif enrichment in peaks, and found many previously
derived motifs for both direct and potentially indirect associations, as
well as some potentially novel motifs. We derived a high-confidence
set of 293 motifs called from 160 of the 171 putatively direct DNA-
binding TFsin our data set’. We compared these motifs to the JASPAR
databases®?* and to the Catalog of Inferred Sequence Binding Prefer-
ences (CIS-BP) database® to determine whether our de novo derived
motifs matched previous findings from various in vivo and/or in vitro
assays?. Overall, more than 80% of the 293 motifs had a similar motif
in these databases (86% in CIS-BP build 1.02, 82% in JASPAR 2018, 81%
inJASPAR 2016; Extended Data Fig. 3a—c). For 114 motifs derived from
peaks for 89 unique TFs, the most similar motif in the database was
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annotated as the motif for the TF that was the target of the ChIP-seq
or CETCh-seqassay, and we call these cases ‘concordant’ (Fig. 3a, Sup-
plementary Table 4). There were 156 motifs derived from peak data
for 99 TFs that were more similar to the database motif of a different
TF, and we denote these as ‘discordant’. We also observed 23 motifs
derived from peaks of 14 TFs that were highly dissimilar to any motifs
in the databases and may be previously undescribed motifs. Most of
these were from zinc finger TFs, a large class of factors that has been
virtually unassayed by endogenous ChIP-seq.

We note that concordant calls were sometimes problematic, specifi-
callywhenthe motifin a database originated from a previous ChIP-seq
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analysis of the cluster containing 37 factors that had FOX family motifs,
showing the overlap of FOX TF binding in these peaks, as well as the median
offset of the FOX motif from the centre of the ChIP-seq peaks. For box plots
(bottom), n=37 CAPs; boxes show middle quartiles, centre line shows median,
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motifs that fallin promoters versus those that fallinenhancers; n=408,382
genomicelements. f, Prediction accuracy for callingwhetheranelementisa
promoter or enhancer on the basis of motifs thatare present; n=100 iterations,
lines from minimum to maximum with medianindicated.

experiment. Insome cases, these motifs probably do not represent the
specific sequence recognized by the TF assayed, but are spurious calls
from associated TFs that replicate across multiple ChIP-seq experi-
ments. For example, two motifs for ATF3 matched an ATF3 ChIP-seq
motif in CIS-BP, which qualifies these motifs as concordant, but they
more closely resemble an E-box motif. We overruled the automatic con-
cordant call for this case,and manually changed it to discordant. For Sup-
plementary Table 4, we curated each called motifto clarify results from
the matching algorithm, and included a column with this information.

Among the 163 discordant motifs, motifs representing pioneer TFs
such as FOXAl were enriched, and we hypothesize that these motifs
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were called owing to their substantial co-occurrence with the assayed
TFs. Previous studies have noted the enrichment in ChIP-seq data of
sequences that do not appear to be binding motifs for assayed TFs, but
rather are more similar to other TF motifs®, There are several potential
explanations for why the ChIP-seq-derived motif would most closely
match a motif previously annotated for another factor. Related TFs
often recognize very similar sequence motifs; for example, the motif
we derived for TEAD4 was very similar to the motif previously found for
TEADI1%. There are also instances in which a CAP lacks a strong and spe-
cific DNA-binding domain and no motif would be expected unless the
motifrepresents afrequent co-binding partner, ascenario we explore
below with GATAD2A. A similar explanation involves a particular TF
acting as an ‘anchor’ at alocus, and either through direct protein-
proteininteractions, or by inducing an open chromatinenvironment,
behaving as a mechanism for localization of other proteins. A well-
studied example of this highlighted in our data was the enrichment of
the CTCF motifinRAD21 ChIP-seqdata, as RAD21 lacks a DNA-binding
domainbutinteracts with CTCF. It is difficult to determine confidently
whether a discordant motif represents a key co-factor interaction or
acommonly co-localized protein. When we called multiple, distinct,
high-confidence motifs in a single ChIP-seq experiment, with one
motif annotated in databases as the direct target of the assayed TF
and another motif representing a different TF that we also assayed
separately, theresults of the secondary factor’s ChIP-seq experiment
suggested thatboth TFs arelikely to be associated at these loci, asboth
experiments yielded called peaks at these loci.

Supporting our hypothesis that, in the discordant cases, the motif of
thesecondary TF was not asite of direct binding for the primary CAP,
examination of the precise location of the motifs within peaks showed
asignificant difference (Kolmogorov-Smirnov test, P=2.481x107?);
the direct matching motifs of the assayed TFs were closer to the centres
of called peaks and the discordant motifs for other TFs were more off-
set, providing evidence for co-occurrence at these locations (Fig. 3b).
Directinteractionand co-recruitment between these pairs of TFs could
explain these observations, and numerous examples of such combina-
tory and cooperative activities between TF pairs have been reported™.
We found no significant trend for secondary TF motifs in any factor
clusters we identified by IDEAS state preferences or other methods,
suggesting that no biases were introduced by contributions from
particular genomic loci (Extended Data Fig. 3d). We also analysed
the peak locations of the 23 novel motifs found with the 14 factors
that were highly dissimilar to any motifs in CIS-BP, and the majority
showed enrichment at the centres of peaks (Extended Data Fig. 3e, f),
supporting the notion that these are previously undescribed motifs
for direct DNA binding by these TFs.

Tobetter understand discordant TF motif calls, we constructed a sim-
ilarity heat map using all 293 high-confidence motifs from our dataand
motifs for each assayed TF annotated in the CIS-BP database (n=733;
Fig. 3c). This analysis clustered TFs both by similarity of their direct
binding motifs (such as all Forkhead factors) and by co-occurrence with
other motifs. We thereby identified TFs that associate at genomic loci
near particular motifs, such as CTCF. Most obvious was a set of 37 CAPs
for which aForkhead motif was called, indicating the high prevalence
ofthis motifin HepG2 cells at active enhancers and promoters, and the
keyrole of TFssuch as FOXAland FOXA2in the gene regulatory network
inthese cells. We examined these cases using our ChIP-seq data from
six FOX TFs (FOXA1, FOXA2, FOXA3, FOXK1, FOXO01, and FOXP1), test-
ing how often each of these FOX TFs yielded called peaks with a FOX
motif that overlapped with a peak for any of these 37 other CAPs, and
we found that most of the 37 contained a FOX peak with a FOX motif
in about 20% of their peaks, with FOXA1 and FOXA3 motifs being the
most common (Fig. 3d).

We next examined thelocations of the FOX motifs in the overlapping
peaks and found that all were offset to varying degrees, always with a
median distance of more than20 bp fromthe centres of peaks (Fig. 3d).
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In addition, we examined all peaks called for each of the 37 CAPs and
identified the fraction that contained a primary motif specific to the
individual CAP (where known) along witha FOX motif, the fraction that
contained only the primary motif, the fraction that contained only a
FOX motif, and the fraction that contained neither motif (Extended Data
Fig. 4a). For the 30 CAPs with a described motif, the majority of peaks
did not contain a primary motif, a result that may indicate protein-
proteininteractions and/or looping eventsin these peaks. Furthermore,
when we examined peak overlaps between these 37 TFs and the six FOX
TFs, we observed varying associations and co-occupancy partners,
including factor preferences for individual FOX TFs and a cluster of
components of the nucleosome remodelling and histone deacetylase
(NuRD) complex (Extended Data Fig. 4b-d).

Motifinformation alone was predictive of genomic segments, clearly
showing segregation between IDEAS statesina PCA (Fig.3e). Arandom
forestalgorithm trained only on motifs was able to predict IDEAS states
almost as well as one trained on ChIP-seq peaks, achieving approxi-
mately 80% success with any roughly 40 motifs (Fig. 3f).

Known and novel CAP associations

TFs and chromatin regulatory proteins can interact with and recruit
other CAPsthroughdirect andindirect physical associations. Although
the activity of a few key CAPs may be very important for cell-state-
specific expression, itis likely that combinatorial events are necessary
to fine-tune expression®. We found both known and novel associations
by examining occupancy overlaps and trends in a variety of analyses.

Toidentify candidate co-occupancy events mediated by direct DNA
binding or by indirect interactions, both of which produce peaks in
ChIP-seqdata, we performed several analyses. We used the PCA of the
protein-bound genomic loci described above (in which genomic loci
clustered according to the CAPs associated at each region; Fig. 1c-e),
and generated a correlation matrix based on the cumulative PC dis-
tances (weighted by the proportion of variance explained by each
component) between all CAPs. The resulting unsupervised cluster-
ing of respective pairwise distances highlighted punctate groups that
represented both known and potentially novel complexes, including
agroup containing POL2 and TSS-associated chromatin-modifying
enzymes and transcriptional cofactors, a group of cohesin complex
members, agroup of liver-specific factors (the tissue type from which
HepG2isderived),and agroup containing the NuRD complex, among
others (Fig. 4a).

To quantitatively analyse the overall data, we performed read
count Spearman correlations between all 208 CAPs by calculating
raw sequencing counts at every unique locus present in called peaks
in any experiment (+50 bp from peak centre). The resulting correla-
tion heat map also showed clusters of related CAPs as well as both
known and potentially novel interactions (Extended Data Fig. 5, Sup-
plementary Table 3). Network plots based on pairwise peak overlaps
highlighted a number of known interactions, including CTCF-RAD21
and CEBPA-CEBPG networks, as well as CAPs that associate withalarge
number of other CAPs, usually chromatin regulatory proteins such as
SAP130, GATAD2A, and ARIDSB (Extended Data Fig. 6b). We examined
the associations at the level of called motifs by finding the peaks in
eachexperiment where aspecific called motif was present, limiting the
analysis to the 293 high-confidence motifs. Uponidentification of the
primary motif, we looked for associations between motifs 1-40 bp away
(Extended DataFig. 6a, Supplementary Table 3). This analysis revealed
the TFs (and motifs) that were more likely to associate with the motif of
any other particular TF. RAD21 was highly associated with CTCF motif's,
asexpected, and we also found several other known complexes as well
assome novel associations. FOXAlpeaks with the canonical Forkhead
motif were more likely to contain relatively few motif's for other factors,
but many factors, such as HNF4A, HNF4G, and RXRB, were enriched
for nearby FOXA1 motifs.
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To independently assess co-occupancy and provide an additional
quantitative analysis, we trained a chromatin self-organizing map
(SOM)*? using all 208 CAPs with the SOMatic package®. We found key
metaclusters around the key HepG2 TFs FOXA1/2 and HNF4A, in associa-
tionwith CAPs thatareimportant for liver development, nucleosome
remodelling (NuRD complex), and cohesin subunits (Fig. 4b, Extended
DataFig. 7a-f, Supplementary Notes).

The indirect motif, co-occupancy, and SOM analyses identified
novel CAPs associated with GATAD2A, a core component of the
NuRD complex. In GATAD2A CETCh-seq experiments, 53% of the
GATAD2A peaks in HepG2 cells were annotated as active enhancers
(Extended Data Fig. 8a), which was unexpected given the association
of the NURD complex with transcriptional repression and enhancer
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decommissioning® ¢, GATAD2A has a very degenerate DNA-binding
domain and is not predicted to bind DNA independently, and indeed
the called GATAD2A motif matched FOXA3 (Fig. 5a). To assess co-
localizationinan additional, quantitative manner, we examined signal
intensity® at shared and unique sites for GATAD2A and FOXA3 (Fig. 5b).
Many of the unique sites showed signal above background, indicating
alimitation of the conservative peak calls we used and adding support
for extensive co-localization for these factors.

In our co-association analysisin HepG2 cells, we identified six CAPs
that co-occurred with GATAD2A in discrete genomic regions (Fig. 5c).
We analysed GATAD2A-FLAG proteinimmunoprecipitation by mass
spectrometry and found that multiple components of the NuRD com-
plex also co-immunoprecipitated with GATAD2A (Supplementary
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Table 5). Of the GATAD2A-associated CAPs, ZNF219*, SMAD4*, and
RARA*C have previously been associated with the NuRD complex
(Fig. 5¢). We additionally identified ARID5B, SOX13, and FOXA3 (see
above) as proteins that were associated with the known NuRD group,
specifically at active enhancers where Forkhead binding sites were
enriched (Fig.5b, ). The classic NuRD complex hasbeen suggested to
function atenhancer regions associated with tissue-specific gene regu-
lation*, and our data confirm that the core NuRD component GATAD2A
isrecruited into these regions. Note that NuRD binding at these open
and presumably active regions is thought to function through aNuRD
complex that contains MBD3 and not MBD2, and our GATAD2A-FLAG
immunoprecipitation-mass spectrometry data confirmed this, as
MBD3 peptides but not MBD2 peptides immunoprecipitated with
GATAD2A* (Supplementary Table 5).

We examined the expression of the genes nearest to peaks with both
GATAD2A and FOXA3 association, as well as those with GATAD2A or
FOXA3 binding but not both. All of these sites were near genes that
were expressed at significantly higher levels than genes near random
GC-matched sites (Extended Data Fig. 8b). Moreover, sites with both
GATAD2A and FOXA3 peaks were near genes with significantly higher
expression than those nearest sites with only GATAD2A or FOXA3
(Extended Data Fig. 8b). The genes nearest the GATAD2A-FOXA3 co-
associated sites were enriched for liver biology gene ontology (GO)
terms, including cholesterol metabolic processes and regulation of
lipids, whereas FOXA3 sites without GATAD2A were near genes with
additional liver biology GO terms, such as regulation of insulin and
triglyceride biosynthesis, and GATAD2A sites without FOXA3 were
enriched for negative regulation of sequence-specific DNA binding
TFs (Extended DataFig. 8c-e). Additional analyses indicated that there
were strong associations between CAPs and important liver biology
genes (Supplementary Notes, Supplementary Fig. 1).

CAPS in highly occupied regions

We examined how many factors were bound at putative HepG2 cis-
regulatory elements by merging all peaks from all 208 CAP experi-
ments, with a maximum merged size of 2 kb. This analysis yielded a
total of 282,105 genomic sites with at least one associated CAP, with
amaximum of 168 CAPs at one site. We investigated whether certain
CAPswere morelikely to co-occupy genomic loci with a high number of
other CAPs, by performing hierarchical clustering of the degree of co-
association for each CAP; this resulted in three distinct clusters (Fig. 6a).
Thefirst was a cluster of 33 proteins, including previously described key
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pioneer factors suchas FOXAland FOXA2*, which exhibit alow degree
of co-occupancy with other CAPs at a relatively high proportion of
their bindingsites. The second cluster, comprised of 32 CAPs, displays
frequent association at higher co-occupancy regions and is composed
of CAPs already known to be recruited by, or to interact with, a large
number of other CAPs, such as MYC and DNMT3B***%, The third cluster
contains the remaining CAPs, which exhibit anintermediate degree of
co-occupancy, including key HepG2 TFs such as HNF4A and FOXA3.

Aspreviously described**™*®, many regionsin the genome are occu-
pied by large numbers of CAPs in ChIP-seq assays (example shownin
Extended Data Fig. 9a). There are several possible explanations for
these HOT regions*. Some researchers have filtered all or the majority
oftheseregions from analyses under the assumption that they are arte-
facts’®*. Itis also possible that they are the result of stochastic shuffling
of direct binding of many CAPs in a population of cells; when assayed
across the millions of cells used for anindividual ChIP-seq experiment,
this could resultinapparent co-localization of peaks for many CAPs that
donotactually co-occupy at the same time in the same cell. The mecha-
nisms that underlie this phenomenon might include indiscriminant
recruitment driven by key CAPs or some unknown property of these
regions of open chromatin, or by densely packed DNA sequence motifs.
Another possible explanationisthat three-dimensional genomic inter-
actions, including enhancer looping and/or protein complexes, lead
to ChIP-seq cross-linking of CAPs in close proximity.

We define HOT regions in these data (n = 5,676) as those sites with
more than 70 CAPs (about one-third of all assayed CAPs) within a 2-kb
region. Intersecting HOT regions with IDEAS segmentations revealed
that more than 92% of HOT regions map to candidate promoter or
strong enhancer-like states (42.25% and 49.88%, respectively). We
determined using GREAT (genomic regions enrichment of annota-
tionstool) analysis that promoter-localized HOT regions are associated
with housekeeping genes and that distal HOT regions are near genes
associated with liver-specific pathways (Extended Data Fig. 9b). In
addition, the number of CAPs correlates with sequence conservation
ofthe putative regulatory element and with the level of expression of
the nearest gene (Extended Data Fig. 9c-e). While previous researchers
have noted apparent general ChIP bias in favour of highly expressed
genomic regions®, we performed ChIP in untagged cells with an anti-
body raised against the epitope tag used in CETCh-seq experiments,
normalizing for this background in peak calling, and the HOT regions
continued to be strongly enriched (data not shown).

We computationally examined the general DNA motif structure of the
HOT sites using two analyses. We first used a subsampling test to test
whether motifinformation was gained as the numbers of CAPs assayed
increased. We ran permutations of 12-162 CAPs and determined how
often we could identify aHOT region as being bound by more than 33%
of the CAPs in the subsample (Fig. 6b). More than 80% of the HOT loci
wereidentified with only ten factors, and the curve approached 100%
asthe number of CAPs increased. We then investigated how often the
motif for any associated CAP was found; fewer than 20% of sites had
even a single motif identified with 40 or fewer CAPs. However, once
morethan130 factors wereincluded, over half the sites contained one
or more identifiable motifs. While this analysis required only motif
presence, we also found evidence of direct DNA-protein interactions
using protein interaction quantification (PIQ)**—a computational tool
that uses DNase-seq experiments and user-supplied motif sequences
to identify direct TF binding sites. Using TF footprints identified in
ENCODE HepG2 DNasel hypersensitivity data by PIQ, we observed that
the number of TF footprints was significantly positively correlated with
the number of CAPs that had called peaks in a locus (Extended Data
Fig.10a-d). This observation was true at multiple PIQ purity (positive
predictive value) thresholds and also when using TF footprints called
in the same data set from JASPAR motifs. This is consistent with TF
motif-driven architecture being amajor characteristic of HOT regions.
To determine whether CAP occupancy at highly bound regionsis driven



by specific DNA motifs, we trained asupport vector machine (SVM) on
the sequences of ‘HOT-motif” sites, a set of peaks with 50 or more co-
localized motifs derived from the HOT sites (n=2,040). We tested the
predictive ability of the SVM as the number of TFsincreased and found
that predictions remained constant, rather than declining, further
strengthening the notion that these sites are not artefacts (Extended
DataFig.10e). The average precisionrecall area under curve (PR-AUC)
scores for the SVM were about 0.74 for motif-level predictions and
about 0.66 for peak-level predictions. These scores were substantially
higher than expected, given the random sample of a positive set of
5,000 sites tested against 50,000 GC-matched null sequences as the
negative set (Extended Data Fig. 10f). We also found, using the k-mers
generated by the SVM, that there are1-5 TFs at each site with very high
motif scores, and about 25-50 TFs with degenerate or weaker motifs
(Extended Data Fig. 10g); this was true for both HOT-motif sites and
the broader HOT sites.

We investigated whether this observation was unique to HOT regions
(n=5,676) when compared to an equal number of enhancer regions (as
defined by IDEAS segmentation) with only 2-10 associated CAPs, or to
anull set of random enhancer elements with any number (0-208) of
associated CAPs. Sites with2-10 CAPs had substantially smaller num-
bers of both high-affinity and low-affinity TF motifs, and the random
enhancers were essentially devoid of strong motifs (Extended Data
Fig.11a-g). The distribution of SVM scores in HOT sites was significantly
higher than that of the SVM scores of sites with 2-10 associated CAPs
(Kolmogorov-Smirnov test, P=5.966 x10™), and both were signifi-
cantly higher than that of the null set of random enhancer elements
(Kolmogorov-Smirnov test, P<2.2 x10 for each), indicating that the
informationimparted by the DNA sequence of HOT sites exceeds that
of other cis-regulatory elements (Extended Data Fig.11h). Moreover, in
HOT sites, the strongest-affinity TF at any individual peak varied across
sites, indicating that many different CAPs areinvolved in regulation at
thesesites. Importantliver TFs, such as FOXA3, HNF1A, and CEBPA, had
the strongest putative motif affinity at many of these sites (Extended
Data Fig. 11i). This supports the notion that HOT sites are driven by a
few strong and specific TF-DNA interactions and non-specific recruit-
ment of other factors, probably through both protein complexes and
binding to degenerate motifs, and possibly linking together multiple
distal genomic regions through CAP interactions. Thus, it is essential
to generate complete CAP maps to determine the full complement of
CAPsassociated with each locus, which would not occur by analysis of
functional motifs alone.

Discussion

This study introduces a data resource of occupancy maps for human
transcription factors, transcriptional cofactors, histone-binding or
histone-modifying proteins, and other chromatin regulators that
illustrates the strengths of building towards a complete catalogue of
CAP interactions in an individual cell type. At this intermediate stage
of completeness, the aggregated data enabled us to identify known
complexes and associations, and toidentify putative novel associations.
We also gained insights into gene regulatory principles, clearly show-
ing the segregation of categories of CAPs associated with particular
genomic states, including promoters and enhancers, and uncovering
DNA sequence motifs at the majority of HOT regions that would have
beenimpossible with fewer CAPs assayed.

Thelarge number of CAPs assayed provided the capacity to identify
and study regions of the genome associated with very high numbers
of CAPs, compared with expectations from detailed work on specific
enhancer complexes such as the interferon enhanceosome®. Multiple
lines of evidence argue that, asagroup, the regions at which high num-
bers of CAPs were detected are neither biological noise associated with
general open chromatin nor ChIP-seq or CETCh-seq artefacts. HOT
regions have been previously described as being depleted of TF motif's,

butwe suggest that this was likely to be because earlier analyses lacked
alarge enough sampling of key TFs with strong ‘anchoring’ motifs. We
propose amodelinwhich HOT regions are nucleated by anchoring DNA
motifs and their cognate TFs. They would formacore, withwhich many
other CAPs associate by presumed protein—-proteininteractions, pro-
tein-RNA interactions, and relatively weak DNA interactions at poorer
sequence-motif matches. Extensive apparent co-occupancy at domains
possessing few or no anchor motifs can potentially be explained when
the ChIP assay captures, through assumed protein-protein fixation,
non-adjacent DNA regions that associate with each other by looping
interactions.

It isimportant to appreciate that the standard ChIP assay is per-
formed on populations of large numbers of cells. Patterns of compu-
tational co-occupancy cannot discriminate between the simultaneous
association of many CAPs in a single large molecular complex and
diversified smaller complexes that are distributed at any given time
across the cell population, with each containing a smaller number of
secondary associations, which sumto give massive computational co-
occupancy. We can, however, state that atindividual known transcrip-
tional enhancers with more than 70 CAPs, the ChIP signal for identified
anchor factors was significantly higher in magnitude thanatenhancers
with fewer CAPs.

The results thus far argue that a fully comprehensive catalogue of
all CAPs will help us to distinguish among these possibilities, which are
not mutually exclusive. Completeness should also contribute to the
identification of additional novel motifs, and, in the cases of indirect
motifs found for TFs with known direct motifs, allow more accurate
motif calling. Inaddition, acomplete catalogue of CAPsinasingle cell
type will support theimputation of critical contacts in CAP networks for
three-dimensional assembly of genomic enhancer-promoter organi-
zation that is not possible from a few individual CAP binding maps,
as demonstrated by our findings regarding the NuRD complex. The
ENCODE Project continues to produce additional occupancy maps
and to expand cellular contexts for these assays. We anticipate more
large-scale analyses such as this, and hope that the perspectives gained
fromthese willinform more targeted research endeavours and gener-
ate meaningful hypotheses.
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Methods

ChIP-seqand CETCh-seq

All protocols for ChIP-seq and CETCh-seq have been previously pub-
lished and are available at the ENCODE web portal (https://www.enco-
deproject.org/documents/). Inbrief, HepG2 cells were obtained from
ATCC (HB-8065), confirmed by morphological observation, and tested
for mycoplasma (ThermoFisher C7028). Pools of cells were grown
separately to represent replicate experiments. Crosslinking of cells
was performed with 1% formaldehyde for 10 min at room temperature
and the chromatin was sheared using a Bioruptor Twin instrument
(Diagenode). Antibody characterization standards are published on
the ENCODE web portal and consist of a primary validation (western
blot orimmunoprecipitation-western blot) and a secondary valida-
tion (immunoprecipitation followed by mass spectrometry) for tradi-
tional antibody ChIP-seq. With CETCh-seq experiments, amolecular
validation (PCR or Sanger sequencing confirmation of edited genes)
in addition to one of the immunological validations (western blot,
immunoprecipitation-western blot, or immunoprecipitation-mass
spectrometry)isrequired for release. Raw fastq data were downloaded
from the publicly available ENCODE Data Coordination Center, and
aligned to the human reference genome (hgl9) using the BWA-0.7.12
(Burrows Wheeler Aligner) alignment algorithm®*, Post-alignment filter-
ing steps were carried out using samtools-1.3% with MAPQ threshold
of 30, and duplicate removal was performed using picard-tools-1.88
(http://broadinstitute.github.io/picard/). After filtering, each CAP’s
genome-wide binding sites (peak enrichment) were computed using
phantompeakqualtools, implementing the SPP algorithm*®*>, with
replicate consistency and peak ranking determined by irreproduc-
ible discovery rate (IDR) using the IDR-2.0.2 tool*® to generate narrow
peaks passing IDR cutoff 0.02 (soft-idr-threshold). ENCODE blacklisted
regions (wgEncodeDacMapabilityConsensusExcludable.bed.gz, down-
loadable from the UCSC genome browser at https://genome.ucsc.edu/)
were filtered out. In addition, we note that plasmids used to generate
edited cells with epitope-tagged CAPs have been deposited to Addgene,
the non-profit plasmid repository,and are available for researchers to
tag particular CAPsinother celllines of interest. We also note that the
GC content of DNA has been reported as a source of bias in ChIP-seq
data, leading to over-representation of TFBSs and false positive peak
calls, which could confound subsequent analyses®*°. To address this
concern, we performed ChIP-seq experiments in unedited cell lines
using the FLAG antibody (SigmaF1804) that we usein CETCh-seq, and
used these libraries as background for peak calling. In these experi-
ments, the only variableis the edited cell line used as foreground, and
most biases should be accounted for.

De novo sequence motif analysis

To identify enriched sequence motifs in the binding sites of CAPs,
denovo sequence motifand motif enrichment analysis were performed
using the MEME-ChIP*° suite and the pipeline was built as previously
described®, on 500-bp regions centred on peak summits based on
the hgl9 reference genome fasta. The top five motifs per data set
were reported from the top 500 peaks based on signal value, using
2x random/null sequence with matched size, GC content and repeat
fraction as a background. Central motif enrichment analysis was per-
formed using Centrimo®, to infer the most centrally enriched motifs
with de novo motifs generated from the pipeline against the 2x null
sequence background.

Comparative motif analysis

De novo motifs generated from CAPs were filtered for high-confi-
dence motifs, including only those that were highly significant and
strongly enriched in binding sites, based on MEME E<1x1075, Centrimo
E<1x107°and Centrimo binwidth <150. High confidence motifs were
then compared, and quantified for similarity against the previously

derived or known motifs available in the CIS-BP build 1.02 and JASPAR
2016/2018 databases®*?® using the Tomtom quantification tool®.
Tomtom E-values <0.05 represent highly similar motifs, and >0.05
represent motifs with increasing magnitude of dissimilarity, or more
distantly related motif's.

Gene expression

RNA-seq quantification data for 56 cell lines and 37 tissues were
retrieved from the Human Protein Atlas (version 17, downloadable
from https://www.proteinatlas.org/)*, and used to identify 57 genes
that were highly and specifically expressed in liver as compared to all
other cell and tissue types, and also found in HepG2 cells with at least
10 TPM. On average, these 57 liver-specific genes were 151.21 times
more highly expressed thanin any other cell type.

IDEAS segmentation

IDEAS segmentation for six cell-types (HepG2, GM12878, HIhESC,
HUVEC, HeLaS3, and K562) were collected from the Penn State Genome
Browser (http://main.genome-browser.bx.psu.edu/). All promoter-like
and enhancer-like regions identified in at least one of five other cell
lines were merged using pybedtools®** and these regions were filtered
fromthe HepG2 segmentation. Significant enrichment of CAPsinthe
cis-regulatory regions was evaluated using Fisher’s exact test (adjusted
P<0.001, BH FDR corrected) against random or null sequences with
matched length, GC content and repeat fraction using null sequence
python script from Kmer-SVM®. Heat maps were generated using the
heatmap.2 function from R gplots package (https://cran.r-project.org/
web/packages/gplots/).

GREAT analysis

Cis-regulatory associated highly CAP bound sites were binned into
promoter-associated and enhancer-associated sites using IDEAS seg-
mentation. To assess the biological function and relevance of these
highly occupied sites, GREAT®® analysis was performed to predict the
function of these cis-regulatory regions (http://bejerano.stanford.edu/
great/public/html/) by associating the genomic regions to genes from
various ontologies such as GO molecular function, MSigDB and BioCyc
pathway. The parameters used for GREAT analysis were Basal+extension
(constitutive 5.0 kb upstream and 1.0 kb downstream, up to 50.0 kb
max extension) for all enhancer-associated sites, and Basal+extension
(constitutive 5.0 kb upstream and 1.0 kb downstream, up to 5.0 kb max
extension) for all promoter-associated regions with whole-genome
background. MSigDB pathway®*’® was noted for genomic region enrich-
ment analysis.

GERP analysis

Genomic evolutionary rate profiling (GERP) was performed to assess
whether highly bound cis-regulatory sites, categorized into promoter
or enhancer-associated, correlate with increased evolutionary con-
straints. A highly constrained elements bed file containing high-con-
fidence regions (significant P) generated from per base GERP scores
was retrieved from the Sidow laboratory at Stanford (http://mendel.
stanford.edu/SidowLab/downloads/gerp/). The fraction of overlap-
ping bases for each bin of the ‘CAP bound category’ (low to high) with
highly constrained elements was computed using bedtools-2.26.0% and
pandas-0.20.3, python2.7, further normalized by the fraction of ‘highly
constrained elements’ overlapping per 100-bp region of CAP bound
categories. Inaddition, the Kolmogorov-Smirnov test was performed
to evaluate statistically significant differences in distribution between
the highly bound (20+ CAP bound) and not highly bound regions (1-19
CAP bound sites) for both promoter- and enhancer-associated sites.

Co-binding analysis
Pairwise overlap of binding sites between each of the 208 CAPs was per-
formed with 50 bp up- and downstream from the summit of peaks using
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python-based pybedtools®#¢. All other computations, and the pairwise
peakoverlap percentage for each CAP to build the pairwise matrix, were
performed using pandas-0.20.3, python2.7 (Python Software Founda-
tion) to construct network plots, using R igraph, implementing the
Fruchterman Reingold algorithm. The interconnection between CAP
shared binding sites for 208 CAPs was built witha minimum threshold
of 75% or more overlap between any two CAPs. The sizes of vertices and
nodes inthe graph are representative of the number of connections
each CAP has with its connected partner, while edges represent the
degree of overlap between CAPs.

Co-binding was characterized by merging IDR-passing narrow peak
files from 208 CAPs with the ‘merge’ function from the bedtools soft-
ware package”. Aminimum of 1bp overlap was required and resultant
peaks greater than 2 kb (-1%) were filtered from downstream analy-
sis. Hierarchical clustering, using the Euclidean distance metric and
Ward clustering method, of CAPs based on degree of co-binding was
performed in R with the ‘heatmap.2’ function of the gplots package.

LS-GKM SVM analysis

Atpeaklevel, LS-GKM support vector machines (SVMs)”?were trained
on arandom sample of up to 5,000 narrow peaks (using all peaks for
those with fewer) as a positive set against 10x random/null sequence
with matched size, GC-content and repeat fraction as a negative set.
Atmotiflevel, LS-GKM support vector machines (SVMs)*were trained
onasample of 5,000 random motif sites found by FIMO (MEME-suite),
extending 15 bp, for all TFs (n =171), as a positive set against the 10x
random-null sequence with GC content and repeat fraction matched
sequence as a negative set.

Nullgenomic sequences matched to observed binding events were
obtained using the ‘nullseq_generate.py’ function available with the
LS-GKM package. The fold number of sequences (-x) was set to ten
and the random seed (-r) was set to 1. SVMs were trained using the
‘ekmtrain’ function with a k-mer length (-{) of 11, kernel function (-t) of
4, regularization parameter (—c) of 1, number of informative columns
(—k) of 7, and maximum number of mismatches (-d) of 3. Precision-
recall areas under the curve (PR-AUC) were calculated by obtaining the
tenfold cross-validation results from ‘gkmtrain’ (after setting the -x
flagto10), and inputting the results into the ‘pr.curve’ function of the
PRROCR package, resulting in mean PR-AUC of 0.66 at the peak level,
and 0.74 at the motiflevel. Classifier values for all bound sequences
were obtained using the ‘gkmpredict’ function, and HOT sites (n=>5,676)
were scored with each CAP to assess their putative binding affinity at
HOT regions, and percentile ranked to obtain the top 5% and bottom
75% k-mer compared to enhancers with 2-10 associated TFs (n=5,676)
and to random enhancers with any number of associated factors (0+)
(n=5,676).

Random forest and PCA analysis

PCA was performed on a CAP binding matrix composed of the pres-
ence or absence of motif in merged peaks as a binary matrix of loci,
and implementing the python-based ML library scikit-learn Sklearn
(0.19.0)7. Plots for motif-based analyses were generated using the R
package ggplot2™ and complex Heatmap”. Arandom forest classifier
was trained on merged CAP binding matrices at both motif and peak
level to predict cis-regulatory elements (promoter or enhancer, by
IDEAS annotation) using the R package ranger’®, a faster implemen-
tation of random forest in R, and also tested using Sklearn 0.19.0.
The median OOB (out-of-bag) error estimate was computed for 100
instances of randomly sampled (n=1,000) lociiterations, to compute
the element classification and misclassification accuracy using confu-
sion matrix.

Immunoprecipitation with mass spectrometry
Whole-celllysates of FLAG-tagged or unedited HepG2 cells (~20 million)
were immunoprecipitated using a primary antibody raised against

FLAG or the CAP, respectively. Theimmunoprecipitation fraction was
loaded on a12% TGX gel and separated with the Mini-PROTEAN Tetra
CellSystem (Bio-Rad). The whole lane was excised and sent to the Uni-
versity of Alabama at Birmingham Cancer Center Mass Spectrometry/
Proteomics Shared Facility. The sample was analysed ona LTQ XL Linear
lon Trap Mass Spectrometer by liquid chromatography electrospray
ionization with tandem mass spectrometry (LC-ESI-MS/MS). Pep-
tides were identified using SEQUEST tandem mass spectral analysis
with probability based matching at P < 0.05. SEQUEST results were
reported with ProteinProphet protXML Viewer (TPP v4.4 JETSTREAM)
and filtered for a minimum probability of 0.9. For ENCODE antibody
characterization standards, all protein hits that met these criteria were
reported, including common contaminants. Fold enrichment for each
protein reported was determined using a custom script based on the
FC-Bscore calculation”. Following ENCODE antibody characterization
guidelines, the CAP mustbeinthe top 20 enriched proteinsidentified
byimmunoprecipitation-MS, and the top CAP overall for release. For
GATAD2A co-associated TFs, the peptides with minimum 0.9 probability
were present in smaller quantities than those of GATAD2A.

TF footprints analysis

Toidentify TF footprints for comparison to ChIP-seqbindingsites, we
used PIQ*2. ENCODE HepG2 DNase-seq raw FASTQs (paired-end 36 bp)
of roughly equivalent size (accession numbers: ENCFFOO2EQ-G, -H, -1,
-J,-M, -N, -0, -P) were downloaded from the ENCODE portal and pro-
cessed using ENCODE DNase-seq standard pipeline (available at https://
github.com/kundajelab/atac_dnase_pipelines) with flags: -species
hg19 -nth 32 -memory 250G -dnase_seq -auto_detect_adapter -nreads
15000000 -ENCODES3. Processed BAM files were merged and used as
input for PIQ TF footprinting using each TF’s top motif position weight
matrix (PWM). Next, identified TF footprints fromevery TF that meta
specified PIQ purity (positive predictive value) were intersected with
all identified ChIP-seq binding sites using BEDtools to correlate the
number of unique TF footprints with the number of ChlP-seq factors
identified at a given ChIP-seq binding site.

SOM analysis
The SOM was trained with the SOMatic package*® using the previ-
ous chromatin analysis partitioning strategy*? with modifications as
described below. We calculated the RPKM of each data set’s first rep-
licate over each of the 951,022 genomic segments to build a training
matrix. We used each data set’s second replicate to build a separate
scoring matrix. The training matrix was used to train five trial self-
organizing maps with a toroid topology with size 40 x 60 units using 10
million time steps (-10 epochs) and selected the best, based on fitting
error using the scoring matrix, for further analysis, and segments were
assigned to their closest units based on the scoring matrix.
Toproperly fit the data, SOM units with similar profiles across experi-
ments were grouped into metaclusters using SOMatic. In brief, meta-
clustering was performed using k-means clustering of the unit profiles
to determine centroids for groups of units. Metaclusters were built
around these centroids so that all of the units in a cluster remained
connected. SOMatic’s metaclustering function attempts all meta-
cluster numbers within a range given and scores them on the basis of
Akaike information criterion (AIC)’. The penalty term for this score is
calculated using a parameter called the dimensionality, which is the
number ofindependent dimensions in the data, whichin this case are
the individual cell subtypes. To estimate this number, we used a 60%
cutonahierarchical clustering done on the SOM unit vectors. For this
work, the dimensionality was calculated to be 6. For metaclustering, all
kbetween 50 and 250, with 64 trials, were tested and metacluster num-
ber 196 had the lowest AIC score and was chosen for further analysis.
To generate decision trees for these metaclusters, each of the seg-
ments in the training matrix was labelled withits final metacluster. For
each metacluster, if the metacluster is of size n, n segments of other


https://github.com/kundajelab/atac_dnase_pipelines
https://github.com/kundajelab/atac_dnase_pipelines

clusters were chosen randomly, and this set of positive and negative
examples was split, using 80% of the examples for training and 20% for
scoring. The training data were fed through an R script using the rpart
andrattle packages to create, score, prune, and re-score a tree for each
metacluster. This entire process was repeated for 100 trials with only
the tree with the highest accuracy drawn.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Data sets generated from this study are available at the ENCODE
portal or at the Gene Expression Omnibus under accession number
GSE104247. CETCh-seqreagents are available at https://www.addgene.
org/crispr/tagging/.

Code availability

Allcodeisavailable at https://github.com/chhetribsurya/PartridgeCh-
hetri_etal.
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GATAD2A peaks (red), genes nearest sites with GATAD2A peaks but no FOXA3
peaks (blue), and GC-matched null regions for each CAP (grey). Boxes, middle
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Extended DataFig. 9 | Extensive co-associations between CAPs. a, Example
of genomic site with many associated CAPs. Each track shows aligned ChIP-seq
reads, and isslightly offset to better show peaks for each experiment.

b, Enrichment of biological pathways at HOT regions near enhancers or
promoters; Prepresents sample frequency probability. ¢, Increasing numbers
of CAPsbound at genomicsites correlate withincreased evolutionary
constraintas measured by GERP, showing incremental fraction overlap of
highly constrained elements with CAP-associated sites for both promoter
regions (red) and enhancer regions (orange). Boxes, quartiles; centreline,

median; whiskers, 1.5 xIQR.d, Increasing numbers of CAPs bound at genomic
sites (<2kbinsize) are associated with decreasing distance to nearest TSS;
boxes, middle two quartiles; centre line, median; whiskers, 1.5xIQR.

e, Increasingnumbers of CAPsbound at genomicsites (<2kbinsize) are
associated withincreasing expression of nearest gene; boxes, middle two
quartiles; centre line, median; whiskers,1.5xIQR.d, e, Left toright:
n(1)=124,074,n(2) =59,407,n(3) =19,661, n(4) =12,433,n(5-9) = 23,517,
n(10-19) =14,757,n(20-29) =7,077,n(30-39) =4,703,n(40-49) = 3,542,
n(50-69) =5,061,n(70-99) =4,655,n(>100) = 3,219, total n=282,105.
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Extended DataFig.10|See next page for caption.



Extended DataFig.10|PIQand SVM analysesin CAP co-associated regions.
a, Number of unique DNase PIQ footprints (y-axis) plotted by sites with varying
numbers of associated CAPs (x-axis), for PIQ threshold >0.7.b, Number of
unique DNase PIQ footprints (y-axis) plotted by sites with varying numbers of
associated CAPs (x-axis), for PIQ threshold >0.8. ¢, Number of unique DNase
PIQfootprints (y-axis) plotted by sites with varying numbers of associated
CAPs (x-axis), for PIQ threshold >0.9.d, Number of unique DNase PIQ footprints
(y-axis) plotted by sites with varying numbers of associated CAPs (x-axis), for
PIQthreshold >0.99.a-d, Boxes, middle two quartiles; whiskers 1.5 x IQR;
centreline, median; n(0-4) =216,496, n(4-9) =23,540,n(9-19) = 14,859, n(29-
39)=4,947,n(39-49) =3,735,n(49-70) = 5,517, n(70-100) = 3,995, n(100-
208)=1,681. e, Distribution of SVM classifier scores (y-axis) for sites with

varying numbers of associated CAPs (x-axis). The scores remain relatively
constantacross sites and are significantly higher than the scores of classifier
valuesin matched nullsites. Boxes, middle two quartiles; whiskers 1.5xIQR;
centreline, median; n(1-4) =1,814,475bins, n(5-9) = 643,997 bins,

n(10-19) = 646,453 bins, n(20-29) =330,795 bins, n(30-39) =194,981 bins,
n(40-49)=118,622bins, n(50-69) =131,167 bins, n(70-99) = 57,819 bins,
n(100+) =3,545bins, n(matched null) =9,597,800 bins. f, SVM PR-AUC scores
for non-TFs (chromatin regulators and cofactors; CR/CF) and for TFs at motif-
level mean PR-AUC (0.74). g, SVM PR-AUC scores for non-TFs (chromatin
regulators and cofactors) and for TFs at motif-level mean PR-AUC (0.66).

f,g, Boxes, middle two quartiles; whiskers 1.5 x IQR; centre line, median;
n(CR/CF)=37,n(DBF)=171.
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Extended DataFig.11|SVM and motifanalysesin HOT sites. a, Number of
sites (y-axis) by measured number of TFs (x-axis) with classifier valuesin the
top 5% of all classifier values (blue) or with classifier values in the bottom 75% of
all classifier values (red) in highly bound regions, based on SVM scores of factor
peaksassociated with highly bound regions. b, Number of sites (y-axis) by
measured number of TFs (x-axis) with classifier valuesin the top 5% of all
classifier values (blue) or with classifier values in the bottom 75% of all classifier
values (red),in HOT sites with >70 associated TFs. ¢, Number of sites (y-axis) by
measured number of TFs (x-axis) with classifier valuesin the top 5% of all
classifier values (blue) or with classifier values in the bottom 75% of all classifier
values (red), insites with 2-10 associated TFs.d, Number of sites (y-axis) by
measured number of TFs (x-axis) with classifier valuesin the top 5% of all
classifier values (blue) or with classifier values in the bottom 75% of all classifier

values (red), inarandom set of enhancers with any number of associated TFs
(0+). e, Degree of motifenrichmentin highly bound regions for all HepG2-
expressed TFs with available motifs (n=365) for top three motifs enriched in
highly bound sites with 50+ CAPs (highest P=3.9 x107*°). f, Degree of motif
enrichmentin highly bound regions for all HepG2-expressed TFs with available
motifs (n=365) for top three motifsin enhancers with 2-10 CAPs (highest
P=1.8x107").g, Degree of motif enrichmentin highly bound regions for all
HepG2-expressed TFs with available motifs (n=365) for top motifin random
genome enhancers with 0+ CAPs (highest P=6.9 x107). h, Distribution of all
SVM scores (y-axis) for HOT sites with >70 associated CAPs (red), for sites with
2-10 associated CAPs (green), and for random enhancer sites with 0+ CAPs
(blue). i, Pie chart showing fraction of HOT sites in which each TF has the
highest SVM classifier value, indicating the strongest motif present.
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A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

X

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

OO0 O 0O OX O 10
X

X X X

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection No software was used for data collection.
Data analysis Python v3.5
R v3.5

Shell Env (unix, bash)
boost C++ libraries
bwa v0.7.12
bowtie2 v2.1.0
sppv1.10.1

idr v2.0.2

meme v4.11.4
centrimo v4.11.4
tomtom v4.11.4
samtools v1.3
bedtools2 v2.20.0
fimo v4.11.4
phantompeakqualtools v2.0
picard-tools v1.88
trim_galore v0.3.7
cutadapt v1.16
fastqc v0.10.1
deeptools v3.0.0
kmersvm; gkmSVM v2.0
pybedtools v0.7.10
pandas v0.20.3
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numpy v1.14.0

scipy v0.19.1

scikit-learn v0.19.0

ggplot2 v3.1.0; gplots v3.0.1

dplyr v0.7.5; gtools v3.0.1

ranger v0.10.1

ComplexHeatmap v1.18.0

circlize v0.4.3

igraph v1.2.1

GraphPad Prism 8 for macOS v.8.3.0
Rv.3.3.2

All code available at https://github.com/chhetribsurya/PartridgeChhetri_etal

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

All data are available at the ENCODE portal (encodeproject.org) or at Gene Expression Omnibus under accession number GSE104247.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.
[X Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to predetermine sample size.

Data exclusions  No data were excluded.

Replication Replicate structure of ChIP/CETCh-seq experiments are described in the manuscript. Traditional antibody ChIP-seq experiments were
replicated in separate grow-ups of cells, IPed separately; these are biological replicates and technical replicates for growth, crosslinking, IP,
and sequencing library construction. CETCh-seq experiments were replicated at the point of nucleofection of CRISPR components, where cells
are split in two equal amounts directly after nucleofection; since these represent separate pools of pre-edited cells, these are biological
replicates and technical replicates for growth, crosslinking, IP, and sequencing library construction. Final data is composed of IDR-passed
reproducible reads from both experimental replicates.

Randomization  The experiments were not randomized.

Blinding The investigators were not blinded to allocation during experiments and outcome assessment.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.
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Materials & experimental systems Methods

>

n/a | Involved in the study n/a | Involved in the study %
[ ]|PX] Antibodies [ 1IX] chiP-seq )
[ ]IX] Eukaryotic cell lines X[ ] Flow cytometry %
X]|[ ] Palaeontology XI|[ ] MRI-based neuroimaging %
XI|[ ] Animals and other organisms =
XI|[ ] Human research participants 3
X[ ] clinical data _8
=

>

. . LQ
Antibodies e
=)

Antibodies used BACH1,sc-14700,E1503,Santa Cruz Biotech,5 ug per 2e7 cells; 3
CUX1,sc-6327,E0709,Santa Cruz Biotech,5 ug per 2e7 cells; <

<

SIN3B,sc-13145,B2802,Santa Cruz Biotech,5 ug per 2e7 cells;
KAT2B,3378S,1,Cell Signaling,5 ug per 2e7 cells;
POLR2AphosphoS2,ab5095,GR32890-1,Abcam,5 ug per 2e7 cells;
RFX5,200-401-194,14562,Rockland,5 ug per 2e7 cells;
SMC3,ab9263,963667,Abcam,5 ug per 2e7 cells;
FOS,sc-7202,K0810,Santa Cruz Biotech,5 ug per 2e7 cells;
HCFC1,NB100-68209,A1,Novus,5 ug per 2e7 cells;
MXI1,AF4185,21J0107031,RD Systems,5 ug per 2e7 cells;
TBL1XR1,ab24550,GR340121,Abcam,5 ug per 2e7 cells;
ZNF384,HPA004051,A57874,Sigma,5 ug per 2e7 cells;
ZNF143,16618-1-AP,8059,Proteintech,5 ug per 2e7 cells;
JUN,sc-1694,C2206,Santa Cruz Biotech,5 ug per 2e7 cells;
RCOR1,sc-30189,C0806,Santa Cruz Biotech,5 ug per 2e7 cells;
CHD2,ab68301,762356,Abcam,5 ug per 2e7 cells;
SUZ12,37378F,4,Cell Signaling,5 ug per 2e7 cells;
IRF3,5¢c-9082,10908,Santa Cruz Biotech,5 ug per 2e7 cells;
BHLHE40,NB100-1800,A1,Novus,5 ug per 2e7 cells;
ARID3A,NB100-279,A1,Novus,5 ug per 2e7 cells;
BRCA1,A300-000A,2,Bethyl Labs,5 ug per 2e7 cells;
NFE2L2,s¢c-13032,A1711,Santa Cruz Biotech,5 ug per 2e7 cells;
JUND,sc-74,unknown,Santa Cruz Biotech,5 ug per 2e7 cells;
CEBPZ,SAB2100398,0C8343,Sigma,5 ug per 2e7 cells;
TBP,ab62126,unknown,Sigma,5 ug per 2e7 cells;
POLR2A,MMS-126R,14861301,Covance,5 ug per 2e7 cells;
MAFF,M8194,125K4837,Sigma,5 ug per 2e7 cells;
HSF1,sc-9144,unknown,Santa Cruz Biotech,5 ug per 2e7 cells;
SREBF1,5c-8984,10211,Santa Cruz Biotech,5 ug per 2e7 cells;
MAFK,ab50322,904274,Abcam,5 ug per 2e7 cells;
MAZ,ab85725,GR41711-2,Abcam,5 ug per 2e7 cells;
NR3C1,sc-1002,10310,Santa Cruz Biotech,5 ug per 2e7 cells;
ESRRA,sc-66882,A0809,Santa Cruz Biotech,5 ug per 2e7 cells;
CEBPB,sc-150,11010,Santa Cruz Biotech,5 ug per 2e7 cells;
BMI1,unknown,unknown,unknown,unknown;
RING1,unknown,unknown,unknown,unknown;
KDMG6A,unknown,unknown,unknown,unknown;
BRD4,A301-985A50,3,Bethyl Labs,5 ug per 2e7 cells;
EZH2,39875,27210001,Active Motif,5 ug per 2e7 cells;
ASH2L,A300-489A,2,Bethyl Labs,5 ug per 2e7 cells;
KDM1A,A300-215A,1,Bethyl Labs,5 ug per 2e7 cells;
NR2C2,TR4,unknown,James Engel,5 ug per 2e7 cells;
ZNF274,H00010782-A01,060729QCS1,Abnova,5 ug per 2e7 cells;
TCF7L2,2569,2,Cell Signaling,5 ug per 2e7 cells;
MYC,sc-764,H0107,Santa Cruz Biotech,5 ug per 2e7 cells;
TAF1,sc-735,K0905,Santa Cruz Biotech,5 ug per 2e7 cells;
USF1,sc-229,A2109,Santa Cruz Biotech,5 ug per 2e7 cells;
SIN3A,sc-994,F1005,Santa Cruz Biotech,5 ug per 2e7 cells;
FOSL2,sc-604,unknown,Santa Cruz Biotech,5 ug per 2e7 cells;
RXRA,sc-553,C1811,Santa Cruz Biotech,5 ug per 2e7 cells;
TCF12,s¢c-357,F2305,Santa Cruz Biotech,5 ug per 2e7 cells;
POLR2AphosphoS5,ab5408,648628,Abcam,5 ug per 2e7 cells;
HNF4A,sc-8987,G1309,Santa Cruz Biotech,5 ug per 2e7 cells;
FOXA1,sc-6553,H1209,Santa Cruz Biotech,5 ug per 2e7 cells;
YY1,sc-281,B1010,Santa Cruz Biotech,5 ug per 2e7 cells;
ATF3,sc-188,E1410,Santa Cruz Biotech,5 ug per 2e7 cells;
SRF,sc-335,F3006,Santa Cruz Biotech,5 ug per 2e7 cells;
CTCF,sc-5916,F2906,Santa Cruz Biotech,5 ug per 2e7 cells;
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HDAC2,s5c-6296,G0307,Santa Cruz Biotech,5 ug per 2e7 cells;
HNF4G,sc-6558,1299,Santa Cruz Biotech,5 ug per 2e7 cells;
EP300,sc-585,E2010,Santa Cruz Biotech,5 ug per 2e7 cells;
ZBTB33,sc-23871,10308,Santa Cruz Biotech,5 ug per 2e7 cells;
CEBPD,sc-636,C1010,Santa Cruz Biotech,5 ug per 2e7 cells;
REST,Custom,20081022MA,Anderson lab,5 ug per 2e7 cells;
SP2,sc-643,K1803,Santa Cruz Biotech,5 ug per 2e7 cells;
ZBTB7A,sc-34508,H2406,Santa Cruz Biotech,5 ug per 2e7 cells;
NFIC,sc-81335,L0808,Santa Cruz Biotech,5 ug per 2e7 cells;
MYBL2,sc-724,02109,Santa Cruz Biotech,5 ug per 2e7 cells;
MBD4,sc-271530,H1210,Santa Cruz Biotech,5 ug per 2e7 cells;
TEAD4,sc-101184,A1811,Santa Cruz Biotech,5 ug per 2e7 cells;
NR2F2,5¢c-271940,11410,Santa Cruz Biotech,5 ug per 2e7 cells;
MAX,sc-197,J0809,Santa Cruz Biotech,5 ug per 2e7 cells;
ZEB1,sc-25388,02010,Santa Cruz Biotech,5 ug per 2e7 cells;
FOXA2,AM39828,1720001,Active Motif,5 ug per 2e7 cells;
NR1H2,61178,29111001,Active Motif,5 ug per 2e7 cells;
TFAP4,WH0007023M3,07040-7A10,Sigma,5 ug per 2e7 cells;
ZMYM3,JH39.2.2F10,20130506-RAP,CDI,5 ug per 2¢e7 cells;
ZHX2,GTX112232,40107,GeneTex,5 ug per 2e7 cells;
ZNF189,GTX117129,40730,GeneTex,5 ug per 2e7 cells;
RUVBL1,JH39.2.1A1,20130711.YRH,CDI,5 ug per 2¢e7 cells;
PROX1,61092,14511001,Active Motif,5 ug per 2e7 cells;
SOX13,WH0009580M1,10061-3E8,Sigma,5 ug per 2e7 cells;
TCF7,WH0006932M1,11181-1D2,Sigma,5 ug per 2e7 cells;
ETV4,GTX114393,40184,Genetex,5 ug per 2e7 cells;
HNF1A,GTX113850,40135,Genetex,5 ug per 2e7 cells;
GATA4,39894,26310001,Active Motif,5 ug per 2e7 cells;
CBX1,39980,11213003,Active Motif,5 ug per 2e7 cells;
CREM,WHO0001390M2,11056-3B5,Sigma,5 ug per 2e7 cells;
NRF1,R157.1.3H3,20140422-DNF,CDI,5 ug per 2¢e7 cells;
GABPA_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
RAD21_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2¢e7 cells;
USF2,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
KLF10,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
FOX01,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
ATF1_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
CREB1_FLAG,F1804,5LBK1346V,Sigma,5 ug per 2¢e7 cells;
ATF4_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
ZNF3_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
HHEX_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
PBX2_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
ZNF219_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
MBD1_v1_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
MBD1_v2_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
DNMT3B_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
TCF25_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2¢e7 cells;
SSRP1_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
TGIF2_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
HLF_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
HBP1_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
KDM3A_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
FOXP1_FLAG,F1804,5LBK1346V,Sigma,5 ug per 2¢e7 cells;
SLC30A9_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
ZNF644_FLAG,F1804,5LBK1346V,Sigma,5 ug per 2e7 cells;
HOMEZ_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
RERE_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
SAP130_FLAG,F1804,5LBK1346V,Sigma,5 ug per 2¢e7 cells;
KLF11_FLAG,F1804,5LBK1346V,Sigma,5 ug per 2e7 cells;
KMT2B_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
NR2F6_FLAG,F1804,5LBK1346V,Sigma,5 ug per 2¢e7 cells;
ARID4B_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2¢e7 cells;
GATAD1_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2¢e7 cells;
ZNF792_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
ZNF652_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
GATAD2A_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2¢e7 cells;
NCoA2_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
TEAD1_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
NFYC_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
CEBPG_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2¢e7 cells;
KLF9_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
DRAP1_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
MLX_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
ZNF511_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
MIXL1_FLAG,F1804,5LBK1346V,Sigma,5 ug per 2¢e7 cells;
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ZSCAN9_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
NR2F1_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
TFE3_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
KAT8_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
RXRB_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
SOX5_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
KLF16_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
KLF6_v2_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
THAP11_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
FOXA3_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
ELF3_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
ZBTB26_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
TEAD3_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
GABPB1_v2_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
ERF_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
KAT7_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
MXD3_v1_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
ZNF580_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
CIZ1_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
MIER3_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
HMGXB4_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
ZGPAT_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
RARA_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
ARIDSB_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
MXD4_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
CEBPA_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
ZFP1_v1_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
NFIL3_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
SP5_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
TFDP1_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
RFXANK_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
DMAP1_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
THRB_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
PPARG_v1_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
HMG20B_v2_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
PAF1_v1_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
MIER2_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
NFIA_v1_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
RCOR2_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
GMEB2_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
ZKSCAN8_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
HMG20A_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
ZNF48_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
UBP1_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
MTA1_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
ZFP64_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
FOXK1_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
RFX3_isol_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
ZNF7_iso2_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
SOX13_isol_FLAG,F1804,5LBK1346V,Sigma,5 ug per 2e7 cells;
SMAD4_isol_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
BCL6_isol_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
ZNF331_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
THRA_isol_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
SIX4_isol_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
ZHX3_isol_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
ZNF544_isol_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
ZNF334_isol_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
ZNF281_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
NPAS2_iso2_FLAG,F1804,SLBK1346V,Sigma,5 ug per 2e7 cells;
ZSCAN29_isol_FLAG,F1804,SLBN5629V,Sigma,5 ug per 2e7 cells;
E2F7_isol_FLAG,F1804,SLBN5629V,Sigma,5 ug per 2e7 cells;
PRDM10_FLAG,F1804,SLBN5629V,Sigma,5 ug per 2e7 cells;
KDM2A_FLAG,F1804,SLBN5629V,Sigma,5 ug per 2e7 cells;
PAXIP1_isol_FLAG,F1804,SLBN5629V,Sigma,5 ug per 2e7 cells;
JARID2_isol_FLAG,F1804,SLBN5629V,Sigma,5 ug per 2e7 cells;
RREB1_iso2_FLAG,F1804,SLBN5629V,Sigma,5 ug per 2e7 cells;
ZBTB21_FLAG,F1804,SLBN5629V,Sigma,5 ug per 2e7 cells;
ZC3H4_FLAG,F1804,SLBN5629V,Sigma,5 ug per 2e7 cells;
SP1_FLAG,F1804,SLBN5629V,Sigma,5 ug per 2e7 cells;
CBX5_FLAG,F1804,SLBN5629V,Sigma,5 ug per 2e7 cells;
ZNF12_FLAG,F1804,SLBN5629V,Sigma,5 ug per 2e7 cells;
ZNF335_FLAG,F1804,SLBN5629V,Sigma,5 ug per 2e7 cells;
HMGXB3_FLAG,F1804,SLBN5629V,Sigma,5 ug per 2e7 cells;
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Validation

ZCCHC11_FLAG,F1804,SLBN5629V,Sigma,5 ug per 2e7 cells;

Primary characterization by Western blot or Immunoprecipitation/blot

For every TF ChIP-seq antibody, ENCODE data producers first perform an immunoblot
characterization. This can be either a standard Western blot, or an immunoprecipitation
followed by a Western blot ("IP Western"). If the blot results do not meet the parameters and
thresholds given below, then Primary Characterization Method 2 (IP mass spec) is performed.
In the latter case, the failed (or partially failed) immunoblot that preceded IP/mass spec is
included in the report so that researchers and data users can independently evaluate the data
for each antibody.

Immunoblot parameters:

a. ENCODE developed a set of working parameters and thresholds to identify

antibodies with a high likelihood of being specific for the target factor. The parameters

allow for modest variation in gel migration characteristics and in band number to
accommodate known behaviors of typical nuclear factors. Current acceptable

parameters are that the major band is within 20% of the size predicted by the size of the
coding region and corresponds to >50% of all bands on the gel (excluding the antibody

bands in the case of an immunoprecipitation). If the western or IP-western results meet
these criteria, we consider the antibody to meet expectations for the primary
characterization. The immunoblot results (which must include appropriate size markers)

are submitted as evidence for each cell type or tissue tested. For IP-westerns, a control

1gG precipitation is also performed and analyzed on the same gel.

b. If the antibody fails to pass the immunoblot tests because the bands observed are too
numerous, or too far from the predicted migration behavior, it can be “rescued” by a
secondary characterization that supports the conclusion that the band(s) detected
correspond to the correct protein (e.g. all bands are reduced by treatment with a specific
siRNA to that protein; see secondary characterizations).

c. If the antibody passes the immunoblot tests, a further characterization is required to
support the successful immunoblot. This can be Primary Characterization Method 2 (IP

mass spec) or any one of the Secondary Characterization methods in IB.

Primary Characterization Method 2: Immunoprecipitation followed by mass

spectrometry ("IP mass spec")

If the immunoblot characterization data was not successful (ranging from no bands to patterns
that do not meet the thresholds given above), then Mass spec of an immunoprecipitation can be
performed. The failed or ambiguous immunoblot is, however, shown as part of the antibody
characterization dataset. Because the IP/mass spec assay provides explicit evidence about the
identity of the TF detected, it can also be used in lieu of Secondary methods after a successful
Immunoblot (see flowchart above).

For TF mass spec, a cell or nuclear extract is immunoprecipitated with the same antibody used
to perform ChIP-seq. That IP is then fractionated on a denaturing polyacrylamide gel, and the
fractions are prepared and analyzed by mass spec as described below.

What is reported for IP mass spec:

¢ |P-western blot of gel image with outline of gel slices submitted for mass spec.

e All peptides (with peptide counts) from all immunoreactive bands.

¢ Fold enrichment of all peptides in the immunoreactive bands vs either mock IP or a set

of proteins that have been immunoprecipitated from the same cell type using a

collection of other antibodies from the same host species (the list of proteins used as

the set of IP contaminants list must be provided).

e Indication as to which proteins above the target protein on the ranked list (ranked by

fold enrichment) are TFs and which TFs are members of the same TF family as the

target protein.

IP mass spec requirements to be considered fully validated for ENCODE data:

e The target protein should be enriched in the IP when compared to a mock IP or to a

set of proteins that have been immunoprecipitated from the same cell type using a

collection of other antibodies from the same host species.

e The target should be in the top 25 ranked proteins and the top most-enriched TF (by

fold enrichment) in the immunoreactive band, unless the higher ranked TFs are known
interacting partners of the target TF and/or a known interacting partner of one of the

other higher ranked TFs that is a known partner of the target TF. Evidence for

interaction can come from publications or refer to records in interaction databases

such as BioGRID, or other sources..

¢ The target should be the top ranked member of that family of TFs (exceptions will be
allowed if a publication is provided that demonstrates that a higher ranked family

member is known to dimerize with the target protein).

e In situations for which the target protein has O peptides in the mock IP, a ranking by
enrichment can not be performed. In that case, the following criteria are used:

o If the target TF is the top TF as ranked by number of detected peptides, then the antibody passes this characterization method.

o If the target TF is not the top TF but the TFs having more counts have previously been documented to be in the same complex
and/or interact directly with the target TF, then the antibody passes this characterization method.

e |f the target TF is not the top TF but the non-target TFs (having a greater number of detected peptides) were detected using
mass spec analysis of two different 4 antibodies to the target TF, then the antibody passes this characterization method (with
the assumption that the other TFs are bona fide interacting TFs that have not yet been documented in the literature).

o |f the target TF is not the top TF and the TFs having more counts have never been linked to the target TF then this antibody is
flagged, with the explanation that enrichment could not be determined due to the lack of detected peptides in the IgG and that
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no published data exists linking the target to the non-target TFs.

e |f an antibody doesn’t meet these characteristics, the antibody characterization
document can be submitted for consideration as a special request (see Note 3).

Additional situations for Primary Characterization

a. Guidelines for using the same lot number of a previously characterized antibody in a

new cell type

If a specific lot number for an antibody has previously passed characterization in another cell
type, and if the banding pattern on the immunoblot or immunoprecipitation is the same in the
new cell type as in the characterized cell type, then no further characterization is needed for the
antibody in that new cell type. If the banding pattern is different in the new cell type, a secondary
characterization is performed in the new cell type. Exceptions to this guideline will be
considered for studies of human tissues (due to the fact that it is often hard to obtain sufficient
tissue for the antibody characterization and a ChIP-seq experiment). If an antibody has passed
characterization criteria in 2 different human cell lines and/or tissues, it does not have to be
characterized in each tissue type.

b. Guidelines for using a different lot number of a previously characterized antibody

For the first time that a new lot number is used for a previously-characterized antibody, a
Primary Characterization method (immunoblot or IP mass spec) is performed with one of the
same cell types used to characterize the previous lot number plus the cell type for which ChiPseq
data will be deposited for the new lot number; the ENCODE antibody accession number of

the specific previously characterized lot that should be used for comparison is indicated. If the
patterns for the new lot number are the same in the previously characterized cell type and in the
cell type for which ChIP-seq data will be deposited as shown in the characterization of the
original lot number of that antibody, then no further characterization is required. If the banding
patterns are different, a secondary characterization is performed. Exceptions to this guideline
will be considered for analysis of tissues with antibodies that have been well-characterized and
used extensively by the field (e.g a monoclonal antibody to RNAPII). In this case, if a previous

lot number of an antibody has passed characterization criteria in 2 different human cell lines
and/or tissues, the new lot number does not have to be characterized in each tissue type.

Other primary characterization methods. If other methods not specified above

are used for primary characterization of an antibody, the antibody characterization document

is submitted as a special request and is so annotated and flagged.

IB. Secondary Characterization Methods. These methods are used to support

and clarify the Immunoblot data. In particular, they aim to verify that a band or bands observed
on the prior blot correspond to the intended TF. At least one successful Secondary
Characterization (or alternatively IP/Mass spec as shown in figure 1 above) is required to
support a successful Western or IP/Western.

Secondary Characterization Method 1: siRNA or shRNA against the mRNA of the

target protein

For siRNA or shRNA knockdown characterization, the band(s) detected by the antibody on a
western blot should be reduced by at least 50% of the control signal. These methods are
especially intended to address instances where the Western or IP Western data give multiple
bands and unpredicted migration patterns. The sequence or vendor and catalog number of the
oligonucleotide(s) reagent should be provided. A control knockdown should also be performed.
Cell types will be labeled and size markers should be included on the immunoblot. A brief
description of the transfection protocol will also be provided.

Secondary Characterization Method 2: ChIP-seq data from a previously

characterized antibody

If ChIP-seq data for a different lot number of a previously characterized antibody or a previously
characterized, but different, antibody for a given transcriptional regulator is available, this ChIPseq
data can be used to evaluate a new antibody or new lot number. The ChIP-seq data from

the new antibody or new lot number are compared to the previous ChIP-seq using IDR. If the
two datasets pass the ENCODE IDR cuts-offs for narrow peak ChIP-seq reproducibility (see
below for current IDR standards), then the secondary characterization of the new antibody/lot
number is scored as successful. For data submission, the specific antibody lot and ChIP-seq

data used for the comparison are identified by their ENCODE antibody and experiment
accessions, respectively. In a similar way, ChIP-seq data obtained using an endogenous
epitope-tagged version of the target protein can be used for comparison.

Secondary Characterization Method 3: Expression patterns of an epitope-tagged

transcription factor

Especially useful for TFs that are resistant to knockdown using shRNA or siRNAs (e.g. very

stable proteins) is a secondary characterization method that involves comparison to
overexpressed or endogenously epitope-tagged TF proteins. In this case, the primary
characterization of the TF antibody must first show the appropriate specificity on the western or
IP-western. Then, two side-by-side immunoblots can be performed using control cells and cells
expressing the tagged-factor. The first immunoblot employs the antibody to the tag to show the
position of the exogenous factor band(s) and the second immunoblot employs the antibody to
the endogenous factor to show that the band(s) in the control and ectopically expressing cases
correspond.

Secondary Characterization Method 4: Motif analysis
Motif enrichment for antibody characterization requires pre-existing information about the DNA
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sequence to which the factor binds. Enrichment of a known motif for a target TF in a ChIP
experiment is evidence that the antibody does in fact recognize the target TF.

Motif enrichment can be used as a validation method for antibodies that meet the following
criteria:

i. The antibody under consideration binds a sequence-specific transcription factor

ii. The DNA motif sequence bound by the transcription factor has been previously wellcharacterized
by either in vitro or in vivo experiments

iii. The antibody is raised to a unique region of the transcription factor (in relation to other
TFs in the same family)

Motif analysis can be performed using high-quality peaks (0.01 IDR cut off) from the ChIP
experiment. Proper use of motif enrichment analysis for antibody validation should include
metrics indicative of:

i. Global Enrichment z-score: Enrichment of the motif sequence in the ChIP peak over
shuffled randomized motifs of the same sequence composition

ii. Positional Bias z-score: A measure of the distance of the motif to the peak center

iii. Peak Rank Bias z-score: A measure of the distribution of the motif in peaks ranked by
ChIP intensity

The mean of these three z-scores is used in computing the final enrichment rank among 282
motif groups, as well as the “accept probability”. The “accept probability” is a combined metric
that measures confidence in the antibody under investigation being of high quality for ChIP
experiments. An accept probability greater that 0.6 is the current criteria for accepting an
antibody as passing secondary characterization by motif enrichment (see note 4)..

The Characterization report where Motif enrichment is used for antibody secondary validations
includes:

i. The ENCODE DCC file identifiers for the peaks files (.bed files) used in the analysis

ii. A brief description of the analysis method and a reference to the standards documents

ii. The accept probability score from the motif analysis pipeline

iv. The identified motif (PWM) and its enrichment rank

v. The positional bias score as well as the peak rank score

Motif analysis cannot be used when:

i. The transcription factor does not bind in a sequence-specific manner

ii. There is no information for the DNA motif bound by the TF

iii. When it has been shown that the TF bind to DNA indirectly by interacting with other
proteins that directly bind DNA

Because transcription factors are recruited by multiple mechanisms, failure of a data set to meet
the motif enrichment criteria does not indicate poor antibody quality or poor data quality. Such
antibodies can be validated using other Secondary Characterization methods.

Additional notes on methods for antibody characterization:

1. These methods refer to characterization of antibodies that recognize endogenously
expressed proteins. The requirements for characterization of antibodies that recognize
epitope-tagged proteins are described elsewhere.

2. Current IDR standards for a narrow-peak ChIP-seq dataset are: Rescue Ratio RR_new = |

Np UNt | /| Np ~ Nt | Self consistency ratio SR_new = | NTUN2 | /| N1 A N2 | where ~ =
intersection (common) of 2 peak sets U = union (merge) of 2 peaks sets

If (R_new >2) AND (SR_new > 2) then the replicates are proclaimed to have low reproducibility
(failed) and flagged with -1 quality score If (RR_new > 2) OR (SR_new > 2) but not both, then
the replicates are proclaimed to have moderate reproducibility (passed) and flagged with a 0
quality score If (RR_new <= 2) AND (SR_new <= 2) then the replicates are proclaimed to

have high reproducibility (passed) and flagged with +1 quality score.

3. Scientists within and outside ENCODE have learned over time that some antibodies that
perform well in ChIP assays nevertheless fail to pass the conventional tests that comprise
primary and secondary analyses. Therefore, exceptions to the basic characterization can be
considered for such cases. The antibody characterization review committee together with the
ENCODE Production Pls, will consider these on a case by case basis. Datasets using such
reagents, referred to as “exempt” antibodies, will be flagged in the ENCODE data.

Guidelines for ENCODE Epitope-tagged transcription factor ChIP-seq

ENCODE uses a variety of methods to characterize tagged TFs in ChIP-seq experiments, and
these methods are categorized as being either genomic characterizations (to ensure the correct
locus of interest was tagged properly), or immunological characterizations (to ensure the
antibody recognizes the epitope-tagged protein) Typically, one form of the experiments listed
under part A (Genomic DNA Characterization) and one form of the experiments listed under part
B (Immunocharacterization) is used for a given TF.

A. Genomic DNA characterization (A-1 or A-2 should be performed)

The experimental design relies on correct integration of the epitope tag sequence into genomic
DNA of the recipient cell line. One of the following genomic characterizations is performed:

A-1. PCR analysis

PCR is used to verify the presence of the intended integrated sequence at the intended site of
integration. PCR primers are designed such that the amplification product is generated only if
the epitope tag is integrated correctly in the genomic DNA. In this design, one primer is selected
to anneal outside the region used for the homology-directed repair (the mechanism used for
integration), and one primer is located inside the tag sequence.

A-2. DNA sequencing of integrated tag segment
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Genomic DNA is used to show epitope-tag integration at the designed target site. Sanger or
next-generation DNA sequencing of genomic DNA showing correct integration of the tag
sequence is performed for this determination.

What is reported for Genomic Characterizations:

A gel image of the PCR reaction products with a DNA sizing ladder. A negative control sample
(amplification from wild-type DNA) should be included if available. The expected size should be
indicated, along with the PCR primer sequences and thermocycling conditions used to generate
the products. For sequencing data, an electropherogram (Sanger sequence trace) or genome
browser screenshot with an indication of the integration region within the wild-type genomic
DNA.

Genomic Characterization requirements to be considered fully validated for ENCODE

data:

Ideally for PCR and sequencing data, results from both replicates should be represented. If,
however, only one replicate is present or passes genomic validation, then a passing grade can
be assigned if both replicates passed IDR from ChIP-seq.

B. Immunocharacterization (B-1 or B2 should be performed)

The epitope-tagged ChIP-seq experiment relies on a well-characterized antibody raised against
the epitope tag. Immunological characterization of the antibody in each parental target cell
population or type, prior to introduction of the tag, is performed. This characterization is used to
detect any significant off-target ChlIP signals due to cross-reactivity of the antibody with proteins
other than the designed tagged protein. Epitope-tagged cell immunocharacterization is done by
performing one of the methods below (B-1 or B-2).

B-1. Immunoblot (Western blot) or Immunoprecipitation blot (IP-Western blot)

It is preferred that the antibody used for the blots is the same one as used in the ChIP-seq
experiment. However, it is recognized that antibodies differ in their ability to detect denatured
and native proteins. Therefore, if necessary, another antibody raised against the epitope tag can
be used for the Western blot. A band (or bands) corresponding to predicted migration for the
epitope tagged protein (or multiple forms, if they are predicted) should be visible when
comparing the epitope-tagged cell line versus the “wild-type” cell line. The background control
for immunocharacterization is the “wild type” cell line without a tag integration event. This control
experiment is performed at least once for each parental cell line that is used.

What is reported for Immunoblot or Immunoprecipitation blot (IP-Western blot):

An image of the blot/gel showing affinity of the antibody for the epitope-tagged protein from
either cell lysates (immunoblot) or immunoprecipitated proteins from cell lysates
(immunoprecipitation blot). A protein sizing ladder should be included as well as a description of
the blotting method and conditions for immunostaining. For immunoprecipitation blots, the
antibodies used for both immunoprecipitation and visualization should be indicated. The
expected size of the tagged target protein should be indicated as well as other bands that might
correspond to either lower size degradation products or putative post-translational modifications.
Immunoblot or Immunoprecipitation blot requirements to be considered fully validated

for ENCODE data:

The protein band of interest must be within 20% of the size predicted by the coding region. If the
Western blot or IP-Western blot result meets this criteria, we consider the engineered cell line to
meet expectations. If however, protein sizes do not match expected sizes which include the

tag, then Western blots with native antibodies from commercial vendors can be used for
compliance if the sizes are equivalent. Protein modifications and degradation products are
known to complicate the sizing and intensity of bands, therefore, all instances must be
thoroughly explained in the corresponding captions so that users of the data are made aware.
B-2. Immunoprecipitation followed by mass spectrometry

A cell or nuclear extract from cells expressing the tagged protein is immunoprecipitated with the
same antibody used to perform ChIP-seq. These characterizations should be performed using
the same lot number of antibody as used in the reported ChIP-seq experiments. The IP product
is then fractionated on a denaturing polyacrylamide gel, and the fractions are prepared and
analyzed by mass spec as described below.

What is reported for IP mass spec:

An IP-Western blot gel image with an outline of gel slices that were submitted for mass spec
should be reported. If, however, the entire IP was used for the mass spec analysis, a Western
blot or IP-Western blot image is not required. A list of all peptides (with peptide counts) from all
immunoreactive bands should be presented in tabular format. Fold enrichment of all the
peptides in the immunoreactive bands vs either mock IP or a set of proteins that have been
immunoprecipitated from the same cell type using a collection of other antibodies from the same
host species (the list of proteins used as the set of IP contaminants list must be provided)

should also be determined.

IP mass spec requirements to be considered fully validated for ENCODE data:

The target protein should be enriched within the top 20 ranked proteins in the IP when
compared to a mock IP or to a set of proteins that have been immunoprecipitated from the same
cell type using a collection of other antibodies from the same host species. Ideally, the target

TF would represent the highest ranking TF within this enrichment. If it is not however, then the
production lab should indicate potential complexes or interacting partners (if known) that have
co-immunoprecipitated with their target TF or provide an appropriate audit if the ChIP-seq data
is deemed of high quality. In situations involving mock IPs for which the target protein has 0
peptides in the mock IP, a ranking by enrichment cannot be performed. In this case, the
following criteria are considered for validation: the target TF is the top TF present as ranked by
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Eukaryotic cell lines

the number of detected peptides or, the target TF is not the top TF ranked by peptide counts but
is documented to be in a complex or have interactions with the other TFs having more counts.
For situations where the target TF is not the top TF and there are no documented instances of
interactions with other TFs having more counts, then an audit is assigned with the explanation
that the enrichment could not be determined due to the lack of detected peptides in the I1gG
control and that no published data exists linking the target to the non-target TFs.

EXCEPTIONS

We realize that, in some cases, situations may arise in which antibodies or tagged factor lines
do not pass the above standards, but the data producers feel that the datasets should be made
available to users. Often there is data from other sources that support a ChIP-seq dataset that
has not passed both A and B standards. Examples include the same epitope tagging reagents
having passed in another cell type, or a high overlap of peaks to an antibody based dataset in
the same cell type, or a highly similar motif found to one previously published for that factor.
Therefore, exceptions to these characterization standards are considered for special cases. The
antibody characterization review committee of the ENCODE Consortium will consider each
special request. If an exception is granted, the datasets using these “exempt” antibodies will be
flagged in the ENCODE datasets.

Policy information about cell lines

Cell line source(s)
Authentication

Mycoplasma contamination

Commonly misidentified lines
(See ICLAC register)

ChlIP-seq

HepG2 - ATCC - HB-8065
Phenotypic characterization.
Cells are routinely tested for Mycoplasma contamination. All tests were negative.

HepG2 is not listed as being commonly misidentified.

Data deposition
PX] Confirm that both raw and

final processed data have been deposited in a public database such as GEO.

X] Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links
May remain private before publication.

Files in database submission

encodeproject.org
GEO: GSE104247

GSM2797484 ARID3A
GSM2797485 ARID4B
GSM2797486 ARID5B
GSM2797487 ASH2L
GSM2797488 ATF1
GSM2797489 ATF3
GSM2797490 ATF4
GSM2797491 BACH1
GSM2797492 BCL6_isol
GSM2797493 BHLHE40
GSM2797494 BMI1
GSM2797495 BRCA1
GSM2797496 BRD4
GSM2797497 CBX1
GSM2797498 CBX5
GSM2797499 CEBPA
GSM2797500 CEBPB
GSM2797501 CEBPD
GSM2797502 CEBPG
GSM2797503 CEBPZ
GSM2797504 CHD2
GSM2797505 Ciz1
GSM2797506 CREB1
GSM2797507 CREM
GSM2797508 CTCF
GSM2797509 CUX1
GSM2797510 DMAP1
GSM2797511 DNMT3B
GSM2797512 DRAP1
GSM2797513 E2F7_isol
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GSM2797514
GSM2797515
GSM2797516
GSM2797517
GSM2797518
GSM2797519
GSM2797520
GSM2797521
GSM2797522
GSM2797523
GSM2797524
GSM2797525
GSM2797526
GSM2797527
GSM2797528
GSM2797529
GSM2797530
GSM2797531
GSM2797532
GSM2797533
GSM2797534
GSM2797535
GSM2797536
GSM2797537
GSM2797538
GSM2797539
GSM2797540
GSM2797541
GSM2797542
GSM2797543
GSM2797544
GSM2797545
GSM2797546
GSM2797547
GSM2797548
GSM2797549
GSM2797550
GSM2797551
GSM2797552
GSM2797553
GSM2797554
GSM2797555
GSM2797556
GSM2797557
GSM2797558
GSM2797559
GSM2797560
GSM2797561
GSM2797562
GSM2797563
GSM2797564
GSM2797565
GSM2797566
GSM2797567
GSM2797568
GSM2797569
GSM2797570
GSM2797571
GSM2797572
GSM2797573
GSM2797574
GSM2797575
GSM2797576
GSM2797577
GSM2797578
GSM2797579
GSM2797580
GSM2797581
GSM2797582
GSM2797583
GSM2797584
GSM2797585
GSM2797586
GSM2797587
GSM2797588

ELF3
EP300
ERF
ESRRA
ETV4
EZH2
FOS
FOSL2
FOXA1
FOXA2
FOXA3
FOXK1
FOXO1
FOXP1
GABPA
GABPB1_v2
GATA4
GATAD1
GATAD2A
GMEB2
HBP1
HCFC1
HDAC2
HHEX
HLF
HMG20A
HMG20B_v2
HMGXB3
HMGXB4
HNF1A
HNF4A
HNF4G
HOMEZ
HSF1
IRF3
JARID2_isol
JUND
JUN
KAT28B
KAT7
KATS
KDM1A
KDM2A
KDM3A
KDM6A
KLF10
KLF11
KLF16
KLF6_v2
KLF9
KMT28
MAFF
MAFK
MAX
MAZ
MBD1 vl
MBD1_v2
MBD4
MIER2
MIER3
MIXLL
MLX
MTAL
MXD3_v1
MXD4
MXI1
MYBL2
MYC
NCoA2
NFE2L2
NFIA v1
NFIC
NFIL3
NFYC
NPAS2_iso2
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GSM2797589
GSM2797590
GSM2797591
GSM2797592
GSM2797593
GSM2797594
GSM2797595
GSM2797596
GSM2797597
GSM2797598
GSM2797599
GSM2797600
GSM2797601
GSM2797602
GSM2797603
GSM2797604
GSM2797605
GSM2797606
GSM2797607
GSM2797608
GSM2797609
GSM2797610
GSM2797611
GSM2797612
GSM2797613
GSM2797614
GSM2797615
GSM2797616
GSM2797617
GSM2797618
GSM2797619
GSM2797620
GSM2797621
GSM2797622
GSM2797623
GSM2797624
GSM2797625
GSM2797626
GSM2797627
GSM2797628
GSM2797629
GSM2797630
GSM2797631
GSM2797632
GSM2797633
GSM2797634
GSM2797635
GSM2797636
GSM2797637
GSM2797638
GSM2797639
GSM2797640
GSM2797641
GSM2797642
GSM2797643
GSM2797644
GSM2797645
GSM2797646
GSM2797647
GSM2797648
GSM2797649
GSM2797650
GSM2797651
GSM2797652
GSM2797653
GSM2797654
GSM2797655
GSM2797656
GSM2797657
GSM2797658
GSM2797659
GSM2797660
GSM2797661
GSM2797662
GSM2797663

NR1H2
NR2C2
NR2F1
NR2F2
NR2F6
NR3C1
NRF1
PAF1 vl
PAXIP1_ isol
PBX2
POLR2A
POLR2AphosphoS2
POLR2AphosphoS5
PPARG_v1
PRDM10
PROX1
RAD21
RARA
RCOR1
RCOR2
RERE
REST
RFX3_isol
RFX5
RFXANK
RING1
RREB1_iso2
RUVBL1
RXRA
RXRB
SAP130
SIN3A
SIN3B
SIX4_isol
SLC30A9
SMAD4_isol
SMC3
SOX13
SOX13_isol
SOX5

SP1

SP2

SP5
SREBF1
SRF
SSRP1
SuUz12
TAF1
TBL1XR1
TBP
TCF12
TCF25
TCF7
TCF7L2
TEAD1
TEAD3
TEAD4
TFAP4
TFDP1
TFE3
TGIF2
THAP11
THRA_isol
THRB
UBP1
USF1
USF2

YY1l
ZBTB21
ZBTB26
ZBTB33
ZBTB7A
ZC3H4
ZCCHC11
ZEB1
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GSM2797664 ZFP1_vl
GSM2797665 ZFP64
GSM2797666 ZGPAT
GSM2797667 ZHX2
GSM2797668 ZHX3_isol
GSM2797669 ZKSCANS8
GSM2797670 ZMYM3
GSM2797671 ZNF12
GSM2797672 ZNF143
GSM2797673 ZNF189
GSM2797674 ZNF219
GSM2797675 ZNF274
GSM2797676 ZNF281
GSM2797677 ZNF331
GSM2797678 ZNF334_isol
GSM2797679 ZNF335
GSM2797680 ZNF384
GSM2797681 ZNF3
GSM2797682 ZNF48
GSM2797683 ZNF511
GSM2797684 ZNF544_isol
GSM2797685 ZNF580
GSM2797686 ZNF644
GSM2797687 ZNF652
GSM2797688 ZNF792
GSM2797689 ZNF7_iso2
GSM2797690 ZSCAN29_isol
GSM2797691 ZSCAN9
GSM2797692 Input 1
GSM2797693 Input 2
GSM2797694 Input 3
GSM2797695 Input 4
GSM2797696 Input 5
GSM2797697 Input 6
GSM2797698 Input 7
GSM2797699 Input 8
GSM2797700 Input 9
GSM2797701 Input 10
GSM2797702 Input 11
GSM2797703 Input 12
GSM2797704 Input 13
GSM2797705 Input 14
GSM2797706 Input 15
GSM2797707 Input 16
GSM2797708 Input 17
GSM2797709 Input 18
GSM2797710 Input 19
GSM2797711 Input 20
GSM2797712 Input 21
GSM2797713 Input 22
GSM2797714 Input 23
GSM2797715 Input 24
GSM2797716 Input 25
GSM2797717 Input 26
GSM2797718 Input 27
GSM2797719 Input 28
GSM2797720 Input 29
GSM2797721 Input 30
GSM2797722 Input 31
GSM2797723 Input 32
GSM2797724 Input 33
GSM2797725 Input 34
GSM2797726 Input 35
GSM2797727 Input 36
GSM2797728 Input 37
GSM2797729 Input 38
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GSM2797730 Input 39 §
GSM2797731 Input 40 <
N
Genome browser session no longer applicable g
(e.g. UCSC)
Methodology

Replicates Duplicate experiments as described above and on ENCODE portal.




Sequencing depth
Antibodies

Peak calling parameters
Data quality

Software

Each experiment >20M reads, single end 50, single end 75, single end 100, paired end 100. Details listed on ENCODE portal.
Listed above and on ENCODE portal.

All settings described on ENCODE portal.

All validation and QC are described on the ENCODE portal.

Software listed above, described in the methods section of the manuscript, and on the ENCODE portal.
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