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ABSTRACT OF THE DISSERTATION

Mechanisms of brightness perception

by

Alan Edward Robinson

Doctor of Philosophy in Cognitive Science
University of California, San Diego, 2009

Professor Virginia de Sa, Chair

A physically identical shade of gray on a black background appears lighter than
on a white background. This tells us that apparent brightness is not simply a function of
how many photons are reflected from a surface, but depends on the surrounding context.

This dissertation investigates the mechanisms that underlie this dependence on context.

Chapter 1 presents a computational model of apparent brightness, built out of
neurally plausible components. This model uses spatial filtering with oriented difference
of Gaussians at several different scales. The output of these spatial filters is locally re-

X1



weighted to normalize the amount of energy within different scales and orientations. This
model can account for a wide range of human brightness illusions, using only simple

mechanisms. It suggests that brightness perception might be due to relatively early visual
areas, and may not require more high-level calculations (such as inferring the 3d structure

of the scene), that have been suggested by previous researchers.

If brightness perception is due to early visual areas, then we would expect it to be
quite fast. Chapter 2 presents evidence that this is correct. Perceived brightness was
measured in human participants who viewed briefly presented stimuli which were then
masked to limit the amount of perceptual processing. Subjects were able to report

brightness percepts for very brief presentations (as little as 58ms).

If brightness is computed in early visual areas, how is it represented? Chapter 3
asks if brightness is represented in a point-for-point neural map that is filled-in from the
response of small, contrast sensitive edge detector cells. Subjects adapted to illusory
flicker caused by a dynamic brightness induction stimulus, with a modulating surround
and a constant center. Flicker sensitivity was reduced when the test region was the same
size as the constant center, but not for smaller, inset regions. This suggests that brightness
induction does adapt cells along the contrast edge, but that there is no filled-in population
of brightness selective cells to adapt. This is compatible with the model presented in

chapter 1, which does not require a filling-in mechanism.

xii
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Abstract

We introduce two new low-level computational models of brightness perception that account for a wide range of brightness illusions,
including many variations on White’s Effect [Perception, 8, 1979, 413]. Our models extend Blakeslee and McCourt’s ODOG model
[Vision Research, 39, 1999, 4361], which combines multiscale oriented difference-of-Gaussian filters and response normalization. We
extend the response normalization to be more neurally plausible by constraining normalization to nearby receptive fields (models 1
and 2) and spatial frequencies (model 2), and show that both of these changes increase the effectiveness of the models at predicting bright-

ness illusions.
© 2007 Elsevier Ltd. All rights reserved.

Keywords: Brightness; White’s effect; Contrast; Computational modeling

1. Introduction

One of the properties that the human visual system
extracts is the brightness of surfaces in the visual scene.
This is likely an important early stage of visual processing
that impacts later stages, such as shape from shading, or
even object recognition, where an object must be recog-
nized independently of its illumination. It has been long
known that the perceived brightness' of a surface depends
on the brightness of neighboring surfaces. Fig. 1 shows sev-
eral examples where identical gray patches appear lighter
or darker depending on the immediate surround. These

" Corresponding author.

E-mail address: robinson@cogsci.ucsd.edu (A.E. Robinson).

! Note that the terms brightness and lightness are sometimes used
interchangeably in the literature, though many authors make the
distinction that brightness is perceived luminance, and lightness is
perceived reflectance (e.g., Gilchrist, 2006). Since the models we consider
in this paper do not distinguish between perceived luminance and
perceived reflectance, we have elected to just use the term brightness for
reasons of simplicity.

0042-6989/$ - see front matter © 2007 Elsevier Ltd. All rights reserved.
doi:10.1016/j.visres.2007.02.017

illusions show that the computation of brightness in the
visual system requires more than just measuring the
amount of light reflected from each surface. Rather, the
context, or surrounding surfaces, influences the perceived
brightness dramatically. The study of brightness percep-
tion, therefore, often concentrates on these kinds of illu-
sions as a way to infer the underlying computational
mechanism that drives brightness perception, even when
there are no perceptual errors.

There are several different theories of brightness per-
ception. These can be partitioned into high-level and
low-level theories. High-level theories suggest that the
visual scene is parsed into some kind of meaningful inter-
pretation, and that brightness errors arise as a conse-
quence of how the scene is interpreted. For instance,
anchoring theory (Gilchrist et al., 1999), uses perceptual
grouping to segment the scene into different visual frame-
works, and then scales the perceived shade of gray of sur-
faces within each framework so that the brightest surface
in each appears white, or, at the very least, brighter than
without anchoring. Another example of the high-level
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Fig. 1. Tllusions tested, all shown to scale, except for (u). Each rectangle is 32 x 32° of visual angle, except for (u) where the scale is twice as large (16 x 16°
of visual angle) and only the central portion of the illusion is shown.
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approach is Scission theory (Anderson & Winawer, 2005).
According to this theory, surfaces in a scene are split into
reflectance, transparency, and illumination layers. The
visual system then infers the most probable decomposi-
tion into these three layers. Because the decomposition
is not always correct, this theory also predicts brightness
illusions.

In contrast, low-level theories suggest that brightness
errors are caused by interactions of mechanisms in early
visual areas which respond to simple features of the image,
such as contrast edges, and that no interpretation of the
global scene is necessary to cause these errors.

Blakeslee and McCourt (1999, 2001, 2004) and Blakes-
lee, Pasieka, and McCourt (2005) have introduced and
extensively tested a low-level computational model based
on filtering by oriented difference-of-Gaussian (ODOG) fil-
ters, and then applying global response normalization to
equalize the amount of energy at each orientation across
the entire visual field. The ODOG model is a compelling
starting point because it accounts for many different illu-
sions and uses low-level mechanisms that could be, at least
in part, implemented by early visual areas, such as V1. The
normalization step in the ODOG model, however, is not
particularly neurally plausible, because it is computed
globally.

In this work, we extend the ODOG model by exploring
whether more neurally plausible normalization schemes

Table 1
Sources for illusions tested

will expand the range of illusions predicted by the model.
We show that while the normalization step in the ODOG
model is necessary to account for a family of illusions
known as White’s effect (Figs. 1a and b), which are charac-
terized by a highly non-uniform distribution of energy at
different orientations, normalization plays relatively little
role in predicting non-White’s type illusions. Furthermore,
we demonstrate that the ODOG model fails on a variation
of White’s effect that has equal energy at most orientations
when integrated across the entire image (Fig. Ic), and also
on several previously published variations of White’s effect
that have a relatively uniform energy distribution across
orientation (Figs. 1d—-m). These illusions show that the glo-
bal normalization step in the ODOG model cannot
account for all variants of White’s effect: instead, more
localized normalization schemes may be necessary. A local
model of contrast normalization also has the advantage of
being more plausible for implementation in early visual
areas such as V1.

We introduce two models that add local normalization
to the original ODOG model. The first model is locally
normalized ODOG (LODOG): instead of normalizing ori-
entation energy across the entire scene, orientation energy
is normalized within a local window spanning 4° of visual
angle. The second model is frequency-specific locally nor-
malized ODOG (FLODOG): instead of using a fixed win-
dow size, normalization is calculated separately for each

Tllusion Fig. 1 Source/original Test patch size (w x h) Strength (cd/m?)
WE-thick a Blakeslee and McCourt (1999)/White (1979) 2°%x4° 4.18
‘WE-thin-wide b Blakeslee and McCourt (1999)/White (1979) 1°%x2° 4.6
WE-dual c New 1°%2°

‘WE-Anderson d Blakeslee et al. (2005)/Anderson (2001) 1°x3° 6.43
‘WE-Howe e Blakeslee et al. (2005)/Howe (2001) 1°% 3° 0
WE-zigzag f Based on Clifford and Spehar (2003) 1°x 3°

‘WE-radial-thick-small g Based on Anstis (2003) 2°%x 4°

WE-radial-thick h Based on Anstis (2003) 2°x 4°

‘WE-radial-thin-small i Based on Anstis (2003) 1°x2°

‘WE-radial-thin j Based on Anstis (2003) 1°%2°

WE-circularl k Based on Howe (2005) 1° ring width

‘WE-circular0.5 1 Based on Howe (2005) 0.5° ring width

WE-circular0.25 m Based on Howe (2005) 0.25° ring width

Grating induction n Blakeslee and McCourt (1999)/McCourt (1982) 1° tall 6.23
SBC-large o Blakeslee and McCourt (1999) 3°%x3° 11.35
SBC-small p Blakeslee and McCourt (1999) 1°x1° 19.78
Todorovic-equal q Blakeslee and McCourt (1999)/Pessoa et al. (1998) Cross 8° long 22
Todorovic-in-large r Blakeslee and McCourt (1999)/Todorovic (1997) Cross 5.3° long 24
Todorovic-in-small s Blakeslee and McCourt (1999)/Todorovic (1997) Cross 3° long 4.4
Todorovic-out t Blakeslee and McCourt (1999)/Pessoa et al. (1998) Cross 8.7° long 1.53
Checkerboard-0.16 u Blakeslee and McCourt (2004)/DeValois and DeValois (1988) 0.156° % 0.156° 7.46
Checkerboard-0.94 \ Blakeslee and McCourt (2004)/DeValois and DeValois (1988) 0.938° % 0.938° 2.84
Checkerboard-2.1 w Blakeslee and McCourt (2004)/DeValois and DeValois (1988) 2.09° x 2.09° 5.67
Corrugated Mondrian X Blakeslee and McCourt (2001)/Adelson (1993) ~2° X ~2° 10.85
Benary cross y Blakeslee and McCourt (2001)/Benary (1924) Hypotenuse 3° 9.2
Todorovic Benary 1-2 z Blakeslee and McCourt (2001)/Todorovic (1997) Hypotenuse 3° 11.95
Todorovic Benary 3-4 z Blakeslee and McCourt (2001)/Todorovic (1997) Hypotenuse 3° 9.55
Bullseye-thin aa Bindman and Chubb (2004) Width 0.608°

Bullseye-thick bb Bindman and Chubb (2004) Width 0.608°

Note each illusion is listed in the same order as shown in Fig. 1. Note that the illusion strength listed is the psychophysically measured difference between
dark and light patches, averaged across subjects, as reported in the source paper.
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frequency and orientation, and the window size depends on
the spatial scale of the filter response that is being normal-
ized. Furthermore, each frequency channel is normalized
primarily by itself, with decreasing influence from nearby
frequencies.

2. Illusions tested

We tested the new models on a wide range of illusions,
including many that previous literature has tested with
the ODOG model, with varying success. We included
examples where the brightness of a test patch is shifted
toward the brightness of the region that it shares the major-
ity of its border with, and also examples where the bright-
ness of the test patch is shifted away from the region that it
shares the majority of its border with. We will refer to these
effects as assimilation and contrast, respectively. Note that
we use the terms contrast and assimilation to describe the
direction of an illusion, not to indicate the underlying
mechanistic cause of the illusion. The underlying causes
of these illusions are still of debate.

Except where noted, we duplicated the exact dimensions
of each illusion as published in the literature cited, and
therefore we will only briefly summarize the relevant details
for each illusion. Note that since our goal was to study the
ODOG model, we elected to use the illusions as imple-
mented in ODOG-related articles. For this reason, we cite
the ODOG-related papers that describe the illusions, as
well as the original empirical publication for that type of
illusion (Table 1).

To facilitate comparisons between the models and peo-
ple’s perception of the illusions, we summarize here the
psychophysical results published in papers by Blakeslee
and McCourt. These papers all used a matching paradigm,
where target patches on a gray background (Blakeslee &
McCourt, 1999, 2001) or a checkerboard background (Bla-
keslee & McCourt, 2004; Blakeslee et al., 2005) are
adjusted by the subjects to match the perceived brightness
of test patches in the illusions. While the methods and sub-
jects differ a bit between papers, on the whole the methods
are much more similar between these papers than the other
sources of illusions we used. This higher degree of method-
ological similarity allows at least tentative comparisons of
the strength of illusions that were tested in different papers,
although firmer conclusions can be drawn when comparing
data points collected within a single study. In particular,
the switch to checkerboard backgrounds around the target
patch made some illusions appear as much as 50% stronger
than when a gray background was used (Blakeslee &
McCourt, 2001). Because such small differences in method-
ology can have large impacts on the psychophysical results,
we elected to not include psychophysical results for illu-
sions published by authors other than Blakeslee and
McCourt.

Fig. 1 shows the illusions we tested. The first 13 illusions
are all variations on White’s effect, and cach shall hercafter
be referred to as WE-fype. Except where noted all are seen

as assimilation of varying strength. The first two illusions
(Figs. la and b) are the canonical form of White’s effect.
Two versions are included because higher frequency ver-
sions have been shown to increase the strength of White’s
effect (Blakeslee & McCourt, 1999). The next 11 illusions
are versions of White’s effect where the amount of energy
at each orientation is more evenly distributed than in the
traditional White’s illusion. WE-dual (Fig. lc) is a new
configuration of White’s effect; the illusion on the right side
is just a 90° rotation of the left.

Blakeslee et al. (2005) conducted psychophysical mea-
surements of WE-Anderson (Fig. 1d) and WE-Howe
(Fig. le). WE-Anderson was found to be weaker than
a traditional White’s illusion that was exactly matched
in terms of test patch size and grating dimensions. With
WE-Howe subjects saw either weak contrast or assimila-
tion, with no consistent trend across eight subjects except
that people who see White’s effects as strong assimilation
tend to see WE-Howe as weak assimilation. Note that
methodological differences between Blakeslee et al.
(2005) and Blakeslee and McCourt (1999) are likely the
reason why WE-Anderson appears to be a stronger effect
than WE-thin-wide when comparing results between the
two papers.

WE-zigzag (Fig. 1f) is based on Clifford and Spehar
(2003). This illusion is designed to have nearly equal hori-
zontal and vertical orientation energy locally surrounding
the test patches. This is in contrast to WE-dual were orien-
tation energy is only equal when summed over the entire
image.

WE-radial (Figs. 1g—j) is based on Anstis (2003). We cre-
ated several new configurations of WE-radial; the ‘thick’
(Figs. 1g and h) and ‘thin’ (Figs. 1i and j) versions are
designed to have test patches that are similar to WE-thick
and WE-thin, respectively. The ‘small’ (Figs. 1g-i) and
‘large’ (Figs. 1h—j) versions denote the radius of the circular
grating, which is 8° and 12°, respectively.

Howe (2005) studied a circular version of White’s effect
where the test patches are embedded in a circular grating
shaped like a bull’s-eye. The illusion remained when the
test patches were extended in length so that they covered
an entire ring (making the stimulus similar to that tested
by Hong & Shevell, 2004), with almost no reduction in illu-
sion strength. We elected to call this a variant of White’s
illusion, though the test ‘patch’ is no longer so analogous
to those in a traditional White’s effect. WE-circular (Figs.
1k-m) are parametric variations of the illusion, based on
the version published in Howe (2005). The illusions are
named for the width of the test ‘patch’ (ring). Subjectively,
decreasing the width of the ring appears to increase the
strength of the illusion.

We also tested a range of illusions that are not clearly
related to White’s illusion. We included the Todorovic vari-
ations on simultaneous brightness contrast (SBC) (Figs.
1g-t). Blakeslee and McCourt (1999) report that the test
patch on the right side of the illusion appears lighter for
all configurations except Todorovic-equal (Fig. 1q), where
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the patch on the left appears lighter. Note that this does
not agree with Pessoa, Baratoff, Neumann, and Todorovic
(1998), who report that Todorovic-equal appears lighter on
the right, so there is some ambiguity as to the proper pre-
diction for this illusion. For consistency we follow Blakes-
lee and McCourt (1999).

We also tested several versions of the checkerboard illu-
sion (Figs. lu-w). The illusion flips between assimilation for
Checkerboard-0.16 (Fig. 1u), and contrast at larger spatial
scales, which is not captured by Fig. 1 because the figures
have been reduced significantly in size relative to laboratory
viewing. Note also that Fig. lu is illegible when shown at
the same scale as the other illusions, so in the figure we show
just the central portion, enlarged by a factor of two.

For the Todorovic reconfiguration of the Benary cross
(Fig. 1z) we list two illusions. This is because the image
has four test patches, and our analysis depends on having
two test patches per illusion. Thus we split the analysis of
this illusion in two, summarizing the results for the two
patches on the left and on the right separately. To make
clear which test patches we are referring to, we number
them 1-4, starting from the left.

The illusions selected here are a representative selection
of the illusions that the ODOG model has been tested on
previously. In general we elected to include one or two con-
figurations of each illusion, rather than an exhaustive
sweep of different scales and relative sizes. Our experience
with the models, however, suggests that the results we pres-
ent will generalize to reasonable variations in the configu-
rations of the illusions.

3. The ODOG and UNODOG models

There are two major stages to the ODOG model. A
flowchart of its mechanisms is shown in Fig. 2.

First, the input image is filtered by a set of 42 different
filters (Figs. 2a and b). Each filter is a zero-sum difference
of Gaussians; the center is circularly symmetric and posi-
tive, and the surround is negative and elongated in one
direction by twice the extent of the center Gaussian. The fil-
ters span six orientations, spaced 30° apart, and seven
scales (spatial frequencies), with octave spacing between
scales. The largest filters have a central frequency of 6.5
cycles per degree. The filter responses are weighted by the
spatial frequency of the filter (in cycles per degree) raised
to the power 0.1. This function approximates the human
contrast sensitivity function over the frequency range of
the filters (Blakeslee & McCourt, 1999). Thus, higher fre-
quency filters receive a higher weight.

In the second stage of the model, the 42 filter responses
are summed across spatial scales, generating six different
multiscale filter responses, one for each orientation
(Fig. 2¢). These summed filter responses are then normal-
ized individually by dividing by an image-wide energy esti-
mate calculated as the root mean square (RMS) of the
pixels in that summed response (Fig. 2d). This makes the
global energy for each orientation equal (Fig. 2¢). Finally,

the six normalized responses are added together, producing
a point-by-point prediction of the relative perceived bright-
ness of the input image (Fig. 2f).

The plausibility of the normalization step is somewhat
questionable because, for each orientation, a single normal-
ization factor is calculated over the entire input image. If
this computation were to occur in V1, it would require lat-
eral connections or feedback connections that are diffuse
enough to allow any part of the visual field to influence
responses in any other part of the visual field. It is much
more likely that these influences are local, rather than glo-
bal. Furthermore, in any moderately complex natural
image the amount of energy at each orientation is relatively
uniform, which would mean that the normalization step
would only change the filter responses minimally.

For these reasons, we investigated to what extent the
normalization step in the ODOG model is necessary by
implementing the model without any normalization, which
we call UNODOG (un-normalized ODOG). We then ran
ODOG and UNODOG on the set of brightness illusions
described in Section 2 to see where normalization played
an important role.

3.1. Modeling details

Our implementation of the ODOG model contains two
changes from the original Blakeslee and McCourt (1999)
implementation. First, when filtering the input image we
pad around the edges with gray. Whenever filtering an
image, there is always the issue of how to treat the edges;
we feel that extending the (gray) background to allow for
valid filtering is the most plausible approach. When we
tried to replicate Blakeslee and McCourt’s exact results
we found it necessary to use unpadded convolution, which
in effect means the edges are extended by tiling the input.
This does not seem particularly likely to occur in V1. In
practice, our approach generally led to minor differences,
with one exception discussed below.

The other difference is how we calculate the strength of
the illusion. Blakeslee and McCourt use the average
response along a line cutting through the center of the test
patch. Instead, we take the average response for all pixels
falling inside the test patch. We elected to use this measure
because the values within a test patch are often quite non-
uniform, and thus the orientation of the line cutting
through the test patch can change the predicted illusion
strength. Using all the pixels within the test patch is less
arbitrary.

3.2. Results—ODOG and UNODOG

Table 2 shows the predicted illusion strength for the
UNODOG and ODOG models (the results for the
LODOG model will be discussed in Section 4). To derive
a single value representing the predicted strength of each
illusion we calculate the difference between the predicted
value for the test patch that appears darker and the test
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Fig. 2. ODOG and LODOG models. (a) Symbolic representation of the DoG filters at seven different scales and six orientations. (b) The input image. (c)
The result of convolving @ and b and summing the seven scales after weighting the result by a function of spatial frequency. (d) The normalization divisor
ODOG calculates for each of the six orientations. (e) The result of applying normalization. (f) Final prediction of ODOG model, produced by summing up
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Table 2
Model results

ODOG UNODOG LODOG n=1 LODOG n=2 LODOG n=4 Illusion Strength (human)
‘WE-thick 1.00 —0.36 1.00 1.00 1.00 1
‘WE-thin-wide 2.08 —0.62 2.19 2.08 231 1.1
WE-dual —-0.30 —0.26 2.53 1.36 1.11
‘WE-Anderson —0.15 —1.01 —0.64 —0.30 —0.25 1.54
WE-Howe —0.42 —1.49 —1.99 —0.61 —0.47 0
‘WE-zigzag —0.51 —0.49 —1.16 —-0.76 -0.57
‘WE-radial-thick-small —0.67 —0.67 —0.67 —0.39 —0.55
WE-radial-thick —0.41 —0.70 —0.21 0.01 -0.29
‘WE-radial-thin-small —0.34 —0.42 1.43 0.21 —0.20
‘WE-radial-thin —0.22 —0.44 213 0.83 0.05
‘WE-circularl —0.82 —1.45 —2.63 —1.04 —1.00
‘WE-circular0.5 —0.53 —1.00 —1.47 —0.67 —0.65
‘WE-circular0.25 —0.38 —0.71 —1.05 —0.49 —0.48
Grating induction 2.03 0.17 2.32 1.69 1.77 1.49
SBC-large 4.75 4.93 14.80 7.56 6.33 2.72
SBC-small 6.22 6.05 26.56 14.94 9.19 4.73
Todorovic-equal —-0.36 —0.56 —0.59 —-0.26 -0.37 0.53
Todorovic-in-large 0.49 0.77 1.63 0.55 0.52 0.57
Todorovic-in-small 0.80 1.28 2.68 0.95 0.86 1.05
Todorovic-out 0.35 0.54 1.05 0.38 0.40 0.37
Checkerboard-0.16 1.10 0.90 2.03 0.94 0.97 1.78
Checkerboard-0.94 0.40 0.48 0.80 0.35 0.35 0.68
Checkerboard-2.1 0.69 0.72 1.62 0.60 0.59 1.36
Corrugated Mondrian 0.95 0.44 2.58 091 0.73 2.6
Benary cross 0.09 —0.12 0.01 0.06 0.05 22
Todorovic Benary 1-2 —0.12 —0.41 0.20 0.55 0.54 2.86
Todorovic Benary 3-4 —0.12 —0.41 0.23 0.58 0.55 2.28
Bullseye-thin —0.74 —0.09 —0.44 —0.35 —0.56
Bullseye-thick -0.77 —0.24 —0.52 —0.38 —0.58

Tllusions are listed in the same order as in Fig. 1 and Table 1. Cells in bold indicate the model predicts that the illusion goes in the same direction people
typically see it. Note that human values have been scaled so that 1.0 equals the average strength of WE-thick.

patch that appears lighter. We set the sign of the result to
indicate whether the prediction matches the direction of the
illusion that people see. Negative values indicate that the
model predicts the opposite of what people see (i.e., con-
trast when people see assimilation, or assimilation when
people see contrast).

As each model has different normalization steps, the
raw numbers that they output are not comparable. To
make the results easy to compare between models we
scaled the output of each model so that the strength of
the WE-thick illusion (Fig. la) equals 1, except for the
UNODOG model. In this model, WE-thick is predicted
in the reverse of what people see, and very weakly. We
therefore, instead selected to scale the model’s outputs
to match the predictions of ODOG on the SBC illusions
(Figs. 1o and p). Since the SBC illusion is nearly isotro-
pic, the normalization step in the ODOG model has min-
imal influence on the strength of the illusion, making
these values a good baseline for comparing ODOG to
UNODOG.

Since the psychophysics values for these illusions were
collected with different methods which impact the strength
of the illusions there is no simple way to fairly scale the
model output to match the scale of the human responses
for all experiments. To enable rough comparison, however,

we elected to scale the human data relative to the strength
of WE-thick as measured in Blakeslee and McCourt (1999).
Keep in mind this decreases how well the models can match
to data from the papers after 2001 (shown in italics in
Table 2).

The output of the models provides both the predicted
direction of the effect (does the test patch get darker or
lighter) and also a prediction of the magnitude of the effect.
Thus, the models can be judged as to whether they predict
the correct direction of the effect, and second, how well the
strength of the illusion is predicted. Some care is necessary
in using the second metric, as people are highly variable in
how strongly they see these brightness illusions. For
instance, in Blakeslee and McCourt (2004) data were col-
lected on a White’s illusion similar to the dimensions of
WE-thin-wide (Fig. 1b). Out of ecight subjects, the differ-
ences between the two test patches were perceived as small
as2.9 cd/mz, and as large as 16 cd/m?. Furthermore, as can
be seen in the same paper, the relative strength of different
illusions varies somewhat between subjects, even though
most of the illusions tested in that paper are White’s vari-
ants. On the other hand, subjects do tend to see illusions
in the same direction, even if the strength varies. Thus,
we count the models as being correct if they predict the cor-
rect direction of the illusion, although we will discuss the
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cases below where the magnitude of the predictions
appears to be beyond the range of variability found in
human subjects.

By this standard, the ODOG model accounts for the two
classic forms of White’s effect (Figs. 1a and b). UNODOG,
however, does not. It uniformly predicts that people will
see contrast instead of assimilation. This shows concretely
that the normalization step of ODOG is critical to its pre-
diction of classic White’s illusions.

When testing variants of White’s illusion with roughly
equal global energy at each orientation, we find that
ODOG no longer predicts the correct direction of the illu-
sion. These results show that equalizing the orientation
energy in the input image makes ODOG fail. Examining
the results from UNODOG, we find that it also fails to pre-
dict the illusions correctly. Note, however, that the two
models do not make identical magnitude predictions,
because the different illusion variants have slightly different
amounts of energy at different orientations.

The prediction of UNODOG on the grating induction
(Fig. In) illusion is much smaller than the ODOG predic-
tion, showing that the prediction also depends on unequal
energy. Indeed, this reveals that the ODOG model’s predic-
tion of grating induction is driven in part by similar mech-
anisms that make it predict White’s effect, and that without
normalization ODOG would significantly under-predict
grating induction.

Both UNODOG and ODOG predict the correct direc-
tion of the SBC illusions (Figs. 1o and p). The models pre-
dict, however, that both SBC configurations are about five
times stronger than WE-thick (Fig. 1a), when, in fact, the
SBC configurations tested here are only slightly stronger
than WE-thick (Blakeslee & McCourt, 1999). ODOG
clearly over-predicts the strength of contrast, and this is
an aspect of the model that needs additional research.

UNODOG and ODOG predict the checkerboard illu-
sions (Figs. 1u and w), with very similar magnitudes. This
makes sense since these stimuli are roughly isotropic. Both
ODOG and UNODOG account for all of the Todorovic
variations of SBC (Figs. 1q-t) except for Todorovic-equal
(Fig. 1q), indicating that these predictions do not depend
on normalization.

Interestingly, both models predict the corrugated Mon-
drian (Fig. 1x), though UNODOG predicts it to a smaller
extent. This shows that the ODOG account of the Mon-
drian stimuli depends at least in part on the filters it uses,
and not on the complexity of the normalization step. This
is a decidedly simple account of an illusion that has been
theorized to have high-level origins (Adelson, 1993). Note,
however, that both models predict that the Mondrian is
weaker than WE-thick, when in fact psychophysical mea-
surements have suggested that it is stronger (comparing
psychophysical measurements from Blakeslee & McCourt,
2001 to Blakeslee & McCourt, 1999).

Surprisingly, the Benary cross (Fig. ly) was predicted
correctly by ODOG, but not by UNODOG, revealing that
normalization does play a role in predicting this illusion.

Neither model predicts the illusion strongly, however,
whereas Blakeslee and McCourt (2001) showed that this
illusion is not much weaker than the corrugated Mondrian.
Interestingly, in contrast to Blakeslee and McCourt (2001),
we found that ODOG did not correctly predict the Todoro-
vic version of the Benary cross (Fig. 1z). Upon investiga-
tion, we found that this is due to how we padded the
input images; if we do not pad the image before filtering
(effectively the same as padding the edges with a tiled copy
of the illusion) the model makes the correct prediction.
Since we find padding with gray to be more plausible, we
argue that ODOG does not really account for this illusion.
Unsurprisingly, neither does UNODOG.

Finally, ODOG and UNODOG cannot account for the
Bullseye illusion (Figs. laa and bb), as noted in Bindman
and Chubb (2004).

In summary, we found that normalization is key to
explaining White’s effect, but in general plays a small role
in predicting most other illusions considered in this study.
For variants of White’s effect with more equal global orien-
tation energy, ODOG fails.

4. Local normalization of ODOG

The failures of the UNODOG model show that the
normalization step is important for ODOG to account
for any of the variants of White’s illusion. This normaliza-
tion, however, is implausible in that normalization of each
pixel depends on the energy across the entire scene. We
implement a more neurally plausible, local normalization
step for ODOG, which we call LODOG (locally normal-
ized ODOG). The mechanisms of LODOG are explained
in Fig. 2. The key change is that the summed filter
responses are normalized by a local measure of RMS
energy instead of a global measure (Fig. 2g). For each
pixel, the normalizing RMS is calculated for a Gaussian
weighted window centered on that pixel. The window size
(n) is specified as the standard deviation of the Gaussian,
measured in degrees of visual angle. We tested several dif-
ferent extents to see which sizes of local normalization
windows would work as well as global normalization in
ODOG.

Local normalization has other advantages as well. Con-
sider the Dual White’s illusion (Fig. 1¢). While the illusion
strength appears to be undiminished, the global energy is
now nearly equal for each orientation, so the global nor-
malization step of ODOG will have little effect. Since nor-
malization is key to ODOG predicting White’s illusion, this
means that ODOG fails to make the correct prediction.
Since LODOG uses a local window, each copy of White’s
illusion in Fig. 1lc will be normalized relatively
independently.

4.1. Results and discussion

We tested the LODOG model with Gaussian normaliza-
tion windows of standard deviation n=1, 2, or 4° of
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visual angle. The predictions of the model are shown in
Table 2. To facilitate comparison across models, the model
outputs are scaled so that the illusion strength of WE-thick
(Fig. 1a) equals 1.0.

For all the White’s family of illusions that ODOG cor-
rectly predicts, LODOG also predicts that the illusions
go in the same direction, independently of the window size
tested. In contrast to ODOG, LODOG also can predict
WE-dual in the correct direction, with the smaller window
sizes predicting stronger illusions. LODOG does not, how-
ever, predict some of the equal energy variants like WE-
Anderson (Fig. 1d), WE-Howe (Fig. le), or WE-zigzag
(Fig. 1f). LODOG’s performance is somewhat better on
the WE-radial illusions (Figs. 1g—j), where some of the
stimulus configurations are correctly predicted by some
of the window sizes, but not all. LODOG also did not
improve performance on WE-circular (Figs. 1k-m).

To summarize, LODOG does fix the simple case WE-
dual, but for more complex equal-energy White’s variants,
its performance is only mixed, though it never does worse
than ODOG.

LODOG also predicts SBC (Figs. 1o and p), but over-
estimates the illusion’s strength, especially for small nor-
malization windows. ODOG also over-predicts the
strength of SBC, and the prediction for LODOG with a
window of 4° is not much worse than ODOG predictions.
Clearly, local normalization does not improve the ability to
predict the strength of SBC. LODOG predicts the checker-
board illusion (Figs. lu-w), with stronger predictions made
when the window size is smaller. LODOG predicts the
Todorovic variants of SBC (Figs. 1q-t) about as well as
ODOG does.

LODOG predicts a smaller effect for the Benary cross
(Fig. ly) than does ODOG. For the Todorovic variation
of the Benary cross (Fig. 1z), however, LODOG (with win-
dow sizes of 2° or 4°) predicts the illusion in the correct
direction, something that ODOG, as we implemented it,
does not. Thus, LODOG appears to be somewhat better
than ODOG at predicting the Benary cross across varia-
tions in configuration, but is not a complete explanation
of the effect, since it predicts a fairly small illusion.

Finally, LODOG’s predictions on the Bullseye stimuli
(Figs. laa and bb) are no better than ODOG’s.

In addition to the mean illusion strength predicted by
the LODOG models, we also examined the point-by-point
predictions made by LODOG with differing window sizes.
Fig. 3 shows the cross-section of the model’s predictions
for WE-thick. The cross-sections show that as the size of
the normalization window decreases, the predicted unifor-
mity of regions is decreased, relative to ODOG, and that
smaller window sizes affect cross-sections by increasing
the depth of valleys and the sharpness of peaks, with this
effect becoming very extreme for (n=1°). In Blakeslee
and McCourt (1999), psychophysical data were collected
for the test patches, and it was found that there was a
non-uniform gradient of brightness across the test patch,
which was similar to what ODOG predicted. In fact, the
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Fig. 3. Model predictions for WE-Thick. (a) Dotted line indicates location
of cross-sections. (b) Perceived brightness predicted by ODOG and
LODOG models along the cross-section.

psychophysical values suggested that the brightness profile
had slightly more curved (i.e. deeper) valleys than ODOG
predicted. Thus, the predictions of LODOG with a large
window (n = 4°) may actually be closer to the psychophys-
ical values than ODOG’s.

Taken together, these results show that LODOG, in
general, works at least as well as ODOG, especially when
the window size is larger, such as 4°. This shows that the
ODOG normalization step can be made local without
reducing the ability of the model to predict a range of
brightness illusions. In fact, this more plausible localization
scheme actually allows LODOG to predict some illusions
that ODOG does not. There remain, however, many equal
energy variants of White’s illusion that LODOG does not
account for. If a normalization-based model is to account
for these illusions, a more complex extension to ODOG
is necessary.

Examining the results we hypothesized that there were
two extensions which would make the model more biolog-
ically plausible and which might also improve its ability to
predict the illusions. One is that the size of the normaliza-
tion window should not be constant; rather, very small-
scale filters should be normalized by smaller local regions
than large-scale filters. Second, it has been shown that neu-
rons with similar spatial frequency preferences tend to clus-
ter together in V1 (Issa, Trepel, & Stryker, 2000; Tootell,
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Silverman, & De Valois, 1981; see also Sullivan & de Sa,
2003). Thus, lateral inhibition between neurons should be
biased toward neurons of the same spatial frequency. This
suggests a new way to normalize the response of a filter,
which is local in spatial terms, and also localized to nearby
frequencies. We implemented a new model called FLO-
DOG (frequency-specific locally normalized ODOG),
which implements these two changes. While all of these
changes are reasonable, and likely to make the model more
neurally plausible, they do increase the complexity of the
model. In the next section, we will evaluate how well this
new model compares with the simpler LODOG model.

5. FLODOG

The FLODOG model extends the LODOG model by
adding frequency-dependent normalization windows and
local weighting when summing across scales. Fig. 4 outlines
how FLODOG works, and how it relates to the ODOG
and LODOG models. The differences between the FLO-
DOG and ODOG models start after the 42 filter responses
have been generated and weighted by spatial frequency
(Fig. 4a). For each filter response (r) a new normalization
mask is created. Instead of summing across all scales for
a single orientation, a weighted sum across frequencies is

used. Each filter weight w is computed using a Gaussian
function with standard deviation m, shifted so the highest
point is centered on the filter being normalized (Fig. 4b).
The sum of the weights is normalized to 1. The weighted
sum is converted to a localized energy estimate by squaring
the value at each point, blurring the whole image by a
Gaussian of standard deviation n, and then taking the
square root, point-by-point. n is calculated for each filter
response by multiplying s (the standard deviation of the
center of the DoG filter that generated r) by a scalar, k.
This process generates a point-by-point local energy esti-
mate for each r that also includes energy from nearby
scales. r is normalized by dividing each point by square
root of z, the local energy estimate for that point
(Fig. 4c). Finally, each normalized filter response is
summed up to produce a point-by-point estimate of the
perceived brightness (Fig. 4d). Though it would be compu-
tationally inefficient, ODOG and LODOG can be thought
of as operating in the same way as FLODOG does, except
the weight w would be constant, and different averaging
equations would be used (Fig. 4e). The averaging equation
for ODOG is the global root mean square of the summed
filters, whereas LODOG uses the same averaging equation
as FLODOG except that n (the standard deviation of the
blur) is a constant, independent of spatial scale.

(a) filtered images (b) weighting
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B
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Fig. 4. The FLODOG model. (a) The 42 filter responses, which are generated identically to ODOG. (b) Example of weighted average calculated for a
single filter response, at orientation i = 1 and scale j = 4. Note that the shape of the Gaussian changes for other values of /. (¢) Normalization is applied to
a single filter response, using the weighted average from (b) to calculate the local energy. (d) All 42 normalized filter responses are summed to produce the
final prediction. (e) A comparison of the different weighting and averaging functions used by ODOG, LODOG, and FLODOG.
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We tested a variety of FLODOG parameter combina-
tions, crossing the size of the normalization window
(n = 2s, 3s, or 4s) with the weighted sum across frequencies
(m=0.25,0.5, 1, 1.5, 2, and 3). We tested these models on
the same illusions we used for ODOG and LODOG.

5.1. Results

We found that FLODOG performed well across a wide
range of parameters. The scaling of the normalization win-
dow between n = 2s and n = 4s had minimal effect on the
predictions of the model for many of the illusions, with
the notable exception of SBC and Bullseye. In contrast,
the weighting of nearby frequencies (1) makes a big differ-
ence in which illusions are predicted correctly and also the
magnitude of the predictions.

Due to space considerations we present a subset of mod-
els that we tested (Table 3). We include the model that
accounted for the most illusions, FLODOG with a normal-
ization window of n =4s, and a weighting of nearby fre-
quencies of m=0.5. For comparison we also include
FLODOG with n=2s, m=0.5, and n=4s, m=3. To
allow comparison between different models we also include
the response of ODOG, and of the most successful
LODOG model (window size of 4°).

Table 3
Model results

FLODOG with m =0.5 accounts for all the White’s
illusions that LODOG does. In addition, it predicts the
correct direction of illusion for WE-zigzag (Fig. 1f) and
all of the WE-radial (Figs. 1g-j) and WE-circular (Figs.
1k-m) illusions. None of the models we tested, however,
predicted assimilation for the Anderson (Fig. 1d) or
Howe (Fig. le) versions of White’s illusion. Blakeslee
and McCourt (2004) found that WE-Howe does not lead
to a consistent illusion direction across subjects, so the
model’s prediction of contrast actually matches what
some people see. The model predicts contrast because
the solid black and white horizontal bars that the test
patches are on produce a strong contrast signal (note
that part of the illusion is the same as SBC, an illusion
the ODOG models see strongly). This contrast signal is
bigger than the assimilation caused by the grating above
and below the test patches, so the overall prediction is of
contrast. While FLODOG predicts contrast for WE-
Anderson, an illusion people consistently see as assimila-
tion, it does predict that the illusion is closer to
assimilation than is WE-Howe. This is because the test
patches are offset from the contrast-inducing horizontal
bars in the image. Since, however, the ODOG-based
models are overly sensitive to contrast, the reduction in
contrast from the offset of the test patches is still not

ODOG LODOG FLODOG FLODOG FLODOG Tllusion strength
n=4 n=2s,m=0.5 n=4s,m=0.5 n=4s,m=3.0 (human)

WE-thick 1.00 1.00 1.00 1.00 1.00 1
‘WE-thin-wide 2.08 2.31 2.52 2.07 1.72 1.1
WE-dual —0.30 1.11 1.93 1.67 1.58
WE-Anderson —0.15 —0.25 —0.43 —-0.03 —0.22 1.54
‘WE-Howe —0.42 —0.47 —0.94 —0.27 —0.47 0
WE-zigzag —0.51 —0.57 1.26 0.91 —0.28
‘WE-radial-thick-small —0.67 —-0.55 0.46 0.49 —0.36
WE-radial-thick —0.41 —0.29 0.18 0.18 —0.38
WE-radial-thin-small —0.34 —0.20 2.74 2.00 0.34
‘WE-radial-thin —0.22 0.05 3.24 2.31 0.43
WE-circularl —0.82 —1.00 0.28 0.49 —1.36
‘WE-circular0.5 —0.53 —0.65 1.84 145 —0.75
‘WE-circular0.25 —0.38 —0.48 3.64 2.58 —0.07
Grating induction 2.03 1.77 0.66 0.41 1.32 1.49
SBC-large 4.75 6.33 3.96 2.37 6.35 2.72
SBC-small 6.22 9.19 5.96 4.01 10.27 4.73
Todorovic-equal —0.36 —0.37 0.08 —0.12 —0.18 0.53
Todorovic-in-large 0.49 0.52 0.39 0.38 0.67 0.57
Todorovic-in-small 0.80 0.86 1.08 0.71 1.32 1.05
Todorovic-out 0.35 0.40 0.03 0.15 0.28 0.37
Checkerboard-0.16 1.10 0.97 8.03 6.13 1.36 1.78
Checkerboard-0.94 0.40 0.35 —4.89 —4.05 0.05 0.68
Checkerboard-2.1 0.69 0.59 —1.48 —1.49 0.19 1.36
Corrugated Mondrian 0.95 0.73 0.12 -0.25 0.09 2.6
Benary cross 0.09 0.05 0.05 0.03 0.06 2.2
Todorovic Benary 1-2 —0.12 0.54 0.11 0.10 0.34 2.86
Todorovic Benary 3-4 —0.12 0.55 0.14 0.11 0.36 2.28
Bullseye-thin —0.74 —0.56 0.54 1.17 0.45
Bullseye-thick —0.77 —0.58 0.07 0.80 0.50

Illusions are listed in the same order as in Fig. 1 and Tables 1 and 2. Cells in bold indicate the model predicts that the illusion goes in the same direction
people typically see it. Note that human values have been scaled so that 1.0 equals the average strength of WE-thick.
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enough for the assimilation caused by the grating to
dominate the overall prediction.

For SBC (Figs. lo and p), the prediction FLODOG
makes depends on the size of the normalization window,
with larger windows predicting smaller illusions
strengths. The original ODOG model predicts a much
stronger SBC illusion than people tend to see, so the
smaller prediction of the FLODOG model is more real-
istic, and reason to prefer the model with a larger nor-
malization window. FLODOG accounts for the
Todorovic SBC illusions (Figs. 1g-t) as well, except for
Todorovic-equal (Fig. 1q). FLODOG with a 2s normal-
ization window actually predicts it in the correct direc-
tion, but with a very small strength. As mentioned
carlier, however, psychophysical measurements of this
illusion have produced conflicting reports of which direc-
tion it goes, so it is unclear what the proper model out-
put should be.

The FLODOG models with m = 0.5 do poorly on the
checkerboard illusion (Figs. lu-w). They predict that
Checkerboard-0.16 (Fig. lu) is much stronger than it
really is, and predict the other two checkerboard illusions
in the wrong direction. It is worth noting, however that
the checkerboard illusion depends on spatial scale, and
it switches from assimilation at small scales (i.e., Checker-
board-0.16) to contrast at larger scales, with the actual
crossover point varying between subjects (Blakeslee &
McCourt, 2004). The FLODOG model fails because it
predicts assimilation at all these scales, and thus it could
be failing because it has a different crossover point
between assimilation and contrast. The trend (decreasing
assimilation with increasing scale) is in the correct
direction.

The same FLODOG models also have difficulty with
the corrugated Mondrian (Fig. 1x). The 2s model predicts
the illusion in the right direction, but predicts that it is
much weaker than people see it, and the 45 model predicts
the illusion in the opposite direction. While this does not
support the model, the Mondrian stimuli may depend
on more high-level factors that cannot be captured by a
low-level model. Although ODOG does make a better pre-
diction, given that the ODOG model is clearly incomplete,
it is possible that its account of the Mondrian is
erroneous.

The FLODOG models also predict both the Benary
cross (Fig. ly), and also the Todorovic version (Fig. 1z),
which our implementation of the original ODOG model
cannot account for. Note, however, that the strength of
the illusion is predicted to be weaker than people see it.
Finally, FLODOG predicts the Bullseye illusion (Figs.
laa and bb), with the 4s version predicting a stronger illu-
sion than the 2s version.

FLODOG can be made more similar to the LODOG
model by setting the weighting of nearby frequencies ()
to a larger number, such as 3.0. With this parameter set-
ting, energy at any scale within an orientation will influ-
ence the normalization of each filter. Table 3 shows how

FLODOG n=4s, m=0.5
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Fig. 5. Model predictions for WE-Thick. (a) Dotted line indicates location
of cross-sections. (b) Perceived brightness predicted by LODOG and
FLODOG models along the cross-section.

such a model performs. In contrast to the other FLODOG
configurations, only the thin variants of WE-radial are
predicted, no version of WE-circular is predicted, and
WE-zigzag is not predicted. This configuration of FLO-
DOG does, however, predict all versions of the checker-
board illusion, and weakly predicts the corrugated
Mondrian illusion. Thus, we can see that a large part of
FLODOG’s success is due to normalizing each filter
response primarily by itself, rather than by all the filters
of the same orientation.

Cross-sections of the FLODOG model, shown in Fig. 5
for WE-thick, reveal that FLODOG predicts marked non-
uniformity within regions of the input that are uniformly
shaded. While no psychophysical experiments exist which
directly contradict these variations, it is clear that the mag-
nitude predicted by the model is larger than experienced
when just looking at the input images. It is possible that
much smaller-scale non-uniformities are measurable under
psychophysical testing, and indeed Blakeslee and McCourt
(1999) collected psychophysical measurements that showed
the gray test patches in WE-thick do have non-uniform
brightness, in the same direction as seen by the ODOG
model. In addition, Blakeslee and McCourt (1997) found
that the test patches in SBC and grating induction also
have non-uniform brightness, of the same pattern ODOG
predicts. At least for the grating induction illusion
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(Fig. 1n), the non-uniform brightness predicted by ODOG
is clearly visible to the untrained eye, without any psycho-
physical testing required. It is not known why this occurs
with grating induction, and not other illusions. In any case,
the non-uniform brightness perception predicted by FLO-
DOG is not entirely wrong, though the magnitude is clearly
too large.

The issue of non-uniform brightness responses cuts
across different filter-based approaches, and deserves fur-
ther study. While FLODOG and LODOG predict larger
non-uniform responses than ODOG does for many illu-
sions, it is worth noting that ODOG can also predict very
non-uniform perceived brightness in some situations, such
as SBC-large (Blakeslee & McCourt, 1999). One possibility
is that these non-uniformities are only present in the early
stages of brightness processing, and at some later stage the
different brightness values are averaged within a region to
produce a single perceived shade of gray, as suggested by
Grossberg and Todorovic (1988).

In conclusion, the FLODOG model predicts many illu-
sions that LODOG does not. The exact parameter values
are not critical, but in general the quality of the predictions
is better when a larger window is used for normalization
(such as 4s) and when each scale is normalized relatively
independently (such as when m =0.5). While different
parameter settings do allow the model to account for other
illusions, these settings predict the widest range of illusions
and are the recommended values to use when testing the
model in future work.

It seems that the biologically plausible changes to
LODOG implemented in FLODOG do improve the pre-
dictive power of the model. FLODOGs failure to predict
illusions that are correctly predicted by ODOG and
LODOG raise the possibility that the success of these mod-
els depends on less plausible mechanisms (such as normal-
izing each filter response equally by all frequencies of the
same orientation, and a fixed size normalization window).
The true cause of these effects may be due to other mecha-
nisms that operate before or after the steps modeled by
FLODOG.

6. Conclusions

This paper explored the response normalization mecha-
nism of the original ODOG model, and found that it could
be extended to be both more neurally plausible and more
effective at predicting brightness illusions.

Our simplest extension, LODOG, does not reduce the
functionality of the ODOG model, but only minimally
increases the number of illusions correctly predicted. At
the least, this shows that the response normalization pro-
cess can be successfully calculated locally.

Our more advanced model, FLODOG, is not only more
plausible, but also increases the number of illusions cor-
rectly predicted. The success of this model suggests that
many brightness illusions could be due to low-level mecha-
nisms in early visual processing. For instance, an area like

V1 could behave much like FLODOG if lateral interac-
tions or feedback cause cells that respond to the same ori-
entation and similar frequencies to inhibit each other.
Indeed, Rossi and Paradiso (1999) have shown that there
are a significant number of cells in V1 which respond to
the perceived brightness of stimuli, instead of the actual
luminance (though this has only been tested for SBC-like
stimuli), which supports the idea that brightness perception
could occur in early visual areas. Since FLODOG uses fil-
ters of much larger spatial extent than does V1, it is clear
that FLODOG is not a model of V1 at the level of individ-
ual neurons, but might represent the combined activity of
groups of neurons, either in V1, or distributed across multi-
ple early visual areas.

‘Why might early visual areas perform the kind of calcula-
tion that FLODOG models? Perhaps it is part of the compu-
tational processing that produces lightness constancy.
Another possibility is that it is a side effect of an entirely dif-
ferent calculation. Schwartz and Simoncelli (2001) have
developed a model of the firing rate of neurons in V1, in
which neurons are inhibited by neighboring neurons that
have correlated variance of firing rate. When trained on nat-
ural scenes, where adjacent regions have similar orientations
and spatial frequencies, the normalization resulting from
this model weights nearby spatial frequencies and orienta-
tions most heavily, similar to FLODOG. The upside of such
a model is that it makes the population activity more statis-
tically independent, when exposed to a natural image.
Increasing statistical independence is thought to produce a
more optimal neural code (Barlow, 1961).

There may be additional modifications to the FLODOG
model that could improve its performance, without radical
changes to its mechanisms. One extension that we have con-
sidered is normalizing each orientation by nearby orienta-
tions, also using a Gaussian weighting analogous to how
we currently weight nearby frequencies. Experiments with
this extension, however, found that normalizing across
nearby orientations does not improve the predictions of the
model. Another alternative, which we have not explored, is
that the orientation tuning of the model might be too broad,
and that more than just six orientations should be used.

FLODOG is only a model of early stages of brightness
processing. There is clearly a need for some form of
anchoring to explain the fact that the lightest surface in
a scene tends to look white (Gilchrist et al., 1999). In addi-
tion, the percept of transparency can change whether a
surface looks white or black (Anderson & Winawer,
2005). A model like FLODOG cannot explain either of
these types of effects. Our work does, however, suggest
that low-level mechanisms could be a significant factor
in many of the illusions studied here. By itself, however,
the existence of a successful low-level model does not
prove that higher-level mechanisms do not contribute as
well. Further work will be necessary to develop variations
of these illusions that pit aspects of the high or low-level
theories against each other, to determine their relative
contributions.
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Finally, we would like to stress the utility of having a
model that can be tested on an arbitrary input image with
minimal assumptions.> Any grayscale image can be fed into
the LODOG and FLODOG models, and a prediction of
brightness produced. We look forward to applying the
models to new illusions to see if our low-level approach
can account for other brightness illusions not studied here.
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dynamics are not dependent on a slow filling-in process.
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1. Introduction

The perceived brightness of a surface depends on the brightness
of the surfaces that surround it. This is known as brightness induc-
tion. One particularly well-known example of brightness induction
is brightness contrast, in which the brightness of the surrounding
surfaces induces a shift in the brightness of the center surface such
that the apparent contrast is increased. In this work we investigate
the timecourse of that induction. We also investigate the
timecourse of White’s illusion (White, 1979), which shares many
visual similarities to the configuration of brightness induction we
studied, but instead elicits a reduction in overall contrast.

The temporal properties of brightness induction were first
investigated systematically by Magnussen and Glad (1975) (see
also Glad & Magnussen, 1972). Their subject viewed a 1° spot of
constant luminance embedded in a half-circle with a 3° radius.
The luminance of the half-circle was modulated in time with a
square wave profile, inducing a perceived brightness change in
the constant luminance spot. Their subject attempted to match
the perceived brightness of this induction in a separate display.
Increasing the modulation rate from 0.5 to ~5 Hz made induction
appear stronger, but thereafter the strength decreased, with induc-
tion disappearing above 10 Hz.

De Valois, Webster, De Valois, and Lingelbach (1986) conducted
a similar study, measuring the amount of induction in a 1° square
of constant luminance, embedded in a ~3° square that was sinusoi-
dally modulating in luminance over time. With this paradigm they

* Corresponding author. Fax: +1 858 534 1128.
E-mail address: robinson@cogsci.ucsd.edu (A.E. Robinson).

0042-6989/$ - see front matter Published by Elsevier Ltd.
doi:10.1016/j.visres.2008.07.023

found that for modulations rates of 0.5 to 2.5 Hz the strength of
brightness induction was relatively constant, but above 2.5 Hz it
quickly fell to nearly zero. It is unclear why these studies found
such different temporal cut-offs, but they do differ in several meth-
odological details, most notably the type of temporal modulation
used (square vs. sine wave).

Rossi and Paradiso (1996) found that the temporal limits of
brightness induction varied as a function of spatial frequency. Sub-
jects viewed a grating where the luminance of every other stripe
was varied sinusoidally in time, and were asked to adjust the rate
of modulation to the minimum temporal frequency where no
brightness induction was visible in the unmodulated stripes. For
the widest stripes (16°) the thresholds were between 0.8 and
1.8 Hz, but for the thinnest stripes tested (0.5°) the threshold in-
creased to between 1.5 and 5 Hz, depending on the subject.

They argued that this dependence on scale is consistent with
the theory that brightness perception depends on the retinotopic
filling-in of neural signals. According to this theory, the visual sys-
tem first detects the contrast at borders between uniform regions,
and then propagates this contrast information from the borders
into the uniform regions. Importantly, the propagation, or filling-
in, takes time which is dependent on the distance that the signal
must travel.

Rossi and Paradiso (1996) ran two other experiments that were
also consistent with this theory. Using fixed modulation frequen-
cies (0.5, 1, 2, and 4 Hz), they asked subjects to make brightness
matches to gratings at several different spatial frequencies. All sub-
jects showed a reduction in illusion strength as the temporal fre-
quencies increased from 0.5 to 2 Hz, and no illusion at 4 Hz at
all. This can be explained by filling-in if one assumes that the
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partially filled-in signals are averaged over time. In their third
experiment they measured the temporal phase of the induced
modulation relative to the actual modulation, and found that there
was a lag in the induced modulation. The amount of phase lag in-
creased with wider stripes. This is also consistent with filling-in, if
you assume that no induction is seen until the signal is propagated
from the borders all the way into the center of the stripes. Indeed,
based on this theory, Rossi and Paradiso calculated that filling-in
travels about 140-180°/s.

If filling-in occurs at 140-180°/s, however, that cannot be the
only temporal limit on brightness induction. Consider a 0.5° stripe.
At 140°/s, it would be filled-in after only 1.78 ms, which would
suggest that induction should be seen at modulation rates of
280 Hz in their paradigm. Of course, due to the critical flicker fu-
sion threshold one would expect modulation to disappear much
sooner, perhaps around 50 Hz. Nonetheless this is much higher
than the 1.5-5 Hz range that they found in their first experiment
for stimuli of this size. Presumably, even if filling-in is involved
in the temporal limits on induction, there are other factors as well.

A very different paradigm has also found evidence in support of
filling-in. Paradiso and Hahn (1996) showed that steadily decreas-
ing or increasing the luminance of a disk led to a slightly delayed
change in the perceived brightness at the center of the disk. This
suggests that filling-in occurs and that it does not occur instanta-
neously, though it still could be quite fast.

Even if filling-in does occur, there is some question as to
whether it plays any role in the temporal limits of brightness per-
ception. Davey, Maddess, and Srinivasan (1998) have reanalyzed
the data from Rossi and Paradiso’s first experiment where subjects
adjusted the modulation rate until no induction was seen. They
found that in order to explain these results a much slower speed
of filling-in must be posited, between 9 and 14°/s, which is in very
poor agreement with the speed Rossi and Paradiso estimated from
their third experiment.

Gunther and Dobkins (2005) had subjects adjust a 3.5° disk that
alternated between red and green so that the two colors appeared
equiluminant, while at the same time an annulus surrounding the
disk modulated between white and black. They found that the induc-
tion caused by the annulus was reduced and then disappeared when
the modulationrate of the entire figure was between 8 and 20 Hz, but
if the modulation rate was increased even further some subjects saw
areappearance of induction. The reappearance of induction at faster
modulation rates is difficult to explain with filling-in.

There is also some evidence suggesting the temporal dynamics
of the Craik-O'Brien-Cornsweet effect (COC) cannot be explained
by filling-in (a general review of the COC effect can be found in
Kingdom & Moulden, 1988). Devinck, Hansen, and Gegenfurtner
(2007) asked subjects to select the modulation frequency at which
no COC illusion was seen. For stripe widths of 10-2.5°, they found
that the achromatic COC could be seen at faster modulation rates
for the narrower stripe widths (a similar result was found by Davey
et al. (1998)). While at first pass this is compatible with filling-in,
they note that to explain their results filling-in would have to tra-
vel at slower speeds for thinner stripes. In addition, for chromatic
COCs of the same widths, and for achromatic COCs with smaller
stripe widths of 2.5-0.4°, they found the reverse effect. Decreasing
the stripe width caused the COC to only be seen at slower modula-
tion rates. While these results do not favor the filling-in theory, it is
also possible that slow filling-in plays a role in brightness induc-
tion, but not in the COC illusion.

All of the evidence for the speed of filling-in for brightness
induction and the temporal properties of brightness perception
has been based on the response to temporally modulating figures.
These experiments are not in good agreement with each other.
Some of the evidence against filling-in comes from the chromatic
domain, which raises the possibility that filling-in occurs only in

the luminance domain, though we feel this is unlikely. One would
expect some difference between chromatic and achromatic stimuli,
since the two are processed by different mechanisms, but it would
be surprising if one requires filling-in and the other does not.

Another difficulty with the previous experiments is that they
were based on the response to modulation over the period of at
least several seconds. Thus, they cannot be used to determine the
timecourse of perception relative to the initial onset of the figure.
For these reasons we elected to explore the temporal dynamics
of brightness induction using a new paradigm.

In our work we investigated the timecourse of induction by
having subjects make brightness matches to a briefly presented
static stimulus. To limit processing time after the stimulus was re-
moved we covered it with a noise mask. We reasoned this para-
digm would have several advantages. First, all components of the
stimulus have the same duration of exposure to the subject, rather
than being a combination of modulating and constant regions. Sec-
ond, by showing a stimulus and then masking it, there is less po-
tential for competing precepts. In the Rossi and Paradiso
paradigm the stimulus alternates between two opposite percepts.
How these competing percepts are resolved might influence what
is perceived while having little to do with the timecourse of bright-
ness perception itself.

Our paradigm is somewhat similar to the work of Paradiso and
Nakayama (1991), which studied brightness percepts elicited by
briefly presenting a large white disk and then masking it with a
smaller pattern, such as a black circle with a white outline. The
key difference is that in the Paradiso & Nakayama work, the mask
consisted of a pattern and not a noise mask. Thus, rather than try-
ing to stop additional processing, they were studying how the pat-
tern might influence the perception of the previous figure.

2. Experiment 1

Based on Rossi and Paradiso’s results we expected two effects:
First, as the presentation of the stimulus was made shorter and
shorter the illusion strength should decrease. If the presentation
time was short enough, the illusion should disappear. Second, the
point at which the illusion should disappear would occur at differ-
ent times depending on the spatial frequency of the induction
stimulus; a lower spatial frequency stimulus should give rise to
induction only when displayed for a relatively longer period of
time than a higher spatial frequency stimulus. To test these two
predictions we used two different spatial frequencies and a range
of presentation times.

2.1. Methods

2.1.1. Subjects

One author and three naive subjects participated in the experi-
ment. The naive subjects had varying levels of psychophysics expe-
rience, but none had prior experience with brightness matching
experiments, or the hypothesis being tested.

2.1.2. Apparatus

Stimuli were presented on a 21” NEC FE2111SB CRT driven by
an ATI RADEON 7000 VE video card at a refresh rate of 85 Hz. Dis-
play luminance was linearized using a color lookup table that
drove a 10-bit DAC over a range of 0 to 102 cd/m?. A Cambridge Re-
search Systems ColorCal colorimeter was used to select the appro-
priate lookup table values. A chinrest was used to maintain a
viewing distance of 72 cm. Stimuli were generated and displayed
using Matlab running the Psychophysics Toolbox, version 2.54
(Brainard, 1997; Pelli, 1997). The experiment was run in a dark
room and subjects adapted to the light level for 3 min before col-
lecting data. The same apparatus was used in all experiments.
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2.1.3. Stimuli and procedure

We measured the strength of induction as a function of how long
the stimulus was displayed before being replaced with a mask (On-
Time, 58, 82, 117, or 1120 ms), using the method of adjustment. A
diagram of the procedure is shown in Fig. 1. The stimulus was a
grating made up of inducing stripes and target stripes. Each inducing
stripe had the same luminance on a given trial, either 12 cd/m?
(gray) or 102 cd/m? (white). Each target stripe had the same lumi-
nance on a given trial, either 51, 57, or 64 cd/m?. We designed the
stimulus so that when it was displayed every region was an incre-
ment relative to the pre-stimulus blank screen. This ensured that
all regions of the figure triggered transient responses, rather than
a combination of steady state and transient responses. In the
high-frequency condition each stripe in the grating was 1° wide
and 12° tall; in the low frequency condition each stripe was 10.6°
by 12°.

Trials were grouped into conditions; within a condition we held
constant the inducing stripe luminance, the stimulus OnTime, and
the spatial frequency of the induction grating. We varied the target
stripe luminance (51, 57, or 64 cd/m?) between trials to make sure
subjects were attending to the target stripe and not answering
based on memory from previous trials or conditions. Subjects com-
pleted 12 trials per condition and on average repeated each condi-
tion 6 times.

For each trial the following three frames were shown in a loop
until the subject had completed making the match: (1) a pre-stim-
ulus blank (0 cd/m?) for 306 ms, (2) the induction stimulus, and (3)
a noise mask that exactly covered the induction stimulus for
894 ms. The noise mask was constructed out of 0.25° squares. On
even lines the luminance of each square was selected at random
from a uniform distribution from 0 to 102 cd/m?2 On odd lines,
each square was set to 102 cd/m? minus the luminance of the
square above it. Thus, the space-averaged luminance of each verti-
cal pair of squares was 51 cd/m?.

The induction stimulus was displayed on the lower half of the
screen. To quantify the strength of induction we had subjects
adjust the luminance of a constantly visible patch on the upper half
of the screen to match the appearance of the briefly presented
induction stimulus. The patch was set to a random luminance at
the beginning of each trial (between 0 and 102 cd/m?, uniformly
distributed), and was adjustable in 0.4 cd/m? increments using
the computer’s keyboard. The adjustment patch was 1° by 2° with
a black and white checkerboard border with each check covering
0.5° x 0.5°. The subject’s task was to match the subjective shade
of gray of the target stripe at the center of the screen
(a small dot was placed above this stripe to orient subjects). The
induction stimulus was displayed multiple times in a trial so that
subjects could continue to make adjustments until they were
satisfied.

2.1.4. Results

We averaged over the matches subjects made for different tar-
get stripe luminances to obtain an overall measure of induction at
different OnTimes, for the two different stripe widths. In Fig. 2 we
show separate curves for the conditions where the inducing stripes
were bordered by gray and white, respectively. The vertical dis-
tance between the curves is the overall strength of induction.

For the 1° wide stripes we found that decreasing OnTime in-
creased the strength of induction in 3 out of 4 subjects. Over the
range of OnTimes tested, there was no evidence that induction
went away at any OnTime. At the shortest OnTime tested (58 ms),
however, subjects complained that they could no longer reliably
resolve the difference between target and inducing stripes. Thus
we did not collect any brightness matches for this presentation
time. These results suggest that so long as the stimulus is discern-
able, brightness induction occurs. This is in clear contrast to Rossi
and Paradiso’s conclusion that induction gets weaker at higher
speeds, and that it eventually disappears.

Pre-stimulus blank, 306 ms

Adjustment patch (1 ° x 2 °)
visible on all frames

Stimulus, {58, 82, 117 or 1120} ms

Dot above the target
stripe indicates which
stripe subject should
attend

Noise mask, 894 ms

> 24°

Fig. 1. Diagram of experimental paradigm. The three frames illustrated here are shown in a loop until the subject is satisfied that the adjustment patch matches the target

stripe. The duration of the stimulus is constant within any block of trials.
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Fig. 2. Experiment 1. Average luminance matches for the target stripe. The vertical distance between the border gray and border white curves is the strength of the brightness
induction illusion. The insets show schematic illustrations of the stimuli presented (Note: The illustrations are not to scale, and the number of bars shown is fewer than in the

actual 1° stimuli). Error bars denote standard error of the mean.

For the 10.6° wide stripes, we found similar overall results.
Decreasing OnTime consistently led to an increase in the strength
of induction in all subjects. Even at the shortest OnTime we tested
(58 ms) subjects were able to make brightness matches. This is in
clear contrast to the slow filling-in theory, which would suggest
that induction should be slower for the wider stripes. Our results
suggest little difference as a function of stripe width, and if any-
thing it is possible to make brightness matches at even higher
speeds with wider stripes.

One potential concern is that subjects might not have been able
to see the stimuli clearly in all conditions (especially at the shortest
OnTimes) potentially introducing some memory-bias in their
brightness matches. To address this we also analyzed how well
subjects’ brightness matches tracked the actual luminance varia-
tion in the target stripes that occurred between trials. This data is
shown in Fig. 3 for target stripes of luminance 51 and 64 cd/m?
(57 cd/m? is omitted to reduce clutter). While the individual
matches were variable, we found that the mean of the subjects’
matches did vary as a function of the luminance of the target stripe
for OnTimes of 1120 ms and 117 ms, for both stripe widths. For
shorter OnTimes some subjects began to have difficulty, suggesting
that accurate luminance perception began to fall apart, even
though induction still appeared to occur. This could be because
subjects were making matches based on memory, but it could also
be because the noisy nature of perception at these high speeds
makes it difficult to distinguish small luminance differences. We
tested this in a second experiment.

3. Experiment 2

In Experiment 1 we could not be sure that subjects were making
brightness matches based on the appearance of the target stripe on
each trial. To make this easier to detect we used a larger difference
in actual luminance of the target stripe between trials. Further-
more, in the previous experiment we did not collect data at the
shortest OnTime for the 1° stripes, because we did not want to
encourage subjects to guess when they felt that they could not

see the stimulus clearly. In Experiment 2 we instead asked subjects
to make their best guess, even if they felt unsure.

3.1. Methods

3.1.1. Subjects

The same subjects from Experiment 1 participated in Experi-
ment 2. Each subject completed Experiment 1 before starting
Experiment 2.

3.1.2. Stimuli and procedure

The stimuli and procedure was the same as Experiment 1, with
the following modifications: We only used two target stripe lumi-
nances (31 or 72 cd/m?), and we only collected data for 82 and
58 ms OnTimes.

3.1.3. Results

In all conditions subjects’ responses varied as a function of the
target stripe luminance, shown in Fig. 4 as the vertical distance
between the dashed and solid lines. This demonstrates that sub-
jects can perceive the target stripes at even the shortest OnTime,
and are basing their responses on the appearance of those stripes
on each trial, and not on their memory of previous trials where
OnTime was longer. Furthermore, in all conditions, subjects saw
strong induction effects including when the stripe width was 1°
and OnTime was only 58 ms. This is shown Fig. 4 as the vertical
offset between pairs of dashed lines, or sold lines. This provides
further evidence that the amount of presentation time necessary
to see induction does not depend on the spatial frequency of the
stimulus.

4. Experiment 3
In the previous two experiments we used a brightness mask of

a higher spatial frequency than the brightness induction grating.
From the perspective of filling-in, this higher-frequency mask
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Fig. 3. Experiment 1. Average luminance matches for the target stripe on trials where the target stripe was 64 cd/m2 (dashed lines) or 51 cd/m2 (solid lines). The distance
between the curves in each column shows how well subjects tracked the relative difference in target stripe luminance. The distance between curves in pairs of columns shows
the strength of brightness induction. The insets show schematic illustrations of the stimuli presented (Note: The illustrations are not to scale, and the number of bars shown is

fewer than in the actual 1° stimuli). Error bars denote standard error of the mean.

should be ideal for stopping additional processing, since it con-
tains many edges. But if the temporal dynamics of brightness per-
ception are not limited by filling-in, it may not be the ideal mask.
According to spatial filtering theories of brightness perception,
brightness induction is due to contrast-sensitive spatial filters
tuned to the spatial frequency of the inducing grating. Thus, it
is possible that the higher-frequency mask we used stopped pro-
cessing of high-frequency information, but did not disrupt pro-
cessing of the lower frequencies that actually caused induction.

In Experiment 3 we used a potentially more effective mask, with
the same spatial frequency as the horizontal spatial frequency of
the induction grating.

We first implemented this in the paradigm used in Experiments
1 and 2, using an OnTime of 58 ms. Interestingly, we found that the
first time the induction stimulus was presented in a trial it was not
too difficult to see, but after viewing the mask, additional presen-
tations of the induction stimulus were invisible. We theorize that
this is due to frequency-specific visual adaptation to the mask,
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Fig. 4. Experiment 2. Average luminance matches for the target stripe on trials where the target stripe was 72 cd/m2 (dashed lines) or 31 cd/m2 (solid lines). The distance
between the curves in each column shows how well subjects tracked the relative difference in target stripe luminance. The distance between curves in pairs of columns shows
the strength of brightness induction. The insets show schematic illustrations of the stimuli presented (Note: The illustrations are not to scale, and the number of bars shown is

fewer than in the actual 1° stimuli). Error bars denote standard error of the mean.

which led to an overall reduction in sensitivity to any stimulus
made up of those spatial frequencies. To prevent adaptation, we
elected to use a new paradigm where the induction stimulus was
presented just once in each trial, and then covered by a mask,
which was shown until the subject had made a brightness match.
After inserting a short break between trials we found that now
subjects could make as many brightness matches as we asked in
a single session. This paradigm, while noisier because subjects do

not have the chance to check their match against the induction
stimulus, has the additional advantage that there is no opportunity
to integrate information from multiple presentations of the stimu-
lus. We feel it is unlikely that this occurred in the first 2 experi-
ments, since the appearance of the induction grating seemed
constant across the multiple presentations within a trial. Nonethe-
less, using one presentation per trial protects against this potential
problem.
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4.1. Methods

4.1.1. Subjects

Four subjects participated. One (AR) was an author, and one (JB)
was familiar with the general purpose of the experiment. The other
two subjects had minimal psychophysics experience, other than
participating in Experiments 1 and 2, and were naive to the pur-
pose of the experiments.

4.1.2. Stimuli and procedure

We replicated the 1°-wide strip induction stimulus from Exper-
iment 2 with some minor changes. We found that with an OnTime
of 58 ms and only one exposure to the stimulus it was difficult to
detect which stripe was the target stripe, even though it was clear
that the grating was made up of dark and light stripes. Therefore,
we doubled the number of trials and asked subjects to make
brightness matches to both the dark stripes and the light stripes.
At the beginning of each trial subjects were told which stripe to
match. After 2 s this prompt disappeared and subjects fixated a
dot, centered in the lower half of the screen, where the grating
was to appear. After an additional 1.5 s the induction grating was
displayed for 58 ms (OnTime). The odd stripes of the grating were
either 12 or 102 cd/m? (corresponding to the border gray and bor-
der white conditions of Experiments 1 and 2), and the even stripes
were 19, 31, or 72 cd/m?. Note that the odd and even stripes no
longer consistently map onto the inducing and target stripe terms
used in Experiments 1 and 2, since either the odd or even stripes
could be targets, depending on the trial. All brightness combina-
tions were tested in random order. Since brightness matches were
made to both dark and light stripes, each combination was re-
peated twice within a block of trials. Subjects completed 16 blocks
of trials on average.

The mask was shown next. It differed from Experiments 1 and 2
only in that each square was 1° wide. The adjustment patch was
displayed in the upper half of the screen, with the same checker-
board border as used in Experiments 1 and 2. Instead of using
the keyboard to adjust the luminance of the patch, however, sub-
jects used a mouse, with movements to the left darkening the
patch and movements to the right brightening it. The initial lumi-
nance of the patch was set randomly on each trial, so the relation-
ship between absolute mouse location and brightness also changed
on each trial. Using the mouse made it much easier to select a
matching brightness quickly before the memory of the inducing
stimulus faded, though it made very fine brightness adjustments
somewhat more difficult.

When the subject was satisfied with the match they would click
the mouse to continue to the next trial. We also allowed the sub-
ject to abort the current trial if they felt they could not make a good
match, such as because of blinking during the presentation of the
induction stimulus. If they aborted, a different trial would be
shown next, and the aborted trial would be displayed again later
in the experiment. We encouraged subjects to use this feature
whenever they felt they could not make a good match, for what-
ever reason.

In between trials subjects were given a 5 s rest to reduce any
adaptation effect.

4.1.3. Results

We first consider the results that are analogous to the border
gray and border white conditions in Experiments 1 and 2. This data
is shown in Fig. 5a. As in the first two experiments, we found
strong induction effects in the appearance of the target stripe
(the strength of the illusion is the vertical offset between the two
curves). All four subjects showed that target stripes bordered by
gray (12 cd/m?) appeared brighter than target stripes bordered by
white (102 cd/m?). Furthermore, subjects’ brightness matches

showed sensitivity to the actual brightness of the target stripe (in
the figure this corresponds to the increase in match brightness
from left to right), except for subject MD, who's border gray data
was only poorly correlated with target stripe brightness. This
shows that subjects were not just guessing at the proper brightness
match based on whether they were told to match the bright or
dark stripes.

The data shown in Fig. 5a replicates the effects found in Exper-
iment 2. In addition, we collected data to determine if we could
measure induction effects not just by changing the border of the
target stripe from an increment to a decrement, but also from
changing the luminance of the border stripe while holding the tar-
get stripe luminance and the polarity relationship constant. This
data is shown in Fig. 5b. In this analysis, we expect the apparent
brightness of the target stripe to decrease as we increase the
brightness of the bordering stripes. In the figure, this would appear
as a decrease in each curve from left to right. All subjects show
clear evidence of this when the target stripe is a decrement; for
the increment target stripe the effect is weaker, and subject MD
shows the reverse trend. Nonetheless, when considering the incre-
ment and decrement data together, it is clear that even at 58 ms,
the relative brightness of the border stripe matters, not just its
polarity relationship to the target stripe.

From these analyses we conclude that brightness induction oc-
curs with a single, 58 ms-long presentation, even when the bright-
ness mask is ideal for preventing additional processing.

5. Experiment 4

In our final experiment we used our masking paradigm to mea-
sure the timecourse of White’s illusion (White, 1979). White's illu-
sion is a brightness illusion where one of the stripes of a black and
white grating is partially replaced by a gray patch. The brightness
of the gray patch appears to shift toward the brightness of the bor-
dering stripes, which is the reverse of what happens in brightness
induction. For this reason, White's illusion has been suggested by
some authors to require more complex mechanisms than bright-
ness induction (Anderson 1997; Todorovic, 1997). Thus, it might
have a different timecourse then brightness induction.

5.1. Methods

5.1.1. Subjects

Four subjects participated. One (AR) was an author, and one (JB)
was familiar with the general purpose of the experiment. The other
two subjects had minimal psychophysics experience, and were na-
ive to the purpose of the experiment.

5.1.2. Stimuli and procedure

The stimuli consisted of an 11° by 12° grating with 1° wide
stripes that alternated between gray (12cd/m?) and white
(102 cd/m?). The target patch was placed on top of the central
stripe, and was 1° by 2°. On each trial the target patch was ran-
domly set to either 51, 57, or 64 cd/m? In the on white condition
the grating was aligned so that the central stripe was a white
stripe; in the on gray condition it was a gray stripe. The procedure
was the same as Experiment 1, except that we used OnTimes of 82,
117, and 1120 ms. We did not include the 58 ms condition used
earlier experiments because subjects found it very difficult to see
the test patch at that short a display time.

5.1.3. Results

The brightness matches are shown in Fig. 6. The strength of the
illusion is the distance between the curves for the on white and on
gray conditions. Three of the four subjects saw a clear White's illu-
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Experiment 3: Single exposure of 58ms with 1° stripes and 1° mask
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sion at the shortest OnTime tested (82 ms). Subject SZ's data fol-
lows the same trend, but is too noisy to be conclusive. Our results
suggest that White’s illusion requires a similar amount of OnTime
to become visible as does brightness induction. As in the other
experiments, subject’s matches also reflected the actual trial-to-
trial differences in target patch brightness, showing that they were
not using memory to make their response at the shortest OnTime.
The average brightness matches made when the target patch was
51or 64 cd/m? is shown in Fig. 7.

The effect of OnTime on illusion strength was variable. In three
out four subjects the strength of the illusion appeared to get
slightly weaker with shorter OnTimes, but one subject showed
the opposite trend. Due to the variability between subjects, it is un-
clear how the strength of White’s illusion changes with longer
exposure. This does suggest that something somewhat different
is occurring than with brightness induction, however, where we
saw a clear increase in illusion strength for the shorter OnTimes.

The short timecourse and minimal difference in timing between
White’s illusion and brightness induction is compatible with mod-
els of brightness perception that depend on the interactions of sim-
ple visual features that could be quickly computed in early visual
areas. In particular, this includes models based on spatial filtering
and response normalization: the ODOG (Blakeslee & McCourt,
1999) and FLODOG models (Robinson, Hammon, & de Sa, 2007),
and the model of Dakin and Bex (2003). These models are compat-
ible with our results in the sense that they predict fast brightness
perception for both types of illusions, and no temporal dependence
on spatial scale. The ODOG and FLODOG models do not include any
explicit temporal aspect, however, so they are agnostic to the
change in illusion strength we found with shorter presentations
in Experiments 1 and 2. The Dakin and Bex model does apply re-
sponse normalization in an iterative fashion, but the authors’ claim
that is only because it simplifies the implementation of the model,
so it too appears to be agnostic to any temporal variation in bright-
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ness. One possible way to modify both of these models to include a
temporal aspect is to assume that response normalization com-
pletes significantly later than spatial filtering, and that the onset
of the mask in our paradigm interferes with normalization. At least
for the ODOG/FLODOG models, however, this would predict that
brightness induction would be unchanged by varying OnTimes,
and that White’s illusion should get weaker with shorter OnTimes.
This does not appear to match the results of our experiments,
though it is true that three out of four subjects in Experiment 4
did see a reduced White's illusion with shorter OnTimes.

6. General discussion

The interpretation of our results depends on whether or not our
masking paradigm successfully stopped additional processing of
the brightness induction and White’s illusion stimuli. There is
some debate in the visual masking literature as to the exact effect
of masking. Enns and Di Lollo (2000) suggest that rather than stop-
ping visual processing, masking reduces target visibility at a later
stage because the onset of the mask captures visual attention. This
maps poorly on to our experiments, however, since according to
this theory the major change with shorter OnTimes should be the
percentage of presentations where any stimuli other than the mask
was visible. Instead, we found that the brightness illusion stimulus
was nearly always visible, and that changing OnTimes changed its
appearance. In contrast, Reeves (2007) argues that visual masking
does indeed stop processing, so long as the mask stimulates the
same visual channels as the stimulus it is intended to mask. The
definition of channel here is vague, but it can be reasonably argued
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Fig. 7. Experiment 4. Average luminance matches for the target patch on trials
where the target patch was 64 cd/m2 (dashed lines) or 51 cd/m2 (solid lines). The
distance between the curves in each column shows how well subjects tracked the
relative difference in target patch luminance. The distance between curves in pairs
of columns shows the strength of White’s illusion. The insets show schematic
illustrations of the stimuli presented (Note: The illustrations are not to scale and
fewer bars are shown than in the actual stimuli). Error bars denote standard error of
the mean.

that our noise mask was sufficiently similar to our brightness illu-
sion stimuli to stop additional processing. Under this assumption,
our results have several implications for the speed of brightness
processing and its relationship to filling-in. We will discuss each
in turn.

6.1. The speed of brightness processing

First, our results suggest that brightness processing can be very
fast. We showed that only 58 ms of exposure is sufficient to per-
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ceive brightness induction, and 82 ms is sufficient for White's illu-
sion. We should note that while 58 ms of exposure was sufficient
to perceive brightness induction, this does not necessarily mean
that a brightness percept is generated 58 ms from the onset of a
stimulus. In fact translating our data into a direct measure of the
speed of brightness perception requires several assumptions. If a
stimulus is followed by a brightness mask after 58 ms, we assume
that processing in each area is interrupted with the arrival of the
mask signal. If we then assume that the stimulus and the mask that
follows it are both transmitted throughout the visual system at the
same rate, it follows that the processing in each area needs at most
58 ms after the signal from the retina arrives in order for a bright-
ness percept to form (see Fig. 8). The time before the brightness
percept is perceived (or speed of brightness processing) would
therefore depend on the particular area that controls the
perception.

There is evidence that early visual areas play a role in brightness
processing. Rossi and Paradiso (1999) found that 10-30% of the
cells they recorded from in cat V1 responded according to bright-
ness percepts. In particular, they found many cells that were mod-
ulated by the brightness of flankers outside of the cells’ receptive
fields, in the same direction as brightness induction. Interestingly,
they found that if the flankers were modulated sinusoidally in time
at different frequencies, that higher speed modulation resulted in
less change in the cell’s firing rate, much like their previous psy-
chophysical findings (Rossi & Paradiso, 1996). Schroeder, Mehta,
and Givre (1998) report that V1 in Macaque first responds about
20-30 ms after stimulus onset. If we add this latency to our esti-
mate of the processing time required to first develop a brightness
percept, it suggests that brightness induction is visible by about
80 ms, and White’s illusion by 100 ms. Interestingly, this is in
rough agreement with an ERP study of White's illusion (McCourt
& Foxe, 2004), which found that White’s illusion induced changes
in the C1 ERP component around 50-80 ms after stimulus onset.

It is important to note that we found evidence of brightness
induction occurring at the very fastest speed we tested. It is very
possible that induction occurs at even shorter presentation times,
however in pilot work we found it very difficult to see the stimuli
when we tested shorter OnTimes, and the brightness matches sub-
jects made were highly variable. But it is certainly possible that
brightness induction occurs at even shorter presentation times.

Our data suggests that brightness induction occurs much quick-
er than suggested by the data from Rossi and Paradiso (1996) sec-
ond experiment where subjects made brightness matches to a
temporally modulated induction stimulus. They found that induc-
tion could be measured for 2 Hz modulations, but disappeared en-
tirely for 4 Hz modulations. At 2 Hz a full cycle from black to white
and back takes 500 ms. In order for induction to be seen, however,
the visual system must respond to each half cycle, (e.g. from mean
gray to black and back to gray), which is 250 ms for 2 Hz, and
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Fig. 8. Diagram of the latency of brightness processing, with respect to stimulus
onset. See text for full details.

125 ms for 2 Hz. This would suggest that brightness induction
takes less than 250 ms, but more than 125 ms. Note, however, that
the sinusoidal modulation muddies the issue a little, since for part
of the cycle the surround is not significantly different from gray.
Induction is likely to be hard to see until the surround has reached
a sufficient level of contrast relative to the center. Our technique
does not suffer this ambiguity.

Blakeslee and McCourt (2008) recently investigated the time-
course of brightness induction using the grating induction illusion,
and also found evidence that induction can be seen at high modu-
lation rates. Subjects viewed a sinusoidal grating that was modu-
lated in counterphase. This induced a modulating grating 180°
out of phase in a medium-gray test stripe that bisected the modu-
lating grating. By adding an additional grating to the test stripe
they were able to elicit movement percepts, even when the modu-
lation of the inducing grating was as high as 24 Hz. By measuring
the perceived direction of motion as a function of phase difference
they were able to show that there is little to no change in phase be-
tween the induced grating and the inducing grating as the modu-
lation rate increases. This suggests that induction sufficient to
drive the motion percept occurs at the same speed as the percep-
tion of the inducing grating. Since they did not collect brightness
matches, however, the exact nature of the induction percept is un-
clear. Together with our results, this strongly suggests that the Ros-
si and Paradiso’s estimate of the speed of brightness perception is
too slow. Blakeslee & McCourt’s data, however, do not reveal the
dynamics of brightness perception as a function of exposure time.

While our data shows that 58 ms of exposure is sufficient to
perceive brightness induction, we also found that the strength of
the illusion changed with even longer exposure. This suggests that
the visual system computes the brightness of the stimulus quickly,
and then refines that estimate over time. Since the illusion strength
continues to change between 117 ms and 1120 ms, it appears that
this refinement continues until some point after 117 ms after stim-
ulus onset. Further work will be necessary to estimate when the
brightness percept reaches a steady state.

What is the nature of this on-going processing? One possibility
based on previous results is that it is a brightness filling-in signal,
but we can think of no reasonable explanation as to why giving fill-
ing-in more time would lead to a weakening of brightness induc-
tion. Filling-in may occur, but it does not explain our effect. A
more promising hypothesis is based on the well-known finding
that the visual system tends to respond most strongly to the onset
of a stimulus. For instance, consider the response of cells in Mon-
key V1. Albrecht, Geisler, Frazor, and Crane (2002) measured the
temporal response of V1 cells to gratings of different contrasts.
They found that neurons tended to reach peak firing rates around
50 ms after stimulus onset, and then firing would decay signifi-
cantly to a sustained level, typically around 100 ms. Note, however,
that some cells took much longer to reach a sustained level, and
the firing rate histograms were quite varied on the whole. Higher
contrast gratings would also increase the firing rate. Thus, the early
firing rate for a low-contrast grating is similar to the later, sus-
tained response to a high-contrast grating. If the visual system
does nothing to correct for this bias, and only used the rate of firing
to judge contrast then this would predict the change in strength of
brightness induction that we measured. Perhaps the visual system
does adjust for this bias partially, but cannot remove it completely.

One issue with this explanation is that we found changes in
induction over a whole second, which appears to be longer than
the temporal dynamics that Albrecht et al. (2002) measured. This
can be explained, however, if you assume that the visual system
integrates over the entire period of stimulus visibility. When the
stimulus is presented only briefly, the visual system must calculate
the strength of induction based on this elevated rate of firing,
whereas longer presentation times can also integrate the lower,
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sustained response. Lengthening the presentation time of the stim-
ulus increases the potential contribution of the sustained signal
relative to the transient signal, which would explain why we saw
a graded decrease in effect as we increased OnTime all the way
uptols.

An important question is why Rossi and Paradiso’s technique
caused brightness induction to disappear, whereas ours did not.
One possibility is that brightness induction does continue to occur,
even in the 4 Hz sinusoidal modulation condition, but that the vi-
sual system averages over similar percepts when they occur over
such short timescales. Perhaps when the modulation in brightness
is small enough and fast enough, the visual system treats the mod-
ulation as noise, in which case the average would be a better rep-
resentation of the true brightness. In our paradigm the mask is
quite different from the inducing grating, greatly reducing the like-
lihood that the difference between the two stimuli is just due to
internal noise, and thus indicating that the two percepts should
not be averaged.

Given our results, one might predict that Rossi and Paradiso’s
data should have shown an increase in the strength of induction
with modulation rate. If transient responses play a role, however,
one would not expect their paradigm to show the same effect as
our experiment. In their paradigm the modulating stimulus is
continuously visible until the end of the trial, so any effect of
the initial transient would be minimal. In addition, because the
modulating stimulus was visible for many seconds, there is prob-
ably some visual adaptation to the brightness modulation. Thus,
the adaptation to the real brightness modulation of the inducing
region may additionally reduce the visual system’s sensitivity to
the weaker, induced brightness modulation. While this is specu-
lative, it is clear that adaptation can have a big effect on stimu-
lus visibility. When we piloted Experiment 3, we found that
adapting to a visual mask of the same spatial frequency as the
inducing stimulus made the brief presentation of the induction
grating invisible. Further research using the Rossi and Paradiso
paradigm should carefully investigate the potential role of
adaptation.

Finally, there is a relatively high-level explanation of these re-
sults. The visual system is probably adapted to quickly extracting
brightness from a brief glimpse (after all, this is the task it must
solve every day, between saccades). It is not surprising, however,
that the shorter the glimpse the less accurate the perceived bright-
ness. Meanwhile, it is less clearly advantageous to respond to the
situation where a constantly visible stimulus is surrounded by a
rapidly flickering surround. This latter situation is somewhat sim-
ilar to the visual experience during smooth pursuit eye movements
when an object moves over a variable luminance background. Per-
haps the visual system is adapted to down-weight such modula-
tions. Indeed, as discussed earlier, the visual system is known to
respond strongly to transient signals, and to quickly adapt to con-
stant signals.

6.2. Filling-in

Our results do not suggest that the speed of filling-in plays a sig-
nificant role in the temporal limits of brightness perception, at
least for the OnTimes we tested. In particular, our results are not
compatible with the slower estimates of filling-in, such as the 9-
14°/s that Davey et al. (1998) estimated would explain Rossi and
Paradiso’s first experiment or Davey et al.’s estimate of 11-29°/s,
for their own experiments on the COC illusion. Our results could,
however, be compatible with significantly faster filling-in speeds,
presuming they were fast enough that there should be no differ-
ence between the two stripe widths we tested at 58 ms. Thus our
results are compatible with Rossi and Paradiso’s estimate of 140-
180°/s, based on measuring the apparent phase lag in the induced

luminance in their 3rd experiment. At that speed, the largest stripe
width we tested (10.6°) would be filled-in after only 29-37 ms,
assuming that there are no other temporal delays other than calcu-
lating filling-in.

Recently, recordings in cat areas V1 and V2 suggest that filling-
in is actually much faster than 140-180°/s (Hung, Ramsden, & Roe,
2007). Based on temporal correlation of spikes from pairs of neu-
rons, they estimated that filling-in within V1 travels between
1300-2400°/s, and as fast as 4000°/s from V1 to V2. While there
are likely many differences between cat V1 and human V1, these
data do suggest 180°/s is likely too conservative an estimate of
the speed of filling-in. On the other hand, Huang and Paradiso
(2008) have found evidence of much slower filling-in in monkey
V1. They found many cells fired much earlier to a contrast border
than to the interior of a large uniform region. Based on these re-
sults the authors calculated that filling-in travels at about 270°/s.
The authors further speculate that after adjusting for differences
between human and monkey V1, their results would be compatible
with speeds of 150-225°/s in humans. The wide difference be-
tween these two experiments may be due to the different measure
used (spike-timing correlation, vs. change in mean firing rate). In
any case, both experiments, as well as our own results, suggest that
the 9-14°/s rate of filling-in necessary to explain Rossi and Parad-
iso’s first experiment is improbably slow.

7. Conclusions

Our work suggests the generation of an initial brightness per-
cept can occur very quickly and that the perceived brightness of
a region depends on the surrounding context even for very short
presentations. Both brightness induction and White's illusion were
visible at the shortest times we tested, suggesting that both of
these illusions are generated very quickly in the visual system.
We did find, however, that the initial brightness percept can
change if more processing time is allowed, particularly for bright-
ness induction. In contrast to previous experiments, there was no
indication that filling-in plays an important role in the temporal
dynamics of brightness perception, but this may be because fill-
ing-in is too fast to significantly limit the speed of brightness
perception.
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Abstract

Is brightness represented in a point-for-point neuegd that is filled-in from the
response of small, contrast sensitive edge detectsPdale tested for the presence of
this filled-in map using flicker adaptation. Subjects viewadsdry flicker caused by a
dynamic brightness induction stimulus, with a modulasagound and a constant center.
Thereatfter flicker sensitivity was reduced when ourregbn was the same size as the
constant center, but not for smaller, inset regi®dhss suggests that brightness induction
does adapt cells along the contrast edge, but thatisheoefilled-in population of

brightness selective cells to adapt.
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Introduction

The perceived brightness of a surface depends on therasghof the surfaces
that surround it. This is known as brightness induct@me particularly well-known
example of brightness induction is brightness contirasthich the brightness of the
surrounding surfaceaaduces a shift in the brightness of the center surface shahthe
apparent contrast is increased. Thus, a medium-gray sguaréght background
appears darker than a square with the same luminancdarsk background (Fig. 1a).
Since the gray squares are physically identical (Fig.thb)response of photoreceptors
in the retina must be the same. Since the appearatioe squares differ, however, there
must be an area in the brain where that differenoepisesented. Even before information
leaves the retina it is recoded in terms of contragiier than point-for-point luminance.

While this would predict that the square’s edges would appHearedit as a function of

a. Brightness induction | _

b. Luminance profile |
of Fig. 1la [ ]

c. Small filter ‘\Aﬁ R H H
response U

d. Large filter \A[
response

Fig. 1: Brightness induction and spatial filtering
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their surround (Fig. 1c), it does not necessarily expidig the whole square appears to

change, because the size of early receptive fiellsnach too small for cells responding
to the center of the square to be influenced by the suri@uhettion can be clearly seen

for figures where the induced region has an extent {Cbfnelissen, et. al, 2006)).

There are three commonly suggested explanations foreehinge in
appearance of the whole induced region is representedir3ths thelarge receptive
field model: from the response of small receptive fieldsaolfyevisual areas, larger,
contrast sensitive receptive fields are constructéatém areas. If these later receptive
fields are large enough to encompass the entire indugedhrand part of the surround,
then their response would depend on both the luminanite @enter and surround (Fig.
1d). The highly successful ODOG (Blakeslee & McCourt, 1998)FAtODOG
(Robinson, Hammon, & de Sa, 2007) brightness perceptiaeisonake use of such
large-scale contrast sensitive filters, though theyagrestic as to how (or where) those

large-scale filters are implemented.

A second possibility is known aural filling-in. According to this theory at
some post-retinal stage in the visual system theresexigbint-for-point, retinotopic map
of the brightness across the entire visual field. Ppbist-for-point representation is
generated by analyzing all the contrast edges, as determimethtiyely small contrast-
sensitive filters, determining the brightness on eilicie of those edges, and then finally
propagating that brightness via a spread of activation &dges outward until the whole
point-for-point representation is complete. One eflilest known versions of this theory

is Grossberg ‘s FACADE model (e.g., Grossberg & Todard®88), which can account
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for a range of brightness illusions, including brightnedsiction. The filling-in model

differs from the large receptive field model in sevavays. Consider a small, uniformly
colored rectangle which grows in size. As it gets biggeramount of neurons which
represent it in the filled-in map also grows. Meanwtihe, neurons which represented its
filled-in brightness when it was smaller now just es@nt the brightness of the interior
of the rectangle. In the large receptive field modelydver, neurons respond to contrast
at different scales. So, as the rectangle growsdpelation that represents it shifts from
neurons which respond to small spatial frequencies te thelsctive for large spatial

frequencies.

The third theory suggests there is no point-for-poifibgtin, or large contrast-
sensitive receptive fields. Rather, the local edge reggsahemselves represent the
whole brightness of the induced region, and the viswsésydirectly infers from this
signal the overall brightness of each region. Thisbiess called theymbolic filling-in
theory, since the visual system infers the appearante aiduced square based on the
low-level input, but does not then re-represent that appearin an ‘analog’, or point-
for-point retinotopic map. We are unaware of any coran@del of how this would be
implemented in the brain, but the general idea has hegyested by several authors (e.g.

Dennett, 1992).

Most of the experiments conducted on this issue have fd@rse/hether there is
a retinotopic, point for point filled-in map of brigless. Rossi & Paradiso (1996) have
argued that temporal limits on the perception of briglstmeduction reflect a point-for-

point representation which takes a long time to filHiheir experiments showed that



34
temporally modulating the surround only induced a changesibrtightness of a center

region when the modulation rate is relatively slowb(Hz). Furthermore, for larger
induced regions, the temporal modulation rate that causiéevinduction is even lower,
dropping to below 2Hz for sufficiently large induced regionssT$iconsistent with the
neural filling-in theory, where the propagation, or filiing of brightness takes time
which is dependent on the distance that the signal mavstlfrom contrast edges. While
this result is certainly compatible with filling-in, itay instead be due to some yet-as-
unknown factor, as two recent studies (discussed belave $hown that induction is

visible at much higher speeds than Rossi & Paradiso’s E39fs suggest.

Blakeslee & McCourt (2008) investigated the timecourse ghbmess induction
using the grating induction illusion. Subjects viewed a sidasgrating that was
modulated in counterphase. This induced a modulating gratirfgol80f phase in a
medium-gray test stripe that bisected the modulating grafiney found little to no
change in phase between the induced grating and the inducimy gmthe modulation
rate increased from 2Hz to 24Hz. This suggests that industtidicient to drive the
motion percept occurs at the same speed as the percefptieninducing grating. While
this is not particularly compatible with Rossi & Paradigheory of slow filling-in, it is

compatible with filling-in, so long as filling-in is almbstantaneous.

We (Robinson & de Sa, 2008) have also shown that brightinduction appears
to happen much quicker than suggested by Rossi and Paraéisaylen using
induction stimuli closely modeled on Rossi and Paradsgperiments. Instead of

measuring induction strength while the surround was congtawidulated, however, we
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used brief, static presentations, followed by a noisskm#&/e found that induction was

clearly visible and quite strong, even when the briesgméation was as short as 58ms,
and there was no indication that the spatial scalkeoinduced region had any influence
on the temporal limits of induction. These results dififem Rossi & Paradiso’s data
across several dimensions, and suggest that the terppopakties measured by Rossi &
Paradiso are actually due to some other factor, nadgetified. Note that our results,
however, are still compatible with filling-in, so longiakappens on a sufficiently fast

time-scale.

Some psychophysics paradigms unrelated to brightnesstimalalso support the
hypothesis that brightness spreads from contrast edgeselatively slow speed.
Paradiso & Nakayama (1991) studied brightness percepteelmjt briefly presenting a
large white disk and then masking it with a smaller pattguch as a black circle with a
white outline. At short inter-stimulus-intervals theskanade the white disk appear as
though it had a dark hole in the center, suggesting thaidith&on of a contrast edge

blocked the completion of a slow filling-in process.

Paradiso & Hahn (1996) showed that steadily decreasingreasiog the
luminance of a disk led to a slightly delayed changéenperceived brightness at the
center of the disk. This lag is suggestive of a relatistw filling-in process, though it
is also compatible with the theory that the respoh$rger receptive fields in later
visual areas are built from the response of smadiegptive fields in early visual areas.
So long as people are conscious of the response ireadyhand later areas, the later

areas would necessarily lag in time.
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fMRI experiments in humans have produced mixed evidendédadilling-in of

brightness information from contrast edges. Cornelisseal, (2006) measured the
retinotopic response to viewing a static 14° wide gray diskevthe surround modulated
in brightness. In both V1 and V2 they found a very gir@sponse in the voxels
corresponding to the retinotopic location of the cattealge between the center and
surround. As the retinotopic distance from the edge asert, the BOLD signal
decreased, with a similar fall-off for the regionsresponding to the center and the
surround. This fall-off was quite slow, suggesting a veatiafly broad response to
edges; broader than would be expected due to the blurring causedBQLD point-
spread function. While this could be the signature lidgdin, they argue that it is
actually only evidence of a spatially diffuse responsealges. This argument is
supported by their findings that a similar broad edge respeasdéound when subjects
viewed a modulating checkerboard background (which inducetdarme in brightness
of the center, static region). Furthermore, a bralyk @esponse was found in the
surround when the center disk modulated in luminance @&nsutiiound was held
constant, even though in this situation the surround appeassant in brightness. Other
studies that purport to have found fMRI evidence fonfiiin may well have been

measuring this broad edge response instead (e.g. Boyaki2607).

Pereverzeva & Murray (2008) followed up on Cornelissen’s éxjgeert but with
an interesting twist — they tested induction at diffeteminance’s for the central, static
disk. When the luminance was low, little illusory chamges seen in the central disk

from modulating the surround. When the central disk hadt@ehiluminance, however,
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the brightness illusion was clear and quite strongyTound the largest V1 BOLD

modulation in this latter condition, suggesting thatBd.D signal corresponds at least
in part to the perceived brightness. Like Cornelisbey theasured BOLD modulation as
a function of distance from the contrast edge, and fowswhitar falloff in signal change
as the distance from the edge increased. Puzzlingly,Jyeowiis was true even in the
low-luminance condition, where no brightness inducti@s seen, again raising the
guestion of whether the BOLD signal corresponds to perddirightness as the authors
suggest, or just a broad edge response, as Cornelissen amgagition, it is difficult to
eliminate the possibility that broad edge response founatbystudies is actually an

fMRI artifact.

Single unit recordings have produced some evidence fogfilli, but at radically
different speeds. Recordings in cat areas V1 and V2 sutpgest signal does propagate
from contrast edges into the center of uniform regiehs, Ramsden, & Roe, 2007).
Based on temporal correlation of spikes from pairseofons, they estimated that filling-
in within V1 travels between 1300-2406, and as fast as 4008 from V1 to V2,
although aspects of their data led the authors to sudggespteading activation in V1
was unrelated to perceived brightness. In contrast,gi&dParadiso (2008) have found
evidence of much slower filling-in in monkey V1. They fodumany cells fired much
earlier to a contrast border than to the interioa &frge uniform region. Based on these
results the authors calculated that filling-in travetlatzout 270°/s. The wide difference
between these two experiments may be due to theatiffeneasure used (spike-timing

correlation, vs. change in mean firing rate), ordliierence in species.
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In the present work we introduce a new psychophysical pamaidigmeasuring

the presence of neural filling-in, based on flicker adaptaProlonged viewing of a
high-contrast flickering spot causes reduced sensitivity tdlitieer, and in particular,
elevated contrast thresholds for low-contrast flidleee Schietin and Spillman, 1987, for
a brief review). This reduction in sensitivity may be ttueeural fatigue of the cells
which represent the flickering region, or to a proceskvcalibrates sensitivity in order
to reduce the firing rate to frequently encountered stirthai precise explanation does
not matter for the purpose of our research). In oueocustudy we explore if flicker
adaptation is found for regions where illusory flickecasised by brightness induction
from actual flicker in the surround. We will show thaduction does cause strong flicker
adaptation, suggesting that it isolates a population obnewhich represent the change
in appearance of the induced region. This reduction iagest when the inner edges of
the flickering inducer are aligned with the outer edgeb®test region. We will also
show that the strength of flicker adaptation is draiticeduced when the test region is
shrunk (that is, inset) a few degrees, suggesting thaiojhelation of cells that are
adapted are primarily or even exclusively along the cenedges, and if there is a filled-
in population that represents the brightness of the edluegion, it is not susceptible to

adaptation.

Experiment 1. Adapt to induction, detect polarity

In this experiment we measure the strength of indudenved flicker adaptation

for two conditions: when the test region is exaetlgned with the inner edge of the
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inducer, and where the test region is significamgt relative to the edges of the inducer

(Fig. 3). In the aligned condition two forms of adaptawe possible: first, we expect
some edge adaptation because the contrast modulatienadrder between the inducer
and the inducing region exactly aligns with the contnastiulation between the test
region and the background. Second, if there is a nediradfih of brightness then we
would expect those neurons to be adapted across the rgfion where the induced
flicker is seen. In the inset condition the edges efitlducer and the test region do not
overlap, so the only type of adaptation that can remmamthe posited filled-in
brightness modulation. Thus, if there is neural ffin we should expect to measure an

effect of adaptation in both the aligned and inset camdit

Methods

Subjects
Two moderately psychophysically experienced subjects jpati#dd. Both were

naive to the purpose of the experiment.

Apparatus
Stimuli were presented on a 21” NEC FE2111SB CRT driven yTan

RADEON 7000 VE video card at a refresh rate of 85Hz. Dislplaynance was
linearized using a 256-entry color lookup table that drove atIDAZ. A Cambridge
Research Systems ColorCal colorimeter was used ttt sleéeappropriate lookup table
values. The lookup table was apportioned so that theefsdilution of the DAC was
available for luminance values between 37 édimdl 65 cd/rh(in steps of 0.15 cd/h

The remaining entries covered the rest of the 0 to 168 dhge in much coarser
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increments. This allowed us to adapt subjects with maxisantrast inducers, while still

allowing us to also generate relatively low contrast s&imuli.

36 (or 50) trials

Pre-trial flickers adapting flickers test flickers Report polarit
Blank Fi)((jation : : i Blank
screen ol screen

onset
A 153ms 153ms | 306ms 200ms A 153ms 153ms | A 153ms 153ms | <5s
120 (or 0) times 20 (or 1) times 3 times

Fig. 2: Experiment

A chinrest was used to maintain a viewing distance of 72amuwere
generated and displayed using Matlab running the Psychophysit®X.oeersion 2.54
(Brainard, 1997; Pelli, 1997) on a Windows XP computer. The ewpat was run in a
dark room and subjects adapted to the light level for 3 milgtiese collecting data. The
same apparatus was used in all experiments.

Stimuli and procedure

Our paradigm is outlined in Fig. 2 Each large rectangieesents a single screen
shown to the subject, with the duration that screenws#de listed below it. The
experiment started with the screen on the far d&itl, proceeded rightward. The arrows
show loops in the time line, causing groups of screens tepaated multiple times (such
as the pre-trial flickers, which were shown a totel 2@ times in thedapt trials, or 0

times in theno-adapt trials.)
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Contrast thresholds were measured in two different kihdessionsadapt and

no-adapt. In the adapt session subjects first view a fixationcéotered in a gray
rectangle (50.62 cd/fmsurrounded by a larger rectangle whose luminance is aiedul
by a 3.3Hz square-wave (153ms per frame) between 0 and 102 THérluminance
change of the surround induces a change in the appaigimtinless of the physically
static center. Subjects adapt to 120 cycles of flicker. Fitggrial flicker is meant to

build up a high level of adaptation before any measurerae@tsiade. Subjects are
instructed to fixate the dot at the center of the screanglthis, and all subsequent parts

of the experiment. After the pre-trial flickers theamarement trials start.

A trial in an adapt session consists of the followsogeens. First, a gray screen
(50.62cd/m) is shown for 306ms, serving as a very brief inter-iabk, and then a
fixation dot is drawn, which remains on the screen ferrdst of the trial. After an
additional 200ms delay subjects view 20 full-conteaisipting flickers, which are
identical to the pre-trial flickers in all ways exceptotal number. These flickers serve to
keep subjects in an adapted state. Then thse#ickers are shown. The test flickers
consist of a gray screen for 153ms, followed by a grawpngte that is either a small
increment or small decrement relative to the backgtduminance, for 153ms. On any
given trial the test flickers are all either incrertseor decrements, and the subject’s task
is to report this using the keyboard after tfeflgker is shown (we will refer to this as
the polarity task). The fixation dot disappears after tH&fBcker to indicate a response is
required. Subjects are encouraged to respond quickly but areugpvie 5 s to respond

before the trial times out. After the subject respamdsw trial begins.
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To measure the effect of adaptation we compared cotitrastolds for the adapt

sessions tmo-adapt sessions. In the no-adapt sessions no pre-trial ficke shown,

and just 1 “adapting flicker” is shown instead of 20 adapticgdts. We included one
flicker to make sure that any masking effects, such ag-omitrast masking, were
present in both the adapt and no-adapt sessions. loihéapt sessions we collected 50
trials per session; in the adapt sessions we colleecse@$ (each trial took much longer

to complete and we did not want to overly fatigue subjects).

To measure contrast thresholds we adjust the strentjtle oést flickers using a
variable stepsize staircase. The staircase stepaits at 0.75cd/f(1.5% Weber
contrast) and is reduced by 10% every time the subject answerrectly on a trial, but
is not allowed to decrease below the minimum resoluwfdhe DAC. After correct trials
the flicker strength is reduced by one stepsize; afteriact trials it is increased by two

stepsizes. If the staircase reaches zero flickerasirthe stepsize is also reduced by 10%

(a) Adapt both edges and area (s10-h4-t4) (b) Adapt area only (s10 -h4-t2)

Outer and inner edges of adapt region Adapt region same as in (b)

b !

l =
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—_ I Test region is L —I o

| inset relative Lo | * } <« 5

I | to adapter -—d I~

(R — region Y

— ——— | 8

Inner edge + test both £ Adapt inner edge 4 N
~ ~ ~ ~ ~— -

Adapter outer edge 10° Adapter outer edge 10°

Fig. 3: aligned and inset conditions
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and the staircase is reset to the minimum possibleefl greater than 0% contrast. After

every 4 incorrect responses a single easy triatisduced to keep the subjects’ attention
and motivation from decreasing due to frustration. The respon the easy trial,
however, does not influence the location of the ste@r@a subsequent trials. These
parameters were found to produce good coverage of the psytiwaurve during pilot

tests.

Pilot tests suggested that the adapt and no-adapt sgsidnsed rather different
contrast thresholds. In order to minimize the numlb@oo-informative trials, we started
the staircases at different contrasts (in the notaskgsions 5.8% contrast, or £2.94
cd/nt relative to the 50.62 cdfnbackground:; in the adapt sessions 13.3% contrast).
These contrasts were significantly above threshadbsaibjects completed about 10 trials
before failing to detect a significant number of taskérs. Pilot work suggested,
however, that the initial contrast had little effeatthe final measured contrast

thresholds.

We tested 4 different configurations of inducing rectangtektest rectangles; 2
aligned (s10-h4-t4, and s14-h7-t7) and 2 inset (s10-h4-t2 and s14-hkEde
configurations are named for the width of &werounding inducer, the grayole in the
inducer, and th&est rectangle (in degrees of visual angle). Two exangpéesketched
in Fig. 3 (not to scale; the dashed rectangles represesizéh and location of the test
flicker). For each configuration we ran an average @s8isns, split between adapt and

no-adapt sessions.
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Analysis
We fit a Weibull curve to the data for each conditiorestimate the percent

contrast necessary to elicit 75% correct on the pylta#k. A bootstrap analysis using
the psignifit package (Witchman & Hill, 2001b) was used torese the 95% confidence
intervals of this threshold, using 9000 bootstrap testsypgecWe allowed the software
to estimate up to a 5% lapse rate (Witchman & Hill, 2001a@nwititing the Weibull
function to the data, to prevent occasional lapsetenton from significantly

influencing the estimated 75% correct threshold

Subjects tended to make the occasional mistake on shéefiv trials of a
session, somewhat independent of condition, so wardisd the first 3 trials of each

session to minimize the noise this would introduce iimaging the threshold.

Results
The percent contrast needed to reach a 75% correct penferttaeshold for

each condition is shown in Fig. 4 (Error bars denote 88Bfidence intervals in this, and
all following figures. Any reduction in sensitivity due to adagtis indicated by the
‘adapt’ bars being further to the right than the no-adap)bTo measure the decrease in
sensitivity due to adaptation we compare this contrassiiold between adapt and no-
adapt sessions. For the aligned conditions the difterenquite large for both subjects,
showing that adapting to induced flicker can significanttjuce the visibility of low-
contrast flickering regions. For the inset conditidmsyever, the difference between the
adapt and no-adapt sessions is quite small, with nostensirend across subjects, and is

generally no larger than the 95% confidence intervals. Stggests that adapting to
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Fig. 4: Experiment 1: induced flicker adaptation

induced flicker does not reduce sensitivity to low-contilecster when the edges of the

test region are inset from those of the inducer.

The results of Experiment 1 suggest that induced flickgstatan is primarily
driven by adaptation of cells near the contrast edgedoWwl no evidence that
sensitivity is also reduced in the areas removed frorediges, even though flicker of the
inducing rectangle caused an apparent flicker in the brightoithe entire gray central
rectangle. This seems at odds with the theory thalhimegs information is neurally
filled-in from contrast edges, since if there is edtin population we would expect
those neurons to also show adaptation and therefore réidiuee sensitivity across the

entire induced flicker region.

Experiment 2: Adapt to induction, detect cycle count
In Experiment 1 we found that edges played a primary ratedunction-derived

flicker adaptation. In Experiment 2 we attempt to repdighis finding using a different
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task. This was motivated by the informal observation dugxgeriment 1 that the

general presence of flicker could be detected on sonteekian when the polarity of that
flicker was unclear. Thus, we wanted to determine if ties@mething special about
polarity judgments. In our new task subjects counted théeuof cycles of test flicker
on each trial. We also changed the scale of the apaiid testing regions to rule out the
alternate hypothesis that small test regions are feattatl by adaptation (all of the inset

test regions were only’2vide in Experiment 1).

Methods
Two psychophysically experienced subjects who were naitreetpurpose of the

experiment participated. One author (AR) also participated.

The paradigm remains similar to that sketched in Figaril,is identical to that

used in Experiment 1 except as discussed in this section.

The major change was that the subject’s task was td ttminumber of cycles
of test flicker at the end of each trial. On trialsese only one or two flickers were
shown the remaining flickers were “drawn” at zero amgh, insuring that total trial
timing was the same irrespective of flicker count. fix&tion dot always disappeared
6x153=918ms after the final adapt flicker so that trial lemgthld not serve as a cue to

the number of flickers.

We implemented two other small changes to ensurehéatitfference between
no-adapt and adapt sessions did not depend on extraneous. factly we were

concerned that performance on adapt trials might hese lowered because there was
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no cue immediately proceeding the test flickers, andpku®rmance could decrease if

subjects’ attention wandered during adaptation. Therefardiad the fixation dot change
on the final cycle of the adapt flickers from white tocklain contrast, no-adapt sessions
had only 1 ‘adapt’ flicker instead of 20, so there wa®littlason to worry that attention
might drift. Note, however, that we implemented tlxation dot change in both adapt

and no-adapt sessions to keep the stimulus properties equal.

The other issue we addressed was that in the no-adéptheee is only 306ms +
200ms = 506ms of delay after the subject’s response (ge2 JiSince the no-adapt
trials had a single ‘adapt’ flicker (to equalize any magkas discussed in Experiment 1
methods), it is possible that a small amount of adaptahight build up over the course
of the 50 trials. Thus, in the no-adapt sessions weduotred an additional delay before
the single adapt flicker showing the fixation dot for lir@sead of just 200ms. We did

not, however, increase the delay in the adapt sessions

We elected to collect 50 trials in both the adapt anddapiasessions, since in
Experiment 1 subjects had not complained of any fatigueadiapt and no-adapt
sessions were also made more similar by using the samEase parameters for both

session types (in particular, both staircases statt&€8. 3% Webber contrast).

We tested 4 different configurations of inducing rectangtektest rectangles; 2
aligned (s10-h4-t4, and s15-h8-t8) and 2 inset (s10-h4-t2 and s15-HBst4@ach

configuration we ran an average of 9 sessions, splitdegt adapt and no-adapt sessions.
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Fig. 5: Experiment 2: count the number of test flick8r&\FC)

We determined the contrast threshold necessary for 66%ct@erformance
(halfway between chance and perfect performance fealeefative forced choice

response), using the same psignifit package settingsEagariment 1.

Results
The results are shown in Fig. 5. All subjects showhrhigher contrast

thresholds after adaptation in the aligned condiflde effect is somewhat weaker for
subject BC, and his data are somewhat more noisy, elbpatide s10-h4-t4 condition,
such that the 95% confidence intervals almost overlas. dduld plausibly be due to
extraneous eye movements, since the receptive fielsthe fovea are smaller than
those in the periphery, which would mean that smallregeements would be more
detrimental to edge-based adaptation. This hypothesisag@ement with the
observation that all subjects show wider 95% confidemies\als for the s10-h4-t4 adapt

sessions than the s15-h8-h8 adapt sessions.
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In contrast to the aligned condition, the data froenitiset conditions show no

consistent evidence of adaptation, with overlapping 95%d=nce intervals for all of

the subjects, for both the s10-h4-t2 and s15-h8-t4 configurations.

These results suggest that induced flicker adaptatiomféed to edges. We
found no clear evidence of adaptation to areas interitiret edges. This replicates the
findings from the first experiment, and shows that teguilt is not limited to the polarity

task.

Experiment 3: Jittering edges and slower flicker
Experiments 1 and 2 suggest that induced flicker adaptatiosaetg on cells

along the contrast edge. This suggests that there is hofgded-in neurons to adapt
that represent the brightness of the area removedtfie edges. What if, however, there
is such a pool of filled-in neurons, but our flickering indufails to stimulate them
sufficiently to cause a measurable amount of adaptaliioBRperiment 3 we address two

possible reasons this might occur.

First, filling-in is thought to be a two-stage procesgidity edge units respond to
local contrast, and then this information is propagatenhits representing uniform areas.
If, however, the edge units themselves become suffigiadapted then they might be
less likely to significantly modulate the response offilfed-in neurons. This hypothesis
would be particularly compelling if our flickering adapter did catise a clear brightness
change across the whole induced region. Subjectively,\ewehe brightness of the
induced region did modulate, weakening this hypothesis. Evadagmation in the edge-

selective neurons might reduce the amount of adaptatit ifilled-in neurons, such
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that we could no longer detect it reliably. To address wes;andomly modulated the

location of the inner and outer edges of the inducin@ngbt, so that there would be
significantly less adaptation to local edges, while stddulating the supposedly filled-in

neurons.

Second, it is possible that the 3.3Hz modulation ratheoinducer was just too
fast for filling-in to complete. If filling-in did not amplete, one would expect
significantly less adaptation, particularly in the cewtethe filled-in region. De Valois,
et. al, (1986) found that the strength of induction does piregipitously between 2 and 4
Hz, at least in some subjects. Note, however, thidi ot of 6 subjects, induction did
not disappear completely even at 8Hz modulation rdtése Weakening of induction is
related to the slow speed of filling in, as argued by RogsParadiso (1996), then this
could explain why we could not measure any adaptatiothéofilled-in cells. Note that
the slow speed of induction (and therefore filling-injimgler some dispute, however:
Blakeslee & McCourt (2008) have suggested that inductioeasyinstantaneous, and
we (Robinson & de Sa, 2008) have argued that a single 5&uswee is enough time for

induction to occur (at 3.3hz each frame of the inducsinasvn for 153ms).

Even if filling-in is fast enough to complete for the BZ3modulation rate that we
used, it is true that prolonged viewing of modulation at‘thigh” speed would tend to
reduce the apparent strength of induction, which could rethegeotential for
adaptation. To this end we also explored if a ~1Hz (506 mBarae) modulating inducer

would reveal greater adaptation. 1Hz is slow enough thatl®véhe slowest estimates
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filling-in should complete, and furthermore, 1Hz modulati@uses stronger induction

than 3.3Hz.

We also adjusted the no-adapt sessions to be equallyifagias the adapt
sessions. If fatigue was higher in the adapt sessionsaiig potentially decrease
contrast sensitivity in those sessions. The expesizedof this effect is small, but since
we were eliminating potential reasons why no effectfaasd in the inset conditions,
we wanted to also eliminate potential biases in the ofgdsection. The no-adapt
sessions now take exactly as long as the adapt sessminisave the same number of
flickers, but the location of the flicker is moved battit does not induce any change in

the apparent brightness around fixation.

Finally, we used just one cycle of test flicker atéhe of the trial. This protected
against the possibility that by the time 3 test flickead been shown the filled-in neurons
had already un-adapted significantly. Since every tadldxactly one flicker we used the
polarity task from Experiment 1.

Methods
We used the same three subjects as in Experiment 2.

Our paradigm differs from Experiment 1 in the followingys. First, after every
full cycle (2 frames) of the pre-adapt or adapt flickéns,inner and outer edges of the
inducing rectangle were moved within @arange (in step sizes of 1/$df a degree). For
the s13-h6-t2 configuration this meant that the inner eddeeahtlucing rectangle could

be anything betweerf &nd 7° in width. The size of the outer inducing edge was always
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expanded by the same amount as the inner edge, which Iposséyved the degrees of

visual angle subtended by the inducing rectangle.

The no-adapt sessions were changed to have exactly teeeaporal properties
as the adapt sessions. Instead of changing the numthekerffs between sessions, we
changed the location of the flickers in the no-adapsiens so that the flicker would
contribute minimally to any visual adaptation at thgéatocation. In no-adapt sessions
all but 1 of the pre-adapt and test flickers were shovenrgctangle (4.T5y 32)
abutting the top edge of the screen. Thepdlickers covered on average the same
amount of visual angle as the flickering region centarednd the test rectangle in the
adapt sessions. They did not induce any apparent changehnghtness of the rest of

the screen.

Thus, in no-adapt sessions, subjects first viewed 120 flidcensrring at the top
of the screen while fixating at the center of theesar@ hen, each trial was preceded by
19 top-flickers, followed by a single regular induced flickersunding the test patch,
and then finally the test flicker was shown. In adagssions no top-flickers were shown;

all adapting flickers were centered around the fixationtpamin Experiment 1.

As in Experiment 2 we had the fixation dot change orfitiaé cycle of the adapt

flickers from white to black to cue subjects that the teeters were about to appear.

We collected data for 3.3Hz and 1Hz flicker speeds. Expetatheessions took
dramatically longer in the 1Hz condition, so in ortiemaximize the amount of useful

data we adjusted the staircase procedure to start jitd¢ albove the contrast needed for
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100% performance. A brief pilot experiment determined tisngle set of parameters

achieved this for all of our subjects: 3% initial contrasth an initial stepsize of 0.5%
contrast. The same parameters were used in the 3.3diticonWe collected 50 trials
per session in the 3.3Hz condition and 30 trials percesgsithe 1Hz condition. We
collected an average of 4 sessions for each speediu@plieen adapt and no-adapt

sessions).

We tested just one configuration of inducing rectangle esidréctangle: s13-h6-
t2. We did not include an aligned configuration becauséottaion of the inducing
rectangles edges varied rapidly across the entireosess described at the beginning of

this section.

inset AR RM BC
% E—{ j [ No adapt
3.3Hz s13-h6-2 [ ] adapt
. .+ - I
1Hz s13-h6-t2 } } %
| i
0 i 2 0 1 2 0 i 2

Fig. 3: Experiment 3: variable sized adapter, singl&dlipolarity test

Results
We determined the contrast threshold necessary for 75%mance, using the

same psignifit package settings as in Experiment 1. Tieast thresholds are shown in
Fig. 6 . In both the 1Hz and 3.3Hz conditions there wasumtence of increased contrast

thresholds in the adapt condition. These data replibatgeneral finding from the first
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two experiments that adapting to induced flicker does noedéaker adaptation in the

interior of the induced region. Thus, the lack of adamtatioes not appear to be due to
confounds from overly rapid flicker in the inducer, ocdnese adaptation to edge contrast

prevented adaptation from occurring in the supposedly fileteurons.

General Discussion
We have shown that adapting to induced flicker can caus#icimt reductions

in contrast sensitivity to real flicker, but only iretkituation where the edges of the
inducer are aligned with the edges of the test regionnhetest region is inset, it

appears that there is no reduction in sensitivity.

These data highlight the important role of edges and cimtrérightness
induction. It is not particularly consistent with thealny that brightness information
fills-in’ from edge selective neurons into a point-fooint representation of brightness
across the entire visual field. In particular, if sudilled-in representation exists, we
would expect that it too is susceptible to flicker adaptajist like the cells near the
contrast edge, and that this adaptation would have sopw eff contrast sensitivity in
regions inset from the edges. Note that our data dorgoedhat cells only respond to the
contrast edge; there may be cells which fire to theiortef a region who's apparent
brightness is modulated, as some single unit recordipgregnents have indicated (e.g.
Rossi & Paradiso, 1999). Our results do suggest, howevethehéring of such cells
does not contribute significantly to the representatidirightness, or at the very least

that they do not contribute to detecting brightness flicitéhe speeds we tested.
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There are some caveats, however, to our conclusio ibrightness does not fill-

in. It is possible that brightness is representedfiiied-in population, but for some
reason that population is not susceptible to flicker adaptafihis would be quite
surprising, since adaptation seems to be a relatively iiguphenomena, but of course

it cannot be ruled out.

Another, more plausible objection is that even thouglaeapted the supposedly
filled-in neurons, we did not adapt the edge-selective msurdich were internal to the
filled-in region. Thus, in the inset condition, the actapted edge-selective neurons were
able to signal for the edges of the inset flickering redeayhile the adaptation of the
filled-in neurons may have occurred, this edge signdtidoave been present with no
reduction in strength, and perhaps this is the signabthgects used to govern their
response. It is impossible to rule this out, though we hagearguments for why it
seems implausible. First, if filling-in is an importam@mponent of representing
brightness, then we would expect that interfering withauld cause some reduction in
sensitivity — otherwise why would the visual system nesifiltin at all? Second, if
filling-in neurons were adapted, but edge neurons were mot,athe might expect some
rather strange percepts in the inset condition — sufiltkearing edges with no center,
sort of like a wireframe rectangle. At least subjeadii, we did not observe any such

percepts.

What about other theories of filling-in besides the p@ntpoint model? Our

results are quite compatible with the symbolic theorfllofg-in. Adapting the edge-
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selective cells which code for filled-in regions reducestrast sensitivity to other filled-

in regions that are represented by those same cells.

Our results are also compatible with the theory thexitlare large contrast
sensitive receptive fields which are built out of theprnse of smaller receptive fields.
Adapting to a flickering inducer will affect all of theceptive fields at the appropriate
scales to detect the contrast across the edges, artti@lswoich larger receptive fields
which code for the contrast of the center relativinéosurround. These larger receptive
fields would be poorly suited for signaling the presenca sxhaller test rectangle, since
the test rectangle stimulates a much smaller paheaf positive (or negative) centers.
Meanwhile, an intermediate sized receptive field, wiuesder just covers the smaller
test rectangle is ideally suited for signaling its pneg, and would not be adapted from

the flickering inducer at all.

Conclusions
Many studies have been published on the issue of how brighthespresented in

early visual areas. While there is no consensus, outg¢savide converging evidence
from a new paradigm that a point-for-point, filled-epresentation is unlikely. While we
doubt this debate will be resolved soon, we suggest thaiuid be productive to
consider alternatives to the point-for-point filleddneory, and that it is time to start
designing experiments that can differentiate betweemtiner two possible methods of

representing brightness described in this paper.
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