
UC Santa Barbara
UC Santa Barbara Electronic Theses and Dissertations

Title
Applications of the Minimum Sobolev Norm and Associated Fast Algorithms

Permalink
https://escholarship.org/uc/item/029284wq

Author
Gorman, Christopher Henry

Publication Date
2019

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/029284wq
https://escholarship.org
http://www.cdlib.org/

University of California

Santa Barbara

Applications of the Minimum Sobolev Norm and

Associated Fast Algorithms

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy

in

Mathematics

by

Christopher Henry Gorman

Committee in charge:

Professor Shivkumar Chandrasekaran, Co-Chair

Professor Xu Yang, Co-Chair

Professor Hector Ceniceros

Dr. Xiaoye Sherry Li

June 2019

The dissertation of Christopher Henry Gorman is approved.

Professor Hector Ceniceros

Dr. Xiaoye Sherry Li

Professor Shivkumar Chandrasekaran, Co-Chair

Professor Xu Yang, Co-Chair

May 2019

Applications of the Minimum Sobolev Norm and Associated Fast Algorithms

Copyright c© 2019

by

Christopher Henry Gorman

iii

Dedicated to the Blessed Holy Trinity: Father, Son, and Holy Spirit;

and my future wife: may I find you soon.

When I look at your heavens, the work of your fingers,

the moon and the stars, which you have set in place,

what is man that you are mindful of him,

and the son of man that you care for him?

— Psalm 8:3–4

For by him all things were created, in heaven and on earth, visible and invisible, whether

thrones or dominions or rulers or authorities – all things were created through him and

for him. And he is before all things, and in him all things hold together.

— Colossians 1:16–17

iv

Acknowledgements

Graduate school has been a long and difficult road, and there are many people I

would like to thank, not all of whom can be listed here. Without their help and support,

I would not have graduated.

First and foremost, I would like to thank my doctoral committee: Shiv Chandrasekaran,

Xu Yang, Hector Ceniceros, and Sherry Li. Shiv, you have been a great help through

the entire process as I studied numerical linear algebra and fast algorithms, always re-

minding me about numerical stability and floating point arithmetic. Xu, thank you for

teaching me about partial differential equations and asymptotic analysis. I am so glad

to have both Shiv and Xu as doctoral advisors. Hector, thank you for teaching me about

finite difference methods and pushing me to clearly articulate my results. Sherry, it was

great to spend two summers working on STRUMPACK with you, Pieter, Gustavo, and

Yang at Berkeley Lab. I learned a lot about computing, randomization, and software

and algorithm development.

During my six years at UCSB, I have gained many friends. Those who have been

with me from the beginning: Nancy, Steve, Jay, and Kyle. I have had a great time with

you all. Those in Shiv’s group: Kristen, Abhejit, Nithin, and Ethan. It has been great

to know you while learning from Shiv. Medina, thank you for all the work you do in the

Mathematics Department.

While living in Santa Barbara, I have gained many friends and mentors at Good

Shepherd Lutheran Church. These include Pastor and Kitty; Ted and Andrea; and

Chuck and Lois. Thank you for teaching me about life outside of school and work.

Thank you for the many friends I made in Reformed University Fellowship (RUF) at

UCSB. Thank you especially to Johnathan (and Jaimeson) for leading RUF. You and

Grace show God’s love in Jesus to people on campus. Evan: it has been great to have

v

another graduate student who is going through the same process. Nathan and Stanley:

it has been great to get to know you both these past few years.

Thank you to my family and especially my parents: Dad and Lin, and Mom and

Paul. In particular, I must thank Vince and Megan: it has been great to get to know

you and spend time with your family these years, especially Joe and Alice. Joe, you have

been a great mentor and helped me early on in my doctoral program by encouraging me

to recognize my dissertation is not the end, but rather the beginning, of my work.

My twin brother James: It was great going to Wabash College with you. Working on

mathematics and physics homework late at night helped us succeed as undergraduates

and continue on to earn our doctorates. Thank you for being my best friend.

vi

Christopher Henry Gorman
University of California 805-893-5306
Santa Barbara, CA 93106-3080 gorman@math.ucsb.edu

Education

Ph.D. Mathematics June 2019
Emphasis: Computational Science and Engineering
Dissertation: Applications of the Minimum Sobolev Norm and Associated Fast Algorithms
Advisors: Shivkumar Chandrasekaran and Xu Yang
University of California, Santa Barbara, CA

M.A. Mathematics December 2014
University of California, Santa Barbara, CA

A.B. Summa Cum Laude Mathematics and Physics May 2013
Wabash College, Crawfordsville, IN

Research Experience

Graduate Intern – Systems Engineering Summer 2018
Mark Nussmeier, FLIR Systems, Inc., Goleta, CA
Performed design tests for thermal camera development

Graduate Student – Non GSRA Summer 2016/2017
Dr. Xiaoye Sherry Li, Lawrence Berkeley National Laboratory, Berkeley, CA
Assisted in the development of fast algorithms for Hierarchically Semi-Separable matrices

Research Graduate Student III/IV Summer 2014/2015
Dr. Nan Yu, Jet Propulsion Laboratory, Caltech, Pasadena, CA
2014: Performed error progation calculations and simulations for gravity gradiometer experiments
2015: Simulated atom interferometery to help development of equivalence principle test

Physics Research Assistant Summer 2012
Dr. K. Vollmayr-Lee, Bucknell University, Lewisburg, PA
Investigated structural glasses and found scaling predictions from Spin Glass theory apply to Silica

Physics Research Assistant Summer 2011
Dr. V.V. Kresin, University of Southern California, Los Angeles, CA
Studied nanoclusters and their formation while enhancing laboratory practices

Physics Research Assistant Summer 2010
Dr. M.J. Madsen, Wabash College, Crawfordsville, IN
Used Finite Element Analysis software interfaced with Mathematica to design compact torodial ion trap

Publications

Madsen, M.J. and Gorman, C.H., “Compact toroidal ion-trap design and optimization,” Phys.
Rev. A, 82, 043423 (2010)

K. Vollmayr-Lee, C.H. Gorman, and H.E. Castillo, “Universal Scaling in the Strong Glass Former
SiO2,” J. Chem. Phys. 144, 234510 (2016) (JCP Editors’ Pick)

P. Ghysels, X. S. Li, C. Gorman, and F. H. Rouet, “A robust parallel preconditioner for indefin-
ite systems using hierarchical matrices and randomized sampling,” 2017 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), Orlando, FL, 2017, pp. 897-906.

S. Chandrasekaran, C.H. Gorman, and H.N. Mhaskar, “Minimum Sobolev norm interpolation of
scattered derivative data,” Journal of Computational Physics 365, pp. 149–172 (2018)

C. Gorman, G. Chávez, P. Ghysels, T. Mary, F. H. Rouet, and X. S. Li, “Robust and Accurate
Stopping Criteria for Adaptive Randomized Sampling in Matrix-free HSS Construction,”
SIAM J. Sci. Comput., 2019. To appear.

vii

Abstract

Applications of the Minimum Sobolev Norm and Associated Fast Algorithms

by

Christopher Henry Gorman

This dissertation focuses on the development, implementation, and analysis of fast

algorithms for the Minimum Sobolev norm (MSN). The MSN method obtains a unique

solution from an underdetermined linear system by minimizing a derivative norm in the

appropriate Hilbert space. We obtain fast algorithms by exploiting the inherent structure

of the underlying system. After performing an Inverse Discrete Cosine Transform, a small

number of additional operations are required. Results show the method performs as well

as Chebyshev interpolation when approximating smooth functions and better than a wide

variety of smooth Chebyshev filters when attempting to approximate rough functions.

One chapter is devoted to analyzing a stochastic norm estimate which is useful when

computing low-rank approximations of matrices. This estimate allows us to compute

approximations with relative error close to machine precision, which previously was not

possible.

viii

Contents

1 Introduction 1

1.1 Lagrange Interpolation and Known Difficulties 1

1.2 Possible Solutions to Divergence of Lagrange Interpolation 6

1.3 Interpolation in Higher Dimensions . 8

1.4 Hermite and Birkhoff Interpolation . 8

1.5 Characteristics of Good Algorithms . 9

1.6 The Minimum Sobolev Norm Method . 10

1.7 MSN Interpolation Examples . 11

1.8 Dissertation Outline . 14

1.9 Algorithms Similar to the MSN Method 16

2 Notation Convention, Structured Rotations, and Kronecker Products 18

2.1 Notation and Conventions . 18

2.1.1 Order Notation and Constant Convention 18

2.1.2 Chebyshev Polynomials . 19

2.1.3 Function Spaces . 21

2.1.4 Matrix Notation and Norm Definitions 22

2.1.5 DCT Convention . 25

2.2 Rotations and Structured Factorizations 25

2.2.1 Householder Reflectors . 25

ix

2.2.2 Givens Rotations . 27

2.3 Kronecker Products and Fast Matrix-Vector Multiplication 27

2.3.1 Low-rank Matrices . 30

2.3.2 Householder Reflectors . 32

2.3.3 Givens Rotations . 32

3 Properties of Chebyshev-Vandermonde Matrices 33

3.1 C-V Matrix Properties . 33

3.2 Multiplication of Chebyshev Polynomials 36

3.3 Differentiation of Chebyshev Polynomials 38

3.4 C-V Matrix Normal Equations . 41

3.5 Linear Combinations of C-V Matrices . 44

3.5.1 Multiplication and Derivative C-V Matrices 44

3.5.2 Multiplication and Interpolation C-V Matrices 47

4 C-V Matrices and Factorizations for 1D Interpolation 48

4.1 General Algorithm for MSN Interpolation using LQ factorization 48

4.2 1D C-V Interpolation Matrix: 2n+ 1 Columns 49

4.3 Endpoint Interpolation . 51

4.4 1D C-V Interpolation Matrix: 2n+ 1 Columns with Endpoint Interpolation 52

4.5 1D C-V Interpolation Matrix: 3n+ 1 Columns 54

4.6 1D C-V Interpolation Matrix: 4n+ 1 Columns 56

4.7 1D C-V Interpolation Matrix: 2Ln+ 1 Columns 59

4.8 1D C-V Derivative Matrix: 2n+ 1 Columns; First Factorization 61

4.9 1D C-V Derivative Matrix: 2n+ 1 Columns; Second Factorization 62

4.10 1D C-V Derivative Matrix: 3n+ 1 Columns; First Factorization 67

4.11 1D C-V Derivative Matrix: 4n+ 1 Columns; First Factorization 69

x

4.12 1D C-V Derivative Matrix: 2n+1 Columns with Point Interpolation; First

Factorization . 72

4.13 1D C-V Derivative Matrix: 2n+ 1 Columns with Endpoint Interpolation;

First Factorization . 72

4.14 1D C-V Derivative Matrix: 2n+ 1 Columns with Endpoint Interpolation;

Second Factorization . 75

4.15 1D C-V Birkhoff Interpolation Matrix: 2n+ 1 Columns, First Factorization 77

5 C-V Matrices and Factorizations for Interpolation in Higher Dimen-

sions 79

5.1 C-V Matrices in Higher Dimensions . 79

5.2 2D C-V Interpolation Matrix: 2n+ 1 Columns with Boundary 81

5.3 2D Full Birkhoff Interpolation Problem 82

5.4 Extending Previous 2D C-V Interpolation Matrix Results 84

6 Examples of MSN Function Interpolation 86

6.1 Functions for Smooth Interpolation . 86

6.2 Results for Fast MSN Interpolation in 1D for Smooth Functions 87

6.2.1 Interpolation Comparison . 87

6.2.2 Birkhoff Interpolation Comparison 87

6.3 Results for Fast MSN Interpolation in 2D for Smooth Functions 89

6.4 Gibbs Phenomenon and Smooth Cutoff Filters 89

6.5 Functions for Rough Interpolation . 94

6.6 Results for Fast MSN Interpolation in 1D for Rough Functions 95

6.6.1 Interpolation Comparison . 95

6.6.2 Birkhoff Interpolation Comparison 96

7 Interpolation Convergence Proofs 108

7.1 Main Idea . 108

xi

7.2 IDCT Coefficients . 110

7.3 Important Summation Bounds . 112

7.4 Sobolev Embedding Theorems and Related Work 116

7.5 Proof of 1D Interpolation for polynomials of degree 2n 118

7.6 Proof of 1D Interpolation for polynomials of degree 2n with Endpoint

Interpolation . 121

7.7 Proof of 1D Birkhoff Interpolation for polynomials of degree 2n with Point

Interpolation . 127

7.8 Proof of 1D Full Birkhoff Interpolation for polynomials of degree 2n . . . 130

7.9 Proof of 1D Interpolation for polynomials of degree 2Ln 134

7.10 Proof of Norm Convergence for 1D Interpolation of polynomials of degree

2n . 137

7.11 Extension to Higher Dimensions . 140

8 Fast Algorithms for ODEs 142

8.1 General Setup for Linear ODEs . 142

8.2 Constant-Coefficient Scalar ODE . 143

8.3 Variable-Coefficient Scalar ODE . 147

8.4 Systems of ODEs . 148

8.5 Conditioning of H1 and Related Matrices 150

8.6 Discussion of ODE Solvers and Extending Fast MSN Methods to PDEs . 158

9 Stopping Criterion for Randomized Low-Rank Approximations 160

9.1 Randomized Low-Rank Approximation 161

9.2 Stopping Criteria . 164

9.3 Previous Probabilistic Bounds . 168

9.4 Basic Probability Theory . 169

9.5 New Stopping Criterion . 171

xii

9.6 Probability Theory Proofs . 174

9.7 Stopping Criteria Comparison . 181

9.7.1 Matrix Types . 181

9.7.2 Norm Approximation . 182

9.7.3 Adaptive Comparison . 183

9.7.4 Stopping Criteria Discussion . 188

10 Conclusion 192

10.1 Discussion of Results and Future Directions for MSN 192

10.2 Discussion of Results and Future Directions for Randomized Low-Rank

Approximations . 193

xiii

List of Figures

1.1 Example of the Runge phenomenon . 3

1.2 MSN 1D Interpolation Relative Error . 14

1.3 MSN 1D Birkhoff Interpolation Relative Error 15

1.4 MSN 2D Birkhoff Interpolation Relative Error 15

6.1 Smooth Interpolation Comparison: 1D Runge Function 88

6.2 Smooth Birkhoff Interpolation Comparison: 1D Runge Function 90

6.3 Smooth Interpolation Comparison: 2D Runge Function R = 25 91

6.4 Smooth Interpolation Comparison: 2D Runge Function R = 100 92

6.5 Rough Interpolation Comparison: Heaviside Jump Function 97

6.6 Rough Interpolation Comparison: Runge Jump Function 98

6.7 Rough Interpolation Comparison: Sharp Function 99

6.8 Rough Interpolation Comparison: Heaviside Jump Function 2 100

6.9 Rough Interpolation Comparison: Sharp Function 2 101

6.10 Best MSN vs. Best Filter Comparison: Heaviside Jump Function 2 102

6.11 Example Plots of MSN Interpolation of Rough Functions 103

6.12 Example Plots of MSN Interpolation of Various Degrees 104

6.13 Rough Birkhoff Interpolation Comparison: Sharp Function 106

6.14 Rough Birkhoff Interpolation Comparison: Sharp Function 2 107

9.1 Matrix Singular Values . 182

xiv

9.2 GEB Stochastic F-norm Approximations 185

9.3 GEB Stochastic Squared F-norm Approximations 186

xv

List of Tables

9.1 List of helper functions for low-rank approximation 162

9.2 HMT 2-Norm Upper Bounds . 184

9.3 QB Adaptive Approximation Results . 189

9.4 QB Adaptive Test: Minimum Rank . 190

9.5 QB Adaptive Approximation Results (Stringent GEB Tests) 190

9.6 QB Adaptive Test: Minimum Rank (Stringent GEB Test) 191

xvi

List of Algorithms

1 Slow, stable algorithm for solving MSN systems 12

2 Householder Reflector . 26

3 Givens Rotation . 28

4 Fast algorithm for solving structured MSN systems 49

5 Randomized Block Low-Rank Approximation (General) 163

6 Randomized Block Low-Rank Approximation (MV) [52, Figure 2] 166

7 Randomized Block Low-Rank Approximation (YGL) [75, Algorithm 2] . 166

8 Randomized Block Low-Rank Approximation (New) 191

xvii

Chapter 1

Introduction

The major goal of this line of research is to develop high order, numerically stable fast

algorithms for solving elliptic partial differential equations using the Minimum Sobolev

norm (MSN). This will require much more work than can be completed in one disserta-

tion. The present work focuses on developing fast algorithms to solve interpolation and

ordinary differential equation problems using the MSN method, which will be a stepping

stone to understand the structure of the matrices arising in 2D and 3D PDEs. We in-

troduce these ideas by discussing some of the problems present in interpolation methods

and how the MSN method attempts to solve them.

1.1 Lagrange Interpolation and Known Difficulties

The well-known Weierstrass Approximation Theorem, which we reproduce for complete-

ness, says continuous functions on compact, connected intervals can be approximated

arbitrarily well by polynomials:

Theorem 1.1 (Weierstrass Approximation Theorem; Theorem 7.26 in [57])

If f ∈ C[a, b], then there exists a sequence of polynomials {Pn}∞n=1 such that

1

lim
n→∞

||f − Pn||∞,[a,b] = 0. (1.1)

Here,

||g||∞,[a,b] ≡ sup
x∈[a,b]

|g(x)| (1.2)

is the supremum norm. When the interval [a, b] is understood, we may write ||·||∞ in

place of ||·||∞,[a,b]. This theorem shows that the set of polynomials P is dense in C[a, b],

the space of continuous functions on [a, b]. We let Pn denote all polynomials of degree

at most n. This gives rise to an important concept: degree of approximation. We also

have the following theorem:

Theorem 1.2 (Best Uniform Approximation of Continuous Functions; Section 1.1 in [55])

If f ∈ C[a, b] and n ∈ N0, then there exists a unique qn ∈ Pn so that

||f − qn||∞ = inf
p∈Pn
||f − p||∞ . (1.3)

We set

En(f) ≡ inf
p∈Pn
||f − p||∞ (1.4)

and have

E0(f) ≥ E1(f) ≥ E2(f) ≥ · · · → 0. (1.5)

There are many ways to prove the Weierstrass Approximation theorem. In [57, Chap-

ter 7], Rudin convolves against a polynomial kernel. This is useful theoretically but in

practice, one may only have function and derivative information at particular points. In

order to reconstruct the underlying function, we want to use these function and deriva-

tive values to build an approximation, frequently chosen to be a polynomial. This is

interpolation.

2

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

1.5

2.0

Figure 1.1: Here is an example of Lagrange interpolation of the Runge function
[1 + 25x2]

−1
using Lagrange interpolation with 21 equally-spaced nodes.

Interpolation Problem: Let f ∈ C[−1, 1] be continuous and specify a sequence of

grid points

− 1 ≤ x1;n < x2;n < · · · < xn;n ≤ 1. (1.6)

for n ∈ N. Determine a polynomial pn with deg pn = m(n) which satisfies the conditions

f(xk;n) = pn(xk;n), (1.7)

and ascertain under what restrictions on f and {xk;n}nk=1 ensure

||f − pn||∞ → 0, n→∞. (1.8)

A popular choice is to set m(n) = n − 1, resulting in Lagrange interpolation. In

Fig. 1.1, we see an example of Lagrange interpolation on equally-spaced nodes of the

Runge function [1 + 25x2]
−1

on [−1, 1]. This function is analytic; even so, in [58] Runge

proved that Lagrange interpolation diverges in this case. In particular, there are large

oscillations near the boundary points.

In fact, much more is known about Lagrange interpolation, and we introduce notation

which will make this discussion easier. Let

3

X = {xk;n | k = 1, · · · , n;n ∈ N} (1.9)

be an interpolatory matrix. Then, given f ∈ C[−1, 1], we have the following standard

definitions [65, Chapter 1]:

Ln(f,X, x) =
n∑
k=1

`k,n(X, x)f(xk;n)

Ωn(X, x) =
n∏
i=1

(x− xi;n)

`k,n(X, x) =
Ωn(X, x)

Ω′n(X, xk;n)(x− xk;n)

λn(X, x) =
n∑
k=1

|`k,n(X, x)|

Λn(X) = ||λn(X, x)||∞,[−1,1] . (1.10)

Naturally, Ln(f,X, x) is the Lagrange interpolating polynomial of degree at most n− 1

for the interpolation matrix X. The Lebesgue constants Λn(X) are of critical importance,

as we see

|Ln(f,X, x)− f(x)| ≤ |Ln(f,X, x)− qn−1(x)|+ |f(x)− qn−1(x)|
≤ |Ln(f − qn−1, X, x)|+ En−1(f)

≤ [Λn(X) + 1]En−1(f). (1.11)

Here, qn−1 ∈ Pn−1 is the minimizer in the supremum norm, and we note Ln : Pn−1 →

Pn−1 is the identity map. Because En(f) → 0, Lagrange interpolation converges when

Λn(X)En−1(f)→ 0.

If we could find an interpolatory matrix Y so that Λn(Y) is bounded, then Ln(f, Y)→

f uniformly. Unfortunately, this is not the case. In [71], Vértesi references Faber (1914)

as proving

Λn(X) >
1

8
√
π

log n (1.12)

4

for every X, showing Λn(X) is unbounded. One popular set of interpolation nodes is the

zeros of the Chebyshev polynomials:

T = {znk | k = 1, · · · , n;n ∈ N}

znk = cos

[
π

n

(
n− k +

1

2

)]
. (1.13)

The Chebyshev polynomials Tn(x) are a set of orthogonal polynomials which will be

discussed in detail in Sec. 2.1.2. In [13], it was shown

Λn(T) < 8 +
2

π
log n, (1.14)

For this reason, we see that the interpolatory matrix T is close to optimal and, cou-

pled with fast interpolation methods, gives reason for its popularity. Better bounds for

Lebesgue constants can be found in [62].

We also give bounds for equally-spaced points, setting

E =

{
−1 + 2

k − 1

n− 1

∣∣∣∣ k = 1, · · · , n;n ∈ N
}
. (1.15)

In [68], Trefethen and Weideman give the bounds

2n−2

n2
< Λn(E) <

2n+3

n
(1.16)

as well as referencing the asymptotic result and some of the history of equally-spaced

interpolation. Clearly, the exponential growth of Λn(E) helps quantify how much worse

E is when compared with T .

This divergence is not restricted to equally-spaced point distributions, though. In

fact, we have the following result:

Theorem 1.3 (Theorem 4.3 in [65])

For an interpolatory matrix X ⊂ [−1, 1], there exists h ∈ C[−1, 1] so that

5

lim sup
n→∞

|Ln(h,X, x)| =∞ (1.17)

for almost every x ∈ [−1, 1].

So, there is no interpolatory matrix Y so that ||Ln(f, Y)− f ||∞ → 0 for all continuous

functions f and the approximation error can be arbitrarily bad.

1.2 Possible Solutions to Divergence of Lagrange In-

terpolation

Although the previous result paints a bleak picture of Lagrange interpolation, this is

true only in extreme situations. From [55, Chapter 1], we have the following theorem

discussing how the degree of approximation is related to smoothness:

Theorem 1.4 (Jackson Inequality)

If g ∈ Ck[−1, 1] and g(k) is α-Hölder with Hölder constant L, then for n > k, we have

En(g) ≤ c

nk

(
1

n− k

)α
(1.18)

with c = 6k+1ek(1 + k)−1L.

This theorem shows that if g is merely α-Hölder continuous, then ||Ln(g, T)− g||∞ → 0

by Eq. (1.11). As noted above, we can have ||Ln(f, E)− f ||∞ 6→ 0 even when f is

analytic.

We previously noted Ln(f, E) has large oscillations in the Runge example. Because

of this, there has been interest in Hermite-Fejér interpolation. Given an interpolatory

matrix X, we let Hn(f,X, x) ∈ P2n−1 so that

Hn(f,X, xk;n) = f(xk;n)

H ′n(f,X, xk;n) = 0. (1.19)

6

In this case, it can be shown ||Hn(f, T)− f ||∞ → 0 as n → ∞ for all f ∈ C[−1, 1] [65,

Chapter 5]. Unfortunately, this does not hold in general; in fact, for equally-spaced nodes

we have the particularly bad result

f(x) = x

lim sup
n→∞

|Hn(f, E, x)| = 0, 0 < |x| ≤ 1, (1.20)

which is discussed in [65, Chapter 6]. Controlling the derivative of the interpolation

polynomial at the Chebyshev nodes appears to give sufficient control of the polynomial

in order to obtain convergence for all continuous functions. Even so, while this gives

convergence in the limit, it is not useful in practice because we purposefully limit the

accuracy of interpolation near, but not at, interpolation nodes.

In another direction, Bernstein polynomials give up interpolation to get overall ap-

proximation. In fact, [22, 55] use Bernstein polynomials to prove the Weierstrass Ap-

proximation Theorem. The downside is that convergence to the solution is slow:

Theorem 1.5 (Error Estimate for Berstein polynomials; Theorem 1.2 in [55])

Suppose g ∈ C[0, 1] is α-Hölder with Hölder constant L and Bng is the Berstein polyno-

mial of degree n for g; then

||g −Bng||∞,[0,1] ≤
3L

2

1

nα/2
, (1.21)

and this bound in n cannot be improved.

This precludes it from being of much use in practice, especially when f is smooth.

By relaxing the condition degLn(f,X) ≤ n− 1, Erdős was able to prove in [28] that,

under some conditions on X, one could prove convergence for all continuous functions

by choosing pn so that deg pn = c(X)n, with c a constant depending only on X. The

extension to all matrices X is shown in [65, Theorem 2.7]. This is important in practice,

because we can not always choose the interpolation nodes. It is beneficial for a method to

7

work well independent of node location, especially if, because of instrument specifications,

data collection location cannot be modified. Unfortunately, these results require function

values at arbitrary points, and this is not possible in practice.

1.3 Interpolation in Higher Dimensions

Up to this point, we have only talked about methods for approximating functions on

[a, b]; even so, many problems in science and engineering are inherently two- and three-

dimensional. A review of recent methods for multivariable polynomial interpolation can

be found in [29, 30]. One challenge of interpolation in higher dimensions is choosing the

correct polynomial space and point distribution. Now, the fact dimPn−1 = n makes this

easy in 1D but in higher dimensions there does not appear to be a simple way to choose a

multivariable polynomial space of arbitrary dimension. Naturally, this is a topic of great

interest. In [30], some standard methods discussed include tensor products of univariate

polynomials, Gröbner bases, and ideal interpolation schemes.

1.4 Hermite and Birkhoff Interpolation

Hermite or Birkhoff interpolation problems involve interpolating function and derivative

values. Hermite interpolation consists of interpolating function and derivative values

up to a certain degree at interpolation nodes. Birkhoff interpolation is more general,

allowing any combination of specified function and derivative values at nodes. Hermite

interpolation is well-posed and can easily be solved in 1D. This is not the case for Birkhoff

interpolation, where only certain combinations ensure a unique solution [43, 48]. The

problem is even more complicated in dimension 2 and larger; see [49, 50] for a review

of these topics. An additional challenge in multidimensional interpolation comes from

proving error bounds and determining sufficient conditions for convergence.

8

1.5 Characteristics of Good Algorithms

This dissertation focuses on the development, implementation, and analysis of fast MSN

methods. The ideas behind the MSN method will be discussed in the Sec. 1.6, but here

we discuss good qualities that numerical algorithms should have, especially algorithms

for approximation. These are high-order convergence, low computational complexity, and

numerical stability.

Given a low-order method and a high-order method of similar computational cost, a

faster-converging method is more effective and useful. In practice, there is always a limit

to the amount of computational resources (memory, processor speed, or bandwidth), so a

high-order method would be preferred as it would lead to less work overall. As mentioned

before, Bernstein polynomials converge to all continuous function but do so at a slow

rate. This alone does not necessarily disqualify the algorithm, but from Thm. 1.4, we

know smoother functions can have better polynomial approximations. This incentivizes

developing accurate approximations and algorithms to compute them.

While some methods may be of theoretical importance, algorithms will only be of

practical value if there are efficient methods to compute them. The total cost should

be of reasonable size, so that both the asymptotic growth (O(log n) or O(n3)) and the

explicit cost (106 log n and 2
3
n3) are important. Because computational resources are

always limited, asymptotics may not be as important as the prefactor hidden by Big O

notation.

Finally, numerical stability is of critical importance. Almost all algorithms are imple-

mented on computers using floating-point arithmetic, inevitably leading to small errors.

It is necessary for practical algorithms to be immune to these changes; namely, small

changes in inputs should lead to small changes in outputs. The condition number quan-

tifies how much changes in outputs come from changes in inputs; a standard reference

for numerical stability is [41].

9

1.6 The Minimum Sobolev Norm Method

We previously showed Lagrange interpolation does not work, for there can be large os-

cillations in the interpolating polynomial as seen in the Runge phenomenon, while using

a polynomial of higher degree allows continuous functions to be approximated arbitrar-

ily well. By combining these observations, the Minimum Sobolev norm (MSN) method

was developed: a general method for computing approximate solutions to problems with

linear constraints.

The MSN method has been used to solve problems in interpolation [16], Birkhoff

interpolation [18], and partial differential equations [20], For simplicity, we assume we

are performing approximations using algebraic polynomials, even though theoretical work

often uses trigonometric polynomials. The main idea is this: given N linear constraints

and polynomials of up to degree M(N) contained in V , unknown coefficients a, correct

values f , and a diagonal matrix Ds with condition number O(M s), the MSN solution

solves the equation

min
V a=f

||Dsa||2 . (1.22)

We choose Ds so that ||Dsa||2 is a Sobolev norm. This implies that we seek an approxima-

tion which satisfies the linear constraints as well as having the smallest derivative norm.

Here we focus on computing the minimum 2-norm solution because this dissertation in-

vestigates efficient numerical algorithms for MSN equations and we explicitly compute

LQ factorizations; methods for p-norm minimization are discussed in [16, 18]. Addition-

ally, this description is independent of dimension and node location. The parameter s

determines which derivative of the polynomial approximation we wish to control. Larger

s gives more derivative control on the approximation but leads Eq. (1.22) to have higher

condition numbers. Great care is required to limit the effects of these condition numbers

in order to ensure convergence to the underlying solution [18].

The technical challenge of this method is to determine the explicit form of M(N) to

10

ensure convergence to the solution. The methods in [16, 18] involve the close approxima-

tion of integral kernels by polynomials. The end result is that it is sufficient to choose

M(N) = Cη−1, where η is the minimum separation between between interpolation nodes.

Although this is a theoretically optimal result, knowing from [65] that this result cannot

be improved except in the constant, it is not useful in practice because the constants

from [16, 18] are difficult to explicitly compute. In practice, we have found that choosing

the M(N) = 2πη−d is sufficient, where d is the dimension of the space. These details,

along with implementation issues, will be discussed more in the next section.

One advantage of the MSN method is that we do not insist on forming a square linear

system. In fact, it is necessary to take enough columns (more than twice the number of

rows) in order to ensure a good approximation. Choosing the proper polynomial space

was a challenge mentioned in Secs. 1.3 and 1.4.

1.7 MSN Interpolation Examples

We present some results of MSN interpolation on equally-spaced nodes in single and

double precision for 1D and 2D. We do this to show that the difficulty of approximating

functions on equally-spaced points arises from using suboptimal methods of interpolation

rather than node location. These and similar results were published in [16, 18].

We can rewrite Eq. (1.22) as

min
V D−1

s x=f
||x||2

a = D−1s x. (1.23)

In order to compute the MSN solution, we must compute the minimum norm solution

from Eq. (1.23). To do this, we must compute an LQ factorization of V D−1s , where

L is a lower triangular matrix and Q is orthogonal. As previously mentioned, large s

leads to greater derivative control but also gives V D−1s high condition number. Because

11

Algorithm 1 Slow, stable algorithm for solving MSN systems

1: function slow msn solve(f ,V ,Ds) . Solve minV a=f ||Dsa||2.
2: Compute P1L1Q1 = V using an LQ factorization based on QRCP.
3: Determine permutation Π such that Q1D

−1
s Π has decreasing column norms.

4: Compute the SVD: UΣV ∗ = Q1D
−1
s Π; only U is stored.

5: Compute P2L2Q2 = U∗Q1D
−1
s Π.

6: Solve L1z = P ∗1 f .
7: Solve L2y = P ∗2U

∗z.
8: Set a = D−1s ΠQ∗2y
9: return a
10: end function

of this, the standard pivoted LQ factorization based on QR with Column Pivoting is

insufficient. A Rank-Revealing QR factorization based on [37] would be better, but an

implementation is not readily available so we use another method presented here and

described in [18]; see Alg. 1.

The unique feature of the algorithm may be Lines 4 and 5. Clearly, V D−1s is badly

column-scaled. LQ factorizations can deal with poor row-scaling but not poor column-

scaling. We compute the singular value decomposition UΣV ∗ = Q1D
−1
s Π in Line 4 and

see U∗Q1D
−1
s Π ≈ ΣV ∗ to machine precision. This ensures we can accurately compute the

pivoted LQ factorization P2L2Q2 = U∗Q1D
−1
s Π in Line 5. Thus, U is a preconditioner

for numerical stability, showing that we can safely convert poor column-scaling to poor

row-scaling. Using Alg. 1, the effective condition number of this problem appears to be

that of V and not V D−1s .

Looking at the algorithm, we see two pivoted LQ factorizations and one SVD are

required. Because we have N interpolation requirements and cN columns, this gives us

O(N3) floating-point operations and O(N2) units of memory. At first glance, this does

not seem too bad. If we are in dimension d with nd tensor grid points, then N = nd and

we require O(n3d) flops and O(n2d) units of memory. While these costs may be acceptable

for d = 1 and bearable for d = 2, when d = 3 this is too great. Parallel computation

would not be of much use here because the communication required for pivoted LQ and

12

the SVD would cause the entire process to be extremely slow, although there has been

recent work in reducing the communication cost in pivoted QR factorizations [23]. In

order for these algorithms to be used when solving large, difficult problems, we need to

investigate other methods. Similar costs arise when solving differential equations and this

necessitates fast, structured algorithms. When developing fast algorithms, it is critical

that we are able to convert the poor columns scaling to poor row scaling. The inherent

structure of the linear system allows us to do this using careful factorizations.

We present some examples of MSN interpolation and Birkhoff interpolation. The

functions we approximate are

f(x) =
1

1 + 25x2

g(x, y) =
1

1 + 25(x2 + y − 0.3)2
+

1

1 + 25(x+ y − 0.4)2

+
1

1 + 25(x+ y2 − 0.5)2
+

1

1 + 25(x2 + y2 − 0.25)2

h(x) = g(x,−0.96). (1.24)

Naturally, f is the usual Runge function. Here, g is a 2D function with Runge functions

on one line, one circle, and two parabolas.

We remember machine precision is 2−23 ≈ 1.2 × 10−7 in single precision and 2−52 ≈

2.2×10−16 in double precision. This is the smallest relative error that we could expect for

any nonzero result. All of the plots show results for ||f − p||∞ / ||f ||∞ for true function

f and approximation p. The sup-norm is approximated by sampling the function at a

large number of locations and taking the maximum.

The results for interpolating f are shown in Fig. 1.2. For single precision, all error

curves decay toward 10−7 as we increase the number of points. The main exception is

for s = 6, which starts to increase around 60 points. We believe this occurs because of

rounding error. This would also make sense given for s ∈ {3, 4, 5}, the error curves hover

close to 10−6. We see a similar results for double precision. In this case, the beginnings

13

20 40 60 80 100
Interpolation Points

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

R
e
l

E
rr

o
r

s=2

s=3

s=4

s=5

s=6

(a) Single Precision

20 40 60 80 100 120 140 160
Interpolation Points

10-15
10-14
10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100

R
e
l

E
rr

o
r

s=2

s=4

s=6

s=8

s=10

s=12

(b) Double Precision

Figure 1.2: Relative error results for MSN interpolation on equally-spaced points on the
function f(x) from Eq. (1.24) for various s values using single and double precision.

of the U-shaped error curve seem present for s ∈ {8, 10, 12}.

In Fig. 1.3, we have the results of MSN Birkhoff interpolation in 1D for h. Although

the error curve for s = 2 in single and double precision hovers around 10−3, the other

error curves decay to machine precision. The beginning of a U-shaped error curve may

be seen for s ∈ {4, 5} in single precision and s ∈ {10, 12} in double precision. The

errors are low, although they may be slightly larger than those we see in regular MSN

interpolation. This could stem from the fact the condition number is inherently larger

for Birkhoff interpolation than for interpolation.

In Fig. 1.4, we have results for MSN Birkhoff interpolation in 2D for g from Eq. (1.24).

In every case the error decreases with increasing data except for s = 5 with single

precision. In this case, we may start to see the beginning of the effects of roundoff error.

The challenge for 2D problems is the long time required to run Alg. 1.

1.8 Dissertation Outline

As we noted above, the slow methods for solving problems using MSN become difficult in

2D and practically impossible in 3D due to memory requirements and flop count. With

the eventual desire to use MSN to solve 3D PDEs, we will need to take advantage of

14

10 20 30 40 50 60
Interpolation Points

10-6

10-5

10-4

10-3

10-2

10-1
R

e
l

E
rr

o
r

s=2

s=3

s=4

s=5

(a) Single Precision

20 40 60 80 100 120 140 160
Interpolation Points

10-13
10-12
10-11
10-10
10-9
10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1

R
e
l

E
rr

o
r

s=2

s=4

s=6

s=8

s=10

s=12

(b) Double Precision

Figure 1.3: Relative error results for MSN birkhoff interpolation on equally-spaced points
using both function and derivative values on the function h(x) from Eq. (1.24) for various
s values using single and double precision.

10 20 30 40 50 60
Tensor Grid Points

10-4

10-3

10-2

10-1

100

R
e
l

E
rr

o
r

s=2

s=3

s=4

s=5

(a) Single Precision

10 20 30 40 50 60
Tensor Grid Points

10-6

10-5

10-4

10-3

10-2

10-1

100

R
e
l

E
rr

o
r

s=2

s=4

s=6

s=8

s=10

s=12

(b) Double Precision

Figure 1.4: Relative error results for MSN birkhoff interpolation on equally-spaced tensor-
grid points using both function and derivative values on the function g(x) from Eq. (1.24)
for various s values using single and double precision.

15

everything we can. Keeping this in mind, the focus of this dissertation will be developing

fast algorithms for solving interpolation and differential equations using the MSN method

on Chebyshev nodes and express our solution in a Chebyshev polynomial basis. We review

notation conventions and structured matrices in Chapter 2. In Chapter 3, we review

some of the properties of Chebyshev-Vandermonde matrices which arise when developing

these fast algorithms. Matrix factorizations important for interpolation problems are

discussed in Chapters 4 and 5. Using these factorizations, we present examples of MSN

approximation in Chapter 6. Next, we present new proofs showing that our fast methods

will converge to the solution under minimal smoothness assumptions of the underlying

function in Chapter 7. We investigate fast algorithms for Boundary Value Problems for

ODEs in Chapter 8.

In the Chapter 9, we discuss results related to randomized low-rank approximations,

unrelated to the previous work. Some of this was discussed in [33] but more details and

examples will be shown here.

1.9 Algorithms Similar to the MSN Method

The ideas pursued in this dissertation are similar to those used by Chebfun [26], a soft-

ware package in Matlab [38] which attempts to have the “feel” of symbolic software

with the speed of numerics. The book Approximation Theory and Approximation Prac-

tice [66] uses Chebfun to introduce the field of Approximation Theory. Here, we focus on

investigating fast algorithms based on values computed on Chebyshev polynomial roots.

This is similar to the fast algorithms present in Chebfun, which computes values on the

Chebyshev polynomial extrema. The book Exploring ODEs [67] also uses Chebfun to

introduce advanced differential equation topics. The methods in [67] are built on the

work from [5, 25, 74] and are incorporated into Chebfun. Although spectral methods are

well-known [10], [5] adds additional rows to the square linear system to impose boundary

16

or other requirements instead of replacing rows. Naturally, this requires increasing the

degree of the approximation. The work presented here does not force a square system,

which allows us to add a finite number of additional requirements which do not affect

the asymptotic complexity of the overall algorithm. From [67, Appendix A], it appears

that Chebfun uses standard dense linear algebra algorithms to solve its ODEs. This is

unfortunate, because the linear systems arising from ODEs are highly structured when

approximated on Chebyshev nodes. This dissertation will show this structure and con-

struct associated fast algorithms. The work here could be used to speedup the Chebfun

ODE solver.

17

Chapter 2

Notation Convention, Structured

Rotations, and Kronecker Products

We begin with some notation conventions before reviewing standard orthogonal matrices

and looking at the Kronecker product and how it affects fast matrix-vector multiplication.

One standard reference for matrix-related topics is [32]. These topics will then be used to

look at matrix factorizations of Chebyshev-Vandermonde (C-V) matrices in Chapters 4

and 5.

2.1 Notation and Conventions

In this section, we present most of the notation conventions we will use throughout this

dissertation. Probability theory is only used in Chapter 9, so we will not discuss the

specifics until then.

2.1.1 Order Notation and Constant Convention

Throughout this dissertation, we will be using constants such as A, B, C that are ab-

solute. They may be used in the same set of equations even though their value changes

18

between inequalities. If the constant is not absolute but depends on a variable (say s),

then we will write Cs or C(s).

We review Big O notation; one reference is [35, Chapter 9]. We assume f, g : [0,∞)→

[0,∞) and write

f(x) = O(g(x)) (2.1)

when

f(x) ≤ Cg(x), C > 0, x ≥ N. (2.2)

Thus, f is asymptotically bounded above by g. Similarly,

f(x) = Ω(g(x)) (2.3)

when

f(x) ≥ Cg(x), C > 0, x ≥ N. (2.4)

Naturally, f is asymptotically bounded below by g. Finally,

f(x) = Θ(g(x)) (2.5)

when

f(x) = O(g(x)) and f(x) = Ω(g(x)), (2.6)

so that f is asymptotically bounded above and below by g.

2.1.2 Chebyshev Polynomials

The nth Chebyshev polynomial Tn is defined as

Tn(x) ≡ cos [n arccosx] , x ∈ [−1, 1] . (2.7)

We will show the following recurrence relation holds, which is useful because of the

19

restrictions in the previous definition:

T0(x) = 1

T1(x) = x

Tn+1(x) = 2xTn(x)− Tn−1(x). (2.8)

From the definition, it is clear that

Tn(cos θ) = cosnθ (2.9)

and

max
x∈[−1,1]

|Tn(x)| = Tn(1)

= 1. (2.10)

We recall the roots {znk} of Tn:

znk = cos

[
π

n

(
n− k +

1

2

)]
, k ∈ {1, · · · , n} . (2.11)

With this convention, we are numbering the Chebyshev roots from negative to positive.

We now prove the recurrence relation of Eq. (2.8). First, we have equality for T0 and

T1. We have the following property for multiplying cosine functions:

cos θ cosϕ =
1

2
[cos (θ + ϕ) + cos (θ − ϕ)] , (2.12)

from which it follows

cosnθ cos θ =
1

2
[cos (n+ 1) θ + cos (n− 1) θ] . (2.13)

This equation along with Eq. (2.9) gives us

Tn(x)T1(x) =
1

2
[Tn+1(x) + Tn−1(x)] (2.14)

when n ≥ 1; rearranging and noting T1(x) = x gives us the desired recurrence relation,

20

making it clear that Tn is a polynomial.

2.1.3 Function Spaces

In this work we will primarily deal with the Sobolev spaces. If g : [−π, π]→ C is periodic

and integrable, then we can define Fourier coefficients

ak =
1

2π

∫ π

−π
g(θ)e−ikθdθ. (2.15)

Under mild smoothness assumptions, it is well known that we have equality of the func-

tion and its Fourier series:

g(θ) =
∑
k∈Z

ake
ikθ. (2.16)

From here, we define the Sobolev s-norm of g to be

||g||2s ≡
∑
k∈Z

(1 + |k|)2s |ak|2 , (2.17)

and the Sobolev space

Hs ≡ {g | ||g||s <∞} . (2.18)

Even so, the focus here will be on [−1, 1] because we wish to approximate non-periodic

functions. To do so, we look at f : [−1, 1]→ R and have the Chebyshev series expansion

f(x) =
∞∑
k=0

bkTk(x), (2.19)

where

bk =
2

π

∫ 1

−1

f(x)Tk(x)√
1− x2

dx

=
2

π

∫ π

0

f(cos θ) cos kθdθ. (2.20)

After a change of coordinates, we obtain the Fourier series:

21

f(cos θ) =
∞∑
k=0

bk cos kθ. (2.21)

Thus, we similarly define the Sobolev s-norm in this case:

||f ||2s ≡
∞∑
k=0

(1 + k)2s |bk|2 . (2.22)

We will sometimes write ||a||s or ||b||s in place of ||f ||s or ||g||s. The importance of Hs

comes from the fact our algorithms minimize ||·||s in the appropriate space of polynomials.

We will focus on the case when s > 1
2
, because then Hs ⊆ C. Similarly, for s > m+ 1

2
,

we have Hs ⊆ Cm. Finally, we also have Cm,α ⊆ Hs for s < m + α + 1
2
, where Cm,α

is the space of m continuously differentiable functions whose mth derivative is α-Hölder

continuous. These results are not difficult to show but we postpone their proof until

Sec. 7.4.

2.1.4 Matrix Notation and Norm Definitions

Throughout this work, we use notation similar to that in [32]. Given a matrix A ∈ Rm×n,

we let Ai,j (or Aij, ai,j, and aij) denote the entry of A at the ith row and jth column. For

index sets I =

[
i1 i2 · · · ir

]
and J =

[
j1 j2 · · · js

]
, we have the matrix subblock

A(I, J) =


Ai1,j1 Ai1,j2 · · · Ai1,js
Ai2,j1 Ai2,j2 · · · Ai2,js
...

...
. . .

...
Air,j1 Air,j2 · · · Air,js

 . (2.23)

At times we may write AI,J instead of A(I, J). Similarly, A(I, :) denotes the submatrix

of A with rows in I while A(:, J) denotes the submatrix of A with columns in J . Even

though we will focus on real-valued matrices in this work, our notation also carries over

to complex-valued matrices. We let AT and A∗ denote the transpose and conjugate

transpose of A, respectively. Additionally, we define

|A|ij ≡ |Aij| ; (2.24)

22

that is, |A| is matrix we obtain when taking the absolute value of each element in A.

Given a vector x ∈ Rn, we let E be the permutation which inverts the entries on x;

that is,

Ex =


xn
xn−1
...
x2
x1

 . (2.25)

Clearly, this implies E has 1’s on the antidiagonal and zeros everywhere else:

E =


1

1

. .
.

1
1

 . (2.26)

We will also let Π denote the circular downshift permutation when right multiplication

is performed:

Πx =


xn
x1
...

xn−2
xn−1

 . (2.27)

Thus, we have

Π =



0 1
1 0

1 0
. . .

1 0
1 0


. (2.28)

We also have the following relation for left mulitplication:

[
v1 v2 · · · vn−1 vn

]
Π =

[
v2 v3 · · · vn v1

]
. (2.29)

23

Furthermore, we will make frequent use of Ds, the diagonal scaling matrix that arise

in MSN interpolation. In particular, we let

Ds = diag (1s, 2s, · · · ,M s) . (2.30)

The specific size of Ds will be context dependent but will always have this form. There

is nothing which requires s to be a (positive) integer, but we will usually assume this to

be the case.

A general vector or matrix norm will be denoted by ||·||. Given x ∈ Rn, the vector

p-norms are defined as

||x||p ≡

{
(
∑n

k=1 |xk|
p)

1/p
, p ∈ [1,∞)

maxk=1,··· ,n |xk| , p =∞
. (2.31)

For A ∈ Rm×n, the corresponding induced matrix p-norms are

||A||p ≡ sup
||x||p=1

||Ax||p . (2.32)

Throughout this dissertation we will primarily be using the matrix 2-norm. Even so, there

may be times when we use the Frobenius norm, which we sometimes call the F-norm:

||A||F ≡

√√√√ m∑
k=1

n∑
j=1

|Aij|2 . (2.33)

In Chapter 9 only, we will use the Schatten p-norms [7, Chapter 4]:

||A||s,p ≡


(∑min(m,n)

k=1 σpk

)1/p
, p ∈ [1,∞)

σ1, p =∞
. (2.34)

Here, σ1 ≥ σ2 ≥ · · · ≥ σmin(m,n) ≥ 0 are the singular values of A. From this definition, it

is clear ||A||s,∞ = ||A||2 and ||A||s,2 = ||A||F .

Although there are many different norms used throughout this dissertation, the par-

ticular norm should be clear from context.

24

2.1.5 DCT Convention

All of the code for this dissertation was written in Julia [6], Version 0.5. If CII is Julia’s

n× n DCT (the unitary version of DCT-II), then we require

C−1 = DCIIE, (2.35)

where

D =
1√
n

diag
(

1,
√

2 , · · · ,
√

2
)
. (2.36)

This will also be discussed later in Chapter 3.

2.2 Rotations and Structured Factorizations

Householder reflectors and Givens rotations are standard orthogonal matrices which al-

low us to selectively zero entries of a matrix. Both will be important in our matrix

factorizations, for our fast algorithms require us to compute the LQ factorization of

Chebyshev-Vandermonde matrices.

2.2.1 Householder Reflectors

One special type of orthogonal matrix is a Householder reflector. Given distinct nonzero

x and y with the same length (that is, x 6= y and ||x||2 = ||y||2 > 0), we wish to find

an orthogonal matrix P such that Px = y. There is a reflection which does this: we set

v = x− y and choose

P = I − 2

v∗v
vv∗. (2.37)

With this choice, we see

Px = x− 2v∗x

v∗v
v

25

Algorithm 2 Householder Reflector

1: function house(x) . Numerically stable way to compute Householder Reflector
2: m = length(x)
3: v = zeros(m)
4: σ = ||x(2 : m)||22
5: µ =

√
x21 + σ

6: if x1 ≤ 0 then
7: v1 = x1 − µ
8: else
9: v1 = − σ

x1+µ

10: end if
11: v = v/ ||v||2
12: return v
13: end function

= x− 2 (x∗x− x∗y)

x∗x− 2x∗y + y∗y
(x− y)

= x− x∗x− 2x∗y + y∗y

x∗x− 2x∗y + y∗y
(x− y)

= y (2.38)

From the line 2 to line 3, we are using the fact that ||x||2 = ||y||2. The previous work

also holds when x, y ∈ Cn \ {0}.

We frequently want to choose a vector parallel to e1, allowing us to zero most of the

entries of x. In this case, we choose v = x− ||x||2 e1. One difficulty when v is computed

numerically is the catastrophic cancellation that can occur in v1. Care must be taken

in order to ensure this does not happen; see Alg. 2, which has been modified from the

version in [32, Alg. 5.1.1].

Matrix-vector products involving Householder reflector P can be computed quickly

by taking advantage of its structure; it can be computed and applied in O(n) flops. This

implies that a small, constant number of reflectors can be applied with total cost O(n).

Also, in practice we never need to explicitly store P , only v. In this work, we will be

assuming that our reflection vector v has unit length.

26

2.2.2 Givens Rotations

We make use of Givens rotations, so we review them and their ability to selectively zero

entries of a matrix. This is important because our matrices are structured. A Givens

rotation G is the identity matrix with a rank-2 correction:

G ([i, j] , [i, j]) =

[
c s
−s c

]
. (2.39)

Here, c = cos θ and s = sin θ for some θ. We do not need to determine θ explicitly in

practice, for we require

[
α β

] [c s
−s c

]
=
[
r 0

]
. (2.40)

Thus, we are finished if we can write c and s in terms of α and β. This is easy, though, and

a numerically stable way to compute c and s is given in Alg. 3. Our convention here differs

from others (such as [32, Alg. 5.1.3] or [8]) by the fact that we ensure r =
√
α2 + β2 in

Eq. (2.40). The total cost for computing a Givens rotation and applying it to a vector is

O(1). This allows us to compute and apply O(n) Givens rotations for O(n) total cost.

2.3 Kronecker Products and Fast Matrix-Vector Mul-

tiplication

If A and B are structured matrices which allow for fast matrix-vector multiplication,

then intuitively it should be possible to compute matrix-vector products involving A⊗B

quickly as well. In this section we demonstrate particular instances that are important

for the present research. If A ∈ Rm×n, B ∈ Rk×`, and gr = g ([r − 1] `+ 1:r`) with

r ∈ {1, · · · , n}, then, in block form, we have

27

Algorithm 3 Givens Rotation

1: function givens(α,β) . Numerically stable way to compute Givens rotations
2: if |α| ≥ |β| then
3: if α = 0 then
4: c = 1
5: s = 0
6: else if β = 0 then
7: c = sign(α)
8: s = 0
9: else
10: τ = −β

α

11: c = sign(α)/
√

1 + τ 2

12: s = cτ
13: end if
14: else
15: if α = 0 then
16: s = − sign(β)
17: c = 0
18: else
19: τ = −α

β

20: s = − sign(β)/
√

1 + τ 2

21: c = sτ
22: end if
23: end if
24: return c, s
25: end function

28

(A⊗B) g =


a11Bg1 + a12Bg2 + · · ·+ a1nBgn
a21Bg1 + a22Bg2 + · · ·+ a2nBgn

...
am1Bg1 + am2Bg2 + · · ·+ amnBgn

 . (2.41)

If we set

G =
[
g1 g2 · · · gn

]
, (2.42)

then we can compute the above matrix product like

H = BGAT

=
[
h1 h2 · · · hm

]
, (2.43)

where hr has k rows, and

(A⊗B) g = h

=


h1
h2
...
hm

 . (2.44)

It is this insight which allows us to compute matrix-vector multiplication quickly when

working with tensor products of matrices, especially if A or B allow for fast matrix-vector

products. We merely note that the above product (if A and B are square matrices of size

n) has cost O(n4) flops if we explicitly form A ⊗ B. By taking advantage of the tensor

structure, we can reduce the cost of multiplication to O(n3) flops. Naturally, this does

not count memory transfer.

We will need to do something slightly different if we are performing matrix-matrix

multiplication. We see

(A⊗B)
[
g1 · · · gs

]
=
[
(A⊗B) g1 · · · (A⊗B) gs

]
29

∼
[
BG1A

T · · · BGsA
T
]
. (2.45)

This could be computed quickly by

B
[
G1 · · · Gs

]
=
[
H1 · · · Hs

]H1

...
Hs

AT = K, (2.46)

before reading off the solution from the components of K.

Throughout this section, we assume that F is a general matrix which allows for fast

matrix-vector products and we look at computing (A⊗ F) g for a vector g and particular

matrix A.

For completeness, we recall some properties of the Kronecker product; one reference

is [69]. These include bilinearity and associativity. Furthermore,

(A⊗B) (C ⊗D) = AC ⊗BD. (2.47)

Here, we are assuming that the matrix products AC and BD are well-defined. Addi-

tionally, there are permutation matrices (called perfect shuffle matrices) P and Q so

that

P (A⊗B)Q = B ⊗ A. (2.48)

2.3.1 Low-rank Matrices

We look at computing the product (wv∗ ⊗ F) g, where w, v ∈ Rm and F ∈ Rn×n. First,

we see

30

(wv∗ ⊗ F) g =


w1v1F w1v2F · · · w1vmF
w2v1F w2v2F · · · w2vmF
...

... · · ·
...

wmv1F wmv2F · · · wmvmF



g1
g2
...
gm



=


w1 (v1Fg1 + v2Fg2 + · · · vmFgm)
w2 (v1Fg1 + v2Fg2 + · · · vmFgm)

...
wm (v1Fg1 + v2Fg2 + · · · vmFgm)


= w ⊗ FGv, (2.49)

where, as before,

gk = g ([k − 1]n+ 1:kn) k ∈ {1, · · · ,m}
G =

[
g1 g2 · · · gm

]
. (2.50)

Now, from the above computation, we see

(WV ∗ ⊗ F) g =
([
w1 · · · wr

] [
v1 · · · vr

]∗ ⊗ F) g
= (w1v

∗
1 ⊗ F) g + · · ·+ (wrv

∗
r ⊗ F) g

= w1 ⊗ FGv1 + · · ·+ wr ⊗ FGvr (2.51)

To efficiently compute this, we can use

H = FGV

=
[
FGv1 · · · FGvr

]
=
[
h1 · · · hr

]
(2.52)

so that

(WV ∗ ⊗ F) g = w1 ⊗ h1 + · · ·+ wr ⊗ hr. (2.53)

Thus, we only need to compute fast multiplication with F once.

31

2.3.2 Householder Reflectors

From Sec. 2.3.1, we can easily compute (H ⊗ F) g, where H = I − 2uu∗ and u is a unit

vector. From properties of the Kronecker product, we see

(H ⊗ F) g = (I ⊗ F) g − 2 (vv∗ ⊗ F) g

= (I ⊗ F) g − 2 (v ⊗ FGv) (2.54)

We can quickly compute (I ⊗ F) g from looking at the columns of FG.

2.3.3 Givens Rotations

We assume our Givens rotation P has the form

P ([i, j] , [i, j]) =

[
c s
−s c

]
. (2.55)

If gk = g ([k − 1]n+ 1:kn) for k ∈ {1, · · · ,m}, then

(P ⊗ F) g =



Fg1
...

cFgi + sFgj
...

−sFgi + cFgj
...

Fgm


, (2.56)

so that the kth block is Fgk except for blocks i and j.

Frequently, we will have (possibly disjoint) products of Givens rotations. We obtain

similar results when applied to these products.

32

Chapter 3

Properties of

Chebyshev-Vandermonde Matrices

In this chapter we discuss properties of Chebyshev polynomials and Chebyshev-Vander-

monde (C-V) matrices that we will use in later chapters to develop fast algorithms for

solving interpolation and differential equations.

3.1 C-V Matrix Properties

Recalling our definitions of the Chebyshev polynomials Tk from Sec. 2.1.2, we define the

infinite C-V matrix V∞ by

[V∞]ij = Tj−1 (zni) , i ∈ {1, · · · , n} j ∈ N. (3.1)

Any other C-V matrix V will contain a finite number of columns of V∞. Furthermore,

we let

Cij = Tj−1 (zni) , i, j ∈ {1, · · · , n} ; (3.2)

that is, C is just the first n× n block of V∞. This C corresponds to our choice of DCT,

discussed in Sec. 2.1.5. We show

33

C∗V∞ = F
[
I 0 −Λ 0 Λ 0 −Λ 0 · · ·

]
= FW∞, (3.3)

where I is the n× n identity matrix, 0 is a column of zeros,

F =
n

2
diag (2, 1, 1, · · · , 1) , (3.4)

and

Λ =


1

1 1

. .
. . . .

1 1
1 1

 , (3.5)

an n× 2n− 1 matrix. We see that the zero columns of W∞ are located at n, 3n, 5n, . . . ,

and that the first row of W has ±1 located at column 0, 2n, 4n, Explicitly, we have

[W∞]k,k+4(`−1)n = 1, k ∈ {1, · · · , n} , ` ∈ N
[W∞]k,(4`−2)n+2−k = −1, k ∈ {2, · · · , n} , ` ∈ N

[W∞]k,k+(4`−2)n = −1, k ∈ {1, · · · , n} , ` ∈ N
[W∞]k,4`n+2−k = 1, k ∈ {2, · · · , n} , ` ∈ N. (3.6)

We prove this. First, we have

[C∗V∞]i+1,j+1 =
n∑
k=1

Ti (z
n
k)Tj (znk)

=
n∑
k=1

cos

[
iπ

n

(
n− k +

1

2

)]
cos

[
jπ

n

(
n− k +

1

2

)]
=

1

2

n∑
k=1

{
cos

[
i+ j

n
π

(
n− k +

1

2

)]
+ cos

[
i− j
n

π

(
n− k +

1

2

)]}

=
1

2

n−1∑
k=0

{
cos

[
i+ j

2n
π (2k + 1)

]
+ cos

[
i− j
2n

π (2k + 1)

]}
, (3.7)

34

where the reductions are standard product-to-sum trigonometric identities and reversing

the sum. As we can see, we are finished if we can sum

n−1∑
k=0

cos
[απ

2n
(2k + 1)

]
. (3.8)

If α ∈ {0,±4π,±8π, · · ·} the above sum is n, while if α ∈ {±2π,±6π,±10π, · · ·}, the

sum is −n. We show if α is any other integer then the previous sum is 0. To see this, we

complexify the situation. Letting

ξ = exp
[
i
απ

n

]
η = exp

[
i
απ

2n

]
, (3.9)

so that ξ is the primitive nth root of unity and η is the primitive 2nth root of unity, we

see

cos
[απ

2n
(2k + 1)

]
= <

(
ξkη
)
. (3.10)

Therefore, it follows

n−1∑
k=0

ξkη = η
1− ξn

1− ξ

=
1− (−1)α

η−1 − ξη−1

=
1

2i

(−1)α − 1

sin
(
απ
2n

) . (3.11)

This is purely imaginary when α 6= 2nγ for γ ∈ Z, so we have proven

n−1∑
k=0

cos
[απ

2n
(2k + 1)

]
=


n α = 4nγ, γ ∈ Z
−n α = 4nγ + 2, γ ∈ Z
0 otherwise

. (3.12)

From here, we see when i, j ∈ {0, 1, · · · , n− 1}, we have

35

[C∗V]ij =


n i = j = 0
n
2

i = j 6= 0

0 otherwise

. (3.13)

Furthermore, we see with i, j ∈ {1, 2, · · · , n− 1}, we have

[C∗V∞]i,n+j =

{
−n

2
i = n− j

0 otherwise
. (3.14)

The properties

Tj+2n (znk) = −Tj (znk)

Tj+4n (znk) = Tj (znk) (3.15)

follow from the definitions. Taken together, we have the desired result.

When we have 2n+ 1 columns, we see

W =


1 −1

1 −1
.

.

1 0 −1

 . (3.16)

3.2 Multiplication of Chebyshev Polynomials

To allow for variable coefficient differential equations, we will need to multiply functions

in terms of the Chebyshev basis. Using standard trigonometric multiplication results, we

see

Tn(cos θ)Tm(cos θ) = cosnθ cosmθ

=
1

2
{cos [(n+m) θ] + cos [(n−m) θ]} , (3.17)

from which it follows

36

TmTn =
1

2

(
Tm+n + T|m−n|

)
. (3.18)

For m ≥ 1, we let

Mm =



1
2

1
2

1
2

. .
. . . .

1
2

1
2

1 1
2

1
2

1
2

. . .
. . .


. (3.19)

The primary bands are located on the mth subdiagonal and superdiagonal, so that 1 is

in the m+ 1 row and the 1
2

in the first row is in the m+ 1 column. Explicitly, for m 6= 0

we have

[Mm]m+1,1 = 1

[Mm]m+k,k =
1

2
, k ∈ {2, 3, · · ·}

[Mm]k,m+k =
1

2
, k ∈ {2, 3, · · ·}

[Mm]k,m+2−k =
1

2
, k ∈ {1, 2, · · · ,m} . (3.20)

All other entries are 0. Therefore

diag(Tm(zn))V∞ = V∞Mm, (3.21)

where

Tm(zn) =


Tm(zn1)
Tm(zn2)

...
Tm(znn)

 . (3.22)

When V is finite, we chop Mm to the appropriate size.

37

3.3 Differentiation of Chebyshev Polynomials

We would eventually like to solve ordinary and partial differential equations (ODEs and

PDEs), so we must work with derivatives of Chebyshev polynomials. We define the

infinite Chebyshev-Vandermonde derivative matrix V ′∞ by

[V ′∞]ij = T ′j−1 (zni) , i ∈ {1, · · · , n} j ∈ N. (3.23)

Any other Chebyshev-Vandermonde matrix V ′ will contain a finite number of columns

of V ′∞.

We prove the following theorem:

Theorem 3.1 (Derivative of Chebyshev Polynomials)

We have the following relationship between Chebyshev polynomials and their derivatives:

T ′2n+1 = 2 (2n+ 1)

(
T2n + T2n−2 + · · ·+ T2 +

1

2
T0

)
T ′2n = 2 (2n) (T2n−1 + T2n−3 + · · ·+ T1) . (3.24)

Proof. We proceed by induction. First, from the recurrence relation in Eq. (2.8), we see

T0(x) = 1

T1(x) = x

T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x. (3.25)

Direct computation shows us

T ′0(x) = 0

= 2(2 · 0)

T ′1(x) = 1

38

= 2(2 · 0 + 1)
1

2
T0(x)

T ′2(x) = 4x

= 2(2 · 1)T1(x)

T ′3(x) = 12x2 − 3

= 2(2 · 1 + 1)

[
T2(x) +

1

2
T0(x)

]
. (3.26)

Thus, we have proven the base cases n = 0 and n = 1.

Assume n ≥ 2 and that the relationship holds for for T ′2k and T ′2k+1 for all k < n.

From the recurrence relationship of Chebyshev polynomials and recognizing T1(x) = x,

we see

T ′2n = 2T2n−1 + 2T1T
′
2n−1 − T ′2n−2

= 2T2n−1 + 2T1

{
2 (2n− 1)

[
T2n−2 + T2n−4 + · · ·+ T2 +

1

2
T0

]}
− 2 (2n− 2) [T2n−3 + T2n−5 + · · ·+ T1]

= 2T2n−1 + 2 (2n− 1) [T2n−1 + 2T2n−3 + · · ·+ 2T3 + 2T1]

− 2 (2n− 2) [T2n−3 + T2n−5 + · · ·+ T1]

= 2 (2n) [T2n−1 + T2n−3 + · · ·+ T1] . (3.27)

Similarly, we have

T ′2n+1 = 2T2n + 2T1T
′
2n − T ′2n−1

= 2T2n + 2T1 {2(2n) [T2n−1 + T2n−3 + · · ·+ T1]}

− 2 (2n− 1)

[
T2n−2 + T2n−4 + · · ·+ T2 +

1

2
T0

]
= 2T2n + (2n) [T2n + 2T2n−2 + 2T2n−4 + · · ·+ 2T2 + T0]

− 2 (2n− 1)

[
T2n−2 + T2n−4 + · · ·+ T2 +

1

2
T0

]
= 2 (2n+ 1)

[
T2n + T2n−2 + · · ·+ T2 +

1

2
T0

]
. (3.28)

This is the desired result.

This allows us to write

39

V ′∞ = V∞D∞, (3.29)

where

D∞ = 2


0 1

2
0 1

2
0 1

2
0 · · ·

0 0 1 0 1 0 1 · · ·
0 0 0 1 0 1 0 · · ·
...
. . .

. . .
. . .

. . .
. . .

. . .
. . .

 diag (0, 1, 2, 3, 4, · · ·) . (3.30)

Explicitly, we see

[D∞]1,2k = 2k − 1, k ∈ N
[D∞]j,j−1+2k = 2 (2k + j − 2) , j ∈ {2, 3, · · ·} , k ∈ N. (3.31)

All other entries are 0.

When we have n = 9 rows and 2n+ 1 columns, we see

WD =



0 1 3 5 7 9 11 13 15 17 0
4 8 12 16 20 24 28 32

6 10 14 18 22 26 30
8 12 16 20 24 28

10 14 18 22 26
12 16 20 24

14 18 22
16 20

18


.

(3.32)

This pattern holds in general. For a simpler structure, we let

40

U =



1 −1
1 −1

1 −1
1 −1

. . .
. . .

1 −1
1 −1

1
1


diag

(
1,

1

2
, · · · , 1

2

)
. (3.33)

Then, for general n rows and 2n+ 1 columns, we have

UWD =



0 1 2n− 1 0
2 2n− 2

.
.

n− 2 n+ 2
n− 1 n+ 1

n


.

(3.34)

3.4 C-V Matrix Normal Equations

We will now look at the normal equations involving the C-V matrix. If A ∈ Rm×n with

n > m has linearly independent rows (full row-rank, so that A∗ is injective), then we can

solve

min
Ax=b
||x||2 (3.35)

by computing the LQ factorization of A or using the pseudoinverse of A, A+; one refer-

ence for the properties of the matrix pseudoinverse is [27, Chapter 11]. Because we are

assuming that A has full row-rank, we see

A+ = A∗ (AA∗)−1 . (3.36)

Thus, in our case, we want to look at the matrix V D−1s :

41

(
V D−1s

)+
= D−1s V ∗

(
V D−2s V ∗

)−1
. (3.37)

If V D−2s V ∗ can be inverted quickly, then this will give us a fast algorithm for inversion.

First, we assume that V has N columns and compute the components of V D−2s V ∗:

[
V D−2s V ∗

]
k,`

=
N∑
m=1

[
V D−1s

]
k,m

[
V D−1s

]
`,m

=
N∑
m=1

Tm−1 (znk)Tm−1 (zn`)

m2s

=
1

2


N∑
m=1

cos
[
(m−1)π

n
(2n− [k + `] + 1)

]
m2s

+
N∑
m=1

cos
[
(m−1)π

n
(k − `)

]
m2s


=

1

2

N∑
m=1

cos [(m− 1) ξk+`]

m2s
+

1

2

N∑
m=1

cos [(m− 1) ηk−`]

m2s

= P (ξnk+`) +Q(ηnk−`). (3.38)

Naturally, we have

ξnj =
π

n
(2n− j + 1)

ηnj =
π

n

P (ξ) =
1

2

N∑
m=1

cos [(m− 1) ξ]

m2s

Q(η) =
1

2

N∑
m=1

cos [(m− 1) η]

m2s
. (3.39)

When k+ ` is constant (on the antidiagonals), then we see that ξnk+` and P (ξnk+`) are

constant, while when k − ` is constant (on the diagonals), then we see ηnk−` and Q(ηnk−`)

are constant. This implies that

V D−2s V ∗ = H + T, (3.40)

where H is a Hankel matrix and T is a Toeplitz matrix such that

42

H =



P (ξn2) P (ξn3) P (ξn4) . .
.
P
(
ξnn+1

)
P (ξn3) P (ξn4) P (ξn5) . .

.
P
(
ξnn+2

)
P (ξn4) P (ξn5) P (ξn6) . .

.
P
(
ξnn+3

)
... . .

.
. .
.

. .
. ...

P
(
ξnn+1

)
P
(
ξnn+2

)
P
(
ξnn+3

)
· · · P (ξn2n)



T =



Q (ηn0) Q (ηn1) Q (ηn2) · · · Q
(
ηnn−1

)
Q (ηn1) Q (ηn0) Q (ηn1)

. . . Q
(
ηnn−2

)
Q (ηn2) Q (ηn1) Q (ηn0)

. . . Q
(
ηnn−3

)
...

. . .
. . .

. . .
...

Q
(
ηnn−1

)
Q
(
ηnn−2

)
Q
(
ηnn−3

)
· · · Q (ηn0)


. (3.41)

We will only briefly pursue these matters further when proving convergence of interpo-

lation using polynomials up to degree 2Ln.

For MSN interpolation on a general grid, the normal equations will be structured in

a similar way and could be inverted quickly. This will be related to the Clausen function

Cs(θ) =
∞∑
k=1

cos kθ

ks
(3.42)

and the polylogarithm

Lis(z) =
∞∑
k=1

zk

ks
. (3.43)

Cs(θ) is a polynomial in θ for even integer values of s [1, Page 1005 (27.8.6)]. The

resulting matrices will have off-diagonal blocks of low rank and could be inverted quickly

by converting them to Sequentially Semi-Separable (SSS) [21] or Hierarchically Semi-

Separable (HSS) [15] form.

43

3.5 Linear Combinations of C-V Matrices

In this section, we look at matrices which arise from combining differentiation and mul-

tiplication by Chebyshev polynomials. This arises when solving differential equations in

Chapter 8.

Due to the better structure which arose in Sec. 3.3, we left-multiply all of our C-V

matrices with U . Thus, when W has 2n+ 1 columns we have

2UW =



2 − + −2
+ − + −

+ − + −
.

.

+ − 0 + −
+ 0 −

+ 0 −


, (3.44)

where “+” stands for +1 and “−” stands for −1. It is on the UW matrix in Eq. (3.44)

and UWD matrix in Eq. (3.34) that we multiply by Mm. Because M0 = I, we do not

need to worry about that case.

From the examples below, it is clear we can easily precompute the exact form needed

for any of the necessary linear combinations that we will need to take.

3.5.1 Multiplication and Derivative C-V Matrices

Because UWD has only 1 “diagonal”, we start with looking at the structure of UWDMm

as it is simpler. In Eq. (3.45), we see the UWDMm(:, 1 : n+ 1), essentially the first half

of the matrix. The explicit 0 in the first row is located in column m+ 1, while the 2m in

the first column is located in row m. In Eq. (3.45), we see the UWDMm(:, n+1 : 2n+1),

the second half of the matrix. The 2n in the first column (column n + 1 of the actual

matrix) occurs in row n−m, while the n in the last row occurs in column n+m+ 1.

44

(2
U
W
D
M

m
)(

:,
1

:
n

+
1)

=
  

1
0

1
2

2

..
.

. .
.

m
−

1
m
−

1
2m

m
m

+
1

m
+

1
. .
.

. .
.

n
−
k
−

1
n
−
k
−

1
n
−
k

2n
n
−
k

+
1

n
+
k
−

1
. .
.

..
.

n
−

2
n

+
2

n
−

1
n

+
1

n

  

(3
.4

5)

45

(2
U
W
D
M

m
)(

:,
n

+
1,

2n
+

1)
=

  

2n
−

1

..
.

2n
−
m

+
1

2n
−
m

2n
−
m

2n
−
m
−

1
2n
−
m
−

1

..
.

..
.

n
+
m

+
1

n
+
m

+
1

2n
n

+
m

n
−
m

+
1

n
+
m
−

1
. .
.

..
.

n
−

1
n

+
1

n

  
(3

.4
6)

46

3.5.2 Multiplication and Interpolation C-V Matrices

We now focus on computing UWMm, which is more difficult because UW has two bands.

We compute the first two matrices to understand the explicit structure. As above, “+”

stands for +1 and “−” stands for −1.

4UWM1 =

+ − + −
2 − + −

+ −
+ − + −

+
. . . − + . .

.
−

+ − + −
0

+ + 0 − −
+ 0 −


(3.47)

4UWM2 =

−2 2 − + −2 +
+ − +

2 − + − + − + −
+ − − + + −

+ −
. . . + − + − . .

.
+ −

+ + 0 − −
+ − 2 0 −2 + −

0
+ − 0 + −


(3.48)

47

Chapter 4

C-V Matrices and Factorizations for

1D Interpolation

Using structured matrices from Chapter 2, we investigate Chebyshev-Vandermonde ma-

trices in 1D and use this information to construct fast algorithms for interpolation prob-

lems. These factorizations will allow us to quickly compute the MSN solution to inter-

polation and differential equations (discussed later in Chapter 8).

4.1 General Algorithm for MSN Interpolation using

LQ factorization

The algorithm for computing the MSN interpolation solution is easy once we have the

LQ factorization; see Alg. 4. We will only have fast solutions of this form when we can

quickly invert L and multiply by Q. Interpolation on Chebyshev nodes and expressing

the result in Chebyshev polynomials gives L and Q the necessary structure.

48

Algorithm 4 Fast algorithm for solving structured MSN systems

1: function fast lq solve(f ,V ,Ds) . Solve minV a=f ||Dsa||2 where C−1V D−1s = LQ.

2: Set f̂ = C−1f
3: Compute LQ = C−1V D−1s
4: Solve Ly = f̂
5: Compute x = Q∗y
6: Set a = D−1s x
7: return a
8: end function

4.2 1D C-V Interpolation Matrix: 2n + 1 Columns

We take V to be our C-V matrix with 2n+1 columns. Recalling that we need to compute

the minimum norm solution of

V D−1s x = f. (4.1)

Ds is a diagonal scaling matrix which we use to bound the sth derivative; it was defined

in Eq. (2.30). From here, we see

C−1V D−1s = WD−1s

=


1−s − (2n+ 1)−s

2−s − (2n)−s

.
.

n−s 0 − (n+ 2)−s

 .
(4.2)

We need to convert this matrix into a lower triangular matrix via rotations, and we

use Givens rotations to zero the nonzero components. Specifically, we require the Givens

rotation Gk to have

Gk ([k, 2n+ 2− k] , [k, 2n+ 2− k]) =

[
ck sk
−sk ck

]
. (4.3)

In practice, we can compute

49

τk =

(
k

2n+ 2− k

)s
ck =

1√
1 + τ 2k

sk = τkck (4.4)

stably using Alg. 3. All of these Givens rotations are disjoint and we set G = G1G2 · · ·Gn,

with

G =



c1 s1
c2 s2

.
.

cn sn
1

−sn cn

. .
. . . .

−s2 c2
−s1 c1


. (4.5)

Then, we find

WD−1s G =
[
Y 0

]
, (4.6)

where

Y = diag (y1, · · · , yn)

yk = k−s

√
1 +

(
k

2n+ 2− k

)2s

=
1

ckks
. (4.7)

This is the desired LQ factorization, and we can now use Alg. 4 to solve this system

quickly. As we can see, we are making small changes to the DCT coefficients.

50

4.3 Endpoint Interpolation

While most of the factorizations involve the Chebyshev nodes, we will at times include the

endpoints ±1. If we want to interpolate function values at f(−1) = f0 and f(1) = fn+1,

then the coefficients a must satisfy

Aa =

[
1 −1 1 −1 · · · −1 1
1 1 1 1 · · · 1 1

]


a0
a1
a2
a3
...

a2n−1
a2n


=

[
f0
fn+1

]
. (4.8)

We define

C0 =

[
1 −1
1 1

]
C1 =

[
−1 1
1 1

]
. (4.9)

With these definitions, we see

C−10 A =

[
1 0 1 0 · · · 0 1
0 1 0 1 · · · 1 0

]
C−11 A =

[
0 1 0 1 · · · 1 0
1 0 1 0 · · · 0 1

]
. (4.10)

We will prefer one of these matrices (C0 or C1) over the other depending on the context.

The distinction depends on whether n is even or odd.

51

4.4 1D C-V Interpolation Matrix: 2n + 1 Columns

with Endpoint Interpolation

In this section we look at a slight variation of interpolation on the Chebyshev nodes: we

include endpoint interpolation from the previous section. This changes our C-V matrix

slightly, for we have some additional linear requirements. In light of Sec. 4.3 and Eqs. (4.8)

and (4.9), we list our additional requirements as

Aa =

[
f0
fn+1

]
, (4.11)

where f0 = f(−1) and fn+1 = f(1). We set

A = C−10 A. (4.12)

Using the previous computations for G, we find

[
W
A

]
D−1s G =

y1
y2

y3
y4

. . .

yn−1
yn

α1 α3 · · · αn−1 αn+1 αn+3 · · · α2n+1

α2 α4 · · · αn αn+2 αn+4 · · · α2n


.

(4.13)

From Eq. (4.13), we see that we almost have the LQ factorization. We only need two

Householder reflectors to convert this to lower triangular form, and it is convenient that

the vectors are orthogonal. We let

v∗1 =
[
αn+1 0 αn+3 0 · · · 0 α2n+1

]
52

v∗2 =
[
0 αn+2 0 αn+4 · · · α2n 0

]
(4.14)

and set

u1 =
1

||v1 − ||v1||2 e1||2
(v1 − ||v1||2 e1)

u2 =
1

||v2 − ||v2||2 e2||2
(v2 − ||v2||2 e2) . (4.15)

We remember that care must be taken when computing vi − ||vi||2 ei to avoid large

numerical errors; see Alg. 2.

With

P̂1 = In+1 − 2u1u
∗
1

P̂2 = In+1 − 2u2u
∗
2

P̂ = P̂1P̂2

= In+1 − 2
[
u1 u2

] [
u1 u2

]∗
P =

[
In

P̂

]
, (4.16)

we have

[
W
A

]
D−1s GP =



y1
y2

y3
y4

. . .

yn−1
yn

α1 α3 · · · αn−1 ||v1||2
α2 α4 · · · αn ||v2||2


, (4.17)

where we have ignored the zero entries of the matrix. This lower triangular matrix can

be quickly inverted to compute the minimum norm solution, from which we then obtain

the MSN solution after computing fast Householder reflectors and Givens rotations.

53

All of the above work was in the case when n was even. We now look at the odd case.

For this, we set

A = C−11 A (4.18)

and find

[
W
A

]
D−1s G =

y1
y2

y3
y4

. . .

yn−1
yn

α2 α4 · · · αn−1 αn+1 αn+3 · · · α2n

α1 α3 · · · αn αn+2 αn+4 · · · α2n+1


.

(4.19)

After computing the correct Householder reflectors, we will have the LQ factorization.

4.5 1D C-V Interpolation Matrix: 3n + 1 Columns

If we use 3n + 1 Chebyshev polynomials for interpolation (up to degree 3n), then we

must compute the LQ factorization of the following matrix:

WD−1s =1−s −(2n+ 1)−s

.
. . . .

n−2 0 −(n+ 2)−s −(3n)−s 0

 . (4.20)

By using disjoint Givens rotations, the correct rotation matrix is

G = G1G2, (4.21)

54

where

G1 =



c1 s1
c2 s2

.
.

cn sn
1

−sn cn

. .
. . . .

−s2 c2
−s1 c1

1
. . .

1



(4.22)

G2 =



1 0 0
χ2 σ2

. . .
. . .

χn χn
0 1 0

. . .

0 1 0
−σ2 χ2

. . .
. . .

−σn χn
0 0 1



. (4.23)

Here, we define

τk =

(
k

2n+ 2− k

)s
ck =

1√
1 + τ 2k

sk = τkck

ξk =

(
k

2n+ k

)s
ck

µk =
1√

1 + ξ2k
νk = ξkµk. (4.24)

55

In this case, we see

WD−1s G =
[
Y 0

]
, (4.25)

where Y is diagonal with entries

y1 =
√

1−2s + (2n+ 1)−2s

=

√
1 +

(
1

2n+ 1

)2s

yk =
√
k−2s + (2n+ 2− k)−2s + (2n+ k)−2s

= k−s

√√√√1 +

(
k

2n+ 2− k

)2s
[

1 +

(
2n+ 2− k

2n+ k

)2s
]

k ∈ {2, · · · , n} . (4.26)

This is a numerically stable was to compute the entries.

We can include endpoints in our interpolation by adding two Householder reflectors

like we did in Sec. 4.2; we omit the details.

4.6 1D C-V Interpolation Matrix: 4n + 1 Columns

If we use 4n+ 1 Chebyshev polynomials for interpolation (up to order 4n), then we must

compute the LQ factorization of the following matrix:

[
WD−1s

]
(:, 1 : 2n+ 1) =

1−s − (2n+ 1)−s

2−s − (2n)−s

.
.

n−s 0 − (n+ 2)−s


[
WD−1s

]
(:, 2n+ 1 : 4n+ 1) =

− (2n+ 1)−s (4n+ 1)−s

− (2n+ 2)−s (4n)−s

.
.

− (3n)−s 0 (3n+ 2)−s

 .

(4.27)

56

By using disjoint Givens rotations, we let rotation matrix is

G = G1G2, (4.28)

where

G1 =



c1 s1
c2 s2

.
.

cn sn
1

−sn cn

. .
. . . .

−s2 c2
−s1 c1 0

µ2 ν2
.

.

µn νn
1

−νn µn

. .
. . . .

−ν2 µ2

0 1


(4.29)

57

G2 =



χ1 0 σ1
χ2 σ2

. . .
. . .

χn σn
1 0

. . .

0 1 0
−σ2 χ2

. . .
. . .

−σn −χn
0 1

. . .

1
−σ1 0 χ1



. (4.30)

Here, we define

τk =

(
k

2n+ 2− k

)s
ck =

1√
1 + τ 2k

sk = τkck

ξk =

(
2n+ k

4n+ 2− k

)s
µk = − 1√

1 + ξ2k
νk = ξkµk

ζ1 = −
(

1

4n+ 1

)s
c1

ζk =

(
k

2n+ k

)s
ck
µk

k ∈ {2, · · · , n}

χk =
1√

1 + ζ2k
σk = ζkχk. (4.31)

For k ∈ {2, · · · , n}, we note that ζk < 0 because µk < 0. In this case, we see

58

WD−1s G =
[
Y 0

]
, (4.32)

where Y is diagonal with entries

y1 =
√

1−2s + (2n+ 1)−2s + (4n+ 1)−2s

=

√√√√1 +

(
1

2n+ 1

)2s
[

1 +

(
2n+ 1

4n+ 1

)2s
]

yk =
√
k−2s + (2n+ 2− k)−2s + (2n+ k)−2s + (4n+ 2− k)−2s

= k−s

√√√√1 +

(
k

2n+ 2− k

)2s
{

1 +

(
2n+ 2− k

2n+ k

)2s
[

1 +

(
2n+ k

4n+ 2− k

)2s
]}

k ∈ {2, · · · , n} . (4.33)

This is a numerically stable was to compute the entries.

4.7 1D C-V Interpolation Matrix: 2Ln + 1 Columns

The previous interpolation patterns showed us a standard way to compute the pseudoin-

verse: compute the necessary LQ factorization using structured rotations. This is always

possible but becomes difficult as the interpolation degree becomes larger; previously, we

have always computed the full Q matrix, but the Q factor became more involved when

using 3n + 1 and 4n + 1 columns. If we wish to have a method that works for MSN

interpolation up to degree 2Ln, then we will need to use something else: the normal

equations. While it is well-known the normal equations can increase the difficulty of

solving linear systems because it results in a squaring of the condition number [32, 41],

this is not an issue here because the system is well structured and we are computing the

factorization exactly (by hand).

After performing an IDCT, we see

(
WD−1s

)+
= D−1s W ∗ (WD−2s W ∗)−1 , (4.34)

59

where we are assuming W has 2Ln+ 1 columns. W has the following form:

W =
[
I 0 −Λ 0 Λ · · · 0 E

]
, L mod 4 = 0

W =
[
I 0 −Λ 0 Λ · · · 0 −E

]
, L mod 4 = 2. (4.35)

We see

WD−2s W ∗ = Y 2, (4.36)

where Y is a diagonal matrix with

y21 = 1−2s + [2n+ 1]−2s + [4n+ 1]−2s + · · ·+ [2Ln+ 1]−2s

y2k = k−2s + [2n+ 2− k]−2s + [2n+ k]−2s + [4n+ 2− k]−2s + [4n+ k]−2s

+ · · ·+ [2(L− 1)n+ 2− k]−2s + [2(L− 1)n+ k]−2s + [2Ln+ 2− k]−2s

k ∈ {2, · · · , n} . (4.37)

If there is concern about roundoff error in these calculations, the values could be first

sorted into increasing order before being added or compensated summation could be

used; see [41, Chapter 4]. In this case, we see

(
WD−1s

)+
= D−1s W ∗Y −2, (4.38)

and all of these operations can be performed quickly. The solution coefficients are given

by

a = D−2s W ∗Y −2f̂ . (4.39)

60

4.8 1D C-V Derivative Matrix: 2n+1 Columns; First

Factorization

We now look at computing a factorization for V ′ = V D. From our work in Sec. 3.3, we

know that UWD is highly structured and similar to W in that it only has one “diagonal”.

If we include the diagonal scaling D−1s , we see

UWDD−1s =


0 1

2s
2n−1
(2n)s

0

.
.

n−1
ns

n+1
(n+2)s

n
(n+1)s

 , (4.40)

We now want zero out the right half of the UWDD−1s . We let

τk = −
(

2n+ 1− k
k − 1

)(
k

2n+ 2− k

)s
k ∈ {2, · · · , n}

ck =
1√

1 + τ 2k
sk = τkck. (4.41)

Using these c and s values, our full set of Givens rotations is

G =



1
c2 s2

.
.

cn sn
1

−sn cn

. .
. . . .

−s2 c2
1


, (4.42)

and we set

γk = (k − 1) k−s

√
1 +

(
2n+ 1− k
k − 1

)2(
k

2n+ 2− k

)2s

k ∈ {2, · · · , n}

61

γn+1 = n (n+ 1)−s . (4.43)

Using all of the above information, we see

UWDD−1s G =
[
0 Γ 0

]
Γ = diag (γ2, γ3 · · · , γn+1) . (4.44)

If Π is the circular downshift permutation matrix, then

UWDD−1s GΠ =
[
Γ 0

]
(4.45)

is the desired LQ factorization.

4.9 1D C-V Derivative Matrix: 2n+1 Columns; Sec-

ond Factorization

In this section we will look at another method for factorizing V ′. This method was

developed first but we think the “First Factorization” is more useful in practice; this

factorization is recorded here on the chance it may be beneficial in the future.

From pervious work, we see

WDD−1s (1, :) =[
0 1 · 2−s 0 3 · 4−s 0 5 · 6−s · · · (2n− 3) (2n− 2)−s 0 (2n− 1) (2n)−s 0

]
WDD−1s (k, k + 1:2n+ 1− k) =[

2k (k + 1)−s 0 2 (k + 2) (k + 3)−s 0 · · · 0 2 (2n− k) (2n+ 1− k)−s
]

k ≥ 2. (4.46)

The nonzero entries are (essentially) constant along the columns; the first row is off by a

factor of 1
2
. To fix this, we define

62

D̂ = diag

(
1,

1

2
, · · · , 1

2

)
. (4.47)

Now, we look at the case when n = 5 to clearly see the structure:

D̂WDD−1s =
0 1 · 2−s 3 · 4−s 5 · 6−s 7 · 8−s 9 · 10−s 0

2 · 3−s 4 · 5−s 6 · 7−s 8 · 9−s
3 · 4−s 5 · 6−s 7 · 8−s

4 · 5−s 6 · 7−s
5 · 6−s

 .
(4.48)

We begin by applying the same set of Givens rotations G from Eq. (4.42). When n

is even, then

D̂WDD−1s G =



0 γ2 0 γ4 0 γ6 · · · γn−2 0 γn 0 0 · · · 0
γ3 0 γ5 0 · · · 0 γn−1 0 γn+1 0 · · · 0

γ4 0 γ6 · · · γn−2 0 γn 0 0 · · · 0
γ5 0 · · · 0 γn−1 0 γn+1 0 · · · 0

γ6 · · · γn−2 0 γn 0 0 · · · 0
. . .

...
...

γn−2 0 γn 0 0 · · · 0
γn−1 0 γn+1 0 · · · 0

γn 0 0 · · · 0
γn+1 0 · · · 0


.

(4.49)

If n is odd, then

63

D̂WDD−1s G =



0 γ2 0 γ4 0 γ6 · · · 0 γn−1 0 γn+1 0 · · · 0
γ3 0 γ5 0 · · · γn−2 0 γn 0 0 · · · 0

γ4 0 γ6 · · · 0 γn−1 0 γn+1 0 · · · 0
γ5 0 · · · γn−2 0 γn 0 0 · · · 0

γ6 · · · 0 γn−1 0 γn+1 0 · · · 0
. . .

...
...

γn−2 0 γn 0 0 · · · 0
γn−1 0 γn+1 0 · · · 0

γn 0 0 · · · 0
γn+1 0 · · · 0


.

(4.50)

In both cases, we see that the matrix is upper triangular, and we wish to put it in

lower triangular form. Because of the similarities between the two cases (n even or odd),

we will focus on the case when n is even. This is solely a choice of convenience and will

not affect the results.

To convert this into a lower triangular matrix, we see that nonzero even and odd

column pairs have nonzero terms following the form


γ δ
γ δ
...

...
γ δ
0 δ

 . (4.51)

In both cases we can use Givens rotations to zero out of the second column. We will re-

peatedly do this and work backward to obtain the LQ factorization. After a permutation

of the columns, the matrix will be in lower triangular form.

We define

δn+1 = γn+1

δn = γn

δk = γk

√
1 +

(
δk+2

γk

)2

k ∈ {2, · · · , n− 1}

64

ξk = −δk+2

γk
k ∈ {2, · · · , n− 1}

µk =
1√

1 + ξ2k
νk = ξkµk. (4.52)

Letting

Hk =


Ik−1

µk νk
1

−νk µk
I2n−1−k


H = Hn−1Hn−2 · · ·H3H2, (4.53)

we see

D̂WDD−1s GHΠ =
[
L 0

]
, (4.54)

where Π is the circular downshift permutation matrix as before, 0 is an n×n+ 1 matrix

of zeros, and L is a lower triangular matrix with

L(2k + `, `) = (−1)k δ2k+`ν2k+`−2ν2k+`−4 · · · ν` ` ∈ {2, 3} , k ≥ 0, 2k + ` ≤ n

L(2k + `, `) = (−1)k δ2k+`ν2k+`−2ν2k+`−4 · · · ν`µ`−2 ` ≥ 4, k ≥ 0, 2k + ` ≤ n. (4.55)

As an example, we show the case when n = 8:

L =



δ2
δ3

−δ4ν2 δ4µ2

−δ5ν3 δ5µ3

δ6ν4ν2 −δ6ν4µ2 δ6µ4

δ7ν5ν3 −δ7ν5µ3 δ7µ5

−δ8ν6ν4ν2 δ8ν6ν4µ2 −δ8ν6µ4 δ8µ6

−δ9ν7ν5ν3 δ9ν7ν5µ3 −δ9ν7µ5 δ9µ7


.

(4.56)

65

A direct computation will show us

δk = ||D̂WDD−1s (k − 1, :) ||2 k ∈ {2, · · · , n+ 1} , (4.57)

but it is easier to see that the only nonzero entry of the kth row of D̂WDD−1s GHn · · ·Hk+1

is δk, and the 2-norm is rotationally invariant.

Working through some calculations we find that L−1 has a very simple form: bidiag-

onal matrix with nonzero entries on the second sub-diagonal.

L−1 =

δ−12

0 δ−13

δ−12 ξ2 0 (δ4µ2)
−1

δ−13 ξ3 0 (δ5µ3)
−1

. . .
. . .

(δn−1µn−3)
−1

. . . 0 (δnµn−2)
−1

δ−1n−1ξn−1 0 (δn+1µn−1)
−1


(4.58)

Because of its simpler form, it will be easier to work with L−1 directly rather than L.

If we P is the permutation matrix which permutes the even and odd rows together in

increasing order, then it is clear

PL−1P = diag(L1, L2), (4.59)

where L1 and L2 are lower triangular matrices with nonzeros only on the sub-diagonal,

implying they are semiseparable [32, Chapter 12].

The methods we applied here could also be applied when V ′ has 3n + 1 or 4n + 1

columns, but we will not pursue those factorizations at this time. Left multiplying by U

greatly simplifies matters because then UWD and UWDD−1s have orthogonal rows; this

is our reasoning for preferring the other factorization.

66

4.10 1D C-V Derivative Matrix: 3n + 1 Columns;

First Factorization

If we use 3n+ 1 columns for interpolating derivative information, then we see

UWDD−1s =
0 α2 α2n 0 α2n+2

.
. . . .

αn αn+2 α3n

αn+1 α3n+1

 . (4.60)

Here,

αk = (k − 1) k−s k ∈ {2, · · · , 2n}
αk = − (k − 1) k−s k ∈ {2n+ 2, · · · , 3n+ 1} . (4.61)

By using disjoint Givens rotations, we let rotation matrix is

G = G1G2, (4.62)

where

G1 =



1 0
c2 s2

.
.

cn sn
1

−sn cn

. .
. . . .

−s2 c2
0 1

. . .

1



(4.63)

67

G2 =



1 0 0
χ2 σ2

. . .
. . .

χn σn
χn+1 σn+1

0 1 0
. . .

0 1 0
−σ2 χ2

. . .
. . .

−σn χn
−σn+1 0 0 χn+1



. (4.64)

Here, we define

τk = −
(

2n+ 1− k
k − 1

)(
k

2n+ 2− k

)s
ck =

1√
1 + τ 2k

sk = τkck

ζk =

(
2n− 1 + k

k − 1

)(
k

2n+ k

)s
ck k ∈ {2, · · · , n}

ζn+1 = 3

(
n+ 1

3n+ 1

)s
χk =

1√
1 + ξ2k

σk = ζkχk. (4.65)

In this case, we see

UWDD−1s GΠ =
[
Γ 0

]
, (4.66)

where Γ is diagonal with entries

γk =
√

(k − 1)2k−2s + (2n+ 1− k)2(2n+ 2− k)−2s + (2n− 1 + k)2(2n+ k)−2s

k ∈ {2, · · · , n}

68

γn+1 =
√
n2(n+ 1)−2s + (3n)2(3n+ 1)−2s . (4.67)

4.11 1D C-V Derivative Matrix: 4n + 1 Columns;

First Factorization

If we use 4n + 1 Chebyshev polynomials for interpolation (up to degree 4n), then we

must compute the LQ factorization of the following matrix:

UWDD−1s =0 α2 α2n 0 α2n+2 α4n 0
.

.
.

αn+1 α3n+1

 . (4.68)

Here, we have

αk = (k − 1) k−s k ∈ {2, · · · , 2n}
αk = − (k − 1) k−s k ∈ {2n+ 2, · · · , 4n} (4.69)

By using disjoint Givens rotations, we let rotation matrix is

G = G1G2, (4.70)

where

69

G1 =



1 0
c2 s2

.
.

cn sn
1

−sn cn

. .
. . . .

−s2 c2
0 1 0

µ2 ν2
.

.

µn νn
1

−νn µn

. .
. . . .

−ν2 µ2

0 1


(4.71)

G2 =



1 0
χ2 σ2

. . .
. . .

χn σn
χn+1 σn+1

1
. . .

0 1
−σ2 χ2

. . .
. . .

−σn χn
−σn+1 χn+1

1
. . .

1



. (4.72)

Here, we define

70

τk = −
(

2n+ 1− k
k − 1

)(
k

2n+ 2− k

)s
ck =

1√
1 + τ 2k

sk = τkck

ξk = −
(

4n+ 1− k
2n− 1 + k

)(
2n+ k

4n+ 2− k

)s
µk = − 1√

1 + ξ2k
νk = ξkµk

ζk =

(
2n− 1 + k

k − 1

)(
k

2n+ k

)s
ck
µk

k ∈ {2, · · · , n}

ζn+1 = 3

(
n+ 1

3n+ 1

)s
χk =

1√
1 + ζ2k

σk = ζkχk. (4.73)

In this case, we see

UWDD−1s GΠ =
[
Γ 0

]
, (4.74)

where Γ is diagonal with entries

γk =
[
(k − 1)2k−2s + (2n+ 1− k)2(2n+ 2− k)−2s

+(2n− 1 + k)2(2n+ k)−2s + (4n+ 1− k)2(4n+ 2− k)−2s
]1/2

k ∈ {2, · · · , n}
γn+1 =

√
n2(n+ 1)−2s + (3n)2(3n+ 1)−2s . (4.75)

71

4.12 1D C-V Derivative Matrix: 2n+1 Columns with

Point Interpolation; First Factorization

In this section we compute the resulting LQ factorization for the interpolation problem

{
p′(znk) = f ′(znk), k ∈ {1, · · · , n}
p(0) = f(0)

. (4.76)

Ensuring equality at p(0) = f(0) gives the MSN approximation the correct constant

term. If we denote the linear interpolation requirement by A, then we have

[
A

UWD

]
D−1s G =

[
1 0 0
0 Γ 0

]
, (4.77)

where G is from Eq. (4.42) and we remember Ge1 = e1. This is the LQ factorization.

4.13 1D C-V Derivative Matrix: 2n+1 Columns with

Endpoint Interpolation; First Factorization

In this section we compute the solution when interpolating derivatives on Chebyshev

nodes and function values on the endpoints:

{
p′(znk) = f ′(znk), k ∈ {1, · · · , n}
p(z) = f(z), z ∈ {−1, 1}

. (4.78)

We will use tools from Sec. 4.8. When n is even, we see

[
UWD
A

]
D−1s GΠ =

72



γ2
γ3

. . .

γn
γn+1

α2 α4 · · · αn αn+2 · · · α2n

α3 · · · αn+1 αn+3 · · · α2n+1 α1


, (4.79)

where A = C−11 A with definitions coming from Eqs. (4.8) and (4.9). We must then

compute 2 Householder reflectors by setting

v∗1 =
[
αn+2 0 αn+4 · · · α2n 0 0

]
v∗2 =

[
0 αn+3 0 · · · 0 α2n+1 α1

]
u1 =

1

||v1 − ||v1||2 e1||2
(v1 − ||v1||2 e1)

u2 =
1

||v2 − ||v2||2 e2||2
(v2 − ||v2||2 e2) . (4.80)

From here, we let

P̂1 = In+1 − 2u1u
∗
1

P̂2 = In+1 − 2u2u
∗
2

P̂ = P̂1P̂2

= In+1 − 2
[
u1 u2

] [
u1 u2

]∗
P =

[
In 0

0 P̂

]
, (4.81)

so that

73

[
UWD
A

]
D−1s GΠP =



γ2
γ3

γ4
. . .

γn
γn+1

α2 0 α4 · · · αn 0 ||v1||2
0 α3 0 · · · 0 αn+1 0 ||v2||2


. (4.82)

When n is odd, we let

A = C−10 A (4.83)

so that

[
UWD
A

]
D−1s GΠ =



γ2
γ3

γ4
. . .

γn
γn+1

α3 · · · αn αn+2 · · · α2n+1 α1

α2 α4 · · · αn+1 αn+3 · · · α2n


.

(4.84)

We set

v∗1 =
[
αn+2 0 · · · 0 α2n+1 α1

]
v∗2 =

[
0 αn+3 0 · · · 0 α2n 0 0

]
(4.85)

and proceed as before.

74

4.14 1D C-V Derivative Matrix: 2n+1 Columns with

Endpoint Interpolation; Second Factorization

In this section we compute the LQ factorization from last section using the second fac-

torization of the V ′; the endpoint function values are included as before and begin by

assuming n is even.

We know that C−1V ′D−1s GH essentially reduces our matrix to lower triangular form,

and the circular downshift permutation Π puts the significant portion into lower trian-

gular form. Thus, after these applications, we arrive at the matrix

[
D̂WD
A

]
D−1s GHΠ =

∗
∗ ∗
∗ ∗ ∗
...

. . .

∗ ∗ ∗ · · · ∗
∗ ∗ ∗ · · · ∗ ∗
α2 α4 · · · αn αn+2 · · · α2n

α3 · · · αn+1 αn+3 · · · α2n+1 α1


. (4.86)

The last two rows can be computed quickly by evaluating AD−1s GHΠ.

All we have left is to compute 2 Householder reflectors, setting

v∗1 =
[
αn+2 0 αn+4 · · · α2n 0 0

]
v∗2 =

[
0 αn+3 0 · · · 0 α2n+1 α1

]
u1 =

1

||v1 − ||v1||2 e1||2
(v1 − ||v1||2 e1)

u2 =
1

||v2 − ||v2||2 e2||2
(v2 − ||v2||2 e2) . (4.87)

From here, we let

75

P̂1 = In+1 − 2u1u
∗
1

P̂2 = In+1 − 2u2u
∗
2

P̂ = P̂1P̂2

= In+1 − 2
[
u1 u2

] [
u1 u2

]∗
P =

[
In 0

0 P̂

]
. (4.88)

Putting this together, we have

[
D̂WD
A

]
D−1s GHΠP =



∗
∗ ∗
∗ ∗ ∗
...

. . .

∗ ∗ ∗ · · · ∗
∗ ∗ ∗ · · · ∗ ∗
α2 0 α4 · · · αn 0 ||v1||2
0 α3 0 · · · 0 αn+1 0 ||v2||2


, (4.89)

where we have only kept the nonzero terms. The inverse of this triangular matrix can be

computed quickly.

When n is odd, we let

A = C−10 A. (4.90)

We then find

[
D̂WD
A

]
D−1s GHΠ =

∗
∗ ∗
∗ ∗ ∗
...

. . .

∗ ∗ ∗ · · · ∗
∗ ∗ ∗ · · · ∗ ∗

α3 · · · αn αn+2 · · · α2n+1 α1

α2 α4 · · · αn+1 αn+3 · · · α2n


. (4.91)

76

Setting

v∗1 =
[
αn+2 0 · · · 0 α2n+1 α1

]
v∗2 =

[
0 αn+3 0 · · · 0 α2n 0 0

]
, (4.92)

we proceed as before to arrive at the LQ factorization.

4.15 1D C-V Birkhoff Interpolation Matrix: 2n + 1

Columns, First Factorization

In this section we investigate the full Birkhoff interpolation problem in 1D: interpolation

and derivative information on the Chebyshev nodes.

We must compute the LQ factorization of

[
V
V ′

]
D−1s . (4.93)

After applying the inverse DCT, this reduces to

[
C−1

C−1

] [
V
V ′

]
D−1s =

[
W
WD

]
D−1s . (4.94)

If G is taken from Eq. (4.5) and U from Eq. (3.33), then we see

[
WD−1s G

EUWDD−1s G

]
=

77



y1
y2

y3
y4

. . .

yn−1
yn

αn+1

αn αn+2

αn−1 αn+3

. .
. . . .

α4 α2n−2
α3 α2n−1

0 α2 α2n 0



.

(4.95)

Here, if α is the vector which contains αi, then we see

w∗ =
[
0 1 2 3 · · · 2n− 3 2n− 2 2n− 1 0

]
α = G∗D−1s w. (4.96)

We now have the LQ factorization.

78

Chapter 5

C-V Matrices and Factorizations for

Interpolation in Higher Dimensions

After working through 1D interpolation in Chapter 4, we now turn our attention to

interpolation problems in higher dimensions.

5.1 C-V Matrices in Higher Dimensions

One difficulty going from 1D to 2D interpolation, as noted in Chapter 1, is how to chose

the correct set of basis functions [30]. Because we are not constrained by matching the

number of interpolation requirements with basis functions, our work is easier. We let

V = V y ⊗ V x be our 2D C-V matrix. Here, V x ∈ Rn×(2n+1) is our 1D C-V matrix in x

and V y ∈ Rm×(2m+1) is our 1D C-V matrix in y. We similarly define C = Cy ⊗ Cx and

G = Gy ⊗Gx. Due to the nature of the Kronecker product, many of the properties from

1D interpolation are kept but the method for computing them must be modified.

For interpolation on the Chebyshev nodes in 2D, we want to solve the following

system:

min
V a=f

∣∣∣∣Dsa
∣∣∣∣
2
. (5.1)

79

The solution will be of the form

p(x, y) =
2n∑
k=0

2m∑
`=0

ak,`Tk(x)T`(y). (5.2)

Because of how V is defined, the coefficients are ordered

a∗ =
[
a0,0 a1,0 · · · a2n,0 a0,1 a1,1 · · · a2n,1 · · · a0,2m a1,2m · · · a2n,2m

]
.

(5.3)

Furthermore, our interpolation points are ordered

(x1, y1) , (x2, y1) , · · · , (xn, y1) , (x1, y2) , · · · . (5.4)

Thus, if x = Dsa where then we need to compute

min
V D
−1
s x=f

||x||2 . (5.5)

Our work reduces to computing the LQ factorization of V D
−1
s .

Now, we know

C
−1
V D

−1
s G =

[
Y y 0

]
⊗
[
Y x 0

]
(5.6)

This is not the LQ factorization, but it is after a permutation of the columns.

We now assume m = n. Let

I =
n⋃
k=1

[(k − 1) (2n+ 1) + 1:(k − 1) (2n+ 1) + n] , (5.7)

so that

(Y y ⊗ Y x) y (I) = f, (5.8)

where we initialize the remaining elements of y to zero. At this point, we compute

a = D
−1
s Gy. (5.9)

80

Similar results can be extended to higher dimensions. While it is not necessary to require

m = n, we will in the future because it simplifies matters.

5.2 2D C-V Interpolation Matrix: 2n + 1 Columns

with Boundary

We assume V x, V y ∈ Rn×(2n+1).

In this section we work through the matrix factorization of for interpolating on the

tensor product of C-V matrices given by

min
V a=f

∣∣∣∣Dsa
∣∣∣∣
2
, (5.10)

where

C
−1
V =

W y ⊗W x

Ay ⊗W x

W y ⊗ Ax

 . (5.11)

This corresponds to function interpolation on the points

Z =
{(
znj , z

n
k

)}
j∈{1,··· ,n},k∈{1,··· ,n} ∪ {(ẑ, z

n
k)}ẑ∈{−1,1},k∈{1,··· ,n} ∪ {(z

n
k , ẑ)}ẑ∈{−1,1},k∈{1,··· ,n} .

(5.12)

We let G and P be the Givens rotation matrixes and Householder reflectors from

Sec. (4.4) for size n, so that

W y ⊗W x

Ay ⊗W x

W y ⊗ Ax

(D−1s GP ⊗D−1s GP
)

=


[
Y y 0 0

]
⊗
[
Y x 0 0

][
Ây L̂y 0

]
⊗
[
Y x 0 0

][
Y y 0 0

]
⊗
[
Âx L̂x 0

]
 . (5.13)

After a permutation of the columns, this is the desired LQ factorization.

To do so, we let

81

I1 =
n⋃
k=1

[(k − 1)(2n+ 1) + 1 : (k − 1)(2n+ 1) + n]

I2 =
n+2⋃

k=n+1

[(k − 1)(2n+ 1) + 1 : (k − 1)(2n+ 1) + n]

I3 =
n⋃
k=1

[(k − 1)(2n+ 1) + n+ 1 : (k − 1)(2n+ 1) + n+ 2] . (5.14)

In this case, we require

(Y y ⊗ Y x) y(I1) = f̂1

(Ây ⊗ Y x)y(I1) + (L̂y ⊗ Y x)y(I2) = f̂2

(Y y ⊗ Âx)y(I1) + (Y y ⊗ L̂x)y(I3) = f̂3. (5.15)

All other values are initialized to zero. Finally, we see

a = D
−1
s GPy. (5.16)

5.3 2D Full Birkhoff Interpolation Problem

We now look at the full Birkhoff interpolation problem in 2D:

f(zni , z
n
j) = p(zni , z

n
j), i, j ∈ {1, · · · , n}

fx(z
n
i , z

n
j) = px(z

n
i , z

n
j), i, j ∈ {1, · · · , n}

fy(z
n
i , z

n
j) = py(z

n
i , z

n
j), i, j ∈ {1, · · · , n} . (5.17)

That is, we interpolate all function and first derivative values on the n × n Chebyshev

tensor grid.

After some of the standard matrix preprocessing, we must compute the LQ factoriza-

tion of the following matrix:

82

 WD−1s ⊗WD−1s
EUWD−1s ⊗WD−1s
WD−1s ⊗ EUWD−1s

 . (5.18)

We assume that we are interpolating up to degree N in both x and y (not specified except

that N ≥ 2n). If G is the structured rotation matrix so that

WD−1s G =
[
Y 0

]
, (5.19)

then

 WD−1s ⊗WD−1s
EUWD−1s ⊗WD−1s
WD−1s ⊗ EUWD−1s

 (G⊗G) =

 [
Y 0

]
⊗
[
Y 0

]
EUWD−1s G⊗

[
Y 0

][
Y 0

]
⊗ EUWD−1s G

 . (5.20)

We now take H to be the rotation matrix so that

[
Y 0

]
H =

[
Y 0

](
EUWD−1s G

)
H =

[
A B 0

]
. (5.21)

This rotation matrix H comes up in the full Birkhoff problem in 1D and will contain

some Givens rotations when N > 2n+ 1. Using this, we see

 [
Y 0

]
⊗
[
Y 0

]
EUWD−1s G⊗

[
Y 0

][
Y 0

]
⊗ EUWD−1s G

 (H ⊗H) =

[Y 0 0
]
⊗
[
Y 0 0

][
A B 0

]
⊗
[
Y 0 0

][
Y 0 0

]
⊗
[
A B 0

]
 . (5.22)

At this point, we can compute the solution, once we use the following index sets:

I1 =
2n⋃
k=1

[(k − 1)N + 1 : (k − 1)N + n]

I2 =
n⋃
k=1

[(k − 1)N + (n+ 1) : (k − 1)N + 2n] . (5.23)

In this case, we need to solve

83

([
Y 0
A B

]
⊗ Y

)
y(I1) =

[
f̂

(U ⊗ I) f̂y

]
(Y ⊗B) y(I2) = (I ⊗ U) f̂x. (5.24)

The rest of the entries of y are initialized to zero. Here, we remember that we compute

hat’s by the 2D IDCT. From here, we can easily solve for the coefficients:

a = D
−1
s GHy. (5.25)

This problem is useful because of how difficult it would be to solve in another setting.

If we wish to keep the tensor structure with each matrix having the same number of

columns N , then we have 3n2 linear constraints and N2 total columns. It is not possible

for 3n2 = N2 to hold for all n and N when we are forced to have a square system. The

MSN method does not care about this restriction and so we can choose N freely, so long

as it is large enough that the structured rotations go through. While fast algorithms

may exist without the tensor structure, it is not clear how this could be determined or

exploited.

5.4 Extending Previous 2D C-V Interpolation Ma-

trix Results

By looking at the results we have just computed, we see that to compute fast MSN

interpolation problems, we “stack” our linear interpolation requirements and then use

factorizations from 1D to build up the structured LQ factorization needed. This should

work with other 2D interpolation problems in addition to problems in higher dimensions;

the main difficulty in higher dimensions may be keeping track of all the linear require-

ments (as well as the appropriate index sets) and then inverting and applying the fast,

structured matrices appropriately. Even so, the bulk of the computational complexity

84

comes from the initial IDCT. To ensure that we can take advantage of the tensor product

structure, it is necessary to make sure we have enough columns in each matrix.

85

Chapter 6

Examples of MSN Function

Interpolation

In this chapter we present results using the fast MSN algorithms. We begin by interpo-

lating smooth functions before attempting to interpolate rough functions (discontinuous

functions or functions with infinite derivatives). Unless otherwise stated, all computa-

tions will be performed in double precision. In 1D, we compare the results with Lagrange

interpolation on Chebyshev nodes. In 2D, we will compare MSN with interpolation on a

tensor grid of Chebyshev nodes; this is computed using the 2D IDCT. When comparing

against rough functions, we use some standard filters (discussed below).

6.1 Functions for Smooth Interpolation

The functions we will be approximating will be

fR(x, y) =
1

1 +R(x2 + y − 0.3)2
+

1

1 +R(x+ y − 0.4)2

+
1

1 +R(x+ y2 − 0.5)2
+

1

1 +R(x2 + y2 − 0.25)2

gR(x) = fR(x, 0.8). (6.1)

86

fR is a complicated function: it has a Runge function on one line, one circle, and two

parabolas. The function gR is a coordinate slice of fR.

6.2 Results for Fast MSN Interpolation in 1D for

Smooth Functions

6.2.1 Interpolation Comparison

We begin by comparing results with MSN on Chebyshev nodes with standard Chebyshev

interpolation in Fig. 6.1; this contains results for interpolation of g25 and g100. The results

for large s values closely match the Chebyshev interpolation; this makes sense because we

are smoothly cutting off the Chebyshev coefficients, and larger s values lead to a sharper

cutoff.

6.2.2 Birkhoff Interpolation Comparison

We now look at a Birkhoff interpolation problem for an approximation p:

p′(znk) = g′R(znk), k ∈ {1, · · · , n}
p(−1) = gR(−1)

p(1) = gR(1). (6.2)

Fast MSN methods exist and we compare against Chebyshev interpolation. In particular,

the system

[
UWD
A

]
a =

[
UC−1f ′

f

]
, (6.3)

where f ′ holds the derivative information and f holds the endpoint interpolation, is solved

using pivoted QR. The UWD matrix is truncated so that the entire system is square,

and from our previous work we know UWD is mostly zero. The standard method for

87

50 100 150 200 250
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

N
o
rm

 E
rr

o
r

s=2

s=4

s=6

s=8

s=10

s=12

(a) R = 25

50 100 150 200 250
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

Cheby

(b) R = 25

100 200 300 400 500
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

N
o
rm

 E
rr

o
r

s=2

s=4

s=6

s=8

s=10

s=12

(c) R = 100

100 200 300 400 500
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

Cheby

(d) R = 100

Figure 6.1: MSN interpolation and Chebyshev interpolation results of the 1D Runge
function g25 and g100 for various s values.

88

solving linear systems in Julia is pivoted LU [6], although there is no noticeable difference

between pivoted QR and pivoted LU (results not shown). The results for can be seen in

Fig. 6.2. When solving the square system, it is clear numerical difficulties are keeping

the minimal error around 10−14. The error decay of both methods are approximately the

same.

Due to the structure of the linear system, it would be possible to implement a similar

fast solver for the square system.

6.3 Results for Fast MSN Interpolation in 2D for

Smooth Functions

We now turn our attention to the more difficult challenge of interpolating the 2D function

fR. For R = 25, we have results in single and double precision presented in Fig. 6.3. For

R = 100, we have results in single and double precision presented in Fig. 6.4. From these

examples, we see that, as before, MSN interpolation has the same level of approximation

as Chebyshev interpolation for large s values.

6.4 Gibbs Phenomenon and Smooth Cutoff Filters

We now turn our attention from interpolating smooth functions to interpolating rough

functions.

The Gibbs phenomenon [76, Chapter 2] is a well-known problem when one attempts to

approximate a discontinuous function by a finite sum of continuous functions, frequently

chosen to be a Fourier series; this is also true for Chebyshev expansions. Recent work has

been focused on determining filters which smoothly cutoff the Fourier series; one review

article is [34]. The filters σ in the review article take the form

89

50 100 150 200 250
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

s=2

s=4

s=6

s=8

s=10

s=12

(a) R = 25

50 100 150 200 250
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

Cheby

(b) R = 25

100 200 300 400 500
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

s=2

s=4

s=6

s=8

s=10

s=12

(c) R = 100

100 200 300 400 500
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

Cheby

(d) R = 100

Figure 6.2: MSN Birkhoff interpolation and Chebyshev interpolation results of the 1D
Runge function g25 and g100 for various s values.

90

20 40 60 80 100 120
Interpolation Points

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

s=2

s=3

s=4

s=5

s=6

(a) Single Precision

20 40 60 80 100 120
Interpolation Points

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

Cheby

(b) Single Precision

50 100 150 200 250
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

s=2

s=4

s=6

s=8

s=10

s=12

(c) Double Precision

50 100 150 200 250
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

Cheby

(d) Double Precision

Figure 6.3: MSN interpolation and Chebyshev interpolation results of the 2D Runge
function f25 for various s values. Here, n interpolation points refers to interpolation on
the n× n tensor grid of Chebyshev points.

91

50 100 150 200 250
Interpolation Points

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

s=2

s=3

s=4

s=5

s=6

(a) Single Precision

50 100 150 200 250
Interpolation Points

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

Cheby

(b) Single Precision

100 200 300 400 500
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

s=2

s=4

s=6

s=8

s=10

s=12

(c) Double Precision

100 200 300 400 500
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

Cheby

(d) Double Precision

Figure 6.4: MSN interpolation and Chebyshev inteprolation results of the 2D Runge
function f100 for various s values. Here, n interpolation points refers to interpolation on
the n× n tensor grid of Chebyshev points.

92

fσN(x) =
∞∑

k=−∞

f̂kσ

(
k

N

)
eikx, (6.4)

where σ smoothly cuts off the higher order frequencies; a more precise definition is given

below. This has a similar form of the smooth cutoff approximations for the MSN method

found in [16, 18] as well as our proofs of Fast MSN convergence in Chapter 7. In this

way, MSN interpolation could be thought of as a smoothing filter which acts in such a

way so as to retain equality at certain nodes (in this case, the Chebyshev interpolation

nodes). We will choose s ∈ {1, 2, 3, 4, 5, 6} for our simulations, although in practice s can

be any real number.

From [34], we say a filter σ is of order p if

• σ is an even function,

• σ(0) = 1, σ(`)(0) = 0 for 1 ≤ ` ≤ p− 1,

• σ(η) = 0 for |η| ≥ 1, and

• σ ∈ Cp−1 for η ∈ (−∞,∞).

We reproduce some of the filters from [34] which we will use to compare with our MSN

results. In all instances, we set σ(η) = 0 when η > 1.

• Chebyshev interpolation:

σ0(η) = 1. (6.5)

This results in no filtering but is kept as a baseline comparison. Clearly σ0 is not

continuous at η = 1.

• The Fejér filter:

σ1(η) = 1− η. (6.6)

93

• The Lanczos filter:

σ2(η) =
sin(πη)

πη
. (6.7)

This is the normalized sinc function.

• The Raised Cosine Filter:

σ3(η) =
1

2
(1 + cos(πη)) . (6.8)

• The Sharpened Raised Cosine Filter:

σ4(η) = σ4
3(η)

(
35− 84σ3(η) + 70σ2

3(η)− 20σ3
3(η)

)
. (6.9)

This is an order 8 filter and will be denoted as “Cos8” in error plots.

• The Exponential Filter of order p:

σ5(η) = exp (−αηp) . (6.10)

We will always take p to be even and α = − ln(εmach), so that the largest frequency

will be O(εmach). Naturally, σ5 is not actually continuous at η = 1.

6.5 Functions for Rough Interpolation

We will focus on interpolation where the function is not continuous or whose derivatives

are not continuous and compare the results with standard Chebyshev interpolation and

Chebyshev filters in 1D. Because there are fewer theoretical results, we will focus on

analyzing some carefully chosen examples; in particular, we will investigate interpolating

H(x) =

{
0 x < 0

1 x ≥ 0

94

H2(x) = H(x+ 1
2
) +H(x) +H(x− 1

2
)

R(x) =

{
1

1+25x2
x < 0

2
1+25x2

x ≥ 0

G(x, α) = |x|α

G2(x, α) = G(x+ 1
2
, α) +G(x, α) +G(x− 1

2
, α). (6.11)

Naturally, H is the Heaviside function, R has a jump discontinuity between two Runge

functions, and G(·, α) has infinite derivatives at the origin when α ∈ (0, 1). All of these

functions have difficulties at x = 0, making them challenging interpolation problems. The

error will be determined by computing the relative error at 1000 points in [−1,−0.1) ∪

(0.1, 1]. In the case of H2 and G2, the functions have multiple difficulties and the relative

error will be computed in the region [−1,−0.6) ∪ (−0.4,−0.1) ∪ (0.1, 0.4) ∪ (0.6, 1].

6.6 Results for Fast MSN Interpolation in 1D for

Rough Functions

6.6.1 Interpolation Comparison

The relative error results for the Heaviside function H can be found in Fig. 6.5, the

results for the Runge jump function R(x) can be found in Fig. 6.6, and the results for

G(·, 0.5) can be found in Fig. 6.7. In the case of having multiple difficulties, the results

for H2 can be found in Fig. 6.8, while the results for G2(·, 0.5) can be found in Fig. 6.9.

We note that the Sharpened Cosine Filter σ4 is denoted by “Cos8” in the legend. We

will keep the unfiltered Chebyshev interpolant in both filter plots for reference.

In every instance, MSN interpolation with s = 4 appears to have the quickest error

decrease while also reaching machine precision first. The best Chebyshev filters appear

to to be the Sharpened Cosine filter (Cos8) as well as the higher order Exponential

filters (order 6 and 8). The error profiles are approximately the same in every instance,

regardless of whether the function is discontinuous (H and R), has infinite derivatives

95

(G), or multiple jumps or infinite derivatives (H2 and G2). The worst case for MSN

interpolation is when s = 1. Even in this case, it has lower error than the Chebyshev,

Fejér, Lanczos, Cosine, and Exp 2 filters in most instances. To make the comparison

clear, in Fig. 6.10 where we plot the minimum error for both MSN interpolation and

Chebyshev filters for the H2 function. As we can see, the minimal MSN error usually

approximately the same or better than the best filters. To see how different s values in

MSN affect interpolation results, we include plots for various s values and interpolation

points when approximating H2 in Fig. 6.11.

In these examples so far we only used polynomials of degree 2n for n interpolation

points; we have included results for degree 2n, 4n, 6n, and 8n interpolation in Fig. 6.12

when attempting to interpolate H2. As we can see, there is little difference between

them. The difference in using larger interpolation degree only becomes apparent when

using small s values, such as when s ∈ (0, 1). By looking at the explicit form of the

coefficients, we see that they do not play a large part; furthermore, by construction, once

the IDCT gives somewhat accurate approximates of the true Chebyshev coefficients,

larger s values closely match the first n coefficients while also matching the interpolation

constraints. Thus, degree 2n MSN interpolation appears sufficient in these tests.

6.6.2 Birkhoff Interpolation Comparison

We now look the Birkhoff interpolation problem when we have a discontinuous deriva-

tive. The results for interpolating G(·, 0.5) can be found in Fig. 6.13; we compare MSN

interpolation results against applying standard filters to the coefficients obtained from

the solution in Eq. (6.3). As we can see, MSN interpolation performs significantly better

than any of the filters; in fact, the MSN plot appears the same as the corresponding

plot in Fig. 6.7 except for s = 1. Results for Birkhoff interpolation of G2(·, 0.5) can be

found in Fig. 6.14. The results are nowhere near as good, and neither of the methods

(MSN or Chebyshev filters) perform well in this case. Better results may be possible

96

500 1000 1500 2000
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

s=1

s=2

s=3

s=4

s=5

s=6

(a) MSN Interpolation

500 1000 1500 2000
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

Cheby

Fejer

Lanczos

Cosine

Cos8

(b) Filters, Plot 1

500 1000 1500 2000
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

Cheby

Exp 2

Exp 4

Exp 6

Exp 8

(c) Filters, Plot 2

Figure 6.5: MSN interpolation and Chebyshev filtering results of the Heaviside jump
function H for various s values and filters. We include standard Chebyshev interpolant
in both filter examples for reference.

97

500 1000 1500 2000
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

s=1

s=2

s=3

s=4

s=5

s=6

(a) MSN Interpolation

500 1000 1500 2000
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

Cheby

Fejer

Lanczos

Cosine

Cos8

(b) Filters, Plot 1

500 1000 1500 2000
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

Cheby

Exp 2

Exp 4

Exp 6

Exp 8

(c) Filters, Plot 2

Figure 6.6: MSN interpolation and Chebyshev filtering results of the Runge jump function
R for various s values and filters. We include standard Chebyshev interpolant in both
filter examples for reference.

98

500 1000 1500 2000
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

s=1

s=2

s=3

s=4

s=5

s=6

(a) MSN Interpolation

500 1000 1500 2000
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

Cheby

Fejer

Lanczos

Cosine

Cos8

(b) Filters, Plot 1

500 1000 1500 2000
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

Cheby

Exp 2

Exp 4

Exp 6

Exp 8

(c) Filters, Plot 2

Figure 6.7: MSN interpolation and Chebyshev filtering results of the Sharp Function
G(·, 0.5) for various s values and filters. We include standard Chebyshev interpolant in
both filter examples for reference.

99

500 1000 1500 2000
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

s=1

s=2

s=3

s=4

s=5

s=6

(a) MSN Interpolation

500 1000 1500 2000
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

Cheby

Fejer

Lanczos

Cosine

Cos8

(b) Filters, Plot 1

500 1000 1500 2000
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

Cheby

Exp 2

Exp 4

Exp 6

Exp 8

(c) Filters, Plot 2

Figure 6.8: MSN interpolation and Chebyshev filtering results of the Heaviside jump
function H2 for various s values and filters. We include standard Chebyshev interpolant
in both filter examples for reference.

100

500 1000 1500 2000
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

s=1

s=2

s=3

s=4

s=5

s=6

(a) MSN Interpolation

500 1000 1500 2000
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

Cheby

Fejer

Lanczos

Cosine

Cos8

(b) Filters, Plot 1

500 1000 1500 2000
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

Cheby

Exp 2

Exp 4

Exp 6

Exp 8

(c) Filters, Plot 2

Figure 6.9: MSN interpolation and Chebyshev filtering results of the Sharp Function
G2(·, 0.5) for various s values and filters. We include standard Chebyshev interpolant in
both filter examples for reference.

101

500 1000 1500 2000
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

M
in

 R
e
l

In
f-

n
o
rm

 E
rr

o
r MSN

Filters

Figure 6.10: We plot the minimum MSN interpolation error and compare it to the
minimum filter error over all Chebshev filters. These error results are from attempting
to approximate H2.

102

1.0 0.5 0.0 0.5 1.0
0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 Graph: n=32; s=1.0

1.0 0.5 0.0 0.5 1.0
0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 Graph: n=96; s=1.0

1.0 0.5 0.0 0.5 1.0
0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 Graph: n=32; s=3.0

1.0 0.5 0.0 0.5 1.0
0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 Graph: n=96; s=3.0

1.0 0.5 0.0 0.5 1.0
0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 Graph: n=32; s=6.0

1.0 0.5 0.0 0.5 1.0
0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 Graph: n=96; s=6.0

Figure 6.11: We plot MSN approximations against the true solution H2 for various s and
n values.

103

500 1000 1500 2000
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

s=1

s=2

s=3

s=4

s=5

s=6

(a) Degree 2n

500 1000 1500 2000
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

s=1

s=2

s=3

s=4

s=5

s=6

(b) Degree 4n

500 1000 1500 2000
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

s=1

s=2

s=3

s=4

s=5

s=6

(c) Degree 6n

500 1000 1500 2000
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

s=1

s=2

s=3

s=4

s=5

s=6

(d) Degree 8n

Figure 6.12: We show results for different interpolation degree. For large s values, there
is no apparent advantage for using a higher interpolation degree.

104

but likely require more interpolation nodes. In this case, even though the interpolation

could be solved well with MSN, in this case the Birkhoff interpolation problem for general

functions cannot.

105

500 1000 1500 2000
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

s=1

s=2

s=3

s=4

s=5

s=6

(a) MSN Interpolation

500 1000 1500 2000
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

Cheby

Fejer

Lanczos

Cosine

Cos8

(b) Filters, Plot 1

500 1000 1500 2000
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

Cheby

Exp 2

Exp 4

Exp 6

Exp 8

(c) Filters, Plot 2

Figure 6.13: MSN interpolation and Chebyshev filtering results of the Sharp Function
G(·, 0.5) for various s values and filters. We include standard Chebyshev birkhoff inter-
polant in both filter examples for reference.

106

500 1000 1500 2000
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

s=1

s=2

s=3

s=4

s=5

s=6

(a) MSN Interpolation

500 1000 1500 2000
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

Cheby

Fejer

Lanczos

Cosine

Cos8

(b) Filters, Plot 1

500 1000 1500 2000
Interpolation Points

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

R
e
l

In
f-

n
o
rm

 E
rr

o
r

Cheby

Exp 2

Exp 4

Exp 6

Exp 8

(c) Filters, Plot 2

Figure 6.14: MSN interpolation and Chebyshev filtering results of the Sharp Function
G2(·, 0.5) for various s values and filters. We include standard Chebyshev birkhoff inter-
polant in both filter examples for reference.

107

Chapter 7

Interpolation Convergence Proofs

The proof of Fubini’s Theorem is long, tedious,

and painful. Let us begin.

Gustavo Ponce, Math 201A, Fall 2013

This chapter works through the convergence proofs for MSN interpolation on Cheby-

shev nodes. We focus on interpolating up to degree 2n.

7.1 Main Idea

In this chapter we will compute error bounds for the MSN method. In [16], Chan-

drasekaran et al. showed the MSN solution was guaranteed to converge to the underlying

solution based on a compactness argument by showing the polynomial approximations

had bounded derivative in combination with the interpolation conditions and the Arzelà-

Ascoli theorem. We take a different route by carefully looking at the linear system and

solving for the interpolation coefficients, which is possible due to its structured nature.

Given

f(x) =
∞∑
k=0

akTk(x), (7.1)

108

we know

||f ||∞,[−1,1] ≤
∞∑
k=0

|ak|

≡ ||a||p,1 , (7.2)

where we obtain equality of norm at x = 0 and ak all the same sign. Naturally, ||a||p,1 is

the 1-norm of the sequence of coefficients. We find

∞∑
k=N

|ak| ≤

√√√√ ∞∑
k=N

(k + 1)−2s ||a||s

≤ 1√
2s− 1

||a||s
N s− 1

2

. (7.3)

If ac are the true coefficients chopped to N and ã are the coefficients of a polynomial

approximation pN of degree N , then we see

||f − pN ||∞,[−1,1] ≤ ||a− ã||p,1
= ||ac − ã||p,1 + ||a− ac||p,1

≤ ||ac − ã||p,1 +
Cs ||a||s
N s− 1

2

. (7.4)

Because of this, for our MSN approximation pn, the best asymptotic error we can have

is

||f − pn||∞,[−1,1] ≤
Cs ||a||s
ns−

1
2

(7.5)

using this method. Therefore, we will focus on bounding ||ac − ã||p,1.

109

7.2 IDCT Coefficients

We now explicitly work out what coefficients are computed using the IDCT. We first

define

fk = f(znk)

f ′k = f ′(znk)

f̄ =

[
f(−1)
f(1)

]
Ĉ =

[
1 −1
1 1

]
. (7.6)

It is clear

f̂k =
[
C−1f

]
k

= dk

n∑
j=1

Tk−1(z
n
j)f(znj)

= dk

n∑
j=1

Tk−1(z
n
j)

[
∞∑
`=0

a`T`(z
n
j)

]

= dk

∞∑
`=0

a`

[
n∑
j=1

Tk−1(z
n
j)T`(z

n
j)

]
. (7.7)

Here, dk is the appropriate constant. From work in Sec. 3.1, we find

f̂1 =
∞∑
`=0

a4`n −
∞∑
`=0

a2n+4`n

f̂k =
∞∑
`=0

[ak−1+4`n + a4n+1−k+4`n]−
∞∑
`=0

[a2n+1−k+4`n + a2n−1+k+4`n]

k ∈ {2, · · · , n} . (7.8)

In particular, this becomes

f̂k = ak−1 + εk, (7.9)

110

where

n∑
k=1

|εk| ≤
∞∑

k=n+1

|ak|

≤ 1√
2s− 1

||a||s
ns−

1
2

. (7.10)

Similarly, we also have

f̂ ′k =
[
UC−1f ′

]
k

=
∞∑
`=0

[(k + 4`n) ak+4`n + (2n− k + 4`n) a2n−k+4`n]

−
∞∑
`=0

[(2n+ k + 4`n) a2n+k+4`n + (4n− k + 4`n) a4n−k+4`n]

k ∈ {1, · · · , n− 1}
f̂ ′n =

[
UC−1f ′

]
n

=
∞∑
`=0

(n+ 4`n) an+4`n −
∞∑
`=0

(3n+ 4`n) a3n+4`n (7.11)

and

Ĉ−1f̄ =

[
f̃1
f̃2

]
f̃1 =

∞∑
`=0

a2`

f̃2 =
∞∑
`=0

a2`+1. (7.12)

This gives

f̂ ′k = kak + ηk (7.13)

with

111

n∑
k=1

|ηk| ≤
∞∑

k=n+1

k |ak|

≤ 1√
2s− 3

||a||s
ns−

3
2

. (7.14)

7.3 Important Summation Bounds

In this section we go over sums which must be bounded above or below. These bounds

easily follow from the Mean Value Theorem, Intermediate Value Theorem, and Cauchy-

Schwarz inequality.

One sum we see is
∑n

k=1 k
p. Because

n∑
k=1

kp = np+1

N∑
k=1

(
k

n

)p
1

n
, (7.15)

we note the right sum approximates
∫ 1

0
xpdx. When p ≥ 1, we have the error bound

∣∣∣∣∣ 1

p+ 1
−

n∑
k=1

(
k

n

)p
1

n

∣∣∣∣∣ ≤ p

2n
. (7.16)

For large enough n, then we have the following upper bound:

n∑
k=1

kp ≤ 2

p+ 1
np+1, n ≥ p(p+ 1)

2
. (7.17)

We cannot apply the same idea when 0 < p < 1 because the derivative of xp is unbounded

on [0, 1]. Even so, we also have this error bound:

n∑
k=1

kp ≤
∫ n+1

1

xpdx

=
1

p+ 1

[
(n+ 1)p+1 − 1

]
≤ 2

p+ 1
np+1, 0 < p < 1, n ≥ 2. (7.18)

112

Because xp is concave down for p > 0, we have the lower bound

n∑
k=1

kp ≥ 1

p+ 1
np+1. (7.19)

Similarly, we have can have sums of the form
∑n

k=1 k
−p for p ≥ 0. It is easy to see

for p > 0 we have

∫ n

1

x−pdx ≤
n∑
k=1

1

kp
≤ 1 +

∫ n

1

x−pdx. (7.20)

For 0 < p < 1, we see

n∑
k=1

1

kp
≤ 1 +

n1−p

1− p

≤ 2n1−p

1− p
(7.21)

and

n∑
k=1

1

kp
≥ n1−p

1− p
. (7.22)

When p = 1, we see

n∑
k=1

1

k
≤ 1 + lnn

≤ 2 lnn, (n ≥ 3). (7.23)

Additionally, we have the lower bound

n∑
k=1

1

k
≥ lnn. (7.24)

For p > 1, we see

n∑
k=1

1

kp
≤ 1 +

1

p− 1
. (7.25)

113

Additionally, we find

n∑
k=1

1

kp
≥ 1

2(p− 1)
, n ≥ 2

1
p−1 . (7.26)

We accumulate all of the previous bounds, which hold for large enough n:

n∑
k=1

kp ≤


2
p+1

np+1 p > −1

2 lnn = −1
−p
−p−1 p < −1

n∑
k=1

kp ≥


1
p+1

np+1 p > −1

lnn = −1
1

2(−p−1) p < −1

. (7.27)

We also encounter sums of the form

n∑
k=1

(n+ k)p = np+1

n∑
k=1

(
1 +

k

n

)p
1

n
. (7.28)

This sum approximates
∫ 2

1
xpdx. For all p, we see

max
x∈[1,2]

∣∣∣∣ ddxxp
∣∣∣∣ ≤ |p|max

{
1, 2p−1

}
. (7.29)

Thus, we can bound

n∑
k=1

[
1 +

k

n

]p
1

n
≤ 2

∫ 2

1

xpdx n ≥ |p|max {1, 2p−1}∫ 2

1
xpdx

(7.30)

and

n∑
k=1

[
1 +

k

n

]p
1

n
≥ 1

2

∫ 2

1

xpdx n ≥ |p|max {1, 2p−1}∫ 2

1
xpdx

. (7.31)

Therefore, we have the following bounds for sufficiently large n:

n∑
k=1

[n+ k]p ≤

{
2
(

2p+1−1
p+1

)
np+1 p 6= −1

2 ln 2 p = −1

114

n∑
k=1

[n+ k]p ≥

{
1
2

(
2p+1−1
p+1

)
np+1 p 6= −1

1
2

ln 2 p = −1
. (7.32)

The bounds we just computed are useful, but there are some situations when we have

a few extra terms. So, we present similar results. First, we assume p > 1 and α ∈ N and

see

n+α∑
k=1

[n+ k]−p ≤

{
n∑
k=1

[
1 +

k

n

]p
1

n
+
α

n

}
1

np−1

≤ 2

p− 1

1

np−1
, n ≥ max {p, 2α}∫ 2

1
x−pdx

. (7.33)

Naturally, we also have this bound when α = 0; in this case, we have simpler constants.

We remember the Riemann Zeta function:

ζ(s) =
∞∑
k=1

1

ns
. (7.34)

It is clear

∫ n

1

1

xs
dx ≤

n∑
k=1

1

ns
≤ 1 +

∫ n

1

1

xs
dx, (7.35)

so that ζ(s) <∞ when s > 1 with the bound

1

s− 1
≤ ζ(s) ≤ 1 +

1

s− 1
, (7.36)

and ζ(s)→∞ as s→ 1+. Better bounds for ζ(s) exist and can be found in [53].

Finally, this last bound is useful:

∞∑
k=0

|ak| =
∞∑
k=0

(1 + k)−σ [(1 + k)σ |ak|]

≤

√√√√ ∞∑
k=0

(1 + k)−2σ

√√√√ ∞∑
k=0

(1 + k)2σ |ak|2

=
√
ζ(2σ) ||a||σ , (7.37)

115

where we require σ > 1
2
. Similarly, we have

∞∑
k=1

kα |ak| ≤
√
ζ(2σ − 2α) ||a||σ , (7.38)

where we insist σ > α + 1
2
. Similarly, we have

∞∑
k=n

kα |ak| ≤

√√√√ ∞∑
k=n

(k + 1)−2s+2α ||a||s

≤ ||a||s√
2s− 2α− 1

1

ns−α−
1
2

, (7.39)

where we must have s > α + 1
2
.

7.4 Sobolev Embedding Theorems and Related Work

This work has focused on functions with bounded Sobolev norm, but because it is usually

more convenient to think it terms of continuous and continuously-differentiable functions,

we prove some embedding theorems.

We assume

g(θ) =
∑
k∈Z

ake
ikθ. (7.40)

In this case,

N∑
k=−N

|ak| =
N∑

k=−N

(1 + |k|)−s [(1 + |k|)s |ak|]

≤

√√√√ N∑
k=−N

(1 + |k|)−2s ||a||s

≤
√

2ζ(2s) ||a||s . (7.41)

Thus, if s > 1
2

and ||a||s < ∞, this upper bound is finite and holds for all N , so g(θ) is

116

continuous. Similarly, for an integer m ≥ 1, we have

N∑
k=−N
k 6=0

|k|m |ak| ≤
N∑

k=−N

(1 + |k|)m |ak|

≤
√

2ζ(2s− 2m) ||a||s . (7.42)

Thus, for s > m + 1
2

and ||a||s < ∞, the above bound is finite and holds for all N ,

showing g(m) is continuous. Therefore, we have shown

Hs ⊆ Cm, s > m+
1

2
(7.43)

for integers m ≥ 0.

In the other direction, if g ∈ Cm,α, so that g(m) is α-Hölder continuous with constant

L, then with integration by parts we find

ak =
1

2π

∫ π

−π
g(θ)e−ikθdθ

=
1

2π (ik)m

∫ π

−π
g(m)(θ)e−ikθdθ. (7.44)

Similarly, by changing the limits of integration, we see

ak = − 1

2π (ik)m

∫ π

−π
g(m)

(
θ +

π

k

)
e−ikθdθ, k 6= 0. (7.45)

Therefore, we find

|ak| ≤
1

4π |k|m
∫ π

−π

∣∣∣g(θ)− g
(
θ +

π

k

)∣∣∣ dθ
≤ Lπα

2 |k|m+α . (7.46)

Thus, we see ak = O(k−m−α). We let C = max {|a0| , Lπα/2}. In this case

117

N∑
k=−N

(1 + |k|)2s |ak|2 ≤ C2 + C2

N∑
k=−N
n6=0

(1 + |k|)2s 1

|k|2m+2α

≤ C2

[
1 + 22s+1

N∑
k=1

|k|2s−2m−2α
]

≤ C2
[
1 + 22s+1ζ(2m+ 2α− 2s)

]
. (7.47)

The above bound is holds for all N and is finite so long as s < m+ α+ 1
2
, which implies

||a||s <∞. Thus, we have shown

Cm,α ⊆ Hs, s < m+ α +
1

2
. (7.48)

This last bound can be slightly improved by looking at functions of bounded variation

(see [66, 76]), but we will not pursue the matter here.

7.5 Proof of 1D Interpolation for polynomials of de-

gree 2n

We begin by computing the error. First, we have the MSN coefficients

ã = D−1s G∗
[
Y −1f̂

0

]

=



c21f̂1
...

c2nf̂n
0

s2nf̂n
...

s21f̂1


. (7.49)

From Eqs. (4.4) and (4.7) in Sec. 4.2, we recall

118

τk =

(
k

2n+ 2− k

)s
ck =

1√
1 + τ 2

sk = τkck

yk =
1

ckks
. (7.50)

It is clear

ck ≤ 1

τk ≤
ks

ns

sk ≤ τk

yk ≥ k−s

yk ≤
√

2 k−s. (7.51)

As stated in Sec. 7.1, we only need to focus on computing

||ac − ã||p,1 ≤
n∑
k=1

|ak−1 − c2kf̂k|+ |an|+
n∑
k=1

|a2n+1−k − s2kf̂k|

≤ 2
n∑
k=1

s2k |ak−1|+ 2
∞∑
k=n

|ak| . (7.52)

We look at these terms separately. First, we see

n∑
k=1

s2k |ak−1| ≤
1

n2s

n∑
k=1

ks · ks |ak−1|

≤ 1

n2s

√√√√ n∑
k=1

k2s ||a||s

≤
√

2

2s+ 1

||a||s
ns−

1
2

. (7.53)

Here, the bound in the last equality follows from Eq. (7.27). Similarly,

119

∞∑
k=n

|ak| ≤
1√

2s− 1

||a||s
ns−

1
2

, (7.54)

which follows from Eq. (7.3). Finally, we have the uniform bound

||f − pn||∞,[−1,1] ≤
Cs

ns−
1
2

||a||s . (7.55)

Thus, ||f − pn||∞ → 0 as n→∞ when 1
2
< s ≤ σ.

From the above work, we can also compute the condition number of the matrix WD−1s .

It is clear

ns√
2
≤ y1y

−1
n ≤

√
2 ns, (7.56)

so it follows κ2(L) = Θ(ns).

The above work suggests that we must choose s ≤ σ, but it turns out that this

restriction is not necessary. To see this, we will look at Eqs. (7.53) and (7.54) to see

where we were too loose in our bounds. We will use the bound

(1 + k)σ |ak| ≤ ||a||σ . (7.57)

In Eq. (7.53), we have

n∑
k=1

s2k |ak−1| ≤
1

n2s

n∑
k=1

k2s |ak−1|

≤ ||a||σ
n2s

n∑
k=1

k2s−σ

≤ 2 ||a||σ
2s− σ + 1

1

nσ−1
. (7.58)

Here, we are assuming 2s− σ > −1; otherwise, we have the bound

n∑
k=1

s2k |ak−1| ≤ Cs,σ
log n

n2s
. (7.59)

Thus, the requirement here is that σ > 1. Similarly, Eq. (7.54) can be replaced with

120

∞∑
k=n

|ak| ≤
1√

2σ − 1

||a||σ
nσ−

1
2

, (7.60)

so that σ > 1
2
.

Taken together, we have improved our bound for convergence to

||f − pn||∞,[−1,1] ≤
Cs,σ
nσ−1

||a||σ (7.61)

when σ > 1, and we can choose s > 1
2
. Whether this can be extended to the case when

σ ∈ (1
2
, 1] will be looked at in the future. This also shows that the results in future

sections likely could be strengthened.

7.6 Proof of 1D Interpolation for polynomials of de-

gree 2n with Endpoint Interpolation

In this section, we add interpolation conditions at 1 and −1. After an IDCT and a set

of Givens rotations, the same from Sec. 7.5, we obtain the matrix



y1
y2

. . .

yn−2
yn−1

yn
α1 · · · αn−1 βn+1 βn−1 · · · β1

α2 αn−2 αn βn βn−2 β2


. (7.62)

Here,

yk =
1

ckks

αk = ckk
−s [1− τ 2k]

βk = 2skk
−s k ∈ {1, · · · , n}

121

βn+1 = (n+ 1)−s . (7.63)

We are assuming n is even; similar results will hold when n is odd. From here, we get

the easy bound

|βk| ≤
2

ns
. (7.64)

After a pair of Householder reflectors

H =

[
In

In+1 − 2V T−1V ∗

]
(7.65)

with

V ∗ =

[
βn+1 · · · β3 β1

βn β4 β2

]
T =

[
`21

`22

]
`21 = β2

1 + β2
3 + · · ·+ β2

n−1 + β2
n+1

`22 = β2
2 + β2

4 + · · ·+ β2
n, (7.66)

we have



y1
y2

. . .

yn−2
yn−1

yn
α1 · · · αn−1 `1

α2 αn−2 αn `2


=

[
Y 0

Â L̂

]
. (7.67)

We know

[
Y

Â L̂

]−1 [
f̂

f̃

]
=

[
Y −1f̂

L̂−1(f̃ − ÂY −1f̂)

]
(7.68)

so by setting

122

ĝ = f̃ − ÂY −1f̂
ĥ = L̂−1ĝ, (7.69)

we determine the coefficients of the MSN approximation to be

ã = D−1s G∗H∗

Y −1f̂ĥ
0


= D−1s G∗

Y −1f̂0
0

+D−1s G∗H∗

0

ĥ
0


= ã1 + ã2. (7.70)

Naturally ã1 are the coefficients we computed from Sec. 7.5. Because of this, we will

compute the bound

||ac − ã||p,1 ≤ ||ac − ã1||p,1 + ||ã2||p,1 . (7.71)

and only focus on ||ã2||p,1. First, though, we prove some bounds necessary for the rest of

the calculations.

We begin by seeking bounds on ĥi by looking at ĝi. We know

ĝ1 =
n∑
k=1
k odd

(
1− αky−1k

)
ak−1 −

n∑
k=1
k odd

αky
−1
k εk +

∞∑
k=0

an+2k

ĝ2 =
n∑
k=1
k even

(
1− αky−1k

)
ak−1 −

n∑
k=1
k even

αky
−1
k εk +

∞∑
k=0

an+1+2k. (7.72)

Now, we have

αky
−1
k = c2k − s2k

1− αky−1k = 2s2k (7.73)

123

so that

|ĝ1|+ |ĝ2| ≤ 2
n∑
k=1

s2k |ak−1|+ 2
∞∑
k=n

|ak|

≤ Cs ||a||s
ns−

1
2

. (7.74)

Additionally, we have

`21, `
2
2 ≥

n
2∑

k=1

(n+ 2k)−2s

≥ 1

4

[
1− 2−2s+1

2s− 1

]
1

n2s−1

≥

{
Cs

n2s−1 s > 1
2

1
16sn2s−1 s ≥ 1

. (7.75)

We give a specific constant when s ≥ 1 because of the simple form. The second inequality

comes from Eq. (7.32). This bound implies

`−11 , `−12 ≤

{
Csn

s− 1
2 s > 1

2

4
√
s ns−

1
2 s ≥ 1

, (7.76)

which, combined with Eq. (7.74) and the fact

ĥ1 = `−11 ĝ1

ĥ2 = `−12 ĝ2, (7.77)

gives us

|ĥ1|+ |ĥ2| ≤ Cs ||a||s . (7.78)

If

h̃ =

[
ĥ
0

]
, (7.79)

124

where we have n− 1 zeros, then we see

H∗
[

0

h̃

]
=

[
I

I − 2V T−1V ∗

] [
0

h̃

]
=

[
0

h̃

]
−
[

0

2V T−1V ∗h̃

]
. (7.80)

We only need to bound

||ã2||p,1 ≤
∣∣∣∣∣∣∣∣D−1s G∗

[
0

h̃

]∣∣∣∣∣∣∣∣
p,1

+ 2

∣∣∣∣∣∣∣∣D−1s G∗
[

0

V T−1V ∗h̃

]∣∣∣∣∣∣∣∣
p,1

. (7.81)

Looking at the first term, we see

D−1s G∗
[

0

h̃

]
=



0
...
0

−n−ssnĥ2
(n+ 1)−s ĥ1

(n+ 2)−s cnĥ2
0
...
0


, (7.82)

so it follows

∣∣∣∣∣∣∣∣D−1s G∗
[

0

h̃

]∣∣∣∣∣∣∣∣
p,1

≤ 2

ns

[
|ĥ1|+ |ĥ2|

]
. (7.83)

Similarly, we set

V T−1V ∗h̃ = q

=
[
qn+1 qn · · · q2 q1

]∗
, (7.84)

with

qk = `−2i βiĥiβn+2−k. (7.85)

125

In the previous equation, i is 1 if k is odd and i is 2 if k is even. From here, given the

previous bounds, we see

|qk| ≤ Csn
2s−1 · 2

ns
· C̃s ||a||s ·

2

ns

≤ Cs ||a||s
n

. (7.86)

This ordering makes the next computation easier:

D−1s G∗
[
0
q

]
=



−s11−sq1
...

−snn−sqn
(n+ 1)−sqn+1

cn(n+ 2)−sqn
...

c1(2n+ 1)−sq1


. (7.87)

Naturally, we have

∣∣∣∣∣∣∣∣D−1s G∗
[
0
q

]∣∣∣∣∣∣∣∣
p,1

≤ 2

ns

n+1∑
k=1

|qk| . (7.88)

Now, from Eq. (7.86), it is easy to see

n+1∑
k=1

|qk| ≤ Cs ||a||s . (7.89)

All of these results we combine together to arrive at

||ã2||p,1 ≤
Cs ||a||s
ns

. (7.90)

All of this implies

||f − pn||∞,[−1,1] ≤
Cs ||a||s
ns−

1
2

(7.91)

where 1
2
< s ≤ σ.

126

From the work above, we can easily compute bounds on the condition number κ(L).

We assume

[
a b

]∗
is a unit vector. First, we see

∣∣∣∣∣∣∣∣[YÂ L̂

] [
a
b

]∣∣∣∣∣∣∣∣2
2

= ||Y a||22 + ||Âa+ L̂b||22

≤ 2 +

∣∣∣∣∣∣∣∣[2 {1−s + 3−s + · · ·+ (n− 1)−s}+ 4
n1/2

2 {2−s + 4−s + · · ·+ n−s}+ 4
n1/2

]∣∣∣∣∣∣∣∣2
2

≤

{
64 [lnn]2 s ≥ 1

256 s ≥ 2
. (7.92)

In the above inequality, we note two different bounds on norm because it is independent

of n; we note the logarithmic bound holds for large n. We note ||L||2 ≥ 1. Additionally,

∣∣∣∣∣
∣∣∣∣∣
[
Y

Â L̂

]−1 [
a
b

]∣∣∣∣∣
∣∣∣∣∣
2

2

= ||Y −1a||22 + ||L̂−1(b− ÂY −1a)||22

≤ 2n2s + 128sn2s+1

≤ 256sn2s+1. (7.93)

We find ||L−1||2 ≥ ns/2. It follows

1

2
ns ≤ κ(L) ≤

{
128
√
s ns+

1
2 lnn s ≥ 1

256
√
s ns+

1
2 s ≥ 2

. (7.94)

Thus, we have κ(L) = Ω(ns), κ(L) = Os(n
s+ 1

2 lnn) for s ≥ 1, and κ(L) = Os(n
s+ 1

2) for

s ≥ 2.

7.7 Proof of 1D Birkhoff Interpolation for polynomi-

als of degree 2n with Point Interpolation

In this section, we interpolate derivative values on the Chebyshev nodes with the function

value at 0. For ease of notation, in this section only we will label f(0) = f̂1 = a0 and

label

127

f̂ ′ =
[
f̂ ′2 · · · f̂ ′n+1

]∗
. (7.95)

The reason will become clear when we see the simplified nature of the interpolation

coefficients. Now, from Eq. (7.13), we know

f̂ ′k = (k − 1) ak−1 + ηk−1, (7.96)

We find the MSN solution coefficients to be

ã = D−1s G∗
[
1

Γ 0

]+ [
f̂1
f̂ ′

]

=



f̂1
c22f̂
′
2

2−1
...

c2nf̂
′
n

n−1
f̂ ′n+1

n
s2nf̂
′
n

n−1
...

s22f̂
′
2

2−1
0



=



a0
c22a1
...

c2nan−1
an

s2nan−1
...

s22a1
0


+



0
c22
2−1η1
...

c2n
n−1ηn−1

1
n
ηn

s2n
n−1ηn−1

...
s22
2−1η1

0


= ã1 + ã2 (7.97)

Here, ã1 includes the main coefficient terms and ã2 includes the ηk. We have

128

τk = −
(

2n+ 1− k
k − 1

)(
k

2n+ 2− k

)s
ck =

1√
1 + τ 2k

sk = τkck

γk = (k − 1) k−s

√
1 +

(
2n+ 1− k
k − 1

)2(
k

2n+ 2− k

)2s

k ∈ {2, · · · , n}

γn+1 =
n

(n+ 1)s
(7.98)

from Eqs. (4.41) and (4.43) in Sec. 4.8.

Therefore, we see we have

||ac − ã||p,1 ≤ ||ac − ã1||p,1 + ||ã2||p,1

≤ 2
n∑
k=1

s2k |ak−1|+ 2
∞∑

k=n+1

k |ak|

≤ 2

√
2

2s+ 1

||a||s
ns−

1
2

+
1√

2s− 3

||a||s
ns−

3
2

, (7.99)

where we use bounds from Eqs. (7.27) and (7.39). Thus, we see

||f − pn||∞,[−1,1] ≤
Cs ||a||s
ns−

3
2

, (7.100)

with convergence when 3
2
< s ≤ σ.

We now focus on bounding the condition number κ(L). We see

∣∣∣∣∣∣∣∣[1 Γ

]∣∣∣∣∣∣∣∣
2

= 1 (7.101)

under the restriction s > 3
2
, which is required for convergence. Similarly, we see

∣∣∣∣∣
∣∣∣∣∣
[
1

Γ

]−1∣∣∣∣∣
∣∣∣∣∣
2

= γ−1n+1

= ns−1
(

1 +
1

n

)s
129

≤ 2ns−1, n ≥
[
21/s − 1

]−1
, (7.102)

while we also have γ−1n+1 ≥ ns−1. Therefore, κ(L) = Θ(ns−1).

7.8 Proof of 1D Full Birkhoff Interpolation for poly-

nomials of degree 2n

We begin by computing the error. Now, we know the coefficients are

ã = D−1s G∗
[
Y
A B 0

]+ [
f̂

Ef̂ ′

]

= D−1s G∗

 Y −1f̂

B−1(Ef̂ ′ − AY −1f̂)
0


= D−1s G∗

Y −1f̂0
0

+D−1s G∗

 0

B−1(Ef̂ ′ − AY −1f̂)
0


= ã1 + ã2. (7.103)

Y and G are the same as from Sec. 7.5. Additionally, we have

A =


0
αn

. .
.

α3

0 α2


B = diag (βn+1, βn, · · · , β2) (7.104)

with

yk =
1

ckks

αk = (k − 1)k−sck

{
1−

(
2n+ 1− k
k − 1

)
τ 2k

}
130

βk = 2nk−ssk k ∈ {2, · · · , n}
βn+1 = n (n+ 1)−s . (7.105)

Now, ã1 is the exact term we obtain from Eq. (7.49). Thus, we focus on the second

term because

||ac − ã||p,1 ≤ ||ac − ã1||p,1 + ||ã2||p,1 . (7.106)

We set

q =

[
B−1(Ef̂ ′ − AY −1f̂)

0

]
=
[
qn+1 qn · · · q2 q1

]∗
(7.107)

with

q1 = 0

qk = f̂ ′k−1 − αky−1k f̂k

=
[
1− αky−1k

]
ak−1 + ηk−1 − αky−1k εk k ∈ {2, · · · , n}

qn+1 = f̂ ′n. (7.108)

The reason for this unusual ordering is because it makes the notation easier. Then, the

second term in Eq. (7.103) becomes

ã2 = D−1s G∗
[
0
q

]

=



−s11−sq1
...

−snn−sqn
(n+ 1)−sqn+1

cn(n+ 2)−sqn
...

c1(2n+ 1)−sq1


. (7.109)

131

Now, we see

∣∣−skk−s∣∣ ≤ n−s∣∣ck (2n+ 2− k)−s
∣∣ ≤ n−s (7.110)

and

∣∣1− αky−1k ∣∣ =
∣∣2− k + 2ns2k

∣∣
≤ k + 2ns2k∣∣αky−1k ∣∣ ≤ k + 2ns2k, (7.111)

implying

∣∣−skk−sqk∣∣ ≤ [n−sk + 2n1−ss2k
]
|ak−1|+ n−s |ηk−1|+

[
n−sk + 2n1−ss2k

]
|εk| . (7.112)

We also have the bound

∣∣ck (2n+ 2− k−sqk
)∣∣ ≤ [n−sk + 2n1−ss2k

]
|ak−1|+ n−s |ηk−1|+

[
n−sk + 2n1−ss2k

]
|εk| ,

k ∈ {1, · · · , n} . (7.113)

When k = n+ 1, we have the easier bound

∣∣(n+ 1)−s qn+1

∣∣ ≤ n−s [|an|+ |ηn|] . (7.114)

All of the above work shows can be combined to show

n∑
k=1

∣∣−skk−sqk∣∣ ≤ √ζ(2s− 2) ||a||s
ns

+ 2

√
2

2s+ 1

||a||s
n2s− 3

2

+
1√

2s− 1

||a||s
n2s− 1

2

+
1√

2s− 1

||a||s
n2s− 3

2

+
2√

2s− 1

||a||s
n2s− 3

2

. (7.115)

The same bound holds for
∑n+1

k=1

∣∣ck (2n+ 2− k)−s qk
∣∣. All of these terms are O(n−s+

1
2)

132

and, naturally, we have the restriction s > 3
2
.

Taken altogether, we see

||ac − ã||p,1 ≤ ||ac − ã1||p,1 + ||ã2||p,1

≤ Cs ||a||s
ns−

1
2

, (7.116)

with convergence when 3
2
< s ≤ σ.

From the above work, we can also compute the condition number. First, we see

∣∣∣∣∣∣∣∣[YA B

] [
a
b

]∣∣∣∣∣∣∣∣2
2

= ||Y a||22 + ||Aa+ Y b||22

≤ 25. (7.117)

We also note we have ||L||22 ≥
1
2
. We now look at the greater challenge of bounding the

inverse, and we use similar methods to those above:

∣∣∣∣∣
∣∣∣∣∣
[
Y
A B

]−1 [
a
b

]∣∣∣∣∣
∣∣∣∣∣
2

2

= ||Y −1a||22 + ||B−1(b− AY −1a)||22

≤ 2n2s +
27

2s+ 1
n2s+1

≤ 28n2s+1. (7.118)

Due to Y , we also have ||L−1||22 ≥ n2s/2. Therefore, we have

1

2
ns ≤ κ(L) ≤ 24ns+

1
2 . (7.119)

Therefore, we have shown κ(L) = Ω(ns) and κ(L) = O(ns+
1
2).

133

7.9 Proof of 1D Interpolation for polynomials of de-

gree 2Ln

We let pn be the MSN polynomial approximation of degree 2Ln. Now, as before, we can

bound the error

||f − pn||∞ ≤ ||a− ac||p,1 + ||ac − ã||p,1 , (7.120)

where in this instance ac is the true coefficients chopped to degree 2Ln and ã are the

coefficients of the MSN polynomial. As before,

||a− ac||p,1 ≤
1√

2s− 1

||a||s
[2Ln+ 1]s−

1
2

, (7.121)

and so we only need to bound ||ac − ã||p,1.

From the normal equations of the MSN solution, we know

ã = D−2s W ∗ (WD−2s W ∗)−1 f̂ (7.122)

where f̂ = C−1f and

Y 2 = WD−2s W ∗ (7.123)

is a diagonal matrix with entries

y21 = 1−2s + [2n+ 1]−2s + [4n+ 1]−2s + · · ·+ [2Ln+ 1]−2s

= 1−2s + ν1

y2k = k−2s + [2n+ 2− k]−2s + [2n+ k]−2s + [4n+ 2− k]−2s

+ · · ·+ [2(L− 1)n+ k]−2s + [2Ln+ 2− k]−2s

= k−2s + νk, k ∈ {2, · · · , n} . (7.124)

The {νi} keep track of the small terms in the sums. From here, we see

ã2`n+1−k = (−1)` [2`n+ 2− k]−2s y−2sk f̂k, ` ∈ {1, 2, · · · , L}

134

ã2`n+k−1 = (−1)` [2`n+ k − 2]−2s y−2sk f̂k, ` ∈ {0, 1, · · · , L− 1} . (7.125)

Using this, we see

|ak−1 − ãk−1| ≤ |ak−1|
[

k2sνk
1 + k2snuk

]
+

1

1 + k2sνk
|εk|

≤ k2sνk |ak−1|+ |εk| , k ∈ {1, · · · , n} . (7.126)

This fact allows us to bound the first few terms, which have been critical to prove

convergence. It will be important for us to bound k2sνk, so we will look at those terms

now. First, we see

1−2sν1 = ν1

= (2n+ 1)−2s + (4n+ 1)−2s + · · ·+ (2Ln+ 1)−2s

≤
∞∑
`=1

(2`n+ 1)−2s

≤ 4−sn−2sζ(2s) (7.127)

and

k2sνk ≤ k2s

[
∞∑
`=1

(2`n+ 2− k)−2s +
∞∑
`=1

(2`n+ k)−2s
]

≤
(
k

n

)2s [
1 + 4−s

]
ζ(2s), k ∈ {2, · · · , n} . (7.128)

We now have

||ac − ã||p,1 ≤
n∑
k=1

k2sνk |ak−1|+
2Ln∑
k=n

[|ak|+ |ãk|] . (7.129)

The first term has the bound

135

n∑
k=1

k2sνk |ak−1| ≤ n−2s
[
1 + 4−s

]
ζ(2s)

n∑
k=1

k2s |ak−1|

≤
[
1 + 4−s

]
ζ(2s)

√
2

2s+ 1

||a||s
ns−

1
2

. (7.130)

The second term has two sums. The first one is easy:

2Ln∑
k=n

|ak| ≤
∞∑
k=n

|ak|

≤ 1√
2s− 1

||a||s
ns−

1
2

. (7.131)

The second term is more involved. We see

2Ln∑
k=n

|ãk| =
n∑
k=1

{
(2Ln+ 2− k)−2s +

L−1∑
`=1

[2`n+ 2− k]−2s + [2`n+ k]−2s
}
y−2k |f̂k|

≤ 2Ln−2s
n∑
k=1

y−2k |f̂k|

≤ 2Ln−2s

[
n∑
k=1

k2s |ak−1|+ n2s

n∑
k=1

|εk|

]

≤ C(s, L)
||a||s
ns−

1
2

. (7.132)

Taken together, these sums imply

||f − pn||∞,[−1,1] ≤ C(s, L)
||a||s
ns−

1
2

, (7.133)

with convergence when 1
2
< s ≤ σ.

136

7.10 Proof of Norm Convergence for 1D Interpola-

tion of polynomials of degree 2n

In this section we determine when our MSN approximation controlling the sth derivative

will converge to the true solution in ||·||τ when ||a||σ <∞. We will be assuming through-

out that σ > 1
2

and s > 1
2

as this simplifies some of the assumptions. We will discuss the

situation when σ ∈ [0, 1
2
] at the end of this section.

If ã are the coefficients of the 2n MSN solution controlling the s derivative, then we

see

||a− ã||2τ = ||a− ac||2τ + ||ã− ac||2τ

=
∞∑

k=2n+1

(1 + k)2τ a2k + ||ã− ac||2τ

≤ ||ã− ac||2τ +
||a||2σ

2σ − 2τ − 1

1

(2n)2σ−2τ−1
. (7.134)

As before, ac is the true solution chopped to degree 2n. Thus, we only need to look at

bounding ||ã− ac||τ . Furthermore, the above inequality shows we must have τ < σ − 1
2
.

Before getting into the main details, we will need to use the bound

n∑
k=1

|εk|2 ≤
(

max
j
|εj|
) n∑

k=1

|εk|

≤

[
n∑
k=1

|εk|

]2

≤ ||a||2σ
2σ − 1

1

n2σ−1 , (7.135)

where εk is defined in Eq. (7.9) and we have the useful bound

n∑
k=1

|εk| ≤
1√

2σ − 1

||a||σ
nσ−

1
2

(7.136)

137

from Eq. (7.10). This bound is just the fact ||x||22 ≤ ||x||1 ||x||∞. It turns out this bound

is the only time that we must have σ > 1
2
.

We know

||ã− ac||2τ =
n∑
k=1

k2τ (ak−1 − c2kf̂k)2 + (1 + n)2τ a2n

+
2n∑

k=n+1

(1 + k)2τ (ak − s22n+1−kf̂2n+1−k)
2. (7.137)

We will begin by looking at the first sum and then the remaining terms.

From our previous work, we know

(
ak−1 − c2kf̂k

)2
≤ 2

(
s4ka

2
k−1 + |εk|2

)
. (7.138)

The following summation bound is clear:

n∑
k=1

k2τs4ka
2
k−1 ≤

||a||2σ
n4s

n∑
k=1

k2τ+4s−2σ

≤ 2 ||a||2σ
2τ + 4s− 2σ + 1

1

n2σ−2τ−1 . (7.139)

The sum that we bound has the form as given in Eq. (7.27); we are only reproducing the

bound when 2τ + 4s− 2σ > −1 for simplicity, as the other cases are similar and there is

still decay in n: O(n−4s lnn) or O(n−4s). Additionally, We also have the bound

n∑
k=1

k2τ |εk|2 ≤ n2τ

n∑
k=1

|εk|2

≤ ||a||2σ
2σ − 1

1

n2σ−2τ−1 . (7.140)

We now look at

138

(1 + n)2τ a2n +
2n∑

k=n+1

(1 + k)2τ (ak − s22n+1−kf̂2n+1−k)
2

≤ 2
2n∑
k=n

(1 + k)2τ a2k + 2
n∑
k=1

(2n+ 2− k)2τ s4kf̂
2
k . (7.141)

It is clear that the first sum reduces to

2n∑
k=n

(1 + k)2τ a2k ≤ ||a||
2
σ

n+1∑
k=1

[n+ k]2τ−2σ

≤ 2 ||a||2σ
2σ − 2τ − 1

1

n2σ−2τ−1 , (7.142)

where we are using the bound form Eq. (7.33). In the second sum, we see

n∑
k=1

(2n+ 2− k)2τ s4kf̂
2
k ≤ (2n+ 1)2τ

n∑
k=1

s4kf̂
2
k

≤ 2 (2n+ 1)2τ
n∑
k=1

s4k
(
a2k + |εk|2

)
. (7.143)

The first portion of the sum simplifies as follows:

n∑
k=1

s4ka
2
k ≤
||a||2σ
n4s

n∑
k=1

k4s−2σ

≤ ||a||2σ
4s− 2σ + 1

1

n2σ−1 . (7.144)

Similarly, we have

n∑
k=1

s4k |εk|
2 ≤

n∑
k=1

|εk|2

≤ ||a||2σ
2σ − 1

1

n2σ−1 . (7.145)

139

If we combine these inequalities, we find

n∑
k=1

(2n+ 2− k)2τ s4kf̂
2
k ≤

Cτ,σ,s ||a||2σ
n2σ−2τ−1 . (7.146)

Taken together, we have

||a− ã||2τ = ||a− ac||2τ + ||ã− ac||2τ

≤ Cs,σ,τ ||a||2σ
n2σ−2τ−1 , (7.147)

with the restrictions σ > 1
2

and τ < σ − 1
2
.

As we can see, the only instance where we require σ > 1
2

occurs in bounding
∑n

k=1 |εk|
2.

When proving convergence in the original MSN interpolation papers [16, 18], dyadic sums

were used in order to determine a sufficient interpolation degree to ensure bounded deriva-

tive norm. The interpolation examples in Chapter 6 show that even when the function

is discontinuous, we obtain convergence to the underlying solution where the function in

continuous. This suggests that the convergence in norm results may be extended to the

case when σ ∈
[
0, 1

2

]
(e.g. when the function is integrable but not continuous) but the

proof of this may require careful analysis due to the possibly non-absolutely converging

terms εk; this will be looked at in future work. It is well-known conditionally convergent

series are challenging to work with [45, 57].

7.11 Extension to Higher Dimensions

Throughout this chapter, we have been able to prove convergence to the underlying so-

lution because the inherent structure of the underlying system, allowing us to compare

the MSN approximation to the true solution. While this could be extended to higher

dimensions, the extensions would be tedious and not enlightening. General MSN theory

from [16, 18] shows that for any point distribution with point separation η, it is possible

140

to guarantee that we can choose the interpolation degree O(η−1); this shows the impor-

tance of our convergence results for degree 2Ln. The exact situation where this would be

needed, though, is not known and may only occur for functions in Hs for s ∈
[
0, 1

2

]
. Our

examples in Chapter 6 show that polynomials of degree 2n are usually sufficient. Future

work will investigate methods which would allow us to prove convergence without resort-

ing to carefully looking at the linear system yet do not require the technical machinery

used in the original MSN proofs of [16, 18].

141

Chapter 8

Fast Algorithms for ODEs

The best Bell number is S7 = 877.

CHG

In this chapter we shift from interpolation problems to differential equations, the

main goal of the dissertation. Interpolation problems look at function and derivative

constraints at points of interest. Naturally, linear differential equations involve linear

combinations of function and derivative values.

It is well-known that all differential equations can be rewritten to into first-order

system [3, 4]. While this is not always done, especially for finite difference [46] or finite

element methods [12], we do in this case. This was also done when solving partial

differential equations with MSN [20].

8.1 General Setup for Linear ODEs

The general form for our linear ODE is given by

A(x)u′(x) +B(x)u(x) = F (x), x ∈ [−1, 1]

Lu = G. (8.1)

142

Here, we are looking for a solution u : [−1, 1] → Rm with continuous A,B : [−1, 1] →

Rm×m, continuous F : [−1, 1] → Rm, and a linear operator L. Throughout this chapter

we will assume Eq. (8.1) has a unique solution.

By making some assumptions on A and B, we are able to arrive at fast algorithms.

We will first look at the scalar case before moving toward the general case of systems of

linear ODEs.

8.2 Constant-Coefficient Scalar ODE

Here, we begin with the simplest ODE:

αu′(x) + βu(x) = f(x), x ∈ [−1, 1] . (8.2)

We assume α, β ∈ R, α 6= 0. This does not completely determine the solution, so one

additional equation is required to uniquely determine a solution. Initially, we will not

worry about this constraint in order to first better understand the structure of main set

of linear requirements.

Previously in Chapter 3 and 4, we looked at the interpolation C-V and derivative

C-V matrices in order to understand their structure. If our approximation is

u(x) =
2n∑
k=0

akTk(x), (8.3)

then the resulting linear system is

V [αD + βI] a = f, (8.4)

so that we are enforcing these linear requirements on the n Chebyshev nodes. The MSN

solution comes down to computing

min
V [αD+βI]a=f

||Dsa||2 , (8.5)

which is equivalent to

143

min
V [αD+βI]D−1

s x=f
||x||2 (8.6)

where x = Dsa.

From our definitions, we have the matrices

UWD =



0 1 2n− 1 0
2 2n− 2

.
.

n− 2 n+ 2
n− 1 n+ 1

n


(8.7)

All entries not specified are 0. Similarly, we have

UW =
1

2



2 − + −2
+ − + −

+ − + −
.

.

+ − 0 + −
+ 0 −

+ 0 −


, (8.8)

where “+” stands for +1 and “−” stands for −1. These and similar matrices were

described in Sec. 3.5.

To compute the minimum norm solution, we take care to control the condition num-

ber. We let Aa = f2 represent the boundary conditions of the ODE which specify the

unique solution, where A has small number of rows independent of n; in this case, A is

one row. First, we see

V [αD + βI] Π =
[
H1 H2

]
, (8.9)

where Π is the circular downshift permutation matrix. Here, we see that H1 (the n× n

subblock) and H2 are rank-structured matrices: that is, their off-diagonal blocks have

144

low-rank, and in this case the matrices are almost “tridiagonal”. In Sec. 8.5, we show

that H1 and other related matrices are well-conditioned. For completeness, we show H1

and H2 here:

H1 =



α −β
2

β
2

2α −β
2

β
2

3α −β
2

. . .
β
2

(n− 2)α −β
2

β
2

(n− 1)α 0
β
2

nα


(8.10)

H2 =

β
2

(2n− 1)α −β β
β
2

(2n− 2)α −β
2

β
2

(2n− 3)α −β
2

. .
.

β
2

(n+ 3)α −β
2

β
2

(n+ 2)α −β
2

(n+ 1)α −β
2

−β
2


.

(8.11)

In this case, we see our entire matrix can be factored in this way:

[
H1 H2

A1 A2

]
=

[
H1

I

] [
I H3

A1 A2

]
, (8.12)

where H3 = H−11 H2 and AΠ =

[
A1 A2

]
. Now, the off-diagonal ranks of H3 are at most

the sum of the ranks of H1 and H2, but we assume these are small so the complexity

has not increased much; furthermore, these ranks are exact and there have been no

approximation errors. That is, we could represent H1, H2, and H3 exactly by Sequentially

Semiseparable (SSS) [21] or Hierarchically Semiseparable (HSS) [15] matrices. In the

constant coefficient case, the HSS and SSS ranks of H1 and H2 are 1, while the rank of

H3 is 2. We are now ready to multiply by D−1s , but we need to remember that we have

145

already right-multiplied by Π. So, we set

D̃−1s = Π∗D−1s Π

= diag(D1, D2)

D1 = diag(2s, 3s, · · · , (n+ 1)s)

D2 = diag((n+ 2)s, (n+ 3)s, · · · , (2n+ 1)s, 1s) (8.13)

in order to see

[
H1

I

] [
I H3

A1 A2

]
D̃−1s =

[
H1D

−1
1

I

] [
I D1H3D

−1
2

A1D
−1
1 A2D

−1
2

]
. (8.14)

Because ||H3||2 is not too large, κ2(

[
I D1H3D

−1
2

]
) grows slowly, and we have success-

fully moved the ill-conditioning from column scaling to row scaling.

To proceed we compute a ULV factorization D1H3D
−1
2 = U1L1V

∗
1 , where L1 is lower

triangular and U1 and V1 are orthogonal. Factoring this information, we find

[
H1D

−1
1

I

] [
I D1H3D

−1
2

A1D
−1
1 A2D

−1
2

]
=

[
H1D

−1
1 U1

I

] [
I L1

A1 A2

] [
U∗1

V ∗1

]
. (8.15)

Here, A1 = A1D
−1
1 U1 and A2 = A2D

−1
2 V1; we set A =

[
A1 A2

]
. We perform another

factorization

[
I L1

]
= U2L2V

∗
2 and set AV2 =

[
Ã1 Ã2

]
:

[
H1D

−1
1 U1

I

] [
I L1

A1 A2

] [
U∗1

V ∗1

]
=

[
H1D

−1
1 U1

I

] [
U2

[
L2 0

]
V ∗2

A

] [
U∗1

V ∗1

]
=

[
H1D

−1
1 U1U2

I

] [[
L2 0

]
AV2

]
V ∗2

[
U∗1

V ∗1

]
=

[
H1D

−1
1 U1U2

I

] [
L2 0

Ã1 Ã2

]
V ∗2

[
U∗1

V ∗1

]
.

(8.16)

After a rotation (a small number of Householder reflectors) P to put Ã2 into lower

triangular form, we compute the final factorization:

146

[
H1D

−1
1 U1U2

I

] [
L2 0

Ã1 Ã2

]
V ∗2

[
U∗1

V ∗1

]
=

[
H1D

−1
1 U1U2

I

] [
L2 0 0

Ã1 L̃ 0

] [
I

P ∗

]
V ∗2

[
U∗1

V ∗1

]
. (8.17)

We can easily solve for the MSN solution:

[
L2 0 0

Ã1 L̃ 0

]
y =

[
U∗2U

∗
1D1H

−1
1 Uf̂

f̂2

]
a = D−1s Π

[
U1

V1

]
V2

[
I

P

]
y. (8.18)

All of the above computations can be performed quickly.

8.3 Variable-Coefficient Scalar ODE

When we have the differential equation

α(x)u′(x) + β(x)u(x) = f(x)

Lu = g, (8.19)

the cost of solving the linear system becomes higher. The good news is that much remains

the same; the primary difference comes in the off-diagonal ranks of the Hi matrices. If

we have

α(x) =
r∑

k=0

akTk(x)

β(x) =
r∑

k=0

bkTk(x), (8.20)

then from the results in Sec. 3.5 show that now H1 and H2 will be “banded” matrices

with bandwidth r + 1 (technically, H2 is banded along the antidiagonal); thus, they will

147

have off-diagonal rank of r + 1 while H3 will have off-diagonal rank 2r + 2. The fast

algorithms will still apply, save the fact that now the structured solver will take more

time. The boundary condition still adds one additional linear constraint to the overall

system and is not complicated by the variable α and β.

If the coefficients are not polynomials, then the infinite series can be truncated. In the

case of smooth α and β, only a few terms should be required until errors from machine

precision take over. Bounds similar to those in Sec. 8.5 for the constant coefficient

case should be possible so long as α0 is sufficiently large to ensure diagonal dominance.

Regardless, the fast algorithm still applies with cost proportional to the off-diagonal rank.

8.4 Systems of ODEs

We are now ready to look at systems of ODEs and will start with the constant coefficient

case:

Au′(x) +Bu(x) = F (x)

Lu = G. (8.21)

Here, we are seeking a solution

u(x) =


u1(x)
u2(x)
...

um(x)


u`(x) =

2n∑
k=0

a`;kTk(x). (8.22)

with the coefficients arranged like

a∗ =
[
a1;0 a1;1 · · · a1;2n a2;0 a2;1 · · · a2;2n · · · am;0 am;1 · · · am;2n

]
(8.23)

148

From this arrangement, we see the results linear system will be

[A⊗ V D +B ⊗ V] a = F, (8.24)

where F will store all the values from the righthand side. After applying the tensored

IDCT I ⊗ C−1 gives

[A⊗WD +B ⊗W] a = F̂ . (8.25)

Applying perfect shuffle matrices [69] P and Q, we can switch the order of the Kronecker

product:

P [A⊗WD +B ⊗W]QQ∗a = PF̂ , (8.26)

which implies

[WD ⊗ A+W ⊗B]Q∗a = PF̂ . (8.27)

Multiplying by U ⊗ I on the left gives

[UWD ⊗ A+ UW ⊗B]Q∗a = (U ⊗ I)PF̂ . (8.28)

If Π is the circular downshift permutation matrix, then

[UWD ⊗ A+ UW ⊗B] (Π⊗ I) =
[
H1 H2

]
. (8.29)

In this case, we have the following block matrix:

H1 =



A −1
2
B

1
2
B 2A −1

2
B

1
2
B 3A −1

2
B

.. .
. . .

. . .
1
2
B (n− 2)A −1

2
B

1
2
B (n− 1)A 0

1
2
B nA


. (8.30)

This matrix has the exact same form as the constant coefficient example in Eq. (8.10).

This time, H1 now has off-diagonal blocks for rank m, implying H1 (and H2) are matrices

149

with SSS and HSS rank m and that H3 has rank 2m.

By performing similar operations in the variable-coefficient scalar case, we see that if

A(x) =
r∑

k=0

AkTk(x)

B(x) =
r∑

k=0

BkTk(x), (8.31)

then the H1 and H2 matrices will have HSS rank m(r+1) and H3 will have rank 2m(r+1).

8.5 Conditioning of H1 and Related Matrices

Here, we begin with an analysis of the conditioning of the H1 matrix. In the constant

coefficient case from Eq. 8.2, H1 is defined as follows, which we reproduce from Eqs. (8.10)

and (8.11):

H1 =



α −β
2

β
2

2α −β
2

β
2

3α −β
2

. . .
. . .

. . .
β
2

(n− 2)α −β
2

β
2

(n− 1)α 0
β
2

nα


(8.32)

H2 =

β
2

(2n− 1)α −β β
β
2

(2n− 2)α −β
2

β
2

(2n− 3)α −β
2

. .
.

β
2

(n+ 3)α −β
2

β
2

(n+ 2)α −β
2

(n+ 1)α −β
2

−β
2


.

(8.33)

150

If |β||α| < 2, then H1 is diagonally dominant in both the rows and columns with

min
k

(
|H1;kk| −

∑
j 6=k

|H1;kj|

)
≥ |α| − |β|

2

min
k

(
|H1;kk| −

∑
j 6=k

|H1;jk|

)
≥ |α| − |β|

2
. (8.34)

From [70], we can then bound the smallest singular value:

σn(H1) ≥ |α| −
|β|
2
. (8.35)

Because

||H1||1 ≤ n |α|+ |β|
||H1||∞ ≤ n |α|+ |β| , (8.36)

we see

||H1||2 = σ1(H1) ≤ n |α|+ |β| (8.37)

by ||H1||22 ≤ ||H1||1 ||H1||∞. This allows us to bound the condition number:

κ2(H1) =
σ1(H1)

σn(H1)
≤

n+ |β|
|α|

1− 1
2
|β|
|α|

. (8.38)

If we look at Eq. (8.11), we have the following bounds:

||H2||1 ≤ 2n |α|+ |β|

||H2||∞ ≤ 2n |α|+ 5

2
|β|

||H2||2 ≤ 2n |α|+ 5

2
|β| . (8.39)

Using the exact form of H1 and H2 coupled with the fact H3 = H−11 H2, we see

151

||H3||2 ≤
∣∣∣∣H−11

∣∣∣∣
2
||H2||2

≤

(
1

|α| − |β|
2

)(
2n |α|+ 5

2
|β|
)

≤
2n+ 5

2
|β|
|α|

1− 1
2
|β|
|α|

. (8.40)

Thus, we see that ||H3||2 = O(n), so it does not grow too quickly.

We now turn our attention to bounding D1H3D
−1
2 . Previously, we have noted

D1 = diag [2s, 3s, · · · , (n+ 1)s]

D2 = diag [(n+ 2)s, (n+ 2)s, · · · , (2n+ 1)s, 1s] . (8.41)

Now, we see

∣∣∣[D1H3D
−1
2

]
ij

∣∣∣ =

∣∣∣∣(i+ 1

n+ 1 + j

)s
H3;ij

∣∣∣∣
≤ |H3;ij| , i, j ∈ {1, · · · , n} . (8.42)

Importantly, we see that the elements of H3 bound the elements of D1H3D
−1
2 except in

the last column, for H3 ∈ Rn×(n+1); this is most unfortunate. To proceed further, we let

H3 =
[
H̃3 h̃

]
, (8.43)

so that h̃ is just the last column of H3. We will show ||D1h̃||2 is bounded, but to do so

we will need to specifically look at H3.

From our previous work we see

h̃ = βH−11 e1. (8.44)

The obvious bound

152

||D1h̃||2 ≤ ||D1||2
∣∣∣∣H−11

∣∣∣∣
2
||e1||2

≤ (n+ 1)s
|β|
|α|

1− 1
2
|β|
|α|

(8.45)

is too rough, for the bound ||D1h̃||2 = O(ns) is unacceptable, for we expect that we could

do better. To do so, we need to solve



γ −1
2

1
2

2γ −1
2

1
2

3γ −1
2

. . .
. . .

. . .
1
2

(n− 2)γ −1
2

1
2

(n− 1)γ 0
1
2

nγ


h̃ = e1. (8.46)

Here, we have set γ = α/β (we are assuming β 6= 0). We call the above matrix H̃1 = 1
β
H1.

We employ the standard tridiagonal solver algorithm (one reference is [41, Chapter

9]), although our main concern is about bounding the size of the elements of h̃; therefore,

we are only concerned about bounding the size of the entries of `i, di, and ui. We use

the convention


a1 c1
b1 a2 c2

. . .

bn−2 an−1 cn−1
bn−1 an

 =


1
`1 1

. . .

`n−2 1
`n−1 1




d1 u1

d2 u2
. . .

dn−1 un−1
dn


= L̃Ũ . (8.47)

Clearly, we can factor H̃1 recursively as

153

uk = −1

2
, k ∈ {1, · · · , n− 2}

un−1 = 0

d1 = γ

`1 =
1

2γ

dk = kγ − `k−1uk−1

`k =
1

2dk
. (8.48)

By assumption, we have |γ| = |α|
|β| > 2. We will prove inductively that

sign(γ) = sign(dk)

= sign(`k)

k |γ| ≤ |dk| ≤ 2k |γ|
1

4k |γ|
≤ |`k| ≤

1

2k |γ|
. (8.49)

The results hold for k = 1, and assume they hold for k ≥ 1. Then we see

dk+1 = (k + 1)γ +
1

2
`k, (8.50)

telling us sign(dk+1) = sign(`k) = sign(γ), from which it follows

(k + 1) |γ| ≤ |dk+1| ≤ 2(k + 1) |γ| . (8.51)

From Eq. (8.48), it is clear sign(`k) = sign(dk) = sign(γ), so that

1

4(k + 1) |γ|
≤ |`k+1| ≤

1

2(k + 1) |γ|
. (8.52)

We have just proven the inductive step. All of these hold for k ∈ {1, · · · , n− 1}. We

have dn = nγ because un−1 = 0. Therefore,

Ũ−1e1 = γ−1e1 (8.53)

and

154

γ−1L̃−1e1 = h̃

h̃k = (−1)k−1`k−1 · · · `2`1γ−1. (8.54)

This gives us

4

(
1

4 |γ|

)k
1

(k − 1)!
≤ |h̃k| ≤ 2

(
1

2 |γ|

)k
1

(k − 1)!
. (8.55)

We can now compute

||D1h̃||22 ≤ 4
n∑
k=1

(k + 1)2s
(

1

2 |γ|

)2k
1

[(k − 1)!]2

≤ 4
n−1∑
k=0

(k + 2)2s
(

1

2 |γ|

)2k+2
1

[k!]2

≤ 1

|γ|2

{
4s +

n−1∑
k=1

(k + 2)2s
(

1

2 |γ|

)2k
1

[k!]2

}

≤ 1

|γ|2

{
4s + 9s

∞∑
k=1

k2s
(

1

2 |γ|

)2k
1

[k!]2

}
≤ 1

|γ|2
{4s + 9sC(s, γ)} . (8.56)

Here, we have

C(s, γ) =
∞∑
k=1

k2s
(

1

2 |γ|

)2k
1

[k!]2
, (8.57)

so that we must now bound C(s, γ). Currently, we have the bound

C(s, γ) ≤ max
k

∣∣∣∣∣k2s
(

1

2 |γ|

)2k
∣∣∣∣∣
∞∑
k=1

1

[k!]2

≤ e

[
2s

ln (4 |γ|)

]2s(
1

2 |γ|

)[
4s

ln(4|γ|2)

]

∼ s2s. (8.58)

155

This is a loose bound, and it should be possible to produce better bounds by attempting

to compute

C(s, γ) ≤ max
k

∣∣∣∣ k2s[k!]2

∣∣∣∣ ∞∑
k=1

(
1

2 |γ|

)2k

(8.59)

We know the geometric series will sum to a constant, but maximizing over the polynomial

and factorial is nontrivial.

We set

E(s, γ) =
1

|γ|

√√√√ ∞∑
k=0

(k + 2)2s
(

1

2 |γ|

)2k
1

[k!]2
. (8.60)

For all n, we have

||D1h̃||2 ≤ E(s, γ). (8.61)

By computation, we have

E(10, 2) ≤ 2. (8.62)

This shows that we greatly overestimated ||D1h̃||2 and suggests it is well-conditioned; the

challenge is determining rigorous bounds.

We also have the lower bound

||D1h̃||22 ≥ 16
n∑
k=1

(k + 1)2s
(

1

4 |γ|

)2k
1

[(k − 1)!]2

≥ 1

|γ|2
n−1∑
k=0

(k + 2)2s
(

1

4 |γ|

)2k
1

[k)!]2

≥ 1

2 |γ|2
∞∑
k=1

k2s
(

1

4 |γ|

)2k
1

[k!]2
(8.63)

where the last inequality holds for sufficientlylarge n. This has the same form as our

upper bound. Future work will be devoted to obtaining a tight bound for ||D1h̃||2.

Before over previous work on bounding ||D1h̃||2, we previously showed

156

|H̃3|ij ≤ |H3;ij|, i, j ∈ {1, · · · , n} , (8.64)

Because

||A||1 = || |A| ||1
||A||∞ = || |A| ||∞ (8.65)

holds for all matrices, we have the following bound:

|| |A| ||2 ≤
√
|| |A| ||1 || |A| ||∞

=
√
||A||1 ||A||∞ . (8.66)

This implies we have this final bound:

||H̃3||2 = O(n). (8.67)

With our above bound on ||h̃||2 combined with the fact

∣∣∣∣D1H3D
−1
2

∣∣∣∣
2
≤
√
||H̃3||22 + ||h̃||22 , (8.68)

we have shown

∣∣∣∣D1H3D
−1
2

∣∣∣∣
2

= Os(n), (8.69)

where the constant depends on s.

We now turn our attention to bounding κ2(

[
I H

]
), and our goal will be to look at

H = D1H3D
−1
2 . First, we see

x∗
([
I H

] [I
H∗

])
x = x∗x+ x∗HH∗x

≥ 1 (8.70)

when ||x||2 = 1. Next, we also have

157

x∗
([
I H

] [I
H∗

])
x = x∗x+ x∗HH∗x

≤ 1 + ||H||22 . (8.71)

Thus, we now have

κ2(
[
I H

]
) ≤

√
1 + ||H||22 (8.72)

and so

κ2(
[
I D1H3D

−1
2

]
) = Os(n). (8.73)

This shows

[
I D1H3D

−1
2

]
is well-conditioned.

Similar results exist for systems of ODEs for constant coefficient; we omit the details.

8.6 Discussion of ODE Solvers and Extending Fast

MSN Methods to PDEs

In this chapter we looked at the potential of using the MSN method to solve ordinary

differential equations. Due to the nature of the C-V matrices, there is much structure

that can be exploited for a fast solver.

Much of this work, though, could also apply in the situation where we decide to not

use MSN and form a square system; as mentioned before, this is used in Chebfun [26],

with some of the algorithm details in [5, 25, 74]. While Chebfun uses Chebyshev poly-

nomial extrema instead of Chebyshev polynomial roots, similar results should hold. In

particular, similar conditioning results should hold as well as the low-rank off-diagonal

blocks. From [67, Appendix A], it appears Chebfun uses slow, dense algorithms for com-

puting higher and higher approximations given an ODE, as it is stated that “the work

involved . . . is proportional to the cube of the number of grid points.” The difficulty with

158

large systems is specifically mentioned [67, Pages 306–307]; this would be less challeng-

ing by taking advantage of the structured system. To be sure, structured solvers require

more effort [33], but the speedup is worth the additional cost. One additional feature of

Chebfun is its ability to compute eigenfunctions. Future work will investigate if MSN

could compute this as well, an interesting question because MSN is inherently nonsquare

while eigenvalues only make sense in a square system.

A recent article [61] talks about using randomized sampling to speed up the computa-

tion of fast direct solvers for second order ODEs, although the results can be generalized

and extended. They note that even though steep gradients exist, it is possible that the

off-diagonal blocks still have a low-rank property. This leads to compression with errors

that can made made small by setting a sufficiently small tolerance. This suggests that,

given the expansion in Eq. (8.31), it may be possible to perform similar compression

directly using the coefficients themselves; how this could be done systematically is not

clear, though. Using randomized sampling to compute a structured factorization of a

matrix is similar to the work in [33], which we discuss in Chapter 9.

Previous work has shown that the MSN method can solve 2D PDEs well [20]; the

difficulty arises in storing the matrices. This is especially important in 3D, as the flop

cost for slow algorithms is O(n9) for an n3 tensor grid with O(n6) memory units required

to hold the matrices themselves; this is impractical if not impossible for any reasonable n.

Extending the results here to solving PDEs may give rise to fast, high-order methods for

PDEs. In the constant coefficient case, the tensor product nature may allow us to form the

normal equations and invert them quickly, similar to the fast LQ factorization discussed

here. The variable coefficient will be more challenging, although there is potential to see

if the structures here carry over in certain situations in 2D and 3D.

159

Chapter 9

Stopping Criterion for Randomized

Low-Rank Approximations

The probability professor points to a random

student in the third row and says “Get out. I

do not teach unlucky students.”

One way to start a probablity course;

suggested by Elliot Hudgins

There has been work in recent years to understand structured matrices: matrices

with off-diagonal blocks that are (or can be approximated as) low-rank. The goal is to

develop methods which allow us to compute matrix-vector products and matrix inverses

faster than standard algorithms; that is, multiplication in O(n logβ n) flops and inversion

in O(nα logβ n) flops for α ∈ [1, 2] and β small. Another benefit is reduced storage

requirements, frequently O(n logβ n). The simplest of these are banded matrices, but

also include Sequentially Semi-Separable matrices [21], Hierarchically Semi-Separable

(HSS) matrices [15, 17], H-matrices [39], and others. Recent work involving randomized

HSS construction can be found in [31, 51, 56]. The main contribution of this chapter

is related to a stochastic estimate of ||·||F which allows us to accurately measure the

160

low-rank approximation and determine when it is well-approximated; portions of this

material first appeared in [33]. In particular, we develop a method to compute a relative

stopping criterion for an adaptive low-rank approximation.

Throughout this chapter we assume A ∈ Rm×n with rank r � min(m,n). For

simplicity, we will assumem ≥ n. We letN(0, 1) refer to the standard normal distribution

with mean 0 and variance 1. Finally, some of the notation in this chapter may conflict

with those from previous chapters. While other adaptive randomized algorithms have

frequently used an absolute tolerance ε, we will focus on allowing both an absolute

tolerance εabs and a relative tolerance εrel.

9.1 Randomized Low-Rank Approximation

In recent years there has been growing interest in using randomization to speed up

conventional numerical linear algebra techniques; one standard reference is [40]. The

main idea is that we would like to compute accurate factorizations like pivoted QR or the

SVD on low-rank matrices. These factorizations usually have flop counts of O(mnr) and

O(mn2), respectively, but the data transfer required makes these computations expensive,

especially when matrices are so large as to not fit in fast memory. Thus, it is impractical

to use standard dense algorithms with large communication costs on distributed memory

machines. By looking at random samplings of the range, the desire is to build up an

approximation of the matrix until reaching a predetermined approximation tolerance.

Once a sufficient number of random samples have been computed, we perform a pivoted

QR or SVD on this smaller dense matrix, leading to a smaller overall cost. The random

samplings are computed using matrix-matrix multiplication, which can be efficiently

computed on modern hardware. Although these multiplications may be a significant

portion of the overall flop count, the total time spent performing multiplication is small.

Thus, the goal is to determine when enough samples have been computed to ensure an

161

rand(m,n) an m× n matrix with iid N(0, 1) elements
cols(A) number of columns of A

qr(A) unpivoted QR factorization of A returning Q or Q and R
rrqr(A, εabs, εrel) rank-revealing QR factorization of A such as QRCP with ab-

solute/relative tolerances εabs/εrel

Table 9.1: List of helper functions for low-rank approximation.

accurate approximation of the matrix. The standard algorithm for building a low-rank

approximation is found in Alg. 5, with the primary arguments being the block size d

and stopping criterion, a function which determines when we have a good enough

approximation of the range of A; similar blocked algorithms can be found in [52, 75]

and are reproduced below. In Line 8 of Alg. 5, we perform iterated Gram-Schmidt

orthogonalization for numerical stability, as it helps ensure Q is numerically orthogonal

to machine precision, especially in the blocked case [9, 64]. This may not always be

necessary, for [64] notes this would only be required should the column norms decrease by

a significant factor; even so, algorithmically it is easier, though more expensive, to always

perform iterated GS. Additionally, although rand could produce any kind of random

matrices, our analysis requires us to use Gaussian random variables. See Table 9.1 for

a list of helper functions for the algorithms in this chapter. We denote the pivoted QR

factorization as rrqr and it stops when |Rk,k| < εabs or |Rk,k| < εrel |R1,1|.

These algorithms frequently use a QB approximation of A. Here Q is an approximate

orthonormal basis for the range of A with B = Q∗A; that is

A ≈ Q(Q∗A)

= QB. (9.1)

Knowing when ||A−QB|| is small is our primary concern, and the particular choice

of norm is important. This chapter will investigate when this happens, propose a new

method, and compare it with existing stopping criteria. The stopping criterion presented

here has focused on developing a relative stopping criterion. This is particularly useful as

162

Algorithm 5 Randomized Block Low-Rank Approximation (General)

1: function random low rank(A,d,stopping criterion) . Builds QB
approximation

2: Q = []; n = cols(A)
3: k = 0
4: while !stopping criterion(Q,A,ε) do
5: k = k + 1
6: Ωk = rand(n, d) . d is block size
7: Sk = AΩk

8: Ŝk = (I −QQ∗)2 Sk . 2× GS orthogonalization for numerical stability

9: [Qk, Rk] = qr(Ŝk)
10: Q =

[
Q Qk

]
11: end while
12: B = Q∗A
13: return Q, B . We have the approximation A ≈ QB
14: end function

it may be more convenient to specify a relative error tolerance over an absolute tolerance.

Furthermore, we would like this method to work in the case we do not have explicit access

to the matrix. Theorem 4.2 in [72] says that if H is a structured N ×N matrix and H̃

is H with off-diagonal blocks truncated to tolerance εrel, then

||H − H̃||F ≤ C(N,L)εrel ||H||F . (9.2)

Thus, it makes sense to seek an accurate relative stopping criterion. Once a sufficient

number of random samples have been computed, we perform a pivoted QR factorization

(such as QR with Column Pivoting, although the Strong RRQR from [37] would be bet-

ter) on these samples in order to obtain a high-quality Q for a better QB approximation.

While this last step may not be necessary and was not included in [52, 75], this would be

an easy step to add and was desired in the original setting where this stopping criterion

was developed [33].

We recall the Eckhart-Young theorem [36, Theorem 1.1], which gives optimal low-rank

approximation bounds in the 2-norm and F-norm:

Theorem 9.1 (Eckhart-Young Theorem)

163

If Ak is the matrix A chopped to k singular values, then we have the following bounds

on approximations of A:

min
rank(B)≤k

||A−B||2 = ||A− Ak||2

= σk+1

min
rank(B)≤k

||A−B||F = ||A− Ak||F

=

√√√√min(m,n)∑
j=k+1

σ2
j . (9.3)

In practice, we hope to be able to determine approximations with near-optimal ranks

within a specified tolerance with smaller overall computation time. Thus, we are looking

at the fixed-precision low-rank approximation problem.

9.2 Stopping Criteria

The unitary invariance of the 2-norm combined with it being the definition of the operator

(matrix) norm makes it desirable to bound ||(I −QQ∗)A||2. The main challenge of the 2-

norm stems from the computational complexity required to compute it exactly. Because

of this, the F-norm is the next norm that we may wish to bound, and it is easy to

compute if we have explicit access to the matrix in question; furthermore, it trivially

bounds the 2-norm. If A is large or implicitly defined, ||A||F may still be expensive to

compute. Additionally, the exact norm is frequently not required so much as an accurate

approximation of it. We will be making comparisons with algorithms in [52, 75], so we

reproduce their blocked versions here. Alg. 6 is from [52, Figure 2] (the MV Algorithm,

named after the authors) and Alg. 7 is from [75, Algorithm 2] (the YGL Algorithm,

named after the authors). Algs. 6 and 7 originally used Q = orth(A) to compute the

orthonormal basis of a matrix A; this work uses the function qr in our notation because

it is an unpivoted QR factorization, and our new stopping criterion will require both Q

164

and R factors of the unpivoted QR factorization. A variation of iterated Gram-Schmidt

orthogonalization can be found in Line 5 of Alg. 6 and Line 7 of Alg. 7 to help Q retaining

numerical orthogonality. It is explicitly stated in [52, Remark 5] that the fact R is not

used in the qr routine (original orth). From our work here, we see the R factor helps

ensure we do not take too many random samples by noting when the R-values become

small. Even so, no pivoting is required.

One stopping criterion is based on the following lemma [40]:

Lemma 9.2 (HMT Error Bound; Lemma 4.1 in [40])

Let B ∈ Rm×n. Fix a positive integer d and α > 1. Draw an independent family of

standard Gaussian vectors {ωk}dk=1. Then

||B||2 ≤ α

√
2

π
max

k=1,··· ,d
||Bωk||2 (9.4)

with probability 1− α−d.

The reference to “HMT” comes from the first letters of the authors’ last names in [40]

and is used in [40, Alg. 4.2] (Adaptive Randomized Range Finder). Here, α can be

viewed as a trade-off parameter: larger values ensure a smaller probability of failure. It

turns out, though, this overestimation is significant; this will be shown for a number of

matrices in Sec. 9.7. We can find no references to randomized lower bounds of ||B||2; this

would be helpful in producing an order-of-magnitude estimate or estimates relating to

the variance or other moments of the random variable. This method is used in [47, 60,

73] as a stopping criterion for adaptive randomized algorithms for structured matrices

(the same situation where this work was originally developed).

The authors in [52] note the drawback of Lem. 9.2 of this over estimation and instead

use the explicit bound ||A|| < ε in Alg. 6, where we note A is updated every time after

having known information subtracted out during each iteration. The authors said that

||A||2 could be used but noted that ||A||F may be preferred for its easy computation.

165

Algorithm 6 Randomized Block Low-Rank Approximation (MV) [52, Figure 2]

1: function randQB b MV(A,ε,d)
2: for k = 1, 2, 3, · · · do
3: Ωk = rand(n, d)
4: Qk = qr(AΩk)
5: Qk = qr(Qk −

∑k−1
j=1 QjQ

∗
jQk)

6: Bk = Q∗kA
7: A = A−QkBk

8: if ||A|| < ε then
9: stop
10: end if
11: end for
12: Q =

[
Q1 · · · Qk

]
13: B =

[
B∗1 · · · B∗k

]∗
14: return Q, B
15: end function

Algorithm 7 Randomized Block Low-Rank Approximation (YGL) [75, Algorithm 2]

1: function randQB b YGL(A,ε,d)
2: Q = []; B = []
3: E = ||A||2F
4: for k = 1, 2, 3, · · · do
5: Ωk = rand(n, d)
6: Qk = qr(AΩk −Q(BΩk))
7: Qk = qr(Qk −Q(Q∗Qk))
8: Bk = Q∗kA
9: Q =

[
Q Qk

]
10: B =

[
B∗ B∗k

]∗
11: E = E − ||Bk||2F
12: if E < ε2 then
13: stop
14: end if
15: end for
16: return Q, B
17: end function

166

One drawback (noted in [75]) is that this requires access to a dense copy of A. This is

problematic with regards to memory because we may want to keep an unmodified version

of the original matrix; furthermore, if A is originally sparse, it will immediately become

dense after subtracting the first approximation, greatly increasing memory requirements.

This resulted in the development of the stopping criterion in [75]. Instead of storing

a dense matrix with the unused information of A to keep track of the error, it is possible

to compute the error just based on the difference in F-norm. This is made explicit in the

next theorem, which we call the “YGL Error Bound” because of the first letters of the

authors’ last names. Calling this an error bound is slightly misleading because the error

is exact, not bounded, but a better title escapes us at this time.

Theorem 9.3 (YGL Error Bound; Theorem 1.1 in [75])

Let A ∈ Rm×n and Q ∈ Rn×k be orthogonal. If B = Q∗A then

||A−QB||2F = ||A||2F − ||B||
2
F . (9.5)

If one builds up Q in blocks, then we can compute the true F-norm error provided ||A||F

is already known. Because this value only needs to be computed once, it may not be

too expensive; however, this only works if the matrix is explicitly, not implicitly, defined.

Additionally, Thm. 9.3 is only useful for relative tolerances down to O(
√
εmach), where

εmach is machine precision, as noted in [75, Theorem 3]. It is possible, using techniques

such as compensated summation [41, Chapter 4], that these limitations may be lifted,

but this would be difficult in the parallel setting. This may be the first explicit reference

to a relative error bound in the literature, though we seek to remove the relative tolerance

restrictions.

167

9.3 Previous Probabilistic Bounds

We now present results from [36], although looser bounds from [40] may be more well-

known. The important portions of the bounds will be emphasized here; the original paper

should be referenced for the full results and proofs.

Theorem 9.4 (Average 2-Norm and F-Norm Error; Theorem 5.7 in [36])

Let Ω be a Gaussian random matrix with k + p columns for p ≥ 2, S = (AA∗)qAΩ, and

Q = qr(S). Then

E ||A−QQ∗A||2 ≤
√
σ2
k+1 + C(A, k, p, q)

E ||A−QQ∗A||F ≤

√√√√(n∑
j=k+1

σ2
j

)
+D(A, k, p, q) (9.6)

Here, C and D are constants which decay exponentially as q increases.

The above theorem states the expected value of the error is close to optimal. Similar

results hold for upper tail bounds:

Theorem 9.5 (Probability Tail Bounds in 2-Norm and F-Norm; Theorem 5.8 in [36])

Let the assumptions of Thm. 9.4 hold. Then if 0 < ∆� 1,

||A−QQ∗A||2 ≤
√
σ2
k+1 + C(A, k, p, q,∆)

||A−QQ∗A||F ≤

√√√√(n∑
j=k+1

σ2
j

)
+D(A, k, p, q,∆) (9.7)

hold for probability 1 − ∆. C and D are constants which decay exponentially as q

increases.

Additionally, [36, Theorem 5.6] bounds deviations of the singular values of QQ∗A from

the singular values of A.

168

These are useful results and help explain why randomized methods perform better

than expected if one looks at similar bounds in [40]. The downside is that in practice

they are not helpful because we must know the singular values.

In these theorems, q refers to the possibility of using power iteration in order to

increase the quality of the approximation; this is a well-known technique in randomized

numerical linear algebra [40, 52, 75] and helps ensure the larger singular values and

corresponding singular vectors are matched more closely [36, 59]. Power iteration is not

mentioned in [33] because it is not clear how to use it in randomized HSS construction

without greatly increasing the overall computational cost; it is likely this also holds in

general for the randomized construction of structured matrices because we do not have

explicit access to matrix subblocks. This lead to the desire for an accurate method to

determine low-rank approximations which could be used with small relative tolerances

(for example, tolerances as small as 10−5 in single precision and 10−14 in double precision).

9.4 Basic Probability Theory

We assume A has positive singular values σ1 ≥ · · · ≥ σr > 0. It follows that we have the

SVD

A = UΣV ∗

=
[
U1 U2

] [Σr 0
0 0

] [
V ∗1
V ∗2

]
= U1ΣrV

∗
1 , (9.8)

where

Σr = diag (σ1, · · · , σr) . (9.9)

If x ∈ Rn is a Gaussian random vector (that is, xi ∼ N(0, 1)) and we set ξ = V ∗x, then

by the rotational invariance of ||·||2 we have

169

||Ax||22 = ||Σrξ||22
= σ2

1ξ
2
1 + · · ·+ σ2

rξ
2
r . (9.10)

Now, ξi ∼ N(0, 1) because rotations of Gaussian random vectors are also Gaussian

random vectors. From here, we can see

E ||Ax||22 = ||A||2F . (9.11)

This by itself is useful, but, in order to make use of computer architecture, matrix-

matrix products are preferred over multiple matrix-vector products. Thus, if Ω ∈ Rn×d

with Ωij ∼ N(0, 1) (so that Ω is a Gaussian random matrix), it follows that

||AΩ||2F = ||AΩ:,1||22 + · · ·+ ||AΩ:,d||22 . (9.12)

Because each Ω:,i is a Gaussian random vector, we also have

E ||AΩ||2F = d ||A||2F . (9.13)

It is this equality that allows us to accurately compute the F-norm of matrices using

random range samples.

Because there is interest in using power iterations to increase the quality of random-

ized low-rank factorizations [40], we also include these related results. In particular, it is

clear from the previous work that

||(AA∗)q Ax||22 = σ4q+2
1 ξ21 + · · ·+ σ4q+2

r ξ2r

||(A∗A)q x||22 = σ4q
1 ξ

2
1 + · · ·+ σ4q

r ξ
2
r , (9.14)

so we have

E ||(AA∗)q Ax||22 = ||A||4q+2
s,4q+2

E ||(A∗A)q x||22 = ||A||4qs,4q (9.15)

170

and

E ||(AA∗)q AΩ||22 = d ||A||4q+2
s,4q+2

E ||(A∗A)q Ω||22 = d ||A||4qs,4q . (9.16)

Here, ||·||s,p is the Schatten p-norm defined in Eq. (2.34) and Ω is a Gaussian random

matrix with d columns, as before. From the definitions of the Schatten p-norm, it is clear

[
E ||(AA∗)q Ax||22

]1/4q+2

→ ||A||2[
E ||(A∗A)q x||22

]1/4q
→ ||A||2[

E ||(AA∗)q AΩ||22
]1/4q+2

→ ||A||2[
E ||(A∗A)q Ω||22

]1/4q
→ ||A||2 (9.17)

as q →∞.

The proof that independent realizations of Eqs. (9.13) and (9.16) produce accurate

approximations of the F-norm and Schatten norm will be postponed until Sec. 9.6. We

now focus on developing our stopping criterion, which is based on the fact that we can

now accurately estimate our error in a matrix norm.

9.5 New Stopping Criterion

We now step through Alg. 5 to see where some problems, previously ignored, may arise;

this stems from the fact that we are wanting to be able to have relative error tolerances

on the order of 10−12 or 10−14 in double precision. We will be building our random

matrices up in blocks of d random vectors at a time, although in theory the size of the

blocks could vary. Assume we have our absolute tolerance εabs and relative tolerance εrel.

Then our stopping criterion function will return true if

171

||Ŝk||F < max(εabs
√
d , εrel ||Sk||F); (9.18)

otherwise, stopping criterion returns false.

1. Set Ωi = rand(n, d) and compute Si = AΩi for i ∈ {1, 2}; set Q = [] and S =[
S1 S2

]
.

2. Compute [Q1, R1] = qr(S1), giving the initial approximation for the range of A; set

Q = Q1.

3. Set Ŝ2 = (I −QQ∗)2 S2, so that Ŝ2 contains potentially new information about the

range of A. If

||Ŝ2||F < max(εabs
√
d , εrel||S2||F), (9.19)

then stop and perform Q = rrqr(S, εabs, εrel).

4. Set Ω3 = rand(n, d) and compute S3 = AΩ3; set S =

[
S S3

]
.

5. Compute [Q2, R2] = qr(Ŝ2), giving new information for the range of A; set Q =[
Q Q2

]
.

6. Set Ŝ3 = (I −QQ∗)2 S3, so that Ŝ3 contains potentially new information about the

range of A. If

||Ŝ3||F < max(εabs
√
d , εrel||S3||F), (9.20)

then stop and perform Q = rrqr(S, εabs, εrel).

7. Continue this process until convergence . . .

Using individual realizations of Eq. (9.13) is important in the stopping criterion, although

the relative stopping ||Ŝk||F < εrel||Sk||F is new. Even so, in order to ensure we are adding

172

new information to Q in steps 2 and 5, we need to know Ŝk is full rank. This problem does

not show up in the unblocked version because updating Q one vector at a time makes it

easy to determine when a vector has small norm. This situation, when Ŝk is numerically

low-rank, is not considered in Algs. 6 and 7 due to how the Qk blocks are formed, although

this is critical to ensure Q has orthonormal columns. As noted previously, performing

multiple matrix-vector multiplications is inefficient on modern machines, which is why

the blocked case is important. Thus, if Ŝk is (numerically) rank-deficient, then additional

random samples contain no new information above the specified tolerance and we should

compute the rank-revealing QR factorization on our random samples. If Ŝk is determined

to be rank-deficient, then

[
S1 S2 · · · Sk

]
is rank-deficient. This implies the random

samples matrix

S =
[
S1 S2 · · · Sk Sk+1

]
. (9.21)

is rank-deficient as well and the additional block of random samples Sk+1 should ensure

a better quality RRQR factorization than just using

[
S1 S2 · · · Sk

]
. Although this

is not a proof, extensive examples in Sec. 9.7 show that this is expected and matches our

intuition.

To determine numerical rank-deficiency, we set

ρ =
||S1||F√

d
, (9.22)

implying ρ ≈ ||A||F , and say Ŝk is numerically rank-deficient when

min
j=1,··· ,d

| (Rk)j,j | < max(εabs, εrelρ). (9.23)

The purpose of ρ is to characterize how large the original norms of the random samples

should be, as this will help determine when they have fallen below the desired tolerance.

Because of this, other potential values of ρ are |(R1)1,1|, maxj |(R1)j,j|, or maxj,k |(Rk)j,j|.

If the desire is to minimize communication, then |(R1)1,1| or maxj |(R1)j,j| may be pre-

173

ferred. Because qr is unpivoted, there is no guarantee the diagonals of R will always

decrease in value. Even so, extensive tests have shown there is general decay, but more

theoretical work that needs to be done. This is one reason for using the additional block

of samples Sk+1 in rrqr.

Taken together, this gives us a new stopping criterion for low-rank approximations,

presented in Alg. 8. At this point, we now compare our stopping criterion with the ones

previously mentioned.

The MV stopping criterion explicitly assumes an absolute stopping tolerance. The

YGL stopping criterion has an absolute stopping tolerance that requires and depends

on ||A||F , so this could be viewed as a relative stopping criterion with the restriction

that εrel ≥ C
√
εmach . One important benefit to the MV and YGL stopping criteria is

that they are exact: we know the exact error in the F-norm at each step in the process.

Our new stopping criterion allows for absolute and relative stopping criteria explicitly;

furthermore, the relative tolerance is limited by the ability to accurately compute

||Ŝk||F < εrel ||Sk||F and min
j=1,··· ,d

|(Rk)j,j| < εrelρ. (9.24)

Thus, we expect to be able to compute relative tolerances down to O(εmach), although

we have not determined the exact restrictions. It is likely that we must have εrel ≥

Cn,dεmach, but we will not investigate the nature of Cn,d at this time, as it is related to

the accuracy of matrix-matrix multiplication [41, Chapter 3], blocked GS [9, 64], and

QR factorizations [41, Chapter 19]. The results in Sec. 9.7 and [33] show that we can

obtain excellent results using our relative stopping criterion even though our estimates

are probabilistic.

9.6 Probability Theory Proofs

To simplify our analysis, we begin by defining a random variable which has the same

properties as ||Ax||2F :

174

X ∼ σ2
1ξ

2
1 + · · ·+ σ2

rξ
2
r . (9.25)

Here, ξi ∼ N(0, 1), so we have E ||Ax||22 = ||A||2F . We now average X to arrive at the

random variable

Xd ∼
1

d
[X1 + · · ·+Xd] . (9.26)

Xi are independent and identically distributed realizations of X. Obviously, we also have

E(Xd) = ||A||2F as well as

V(Xd) =
1

d
V(X)

=
2 ||A||4s,4

d
. (9.27)

The above result is well-known about the variance of independent random variables.

We now seek a concentration inequality for Xd. To do this, we need Chernoff’s

Inequality [11], which is useful for bounding tail probabilities:

Theorem 9.6 (Chernoff’s Inequality; Theorem 3.2.2 in [11])

Given a random variable X, we have

P [X ≥ a] ≤ min
t>0

e−ta E
(
etX
)
. (9.28)

and

P [X ≤ a] ≤ min
t>0

eta E
(
e−tX

)
. (9.29)

Here, E
(
etX
)

is the moment generating function for the random variable X. We will use

these inequalities to prove the tail probabilities of Xd decay exponentially in d, ensuring

independent realizations of Eq. (9.13) are close to the expected value. This result and

proof were published in [33] but we flesh out some of the details not included due to

175

length considerations.

Theorem 9.7 (Probabilistic Error Bounds)

GivenXd as defined in Eq. (9.26) with r ≥ 2, the following bounds on the tail probabilities

hold:

P
[
Xd ≥ ||A||2F µ

]
≤ exp

(
−dµ

2

)
||A||drF

r∏
k=1

(A′k)
−d

µ > 1

P
[
Xd ≤ ||A||2F µ

]
≤ exp

(
dµ

2

)
||A||drF

r∏
k=1

(A′′k)
−d

µ ∈ [0, 1). (9.30)

Here,

||A||2F = σ2
1 + · · ·+ σ2

r

(A′k)
2

= ||A||2F − σ
2
k

(A′′k)
2

= ||A||2F + σ2
k. (9.31)

We know E
(
Xd

)
= ||A||2F , so µ controls multiplicative deviation above or below the

expectation value. Furthermore, if

νk = − ln

[
1− σ2

k

||A||2F

]

λk = ln

[
1 +

σ2
k

||A||2F

]
, (9.32)

then

P
[
Xd ≥ ||A||2F µ

]
≤ exp

[
−dµ

2
(µ− {ν1 + · · ·+ νr})

]
(9.33)

decays exponentially in d when

µ > 1 +
||A||22

||A||2F − ||A||
2
2

. (9.34)

176

Similarly,

P
[
Xd ≤ ||A||2F µ

]
≤ exp

[
−d

2
({λ1 + · · ·+ λr} − µ)

]
(9.35)

decays exponentially in d when µ ∈ [0, ln 2).

Proof. When r = 1 (that is, when A is a rank-one matrix), we can use Thm. 9.6 to

compute exponential bounds on tail probabilities. Because these bounds can be computed

exactly, we assume r ≥ 2.

Clearly X is a linear combination of chi-squared distributions, so by properties of the

moment generating function we have

MXd
(t) =

r∏
k=1

(
1− 2σ2

k

d
t

)− d
2

. (9.36)

Attempting to compute

min
t>0

e−atMXd
(t) (9.37)

will require factoring the roots of a degree r polynomial in t; a standard result of Galois

theory is that this is not possible in general for r ≥ 5. Instead, we set

t̄ =
d

2 ||A||2F
. (9.38)

Then, if we set a = µ ||A||2F for µ > 1, we have

P
[
Xd ≥ µ ||A||2F

]
≤ min

t>0
exp

(
−µ ||A||2F t

)
MXd

(t)

≤ exp
(
−µ ||A||2F t̄

)
MXd

(t̄)

= exp

(
−µd

2

) r∏
k=1

[
1− σ2

k

||A||2F

]− d
2

= exp

(
−µd

2

)
||A||rdF

r∏
k=1

(A′k)
−d
. (9.39)

Here, A′k is as defined in Eq. (9.31). Similarly, for µ ∈ [0, 1) and a = µ ||A||2F , we have

177

P
[
Xd ≤ µ ||A||2F

]
≤ min

t>0
exp

(
µ ||A||2F t

)
MXd

(−t)

≤ exp
(
µ ||A||2F t̄

)
MXd

(−t̄)

= exp

(
µd

2

) r∏
k=1

[
1 +

σ2
k

||A||2F

]− d
2

= exp

(
µd

2

)
||A||rdF

r∏
k=1

(A′′k)
−d
. (9.40)

A′′k is defined in Eq. (9.31). This proves the desired bounds as stated in the theorem.

Stronger tail probability bounds could be determined but we will not pursue the matter

here, for to do so may require knowledge of the singular value decay.

We now focus on determining when the tail probabilities decay exponentially in d.

Looking at the upper tail probability, we have

P
[
Xd ≥ µ ||A||2F

]
≤ exp

(
−µd

2

)
||A||rdF

r∏
k=1

(A′k)
−d

= exp

(
−d

2
[µ− {ν1 + · · ·+ νr}]

)
, (9.41)

where

νk = − ln

[
1− σ2

k

||A||2F

]
. (9.42)

We will have exponential tail probability decay in d if

ν1 + · · ·+ νr < µ. (9.43)

We know − lnx is a convex function, so − ln(1−x) is convex on [0, 1). For any α ∈ (0, 1),

we have

ln

(
1

1− x

)
≤ x

α
ln

(
1

1− α

)
. (9.44)

Because r ≥ 2, we have σ1 = ||A||2 < ||A||F and set α =
||A||22
||A||2F

< 1. It now follows that

178

ν1 + · · ·+ νr ≤
1

α
ln

(
1

1− α

)[
σ2
1

||A||2F
+ · · ·+ σ2

r

||A||2F

]

=
1

α
ln

(
1 +

α

1− α

)
≤ 1 +

α

1− α

= 1 +
||A||22

||A||2F − ||A||
2
2

, (9.45)

where we used ln(1 + x) ≤ x in the last inequality. So long as

µ > 1 +
||A||22

||A||2F − ||A||
2
2

, (9.46)

we have exponential decay in d.

We now look at the lower tail probability. For µ ∈ [0, 1), we have

P
[
Xd ≤ ||A||2F µ

]
≤ exp

(
dµ

2

)
||A||drF

r∏
k=1

(A′′k)
−d

= exp

[
d

2
{µ− (λ1 + · · ·+ λr)}

]
, (9.47)

where

λk = ln

[
1 +

σ2
k

||A||2F

]
. (9.48)

To have exponential decay in probability, we require

λ1 + · · ·+ λr > µ . (9.49)

Now, we know

ln (1 + x) ≥ x ln 2 x ∈ [0, 1] , (9.50)

which implies

179

λ1 + · · ·+ λr ≥
σ2
1

||A||2F
ln 2 + · · ·+ σ2

r

||A||2F
ln 2

= ln 2. (9.51)

Therefore, so long as µ < ln 2, we have exponentially decaying tail probabilities in d.

We now analyze the situation for power iteration. Let α ≥ 1
2

and define

Yα = σ2α
1 ξ21 + · · ·+ σ2α

r ξ
2
r . (9.52)

Additionally, let

Y d,α =
1

d
[Y1,α + ·+ Yd,α] , (9.53)

where Yi,α are independent and identically distributed realizations of Yα. Naturally,

E(Yα) = E(Y d,α) = ||A||2αs,2α and it clear we have

V(Y d,α) =
1

d
V(Yα)

=
2 ||A||4αs,4α

d
. (9.54)

We have the analogous theorem:

Theorem 9.8 (Probabilistic Error Bounds for Power Iteration)

Given Y d as defined in Eq. (9.53) with r ≥ 2 and

ν̄k = − ln

[
1− σ2α

k

||A||2αs,2α

]

λ̄k = ln

[
1 +

σ2α
k

||A||2αs,2α

]
, (9.55)

then

180

P
[
Y d ≥ ||A||2αs,2α µ

]
≤ exp

[
−dµ

2
(µ− {ν̄1 + · · ·+ ν̄r})

]
(9.56)

decays exponentially in d when

µ > 1 +
||A||2αs,∞

||A||2αs,2α − ||A||
2α
2,∞

. (9.57)

Similarly,

P
[
Y d ≤ ||A||2αs,2α µ

]
≤ exp

[
−d

2

({
λ̄1 + · · ·+ λ̄r

}
− µ

)]
(9.58)

decays exponentially in d when µ ∈ [0, ln 2).

Proof. The proof follows the same argument as that of Thm. 9.7. We obtain the results

of Thm. 9.7 when α = 1, as expected.

The above theorem ensures that independent realizations of Eq. (9.16) closely match

the expected value. This will make it possible for us to bound ||·||s,p depending on the

power as well as allowing for a relative stopping criterion in these norms.

9.7 Stopping Criteria Comparison

In this section we compare the different error bounds and algorithms that have been

discussed previously by running a set of tests.

9.7.1 Matrix Types

We will be testing our algorithms on a few different classes of matrices: algebraic decay,

exponential decay, S-shaped decay, and a Devil’s staircase. These matrices are chosen

because they are similar to those in [75]. All these matrices have the form UDV ∗, where

U and V are random orthogonal matrices and D contains positive diagonal entries which

vary depending on the matrix. All matrices have ||A||2 ≈ 1 and U, V ∈ R1000×100.

181

0 20 40 60 80 10010-16

10-14

10-12

10-10

10-8

10-6

10-4

10-2

100

Matrix A1

Matrix A2

Matrix E1

Matrix E2

Matrix S

Matrix D

Figure 9.1: A plot of the singular values for the matrices we are investigating.

Specifically, we choose the following for D:

• Algebraic decay: dk = k−β for β ∈ {0.5, 2}. We will refer to these matrices as

Matrix A1 and Matrix A2.

• Exponential decay: dk = 2−β(k−1)/100 for β ∈ {52, 113}. This leads to exponential

decay with values ending approximately at 10−16 and 10−34. To machine precision

using double arithmetic, the second matrix has rank 46. We will refer to these

matrices as Matrix E1 and Matrix E2.

• S-shaped decay: dk = 100εmach +
[
1 + 2k−26

]−1
. We will call this Matrix S.

• Devil’s Staircase: d10(k−1)+j = 101−k for j ∈ {1, 2, · · · , 10} and k ∈ {1, 2, · · · , 10};

that is, we have 10 singular values of value 1 = 100, 10 singular values of value

10−1, continuing until we have 10 singular values of value 10−9. We will call this

Matrix D.

A plot of the singular values can be seen in Fig. 9.1.

9.7.2 Norm Approximation

We begin by showing how poorly the HMT error bound from Lem. 9.2 is by using it to

estimate ||A||2; the results are shown in Table 9.2, and we remember ||A||2 ≈ 1. We let

182

α ∈ {2, 5, 10} and choose the number of samples p so that αp ≤ 10−` for various `. To

allow for comparisons, we let αp ∈ {10−9, 10−12, 10−15}. It is clear that in every case

the norm is overestimated, always 3× and frequently 10× larger; furthermore, smaller

α always leads to a more accurate estimate. As we can see, we greatly overestimate

the norm. We are able to accurately measure the F-norm as seen in Fig. 9.2 using

our stochastic estimate; note the logarithmic scale on the number of columns (d). We

also include estimates of the squared F-norm in Fig. 9.3 including mean and standard

deviations as well as the theoretical standard deviations; the predicted results accurately

match expected results. We averaged 10,000 trials to obtain the statistics for these

results. In order to obtain the theoretical standard deviations in Fig. 9.3, we took the

square root of the variance from Eq. (9.27).

9.7.3 Adaptive Comparison

We now compare some of the adaptive low-rank algorithms; in particular, we use Alg. 5

with the HMT stopping criterion, the YGL algorithm in Alg. 7, and the new randomized

low-rank compression algorithm in Alg. 8. Once each algorithm has determined enough

random samples have been computed, a pivoted QR factorization is computed on the

entire batch and the factorization is truncated below the specified tolerance. This last

part (pivoted QR) is not an explicit feature of Algs. 5–7 but is added due to it being

necessary in the situation where our new algorithm was developed [33]. These results

can be found in Table 9.3; the minimum samples required to meet the specified tolerance

(as determined by the SVD) are given in Table 9.4. The averaged number of random

samples used is computed as well as the average 2-norm error taken over 1,000 trials.

While the YGL and new algorithm bounds are related to the F-norm, the 2-norm is of

primary importance. Random samples are computed in blocks of 16 random samples

and, due to the nature of our new algorithm, the minimum possible number of samples

used in Alg. 8 is 32: 16 samples for initial Q and 16 samples for the error estimate. The

183

1E-9 1E-12 1E-15
p M S p M S p M S

Matrix A1
2 30 5.11 0.53 40 5.23 0.52 50 5.32 0.52
5 13 11.8 1.4 18 12.2 1.4 22 12.4 1.3
10 9 22.9 2.8 12 23.5 2.8 15 24.1 2.7

Matrix A2
2 30 3.73 0.71 40 3.90 0.69 50 4.03 0.68
5 13 8.02 1.93 18 8.52 1.86 22 8.85 1.82
10 9 14.8 4.0 12 15.8 3.9 15 16.5 3.8

Matrix E1
2 30 4.11 0.64 40 4.26 0.63 50 4.38 0.62
5 13 9.14 1.72 18 9.58 1.68 22 9.86 1.66
10 9 17.2 3.6 12 18.0 3.5 15 18.7 3.4

Matrix E2
2 30 3.81 0.70 40 3.98 0.68 50 4.10 0.67
5 13 8.27 1.90 18 8.78 1.83 22 9.07 1.79
10 9 15.3 3.94 12 16.3 3.84 15 17.0 3.74

Matrix S
2 30 10.1 0.6 40 10.2 0.6 50 10.3 0.6
5 13 24.1 1.6 18 24.5 1.6 22 24.8 1.5
10 9 47.0 3.5 12 47.9 3.3 15 48.5 3.2

Matrix D
2 30 7.36 0.64 40 7.51 0.61 50 7.61 0.60
5 13 17.2 1.8 18 17.7 1.7 22 18.0 1.6
10 9 33.3 3.7 12 34.2 3.6 15 34.8 3.5

Table 9.2: Upper bound of ||A||2 based on Lemma 9.2 (HMT) for different failure prob-
abilities (columns) and α (rows). p is the smallest integer for which α−p ≤ 10−`. We
performed 10,000 trials and computed the mean (M) and standard deviation (S). The
correct values are ||A||2 ≈ 1.

184

100 101 102 103

Number of Columns (d)

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6
M

e
a
n

 a
n

d
 S

td
Matrix A1 Norm Distribution

True

Sampled

(a) Matrix A1

100 101 102 103

Number of Columns (d)

0.4

0.6

0.8

1.0

1.2

1.4

1.6

M
e
a
n

 a
n

d
 S

td

Matrix A2 Norm Distribution
True

Sampled

(b) Matrix A2

100 101 102 103

Number of Columns (d)

0.9

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

M
e
a
n

 a
n

d
 S

td

Matrix E1 Norm Distribution
True

Sampled

(c) Matrix E1

100 101 102 103

Number of Columns (d)

0.6

0.7

0.8

0.9

1.0

1.1

1.2

1.3

1.4

1.5

M
e
a
n

 a
n

d
 S

td

Matrix E2 Norm Distribution
True

Sampled

(d) Matrix E2

100 101 102 103

Number of Columns (d)

4.2

4.4

4.6

4.8

5.0

5.2

5.4

M
e
a
n

 a
n

d
 S

td

Matrix S Norm Distribution
True

Sampled

(e) Matrix S

100 101 102 103

Number of Columns (d)

2.6

2.8

3.0

3.2

3.4

3.6

3.8

M
e
a
n

 a
n

d
 S

td

Matrix D Norm Distribution
True

Sampled

(f) Matrix D

Figure 9.2: We performed 10,000 trials and computed the mean (Green) and standard
deviation (Blue) of ||AΩ||F for columns d ∈ {2, 4, 8, · · · , 512}. The true F-norm value is
Black.

185

100 101 102 103

Number of Columns (d)

3.5

4.0

4.5

5.0

5.5

6.0

6.5
M

e
a
n

 a
n

d
 S

td
Matrix A1 Norm^2 Distribution

True

Sampled

(a) Matrix A1

100 101 102 103

Number of Columns (d)

0.0

0.5

1.0

1.5

2.0

2.5

M
e
a
n

 a
n

d
 S

td

Matrix A2 Norm^2 Distribution
True

Sampled

(b) Matrix A2

100 101 102 103

Number of Columns (d)

0.5

1.0

1.5

2.0

2.5

3.0

3.5

M
e
a
n

 a
n

d
 S

td

Matrix E1 Norm^2 Distribution
True

Sampled

(c) Matrix E1

100 101 102 103

Number of Columns (d)

0.0

0.5

1.0

1.5

2.0

2.5

M
e
a
n

 a
n

d
 S

td

Matrix E2 Norm^2 Distribution
True

Sampled

(d) Matrix E2

100 101 102 103

Number of Columns (d)

18

20

22

24

26

28

30

M
e
a
n

 a
n

d
 S

td

Matrix S Norm^2 Distribution
True

Sampled

(e) Matrix S

100 101 102 103

Number of Columns (d)

6

7

8

9

10

11

12

13

14

M
e
a
n

 a
n

d
 S

td

Matrix D Norm^2 Distribution
True

Sampled

(f) Matrix D

Figure 9.3: We performed 10,000 trials and computed the mean (Green) and standard
deviation (Blue) of ||AΩ||2F for columns d ∈ {2, 4, 8, · · · , 512}. The true squared F-norm
value is Black and the theoretical standard deviation bounds from Eq. (9.27) are Red.

186

YGL algorithm stops if we compute E ≤ 0.

From the results, we see that the HMT bound always performs the worst in every case;

this is expected from it overestimating the 2-norm. Outside of this, the YGL and GEB

algorithms are close. Matrix A1 is particularly challenging: it has slow singular value

decay and our algorithm performs no power iteration. For this matrix, YGL does better

than GEB in every case (they perform equally well with a relative error of 0.1), in part

because knowing the error exactly is important. For Matrix A2, YGL does better for 0.1

relative error, with GEB using fewer or equal samples in the other cases. Matrices E1, E2,

and S are similar: YGL and GEB are about the same for large relative errors but, due to

the inherent error bound restrictions, the new algorithm is better for smaller tolerances.

For Matrix D, YGL did a little better than GEB. Overall, the results here show that the

YGL stopping criterion may be slightly better than the GEB stopping criterion when

for εrel ≥ O(
√
εmach), but our stochastic F-norm bound allows us to determine relative

errors to smaller tolerances.

We now perform more runs, except here we only look at the new stopping criterion; we

set the blocksize to 5 and change the relative tolerances. Results are shown in Table 9.5,

and Table 9.6 contains the minimum required ranks. The relative tolerances here are

difficult and are meant to test the limits of our stopping criterion. For Matrix E1, we

are able to have relative tolerances down to 5E-15 without having any problems with

the stopping criterion (that is, every trial determined 100 samples was sufficient for the

specified tolerance); some trials failed to satisfy the stopping criterion for 1E-15 and no

trials satisfied the stopping criterion for 5E-16. These difficulties are expected because

we are getting close to the limitations of machine precision (εmach ≈ 10−16 for double

precision). For Matrix S, we note that we use an average of 107 samples for the tolerance

1E-14, which is more than the 100 samples that should be sufficient ideally. For Matrix

D, we used single precision. We did not have any problems with relative tolerances

down to 5E-6; for the tolerance 1E-6, most trials (738/1000) failed to satisfy the stopping

187

criterion. Again, this is expected because εmach ≈ 10−7 in single precision. Overall, we

see that our new stopping criterion allows us to get close to machine precision, which is

not the case when using the HMT or YGL algorithms.

9.7.4 Stopping Criteria Discussion

The results of this section show our new stopping criterion does well, usually being on

par or better than other stopping criteria while allowing for small tolerances. One no-

ticeable difficultly, shared by others, is using too many additional samples to perform a

low-order approximation (εrel & 0.1) for matrices with slow decay without using power

iteration; part of the difficulty comes from using F-norm bounds when desiring 2-norm

accuracy. Outside of this limited range, the error closely matches the specified tolerance,

keeping communication-heavy computations to one rank-revealing QR factorization. Ad-

ditionally, we showed our stopping criterion allows us to approximate matrices to relative

tolerances close to machine precision.

188

0.75 0.5 0.25 0.1
Matrix A1 Err Samp Err Samp Err Samp Err Samp

HMT 0.19 128 0.16 128 0.13 128 3E-15 128
YGL 0.45 20 0.24 59 0.16 96 3E-3 112
GEB 0.22 77 0.18 94 0.15 102 5E-3 112

1E-1 1E-2 1E-3 1E-4
Matrix A2 Err Samp Err Samp Err Samp Err Samp

HMT 4E-2 42 3E-3 92 3E-4 128 2E-15 128
YGL 4E-2 16 5E-3 32 4E-4 96 2E-15 112
GEB 4E-2 32 5E-3 32 4E-4 80 2E-15 112

1E-3 1E-6 1E-9 1E-12
Matrix E1 Err Samp Err Samp Err Samp Err Samp

HMT 4E-4 48 4E-7 76 4E-10 96 4E-13 112
YGL 6E-4 32 7E-7 48 1E-9 64 6E-10 64
GEB 6E-4 32 7E-7 48 1E-9 65 7E-13 94

1E-3 1E-6 1E-9 1E-12
Matrix E2 Err Samp Err Samp Err Samp Err Samp

HMT 3E-4 32 3E-7 48 4E-10 53 3E-13 82*
YGL 6E-4 16 4E-7 32 8E-10 32 1E-10 32
GEB 3E-4 32 4E-7 32 8E-10 32 5E-13 48

1E-3 1E-6 1E-9 1E-12
Matrix S Err Samp Err Samp Err Samp Err Samp

HMT 4E-4 64 3E-7 80 4E-10 80 3E-13 200+
YGL 5E-4 48 2E-6 48 6E-10 64 2E-11 64
GEB 5E-4 48 9E-7 59 6E-10 64 6E-13 80

1E-1 1E-3 1E-5 1E-7
Matrix D Err Samp Err Samp Err Samp Err Samp

HMT 3E-2 51 4E-4 80 4E-6 96 4E-8 112
YGL 9E-2 27 6E-4 48 1E-5 64 2E-7 85
GEB 5E-2 32 6E-4 48 9E-6 69 6E-8 96

Table 9.3: QB approximation results for Matrices A1, A2, E1, E2, S, and D. For each
absolute error tolerance, we averaged 1,000 trials to determine the average error (Err)
and average samples used (Samp) in order to compute a QB approximation once we used
either the HMT stopping criterion, the YGL stopping criterion, or the new stopping
criterion to determine when we had approximated the range. Random samples were
computed in blocks of 16. In the case when we used 200+ samples, we were not able
to meet the HMT stopping criterion and used the maximum of 200 random samples.
Some of the data here was originally in [33]. The minimum possible ranks can be found
in Table 9.4. A “*” means that there were some runs which reached the maximum
allowable samples of 200 before compression.

189

Matrix A1 0.75 0.5 0.25 0.1
Min Rank 1 4 16 100

Matrix A2 1E-1 1E-2 1E-3 1E-4
Min Rank 3 10 31 100

Matrix E1 1E-3 1E-6 1E-9 1E-12
Min Rank 19 38 57 76

Matrix E2 1E-3 1E-6 1E-9 1E-12
Min Rank 9 18 27 36

Matrix S 1E-3 1E-6 1E-9 1E-12
Min Rank 35 45 55 65

Matrix D 1E-1 1E-3 1E-5 1E-7
Min Rank 20 40 60 80

Table 9.4: Here are the absolute minimum ranks required for Matrices A1, A2, E1, E2,
S, and D.

1E-14 5E-15 1E-15 5E-16
Matrix E1 Err Samp Err Samp Err Samp Err Samp

GEB 1E-14 97 4E-15 100 6E-16 144* 7E-16 200+

5E-13 1E-13 4E-14 1E-14
Matrix S Err Samp Err Samp Err Samp Err Samp

GEB 4E-13 75 7E-14 96 5E-14 100 9E-15 107

5E-5 1E-5 5E-6 1E-6
Matrix D Err Samp Err Samp Err Samp Err Samp
GEB (s) 4E-5 59 9E-6 66 9E-6 71 6E-7 186*

Table 9.5: Tough QB approximation results for Matrices E1, S, and D using the new
GEB stopping criterion. For each absolute error tolerance, we averaged 1,000 trials to
determine the average error (Err) and average samples used (Samp) in order to compute
a QB approximation once we used the new stopping criterion to determine when we had
approximated the range. Random samples were computed in blocks of 5. For matrix D,
we used single precision. In the case when we used 200+ samples, we were not able
to meet the HMT stopping criterion and used the maximum of 200 random samples.
The minimum possible ranks can be found in Table 9.6. A “*” means that there were
some runs which reached the maximum allowable samples of 200 before compression. For
matrix E1 with εrel=1E-15, 7.7% of the trials used over 200 samples (and so failed to
stop); for matrix D with εrel=1F-6, 73.8% of the trials used over 200 samples.

190

Matrix E1 1E-14 5E-15 1E-15 5E-16
Min Rank 88 90 95 96

Matrix S 5E-13 1E-13 5E-14 1E-14
Min Rank 66 69 71 100

Matrix D 5E-5 1E-5 5E-6 1E-6
Min Rank 50 60 60 70

Table 9.6: Here are the absolute minimum ranks required for Matrices E1, S, and D.

Algorithm 8 Randomized Block Low-Rank Approximation (New)

1: function random new low rank(A,d,εabs,εrel) . Builds QB approximation
2: Q = []; n = cols(A)
3: Ωi = rand(n, d), Si = AΩi for i ∈ {1, 2} . d is block size
4: S =

[
S1 S2

]
5: [Q1, R1] = qr(S1); Q = Q1

6: ρ = ||S1||F /
√
d

7: if minj |(R1)jj| < max(εabs, εrelρ) then
8: loop bool = false . S1 is numerically rank-deficient
9: else
10: loop bool = true

11: end if
12: k = 1
13: while loop bool do
14: k = k + 1
15: Ŝk = (I −QQ∗)2 Sk . 2× GS orthogonalization for numerical stability

16: if ||Ŝk||F < max(εabs
√
d , εrel||Sk||F) then

17: break . Range of A is known to specified tolerance
18: end if
19: Ωk+1 = rand(n, d); Sk+1 = AΩk+1

20: S =
[
S Sk+1

]
21: [Qk, Rk] = qr(Ŝk)
22: if minj |(Rk)jj| < max(εabs, εrelρ) then

23: break . Ŝk is numerically rank-deficient
24: end if
25: Q =

[
Q Qk

]
26: end while
27: Q = rrqr(S, εabs, εrel)
28: B = Q∗A
29: return Q, B . We have the approximation A ≈ QB
30: end function

191

Chapter 10

Conclusion

10.1 Discussion of Results and Future Directions for

MSN

In this dissertation we investigated the structure of Chebyshev-Vandermonde matrices;

by doing so, we were able to develop fast algorithms for solving problems in interpola-

tion and ordinary differential equation boundary value problems. We showed examples

and determined that the results were on par with many methods as well as, at times,

producing more accurate approximations. Under certain circumstances, we were able to

prove that our methods converge to the underlying solution.

There are multiple directions where this work could continue. First, we could look into

implementing fast algorithms in 2D and 3D in order to see there are more advantages with

MSN over standard Chebyshev interpolation for smooth functions or against standard

filters for rough functions. Additionally, we could implement the ODE BVP fast solver

using fast algorithms for SSS or HSS matrices. From there, we could look into solving

2D and 3D elliptic boundary value problems. In this case, it will be interesting to see

if the methods we used in 1D variable coefficients here could be extended to 2D and

3D variable coefficients. The difficulty will come from the fact that in 2D, we will be

192

summing tensor products of three terms.

While interpolation on Chebyshev nodes is fast because of the DCT and IDCT, this

could also hold in general, such as interpolating on Legendre nodes using Legendre poly-

nomials as a basis and performing MSN in this basis. On the other hand, there is still

structure in the Gram matrix V D−2s V ∗, and it may be possible to invert this quickly by

converting it into HSS form exactly for certain s values. Doing so would require knowl-

edge of structured matrices and solvers, but should speed up general interpolation and

make it useful. It would be interesting to see if this could be used in 2D interpolation.

10.2 Discussion of Results and Future Directions for

Randomized Low-Rank Approximations

In Chapter 9 we investigated the blocked form of the low-rank fixed-precision problem

in order to develop a stopping criterion useful for relative tolerances down to machine

precision. We were able to prove asymptotically that this method would produce an

accurate approximation to the Frobenius norm of a matrix, a critical part of the rela-

tive stopping criterion. The examples showed our method usually produces a sufficient

number of random samples, though not too many, in order to reach the desired 2-norm

error.

The stochastic error bound that we developed in the F-norm could be improved.

First, it would be useful to determine if we can find a random variable f(Ax) with

Ef(Ax) = ||A||α2 for some power α; that is, we want to find a way to combine random

samplings of the range of a matrix in such a way that the expected value of the random

variable is (some power of) the matrix 2-norm. Most, if not all, would prefer to bound

the 2-norm rather than the F-norm, and yet accurately approximating the 2-norm is a

challenge.

In our low-rank approximations, the final computation before returning our low-rank

193

approximation was computing a pivoted QR factorization. A BLAS-3 level QR with

Column Pivoting is available in LAPACK [2, 54], yet it is well-known that this can fail

for some matrices [42]; this has lead to research into better pivoting strategies [14, 19].

The best appears to be the Strong Rank-Revealing QR factorization from [37], yet there is

no known efficient implementation of this algorithm. It would be useful to first develop

a BLAS-2, and then BLAS-3, version. The main difficulty comes from the fact that

the pivoting strategy is more involved and requires more communication. This required

communication is particularly challenging in distributed memory machines and there has

been work to trade communication for flops; see [23, 24, 44, 63] for some examples. Even

without this, in problems where there is a hierarchical chain of QR factorizations, like

those in Randomized HSS constructions [33], better pivoting at the lowest level would

lead to smaller ranks overall. An implementation of SRRQR would likely require multiple

passes: the first pass could either be a BLAS-3 QR (not pivoted) or BLAS-3 pivoted QR;

the second pass could be a blocked version of the SRRQR algorithm acting on adjacent

panels; a final BLAS-2 pass could be performed to check for any final pivots. While

this would be complicated, it would be useful for the entire computing community as

rank-revealing QR factorizations are essential.

194

Bibliography

[1] Milton Abramowitz and Irene A Stegun. Handbook of mathematical functions: with

formulas, graphs, and mathematical tables. Vol. 55. Courier Corporation, 1965.

[2] Edward Anderson et al. LAPACK Users’ guide. Vol. 9. Siam, 1999.

[3] Uri M Ascher, Robert MM Mattheij, and Robert D Russell. Numerical solution of

boundary value problems for ordinary differential equations. Vol. 13. Siam, 1994.

[4] Uri M Ascher and Linda R Petzold. Computer methods for ordinary differential

equations and differential-algebraic equations. Vol. 61. Siam, 1998.

[5] Jared L Aurentz and Lloyd N Trefethen. “Block operators and spectral discretiza-

tions”. In: SIAM Review 59.2 (2017), pp. 423–446.

[6] Jeff Bezanson et al. “Julia: A fresh approach to numerical computing”. In: SIAM

review 59.1 (2017), pp. 65–98.

[7] Rajendra Bhatia. Matrix analysis. Vol. 169. Springer Science & Business Media,

2013.

[8] David Bindel et al. “On computing Givens rotations reliably and efficiently”. In:

ACM Transactions on Mathematical Software (TOMS) 28.2 (2002), pp. 206–238.

[9] Å. Björck. “Numerics of Gram-Schmidt orthogonalization”. In: Linear Algebra and

its Applications 197-198 (1994), pp. 297–316. issn: 0024-3795.

[10] John P Boyd. Chebyshev and Fourier spectral methods. Courier Corporation, 2001.

195

[11] P. Brémaud. Discrete Probability Models and Methods: Probability on Graphs and

Trees, Markov Chains and Random Fields, Entropy and Coding. Probability Theory

and Stochastic Modelling. Springer International Publishing, 2017. isbn: 978331943-

4766.

[12] Susanne Brenner and Ridgway Scott. The mathematical theory of finite element

methods. Vol. 15. Springer Science & Business Media, 2007.

[13] L. Brutman. “On the Lebesgue Function for Polynomial Interpolation”. In: SIAM

Journal on Numerical Analysis 15.4 (1978), pp. 694–704. doi: 10.1137/0715046.

eprint: https://doi.org/10.1137/0715046. url: https://doi.org/10.1137/

0715046.

[14] Tony F Chan. “Rank revealing QR factorizations”. In: Linear algebra and its ap-

plications 88 (1987), pp. 67–82.

[15] S. Chandrasekaran, M. Gu, and W. Lyons. “A fast adaptive solver for hierarchically

semiseparable representations”. In: CALCOLO 42.3 (Dec. 2005), pp. 171–185. issn:

1126-5434.

[16] S. Chandrasekaran, K.R. Jayaraman, and H.N. Mhaskar. “Minimum Sobolev norm

interpolation with trigonometric polynomials on the torus”. In: Journal of Com-

putational Physics 249.Supplement C (2013), pp. 96–112. issn: 0021-9991. doi:

https : / / doi . org / 10 . 1016 / j . jcp . 2013 . 03 . 041. url: http : / / www .

sciencedirect.com/science/article/pii/S0021999113002192.

[17] Shiv Chandrasekaran, Ming Gu, and Timothy Pals. “A fast ULV decomposition

solver for hierarchically semiseparable representations”. In: SIAM Journal on Ma-

trix Analysis and Applications 28.3 (2006), pp. 603–622.

[18] Shivkumar Chandrasekaran, CH Gorman, and Hrushikesh Narhar Mhaskar. “Mini-

mum Sobolev norm interpolation of scattered derivative data”. In: Journal of Com-

putational Physics 365 (2018), pp. 149–172.

196

http://dx.doi.org/10.1137/0715046
https://doi.org/10.1137/0715046
https://doi.org/10.1137/0715046
https://doi.org/10.1137/0715046
http://dx.doi.org/https://doi.org/10.1016/j.jcp.2013.03.041
http://www.sciencedirect.com/science/article/pii/S0021999113002192
http://www.sciencedirect.com/science/article/pii/S0021999113002192

[19] Shivkumar Chandrasekaran and Ilse CF Ipsen. “On rank-revealing factorisations”.

In: SIAM Journal on Matrix Analysis and Applications 15.2 (1994), pp. 592–622.

[20] Shivkumar Chandrasekaran and Hrushikesh Narhar Mhaskar. “A minimum Sobolev

norm technique for the numerical discretization of PDEs”. In: Journal of Compu-

tational Physics 299 (2015), pp. 649–666.

[21] Shiv Chandrasekaran et al. “Some fast algorithms for sequentially semisepara-

ble representations”. In: SIAM Journal on Matrix Analysis and Applications 27.2

(2005), pp. 341–364.

[22] Philip J Davis. Interpolation and approximation. Courier Corporation, 1975.

[23] James W Demmel et al. “Communication avoiding rank revealing QR factorization

with column pivoting”. In: SIAM Journal on Matrix Analysis and Applications 36.1

(2015), pp. 55–89.

[24] Simplice Donfack, Laura Grigori, and Alok Kumar Gupta. “Adapting communic-

tion-avoiding LU and QR factorizations to multicore architectures”. In: 2010 IEEE

International Symposium on Parallel & Distributed Processing (IPDPS). IEEE.

2010, pp. 1–10.

[25] Tobin A Driscoll and Nicholas Hale. “Rectangular spectral collocation”. In: IMA

Journal of Numerical Analysis 36.1 (2015), pp. 108–132.

[26] Tobin A Driscoll, Nicholas Hale, and Lloyd N Trefethen. Chebfun guide. 2014.

[27] Harry Dym. Linear algebra in action. Vol. 78. American Mathematical Soc., 2013.

[28] P Erdos. “On some convergence properties of the interpolation polynomials”. In:

Annals of Mathematics (1943), pp. 330–337.

[29] Mariano Gasca and Thomas Sauer. “On the history of multivariate polynomial in-

terpolation”. In: Numerical Analysis: Historical Developments in the 20th Century.

Elsevier, 2001, pp. 135–147.

197

[30] Mariano Gasca and Thomas Sauer. “Polynomial interpolation in several variables”.

In: Advances in Computational Mathematics 12.4 (2000), p. 377.

[31] Pieter Ghysels et al. “A robust parallel preconditioner for indefinite systems us-

ing hierarchical matrices and randomized sampling”. In: 2017 IEEE International

Parallel and Distributed Processing Symposium (IPDPS). IEEE. 2017, pp. 897–906.

[32] G.H. Golub and C.F. Van Loan. Matrix Computations. Matrix Computations.

Johns Hopkins University Press, 2012. isbn: 9781421408590. url: https://books.

google.com/books?id=5U-l8U3P-VUC.

[33] Christopher Gorman et al. “Matrix-free construction of HSS representation using

adaptive randomized sampling”. In: CoRR abs/1810.04125 (2018). arXiv: 1810.

04125. url: http://arxiv.org/abs/1810.04125.

[34] David Gottlieb and Chi-Wang Shu. “On the Gibbs phenomenon and its resolution”.

In: SIAM review 39.4 (1997), pp. 644–668.

[35] Ronald L Graham et al. “Concrete mathematics: a foundation for computer sci-

ence”. In: Computers in Physics 3.5 (1989), pp. 106–107.

[36] Ming Gu. “Subspace iteration randomization and singular value problems”. In:

SIAM Journal on Scientific Computing 37.3 (2015), A1139–A1173.

[37] Ming Gu and Stanley C Eisenstat. “Efficient algorithms for computing a strong

rank-revealing QR factorization”. In: SIAM Journal on Scientific Computing 17.4

(1996), pp. 848–869.

[38] MATLAB User’s Guide. “The mathworks”. In: Inc., Natick, MA 5 (1998), p. 333.

[39] Wolfgang Hackbusch. “A Sparse Matrix Arithmetic Based on H-Matrices. Part I:

Introduction to H-Matrices”. In: Computing 62.2 (1999), pp. 89–108.

198

https://books.google.com/books?id=5U-l8U3P-VUC
https://books.google.com/books?id=5U-l8U3P-VUC
http://arxiv.org/abs/1810.04125
http://arxiv.org/abs/1810.04125
http://arxiv.org/abs/1810.04125

[40] N. Halko, P. G. Martinsson, and J. A. Tropp. “Finding structure with randomness:

probabilistic algorithms for constructing approximate matrix decompositions”. In:

SIAM Rev. 53.2 (2011), pp. 217–288. issn: 0036-1445.

[41] Nicholas J. Higham. Accuracy and Stability of Numerical Algorithms. Second. Phila-

delphia, PA, USA: Society for Industrial and Applied Mathematics, 2002, pp. xxx

+ 680. isbn: 0-89871-521-0.

[42] William Kahan. “Numerical linear algebra”. In: Canadian Mathematical Bulletin

9.5 (1966), pp. 757–801.

[43] Samuel Karlin and John M Karon. “On Hermite-Birkhoff interpolation”. In: Jour-

nal of Approximation Theory 6.1 (1972), pp. 90–115.

[44] Amal Khabou et al. “LU factorization with panel rank revealing pivoting and its

communication avoiding version”. In: SIAM Journal on Matrix Analysis and Ap-

plications 34.3 (2013), pp. 1401–1429.

[45] Konrad Knopp. Theory and application of infinite series. Courier Corporation,

2013.

[46] Randall J LeVeque. Finite difference methods for ordinary and partial differential

equations: steady-state and time-dependent problems. Vol. 98. Siam, 2007.

[47] Xiao Liu, Jianlin Xia, and Maarten V De Hoop. “Parallel randomized and matrix-

free direct solvers for large structured dense linear systems”. In: SIAM Journal on

Scientific Computing 38.5 (2016), S508–S538.

[48] Georg Gunther Lorentz and KL Zeller. “Birkhoff interpolation”. In: SIAM Journal

on Numerical Analysis 8.1 (1971), pp. 43–48.

[49] RA Lorentz. “Multivariate Hermite interpolation by algebraic polynomials: A sur-

vey”. In: Journal of computational and applied mathematics 122.1-2 (2000), pp. 167–

201.

199

[50] Rudolph A Lorentz. Multivariate Birkhoff Interpolation. Springer, 1992.

[51] Per-Gunnar Martinsson. “A fast randomized algorithm for computing a hierar-

chically semiseparable representation of a matrix”. In: SIAM Journal on Matrix

Analysis and Applications 32.4 (2011), pp. 1251–1274.

[52] Per-Gunnar Martinsson and Sergey Voronin. “A randomized blocked algorithm for

efficiently computing rank-revealing factorizations of matrices”. In: SIAM Journal

on Scientific Computing 38.5 (2016), S485–S507.

[53] Andrew M Odlyzko and Arnold Schönhage. “Fast algorithms for multiple evalua-

tions of the Riemann zeta function”. In: Transactions of the American Mathematical

Society 309.2 (1988), pp. 797–809.

[54] Gregorio Quintana-Ort́ı, Xiaobai Sun, and Christian H Bischof. “A BLAS-3 version

of the QR factorization with column pivoting”. In: SIAM Journal on Scientific

Computing 19.5 (1998), pp. 1486–1494.

[55] Theodore J Rivlin. An introduction to the approximation of functions. Courier

Corporation, 2003.

[56] François-Henry Rouet et al. “A distributed-memory package for dense hierarchically

semi-separable matrix computations using randomization”. In: ACM Transactions

on Mathematical Software (TOMS) 42.4 (2016), p. 27.

[57] Walter Rudin et al. Principles of mathematical analysis. Vol. 3. 4.2. McGraw-hill

New York, 1976.

[58] Carl Runge. “Über empirische Funktionen und die Interpolation zwischen äquidis-

tanten Ordinaten”. In: Zeitschrift für Mathematik und Physik 46.224-243 (1901),

p. 20.

200

[59] A. Saibaba. “Randomized Subspace Iteration: Analysis of Canonical Angles and

Unitarily Invariant Norms”. In: SIAM Journal on Matrix Analysis and Applications

40.1 (2019), pp. 23–48. doi: 10.1137/18M1179432. eprint: https://doi.org/10.

1137/18M1179432. url: https://doi.org/10.1137/18M1179432.

[60] Arvind K Saibaba, Jonghyun Lee, and Peter K Kitanidis. “Randomized algo-

rithms for generalized Hermitian eigenvalue problems with application to comput-

ing Karhunen–Loève expansion”. In: Numerical Linear Algebra with Applications

23.2 (2016), pp. 314–339.

[61] Jie Shen, Yingwei Wang, and Jianlin Xia. “Fast structured direct spectral methods

for differential equations with variable coefficients, I. The one-dimensional case”.

In: SIAM Journal on Scientific Computing 38.1 (2016), A28–A54.

[62] Simon J Smith. “Lebesgue constants in polynomial interpolation”. In: Annales

Mathematicae et Informaticae. Vol. 33. 109-123. Eszterházy Károly College, Insti-

tute of Mathematics and Computer Science. 2006, pp. 1787–5021.

[63] Edgar Solomonik and James Demmel. “Communication-optimal parallel 2.5 D ma-

trix multiplication and LU factorization algorithms”. In: European Conference on

Parallel Processing. Springer. 2011, pp. 90–109.

[64] G.W. Stewart. “Block Gram-Schmidt Orthogonalization”. In: SIAM Journal on

Scientific Computing 31.1 (2008), pp. 761–775.

[65] József Szabados and Vertesi Peter. Interpolation of functions. World Scientific,

1990.

[66] Lloyd N Trefethen. Approximation theory and approximation practice. Vol. 128.

Siam, 2013.

[67] Lloyd N Trefethen, Ásgeir Birkisson, and Tobin A Driscoll. Exploring ODEs. Vol. 157.

SIAM, 2017.

201

http://dx.doi.org/10.1137/18M1179432
https://doi.org/10.1137/18M1179432
https://doi.org/10.1137/18M1179432
https://doi.org/10.1137/18M1179432

[68] Lloyd N Trefethen and JAC Weideman. “Two results on polynomial interpolation in

equally spaced points”. In: Journal of Approximation Theory 65.3 (1991), pp. 247–

260.

[69] Charles F Van Loan. “The ubiquitous Kronecker product”. In: Journal of compu-

tational and applied mathematics 123.1-2 (2000), pp. 85–100.

[70] J.M. Varah. “A lower bound for the smallest singular value of a matrix”. In: Linear

Algebra and its Applications 11.1 (1975), pp. 3–5. issn: 0024-3795. doi: https://

doi.org/10.1016/0024-3795(75)90112-3. url: http://www.sciencedirect.

com/science/article/pii/0024379575901123.

[71] P Vértesi. “Optimal Lebesgue constant for Lagrange interpolation”. In: SIAM Jour-

nal on Numerical Analysis 27.5 (1990), pp. 1322–1331.

[72] James Vogel et al. “Superfast divide-and-conquer method and perturbation analysis

for structured eigenvalue solutions”. In: SIAM Journal on Scientific Computing

38.3 (2016), A1358–A1382.

[73] Yuanzhe Xi, Jianlin Xia, and Raymond Chan. “A fast randomized eigensolver with

structured LDL factorization update”. In: SIAM Journal on Matrix Analysis and

Applications 35.3 (2014), pp. 974–996.

[74] Kuan Xu and Nicholas Hale. “Explicit construction of rectangular differentiation

matrices”. In: IMA Journal of Numerical Analysis 36.2 (2015), pp. 618–632.

[75] Wenjian Yu, Yu Gu, and Yaohang Li. “Efficient Randomized Algorithms for the

Fixed-Precision Low-Rank Matrix Approximation”. In: SIAM Journal on Matrix

Analysis and Applications 39.3 (2018), pp. 1339–1359.

[76] Antoni Zygmund. Trigonometric series. Vol. 1. Cambridge university press, 2002.

202

http://dx.doi.org/https://doi.org/10.1016/0024-3795(75)90112-3
http://dx.doi.org/https://doi.org/10.1016/0024-3795(75)90112-3
http://www.sciencedirect.com/science/article/pii/0024379575901123
http://www.sciencedirect.com/science/article/pii/0024379575901123

	Introduction
	Lagrange Interpolation and Known Difficulties
	Possible Solutions to Divergence of Lagrange Interpolation
	Interpolation in Higher Dimensions
	Hermite and Birkhoff Interpolation
	Characteristics of Good Algorithms
	The Minimum Sobolev Norm Method
	MSN Interpolation Examples
	Dissertation Outline
	Algorithms Similar to the MSN Method

	Notation Convention, Structured Rotations, and Kronecker Products
	Notation and Conventions
	Order Notation and Constant Convention
	Chebyshev Polynomials
	Function Spaces
	Matrix Notation and Norm Definitions
	DCT Convention

	Rotations and Structured Factorizations
	Householder Reflectors
	Givens Rotations

	Kronecker Products and Fast Matrix-Vector Multiplication
	Low-rank Matrices
	Householder Reflectors
	Givens Rotations

	Properties of Chebyshev-Vandermonde Matrices
	C/V Matrix Properties
	Multiplication of Chebyshev Polynomials
	Differentiation of Chebyshev Polynomials
	C/V Matrix Normal Equations
	Linear Combinations of C/V Matrices
	Multiplication and Derivative C/V Matrices
	Multiplication and Interpolation C/V Matrices

	C/V Matrices and Factorizations for 1D Interpolation
	General Algorithm for MSN Interpolation using LQ factorization
	1D C/V Interpolation Matrix: 2n+1 Columns
	Endpoint Interpolation
	1D C/V Interpolation Matrix: 2n+1 Columns with Endpoint Interpolation
	1D C/V Interpolation Matrix: 3n+1 Columns
	1D C/V Interpolation Matrix: 4n+1 Columns
	1D C/V Interpolation Matrix: 2Ln+1 Columns
	1D C/V Derivative Matrix: 2n+1 Columns; First Factorization
	1D C/V Derivative Matrix: 2n+1 Columns; Second Factorization
	1D C/V Derivative Matrix: 3n+1 Columns; First Factorization
	1D C/V Derivative Matrix: 4n+1 Columns; First Factorization
	1D C/V Derivative Matrix: 2n+1 Columns with Point Interpolation; First Factorization
	1D C/V Derivative Matrix: 2n+1 Columns with Endpoint Interpolation; First Factorization
	1D C/V Derivative Matrix: 2n+1 Columns with Endpoint Interpolation; Second Factorization
	1D C/V Birkhoff Interpolation Matrix: 2n+1 Columns, First Factorization

	C/V Matrices and Factorizations for Interpolation in Higher Dimensions
	C/V Matrices in Higher Dimensions
	2D C/V Interpolation Matrix: 2n+1 Columns with Boundary
	2D Full Birkhoff Interpolation Problem
	Extending Previous 2D C/V Interpolation Matrix Results

	Examples of MSN Function Interpolation
	Functions for Smooth Interpolation
	Results for Fast MSN Interpolation in 1D for Smooth Functions
	Interpolation Comparison
	Birkhoff Interpolation Comparison

	Results for Fast MSN Interpolation in 2D for Smooth Functions
	Gibbs Phenomenon and Smooth Cutoff Filters
	Functions for Rough Interpolation
	Results for Fast MSN Interpolation in 1D for Rough Functions
	Interpolation Comparison
	Birkhoff Interpolation Comparison

	Interpolation Convergence Proofs
	Main Idea
	IDCT Coefficients
	Important Summation Bounds
	Sobolev Embedding Theorems and Related Work
	Proof of 1D Interpolation for polynomials of degree 2n
	Proof of 1D Interpolation for polynomials of degree 2n with Endpoint Interpolation
	Proof of 1D Birkhoff Interpolation for polynomials of degree 2n with Point Interpolation
	Proof of 1D Full Birkhoff Interpolation for polynomials of degree 2n
	Proof of 1D Interpolation for polynomials of degree 2Ln
	Proof of Norm Convergence for 1D Interpolation of polynomials of degree 2n
	Extension to Higher Dimensions

	Fast Algorithms for ODEs
	General Setup for Linear ODEs
	Constant-Coefficient Scalar ODE
	Variable-Coefficient Scalar ODE
	Systems of ODEs
	Conditioning of H1 and Related Matrices
	Discussion of ODE Solvers and Extending Fast MSN Methods to PDEs

	Stopping Criterion for Randomized Low-Rank Approximations
	Randomized Low-Rank Approximation
	Stopping Criteria
	Previous Probabilistic Bounds
	Basic Probability Theory
	New Stopping Criterion
	Probability Theory Proofs
	Stopping Criteria Comparison
	Matrix Types
	Norm Approximation
	Adaptive Comparison
	Stopping Criteria Discussion

	Conclusion
	Discussion of Results and Future Directions for MSN
	Discussion of Results and Future Directions for Randomized Low-Rank Approximations

