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Parallelizing Skyline Queries for Scalable Distribution

Ping Wu, Caijie Zhang, Ying Feng, Ben Y. Zhao, Divyakant Agrawal and Amr El
Abbadi

University of California at Santa Barbara
{pingwu,caijie,yingf,ravenben,agrawal,amr}@cs.ucsb.edu

Abstract. Skyline queries help users make intelligent decisions over complex
data, where different and often conflicting criteria are considered. Current sky-
line computation methods are restricted to centralized query processors, limiting
scalability and imposing a single point of failure. In this paper, we address the
problem of parallelizing skyline query execution over a large number of machines
by leveraging content-based data partitioning. We present a novel distributed al-
gorithm that discovers skyline points progressively. We propose two mechanisms,
recursive region partitioning and dynamic region encoding, to enforce a partial or-
der on query propagation in order to pipeline query execution. Our analysis shows
that DSL is optimal in terms of the total number of local query invocations across
all machines. In addition, simulations and measurements of a deployed system
show that our system load balances communication and processing costs across
cluster machines, providing incremental scalability and significant performance
improvement over alternative distribution mechanisms.

1 Introduction

Today’s computing infrastructure makes a large amount of information available to con-
sumers, creating an information overload that threatens to overwhelm Internet users.
Individuals are often confronted with conflicting goals while making decisions based
on extremely large and complex data sets. Users often want to optimize their decision-
making and selection criteria across multiple attributes. For example, a user browsing
through a real-estate database for houses may want to minimize the price and maximize
the quality of neighborhood schools. Given such a multi-preference criteria, the system
should be able to identify all potentially “interesting” data records. Skyline queries pro-
vide a viable solution by finding data records not “dominated” by other records in the
system, where data record x dominates y if x is no worse than y in any dimension of
interest, and better in at least one dimension. Records or objects on the skyline are “the
best” under some monotonic preference functions 1.

A more general variant is the constrained skyline query [19], where users want to
find skyline points within a subset of records that satisfies multiple “hard” constraints.
For example, a user may only be interested in car records within the price range of
$10,000 to $15,000 and mileage between 50K and 100K miles. The discussion hereafter
focuses on this generalized form of the skyline query.

1 Without loss of generality, we assume in this paper that users prefer the minimum value on all
interested dimensions.



Until recently, Skyline query processing and other online analytical processing (OLAP)
applications have been limited to large centralized servers. As a platform, these servers
are expensive, hard to upgrade, and provide a central point of failure. Previous research
has shown common-off-the-shelf (COTS) cluster-based computing to be an effective
alternative to high-end servers [4], a fact confirmed by benchmarks [5] and deployment
in large query systems such as Google [7]. This approach is also being adopted in com-
mercial database systems such as Oracle 10g. In addition, skyline queries are especially
useful in the context of Web information services, where user preferences help form
“structured” queries across a large number of distributed data sources [3, 2]. For these
web services, a scalable distributed approach can significantly reduce processing time,
and eliminate high query load during peak hours.

Our paper is the first to address the problem of distributing progressive skyline
queries on a share-nothing architecture through content-based data partitioning and ex-
ploiting partial orders between data partitions. This paper makes four key contributions.
First, we present a recursive region partitioning algorithm and a dynamic region en-
coding method. These algorithms enforce the skyline partial order so that the system
pipelines participating machines during query execution and minimizes inter-machine
communication. As a query propagates, our system prunes data regions and correspond-
ing machines for efficiency, and progressively generates partial results for the user. In
addition, we propose a “random sampling” based approach to perform fine-grain load
balancing in DSL. Next, we perform analysis to show that our approach is optimal in
minimizing number of local query invocations across all machines. Finally, we describe
the cluster deployment of a full implementation on top of the CAN [21] content distri-
bution network, and present thorough evaluations of its bandwidth, scalability, load
balancing and response time characteristics under varying system conditions. Results
show DSL clearly outperforms alternative distribution mechanisms.

The rest of the paper is organized as follows: Section 2 describes our design goals as
well as two simple algorithms for distributed skyline calculation. We present our core
algorithm (DSL) in Section 3. In Section 4, we address the query load-balancing prob-
lem in DSL. We then evaluate our system via simulation and empirical measurements
in Section 5. Finally, we present related work in Section 6 and conclude in Section 7.

2 Design Goals and Proposals

In this section, we describe our design goals for parallel/distributed skyline query pro-
cessing algorithms. We then present two simple solutions and discuss their limitations.

2.1 Goals

In addition to basic requirements for skyline processing, we describe three design goals
for a distributed skyline algorithm: progressiveness, scalability, and flexibility.

Progressiveness. Similar to the requirements for centralized solutions [17], a distributed
algorithm should be able to progressively produce the result points to the user: i.e., the
system should return partial results immediately without scanning the entire data set.
Progressiveness in a distributed setting further requires that results be returned without
involving all the nodes in the system. This eliminates the need for a centralized point
for result aggregation.
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Fig. 1: (a) CAN multicast-based Method with in-network pruning. (b) Observation: partial order
between nodes.

Scalability. Incremental scalability is the primary goal for our system. In order to scale
to a large number of participant machines, we require that internode communication
be minimized, and processing load should be spread evenly across all nodes. It should
also be easy to add more nodes into the system to handle increased data volume and/or
heavier query load.
Flexibility. Our goal for flexibility has two components. First, the system should sup-
port constrained skyline queries, and find skyline records in arbitrarily specified query
ranges. Second, the distributed algorithm should not impose any restrictions on the lo-
cal implementation on each machine, thus allowing easy incorporation of “state of the
art” centralized skyline solutions.

2.2 Simple Solutions

In this section, we discuss two simple approaches towards distributing data and query
processing across multiple machines. We analyze both proposals according to our stated
goals.

Naive partitioning. One simple approach is to partition data records randomly across
all machines, and to contact all nodes to process each query. Each node calculates a
result set from local data, and all result sets are merged at a centralized node. To reduce
congestion, we can organize the nodes into a multi-level hierarchy where intermediate
nodes aggregate result sets from children nodes. We call this approach the naive method.

While easy to implement, this approach has several drawbacks. First, each query
must be processed by all nodes even if the query range is very small, resulting in sig-
nificant unnecessary computation. Second, most data points transmitted across the net-
work are not in the final skyline, resulting in significant waste in bandwidth. Finally, this
method is not progressive, since the final result set cannot be reported until all the nodes
have finished their local computations. Note that using locally progressive algorithms
does not produce globally progressive results.

CAN Multicast. An improved algorithm utilizes the notion of content-based data parti-
tioning. Specifically, we normalize the entire data space and directly map it to a virtual
coordinate space. Each participating machine is also mapped into the same coordinate



space and is responsible for a specific portion of that space. Then every machine stores
all the data points that fall into its space. During query processing, a multicast tree is
built to connect together all nodes overlapping with the query range, with the root at
the node that hosts the bottom-left point of the query range 2. The query propagates
down the tree, nodes perform local computation, and result sets are aggregated up back
to the root. Ineligible data points are discarded along the path to preserve bandwidth.
Figure 1(a) illustrates how the tree is dynamically built at query time. Node 3 hosts
the bottom-left point of the query range ((0.3, 0.3),(0.9, 0.9)), and acts as the multicast
tree root. In this paper, we implement the content-based data partitioning scheme by
leveraging the existing code base of the CAN [21] content distribution network. There-
fore we call this approach the CAN-multicast method. While the following discussion
is based on the CAN overlay network, our solutions do not rely on the specific features
of the CAN network such as decentralized routing and are thus applicable to general
cases of content-based data partition as well.

The CAN-multicast method explicitly places data so that constrained skyline queries
only access the nodes that host the data within the query range. This prunes a signifi-
cant portion of unnecessary data processing, especially for constrained skyline queries
within a small range. However, its nodes within the query box still behave the same as
those in the naive method. Thus it shares the bandwidth and non-progressiveness draw-
backs. In fact, both methods can be seen as direct adaptation of the original centralized
“Divide and Conquer” method [8].

3 Progressive Distributed Skylines
In this section, we begin by making observations from exploring the simple methods
described in the last section. Based on these observations, we propose our progressive
skyline query processing algorithm (DSL) and show the analytical results regarding its
behavior.

3.1 Observations

Our progressive algorithm derives from several observations. Using the CAN multicast
method, no result can be reported until results from all nodes in the query range are
considered. We note that this strategy can be optimized by leveraging content-based
data placement. Skyline results from certain nodes are guaranteed to be part of the final
skyline, and can be reported immediately. For example, in Figure 1(a), no data points
from other nodes can dominate those from node 3, and node 3 can reports its local
results immediately. Meanwhile, node 8’s calculations must wait for results from 3 and
4, since its data points can be dominated by those two nodes.

On the other hand, data points in nodes 4 and 2 are mutually independent from a
skyline perspective; that is, no points from node 2 can dominate points in node 4 and
vice versa. Therefore, their calculations can proceed in parallel. We summarize this
observation as: any node in the virtual CAN space can decide whether its local skyline
points are in the final result set or not by only consulting a subset of all the other nodes
within the query range (Observation 1).

2 The choice of the root will not impact the final result set as long as all the nodes in the query
range are covered by the tree
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Fig. 2: Region partitions on 2-d CAN space.

Based on the Observation 1, we visualize the computational dependency between
nodes in Figure 1(b). Each edge in the graph captures the precedence relationship be-
tween CAN nodes. During query propagation, skyline points must be evaluated at all
“upstream” nodes before “downstream” nodes can proceed. Based on this, we also ob-
serve that based on skyline values from upstream nodes, some nodes within the query
region do not need to be contacted (Observation 2). For example, in Figure 1(a), any
skyline point from node 3 will dominate all points in nodes 5, 6, 9 and 10. Therefore,
any skyline results from node 3 means computation at those nodes can be skipped.

3.2 Partial Orders over Data Partitions

We now formalize the notion of partial order over data partitions. According to CAN
terminology, we call each data partition a zone in the CAN virtual space. Let Q ab

be a d-dimensional query region in CAN space; a(a1, a2, ..., ad), b(b1, b2, ..., bd) be
the bottom-left and top-right points, respectively. The master node of Q ab, denoted as
M(Qab), is the CAN node whose zone contains the point a (e.g. Node 3 is the master
node in Figure 1(a)).

Let point x(x1, x2, ..., xd) be the top-right point of M(Qab)’s CAN zone (e.g. point
(0.5,0.5) in Figure 1(a)). M(Qab) partitions the query region Qab as follows: for each
dimension i(1 ≤ i ≤ d), if xi < bi, M(Qab) partitions Qab into two halves on di-
mension i: namely the upper interval [xi, bi] and the lower interval [ai, xi]; if xi ≥ bi,
the partition will not occur on this dimension since M(Qab) “covers” Qab on dimen-
sion i. Thus, M(Qab) divides the query space Qab into at most 2d subregions (e.g., the
query region in Figure 1(a) is partitioned into 4 subregions by node 3). We denote all the
subregions resulting from the partition as the region set RS(Qab) and |RS(Qab)| ≤ 2d.

Example 1. Figure 2 shows all four possibilities for region partitioning on a 2-d CAN
space. a, b determine the query box Qab and x represents the top-right point of M(Qab)’s
zone. In (a), RS(Qab) contains 4 subregions (denoted as r0, r1, r2, r3) since x falls in-
side the query box and both dimensions are split. In (b) and (c), only one dimension is
divided since x is greater than b in at least one dimension. Therefore, RS(Q ab) con-
tains 2 subregions (denoted as r0, r1) in both cases. Finally, in (d), the zone of M(Qab)
covers the entire query space (on both dimensions), and no partitioning occurs. �

Given a query region Qab and its master node’s zone, the region partitioning process
as well as its resulting region set RS(Qab) can be uniquely determined. It is important
to note that the region partitioning process is dynamically determined, depending on 1)
query region Qab of the current skyline query; 2) the CAN zone of the node M(Q ab)
containing the virtual coordinate a. Furthermore, since there does not exist a “global”



oracle in a distributed setting and each node only sees its own zone, this process is exe-
cuted at the master node M(Qab). Next we define a partial order relation on RS(Qab).
Definition 1. (Skyline Dependent, �): Relation “Skyline Dependent, �” is a rela-
tion over Region Set RS(Qab): region ri is “Skyline Dependent” on region rj , i.f.f.
∃p(p1, p2, ..., pd) ∈ ri, ∃q(q1, q2, ..., qd) ∈ rj , s.t. ∀k, 1 ≤ k ≤ d, qk ≤ pk, i.e., q
“dominates” p.

Example 2. In Figure 2(a), there are four subregions resulting from the partition of the
query region Qab. Specifically, RS(Qab) = {r0, r1, r2, r3}. And according to Defini-
tion , r1 � r0, r2 � r0, r3 � r0, r3 � r1 and r3 � r2.

Theorem 1. “Skyline Dependent,�” is a reflexive, asymmetric, and transitive relation
over RS(Qab), and thus it defines a partial order over the region set RS(Qab).

Proof: It is straightforward to show the reflectivity and transitivity of “Skyline De-
pendent”. Asymmetry can be derived by the fact that all the subregions resulting from
the region partitioning process are convex polygons. �

Intuitively, for each incoming query, if we can control the system computation flow
to strictly satisfy the above partial order, then we can produce skyline results progres-
sively. Hence nodes in a region would not be queried until they see the results from all
“Skyline Dependent” regions. The reason for this is that with the aid of the partial order
between regions, the local skyline on each participant node is only affected by the data
in its “Skyline Dependent” regions, i.e. each region is able to determine its final result
based only on the data from its “Skyline Dependent” regions and its own data records.
This exactly captures our previous two observations.

3.3 Dynamic Region Partitioning and Encoding

We still face two remaining challenges. The first challenge involves generalizing the
above approach to the case where subregions are distributed over multiple CAN zones.
We call this the Resolution Mismatch Problem. We address this challenge with a Re-
cursive Region Partitioning technique. Specifically, for a query range Q ab, for each
subregions in RS(Qab) resulting from a region partitioning based on master node
M(Qab), the same region partitioning process is carried out recursively. Since after
one region partitioning, at least the bottom-left subregion r 0 is entirely covered by
the zone of M(Qab), we can resolve one part of the region Qab at each step. Conse-
quently, this recursive process will terminate when the entire query region is partitioned
and matches the underlying CAN zones. Figure 3(a) shows that for the query range
((0.3,0.3),(0.9,0.9)), in total, region partitioning process is invoked three times on node
3, 2, and 6 sequentially until each of the resulting subregions is covered exactly by one
CAN zone.

The second challenge that naturally arises is that the query range for a constrained
skyline query is only given at query time. The recursive region partitioning and the
partial order information are also computed at query time, since they are completely
dependent on the query range. In order to enforce the partial order during the query
propagation in a distributed setting, the master nodes in the subregions should know
the predecessors they need to hear from before their own regions are activated, as well
as their successive regions that it should trigger upon its own completion. Below, we



Algorithm 1 Successor Calculation
1: Qab: the “parent” region of rcd;
2: rcd: a region ∈ RS(Qab);
3: ID(rcd): the code of rcd;
4: succ(rcd): successors of region rcd;
5: succ(rcd)←− Ø; //Initialization
6: foreach i,s.t. ID(rcd)[i]== ’0’
7: begin
8: oneSucessor.code[i]←− ’1’; // flip one ’0’ bit to ’1’
9: oneSucessor.region[i]←−(d[i],b[i] ); // Set the corresponding region interval to the “upper

interval”
10: succ(rcd)←− succ(ri)

S
oneSuccessor;

11: end
12: Return succ(rcd);
13: END

present a dynamic region encoding scheme to capture this “context” information during
the query processing time. In our solution, once a node receives its code from one of its
predecessors, it obtains all the necessary information to behave correctly.
Definition 2. (Dynamic Region Encoding) Given query region Q ab, let x be the top-
right point of master node M(Qab)’s CAN zone. For each d-dimensional region r ∈
RS(Qab), we assign a d-digit code ID(r) to region r. where ID(r)[i] equals to ‘0’ if
the interval of r on the ith dimension = [ai, xi]; ID(r)[i] = ‘1’ if the interval of r on
the ith dimension = [xi, bi]; ID(r)[i] = ‘*’ if during the region partition the original
interval on ith dimension is not divided.

Informally, the ith digit of ID(r) encodes whether r takes on the “lower half” (‘0’),
the “upper half” (‘1’) or the “original interval” (‘*’) as the result of the corresponding
region partitioning. Based on this region coding scheme, we define a “Skyline Precede”
relation as follows:
Definition 3. (Skyline Precede, ≺) Relation “Skyline Precede” (≺) is a relation over
region set RS(Qab): region ri “Skyline Precede” rj , or ri ≺ rj , i.f.f. code ID(ri)
differs from ID(rj) in only one bit, say, the kth bit, where ID(ri)[k] = ‘0′ and
ID(rj)[k] = ‘1′. We denote pred(ri) as the set containing all the regions that “Sky-
line Precede” ri, and succ(ri) as the set containing all the regions that ri “Skyline
Precede”.

“Skyline Precede” precisely defines the order in which a distributed skyline query
should be propagated and executed. In Algorithm 1 we describe how a specific re-
gion rcd calculates its successor set succ(rcd) in RS(Qab) based on its code ID(rcd)
(pred(rcd) is computed analogously). Basically, each successor is generated by flipping
one single ‘0’ bit to ‘1’ (line 8) and adjust the region interval on that dimension to
the “upper interval” accordingly (line 9). Therefore, the query coordinates a, b of
region Qab, and c, d (its own region rcd) and code ID(rcd) are all the information that
needs to be sent for correct query propagation. Figure 3(a) illustrates the region codes
and the “Skyline Precede” relationship on a 2-d CAN network given the initial query
range ((0.3,0.3),(0.9,0.9)). For example, node 5 is given code ‘10’, its own query region
((0.5, 0.3),(0.9,0.5)), the whole query region ((0.3,0.3),(0.9,0.9)), it flips the ‘0’ bit to
‘1’ and adjust the y-interval from (0.3,0.5) to (0.5,0.9) and get its only successor region
((0.5,0.5), (0.9,0.9)) with code ‘11’.
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Fig. 3: (a) Finding the skyline points in range ((0.3,0.3),(0.9,0.9)). In total, region partitioning
operation happens 3 times. (b) The query propagation order according to DSL.

The relationship between “Skyline Dependent, �” and “Skyline precede, ≺” is
described by Lemma 1. Lemma 1 guarantees that, if we enforce that the query propaga-
tion follows the “Skyline Precede,≺” relation, by the time a region starts, all and only
its “Skyline Dependent, �” regions are completed.
Lemma 1. For any two region ri and rj (ri, rj ∈ RS(Qab)), ri � rj , i.f.f. there exists
a sequence of regions, s.t.:rj ≺ rj+1... ≺ ri−1 ≺ ri.

Proof: According to Definition 2, in order for region r i to be Skyline Dependent on
region rj , for those bits in which ID(ri) differs from code ID(rj), ID(ri) must be
‘1’ and ID(rj) must be ‘0’. This, together with Definition 3, ensures the correctness of
Lemma 1. �

3.4 Algorithm Description

Now we present our system for Distributed SkyLine query, or DSL. DSL uses the Con-
tent Addressable Network (CAN) as its underlying routing layer. We assume that the
data is injected into the system either by feeds from merchant’s product databases [1]
or from a Web database crawler that “pulls” structured data records from external Web
sources [24]. The data space is normalized to [0, 1] on each dimension and every data
object is stored at the corresponding CAN node. Starting from the global query region,
DSL recursively applies the region partitioning process to match the underlying CAN
zones and the query propagation between the resulting subregions strictly complies with
the “Skyline Precede” relationship which is enforced using dynamic region coding.

On each node involved, the DSL computation is composed of two asynchronous
procedures: QUERY and COMPLETE. These two procedures are described in Algo-
rithm 2. To activate a subregion Qcd of Qab, a query message q is routed towards point c
in the CAN virtual space using the CAN overlay routing mechanism. The node hosting c
becomes the master node of the region, or M(Q cd). Upon receiving q, the QUERY pro-
cedure on M(Qcd) is invoked. DSL’s QUERY procedure on M(Qcd) will be provided
4 parameters: 1) its region code ID(Qcd); 2) its own query region Qcd; 3) the skyline
point set skyline discovered from its “upstream” regions and 4) its “parent” query re-
gion Qab. Using this information, M(Qcd) is able to calculate its position in the parent



Algorithm 2 Distributed Skyline(DSL) Computation
1: Qcd: current region to evaluate; Qab: the “parent” region of Qcd

2: ID(Qcd): region code for Qcd; skyline: skyline results from upstream regions;
3: M(Qcd): master node of Qcd;
4:
5: QUERY(Qcd, Qab, ID(Qcd), skyline)
6: Procedure
7: calculate predecessor set pred(Qcd) and successor set succ(Qcd);
8: if all regions in pred(Qcd) are completed then
9: if skyline dominates Qcd then

10: M(Qcd).COMPLETE();
11: end if
12: localresults←− M(Qcd).CalculateLocalSkyline(skyline, Qcd);
13: skyline←− skyline ∪ localresults;
14: if M(Qcd).zone covers Qcd then
15: M(Qcd).COMPLETE();
16: else
17: M(Qcd) partitions Qcd into RS(Qcd);
18: foreach successor Qgh in RS(Qcd)
19: M(Qgh).QUERY(Qgh,Qcd,ID(Qgh),skyline);
20: end if
21: end if
22: End Procedure
23:
24: COMPLETE()
25: Procedure
26: if succ(Qcd) equals to NULL then
27: M(Qab).COMPLETE();
28: else
29: foreach successor Qef in succ(Qcd)
30: M(Qef ).QUERY(Qef , Qab, ID(Qef ), skyline);
31: end if
32: End Procedure

query region Qab, i.e. its immediate predecessors pred(Qcd) (line 9) and successors
succ(Qcd) (line 10). M(Qcd) starts computation on its own query region Qcd only
after hearing from all its predecessors in pred(Qcd) (line 11). M(Qcd) first checks
whether its own zone covers region Qcd or whether Qcd has already been dominated
by “upstream” skyline points in skyline (line 14). If either is positive, M(Q cd) will
not further partition its query region Qcd and just directly call its local COMPLETE
procedure meaning it finishes evaluating the region Q cd (line 15). Otherwise it re-
cursively partitions Qcd into a new region set RS(Qcd) (line 17), in which M(Qcd)
is responsible for the “first” subregion. For each successive region Q gh in the new re-
gion set of RS(Qcd), M(Qcd) activates Qgh’s QUERY procedure by routing a query
message q′ to the corresponding bottom-left virtual point g (line 18-19).

In COMPLETE procedure, M(Qcd) proceeds with the computation by invoking the
QUERY procedures on its successors in succ(Qcd)(line 29-30). If Qcd happens to
be the last subregion in region set RS(Qab), i.e. set succ(Qcd) contains no successive
regions. M(Qcd) will pass the control back to the master node M(Qab) of its “parent”
region Qab and invokes the COMPLETE procedure on M(Qab)(line 27), i.e. the



recursion “rebounds”. The entire computation terminates if the COMPLETE procedure
on the master node of the global query region is invoked.

Figure 3(a) shows the recursive region partitioning process and its corresponding re-
gion codes of a constrained skyline query with initial query range ((0.3, 0.3), (0.9, 0.9)).
Figure 3(b) illustrates the actual query propagation order between machines according
to DSL.
Theorem 2. (Correctness and Progressiveness): For any constrained skyline query,
DSL described above can progressively find all and only the correct skyline points in
the system.

3.5 Algorithm Analysis

In this subsection, we present two analytical results. First, in Theorem 3, we show DSL’s
bandwidth behavior, which measures the inter-machine communication overhead and is
critical for the system scalability. Then we show in Theorem 4 DSL’s optimality in terms
of the total number of local skyline query invocation on each participating machine,
which measures the I/O overhead and is important for its response time performance.
Theorem 3. (Bandwidth Behavior): In DSL, only the data tuples in the final answer set
may be transmitted across machines.

Proof: Let us consider a tuple d, s.t. d is not in the final skyline result set. Then
there exists some skyline point d′ that dominates d. Because DSL strictly follows the
“Skyline Precede” order (line 8), according to Lemma 1, the region holding d ′ is
evaluated before d’s region and there exists a “path” that connects these two. In other
words, the machine that stores d must see d′ in the skyline set before calculate its local
skyline, therefore d must be pruned and will not be transmitted. �
Theorem 4. (Optimality): For a given data partitioning strategy, the total number of
local skyline query invocations in DSL is minimized.

Proof: First, it is trivial to show that for any query, DSL will only invoke the pro-
cedure CalculateLocalSkyline() at most once on any participating node. Second, we
show that if a node’s data region is dominated by some skyline points then DSL skip
its local query procedure. Let us assume that the above theorem does not hold. Then
there must exist a node n s.t. the data region (zone) of node n is dominated by some
skyline point d (i.e. n cannot have any points in final skyline result set) and the local
procedure CalculateLocalSkyline() has been invoked on n (line 12). Since DSL
strictly follows the “Skyline Precede” order (line 8), node n must see d in skyline
set according to Lemma 1 and thus should have failed at line 9. In other words,
line 12 will not be executed on n. Contradiction. �

4 Load Balancing

Load balancing plays an important role in the performance of any practical distributed
query system. Our system imposes two types of loads on each node: the data load
and the query load. Some data load balancing techniques are described in [13], and
specific load balancing work for CAN-based systems can be found in [15]. Here we
focus only on addressing the query load imbalance issue inherent in DSL. We assume
that compared to local query processing involving disk I/O, control messages consume
negligible amounts of system resources. Therefore, our primary goal is to balance the
number of local skyline queries processed on each node.



(a) original load distribu-
tion(independent and anticorre-
lated; random query).

(b) after zone replication (inde-
pendent and anti-correlated; ran-
dom query).

Fig. 4: Query Load Visualization.

4.1 Query Load Imbalance in DSL

Our DSL solution leads to a natural query load imbalance. In DSL, query propagation
always starts from the bottom-left part of the query box. An intermediate master node
will not split its region if the region is dominated by “upstream” skyline points. When
the region split does not take place, all nodes inside the region other than the master
node will be left untouched which causes query load imbalance. Intuitively, for a given
query range, nodes from the top-right regions are less likely to be queried than their “up-
stream” counterparts. In addition, real world query loads are more likely to be skewed,
i.e. some query ranges are far more popular than others, which may further exacerbate
this problem.

Figure 4(a) visualizes the original query load in a 2-d CAN space without load
balancing. The darkness level of each zone represents the number of times a local sky-
line calculation is invoked on the corresponding node. The darker a zone appears, the
heavier its load. We use independent as well as anti-correlated data sets, both with car-
dinality of 1 million on a 5000 node system. The workload consists of 1000 constrained
skyline queries with randomly generated query ranges (For more about experiment set-
ting, please see Section 5). We see in Figure 4(a) that the query load exhibits strong
imbalance among nodes. In addition, zones at the bottom-left corner tend to be much
more heavily loaded across both data sets.

4.2 Dynamic Zone Replication

To address the load imbalance problem, we propose a dynamic zone replication scheme.
Our proposal is similar to the approach used in [26], but is tailored specifically to ad-
dress the load imbalance in DSL.

Specifically, each node pi in the system periodically generates m random points in
the d dimensional CAN space. We set m equal to 10 by default. p i routes probes to
these points to ask for the query load at the local node. After obtaining all the replies, p i

compares its own load with the “random” probes. p i will only initiate the zone replica-
tion process when its load is heavier than some threshold T of all samples. T is a system
parameter set to 0.5 by default. In zone replication, p i sends a copy of its zone contents
to the least loaded node pmin in the sample set, and records pmin’s virtual coordinates
in its replicationlist.

If a node has performed zone replication, local query processing adjusts to take
advantage. When calculating a local skyline query, p i picks a virtual coordinate vj from
its replicationlist in a round-robin fashion. Then p i forwards the query to the node pj



Parameter Domain Default
Total nodes (Simulation) [100,10000] 5000
Total nodes (Deployment) 80 80
Data cardinality 1M 1M
Dimensions (Simulation) 2, 3, 4, 5 2
Dimensions (Deployment) 2, 3, 4, 5 3
Query Range Pattern random, biased random

Table 1: Default setting

responsible for vj for actual processing. To avoid unnecessary load probing messages,
we set the probing interval proportional to the rank of node’s query load in its latest
samples. By doing so, lightly loaded machines probe less frequently while nodes in
heavily loaded zones probe and distribute their load more aggressively. Figure 4(b)
visualizes the system load distribution on both data sets after dynamic zone replication.
On both data sets, the load distribution is much “smoother” than in Figure 4(a).

5 Performance Evaluation
5.1 Experimental Setup

We evaluate our DSL system through both simulation and measurements of a real de-
ployed system. Our system is implemented on the Berkeley PIER query engine [16],
and uses PIER’s CAN implementation and runtime environment. We extended PIER’s
query capability by implementing the skyline operator as a plug-in operator. Because
PIER uses identical interfaces for both discrete-event simulations and real deployment
code, we used identical code in our simulations and cluster deployment. Our simula-
tions ran on a Linux box with an Intel Pentium IV 2.4 GHz processor and 2 GB of RAM.
The real measurement ran on a cluster composed of Dell PowerEdge 1750 Servers, each
with Intel 2.6Ghz Xeon CPUs and 2GBs of memory.

We summarize default parameters in Table 1. Adopting the standard methodology
in the literature, we use both independent (uniform) and anti-correlated data sets with
cardinality of 1 million and dimensionality from 2–5 [19]. For those experiments where
the results reflect the same trend on both data sets, we only show one of them to save
space. The number of nodes in the simulation varies from 100 to 10000. The default
query load in simulation consists of 1000 sequential constrained skyline queries with
the query range randomly generated.

The real deployment runs on a cluster of 20 servers each running 4 node instances,
for a total of 80 nodes. Since the cluster may be shared with other competing applica-
tions during these tests, we ran the same experiment 10 times and report the average
response time below to provide a fair and reliable measurement. In addition, since the
choice of local skyline processor is orthogonal to our comparison of different distribu-
tion methods, we use a simple Java implementation on all nodes. While this is sufficient
to investigate DSL’s query response behavior, the actual query delay reported below can
be considerably improved using the “state of the art” centralized implementation [19]
on each node.

We used three metrics in the experiment: percentage of nodes visited per query,
number of data points transmitted per query and average query response time. All the
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Fig. 5: Scalability comparison
among all methods.
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Fig. 6: Bandwidth comparison
among all methods.

response time results are from real measurement and the results of the other two metrics
are based on simulation. Our experiments are divided into two groups: First, we con-
duct comparative study on the three distributed skyline query methods described in this
paper: the naive method, CAN-Multicast method, and DSL. All three algorithms use an
identical simple local skyline query processor. Second, we study the effects of different
system parameters on DSL’s performance.

5.2 Comparative Studies

Scalability Comparison Figure 5 compares the three methods in terms of the number
of node visited for each query on the anti-correlated data set. We show the cumulative
density function (CDF) of percentage of queries (y-axis) against the percentage of nodes
visited (x-axis). As expected, the naive method contacts all the nodes in the system for
every incoming query, significantly limiting its scalability. The CAN-multicast method
considerably improves upon the naive method: 90 percent of the queries will contact
less than 40% of the nodes in the system. However, the remaining 10% of the queries
still visit roughly 60% of all nodes. In a 5000 node system, this translates into visiting
3000 nodes for a single query! In contrast, DSL does a much better job of isolating
the relevant data: no query involves more than 10% of all nodes, and roughly 90% of
queries contact less than 1% of all nodes. This validates our claim that DSL prunes
a large portion of of the data records during query propagation and only contacts the
nodes and records that are necessary.

Bandwidth Comparison Figure 6 shows the bandwidth performance of all three meth-
ods on the anti-correlated data set when varying system size from 100 to 10000 nodes.
We measure for each query the average number of data tuples transmitted per node.
The x-axis plots the total number of nodes in the system and y-axis shows the average
number of data points transmitted for a single query divided by the total number of
nodes. Here we use the number of data points to characterize the bandwidth consump-
tion, because data points are the dominant factor in the overall bandwidth usage when
compared to control messages. For all system sizes, DSL outperforms the other two
methods by one order of magnitude. This validates our claim in Theorem 3 that DSL
saves bandwidth by transmitting only the data points inside the final result set.
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DSL.

Query Response Time Comparison We compare DSL’s query response latency with
the naive method and the CAN-multicast method. Due to the space constraints, we only
show a workload containing one global skyline query, i.e. find all skyline points in the
entire data set 3. There are a total of 130 skyline points in the result set. For each skyline
result reported, Figure 7 compares the response times among all three methods. Since
the naive and CAN-multicast methods do not support progressiveness, their reported
data points all have the same response delay (displayed as a flat line). The progressive
behavior of DSL is not clearly reflected here due to the logarithmic scale of the y-axis.
In fact, the initial results of DSL are reported within 0.8 seconds, while the last skyline
point is reported in less than 1.2 seconds. As expected, DSL demonstrates orders of
magnitude performance improvement over the other two methods.

A surprising result is that CAN multicast method performs much worse than the
naive method. There are two reasons for this. First, our query is a global skyline query
without constraints. This means the CAN-multicast method has no advantage over the
naive method, because both methods need to contact all the nodes in the system. Sec-
ond, the CAN-multicast method dynamically constructs a query propagation tree which
is less efficient than the naive method where the entire tree is statically built at the be-
ginning.

In summary, DSL is the clear winner over the other two alternative distribution
methods in all the three metrics.

5.3 Performance Study of DSL

In this subsection, we focus on studying the effects of different system parameters on
DSL’s performance.

Effects of System Size Figure 8 uses a CDF to illustrate the effect of system size on the
number of nodes visited per query. We ran the simulation under four different system
settings consisting of 100, 500, 1000,10000 nodes respectively. Figure 8 shows a very
clear trend: when the system size increases from 100 to 10000, the average number
of participating nodes is quite stable. For example, when the system size is 100, most

3 We have also tested several other query ranges and DSL is the consistent winner with the first
several skyline points returned almost instantly
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Fig. 9: Effectiveness of dynamic zone replication.

queries touches 15 machines. In contrast, when the system size grows to 10000, all
queries involve less than 3% of the node population; and among them, a large portion
(80%) of the queries only touch less than 0.5% (or 50 in a 10000 node system) of the
nodes. The reason behind this is intuitive: with the virtual space partitioned by more
nodes, the average zone size of a CAN node becomes smaller. The smaller granularity
of zone partitioning allows a more accurate pruning of relevant nodes and data points.
This simulation validates that DSL can scale up to a fairly large number of machines.

Effects of Dynamic Zone Replication on Load Balancing In this simulation, we
study the effects of dynamic zone replication scheme on load balancing. We tested both
the random query pattern as well as the biased query pattern. While a random query
pattern generally yields more balanced query load, we only show the biased query load
results because random query results were already visualized in Figure 4.

Figure 9 compares query load distributions before and after dynamic zone repli-
cation. The workload consists of 1000 constrained skyline queries evaluated on both
anti-correlated and independent data sets. Each node reports its local query load dur-
ing the whole process in terms of the number of times its local skyline procedure is
invoked. The x-axis represents the query load percentage and the y-axis plots the per-
centage of nodes with that load. With 5000 nodes in the system, a node in a perfectly
balanced system would perform 0.02% of the total number of local query operations in
the system.

The original load distribution is clearly imbalanced. In the anti-correlated data set,
90% of the nodes in the system have negligible query load while the 10% are heavily
loaded. 2% of the nodes are each responsible for more than 0.2% of the total query
load, or overloaded by a factor of 10! These are the “upper stream” nodes residing
in the bottom-left part of the virtual space. After dynamic zone replication is used on
both data sets, the query load is much more evenly distributed and closer to the ideal.
Together with the previous visualization results, these results clearly show that dynamic
zone replication is effective for balancing the query load in the system.

Effects of Dimensionality on Bandwidth Now we study the effects of dimensional-
ity on DSL’s bandwidth overhead. We vary the dimensionality of queries from 2 to 5,
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Fig. 11: Effects of dimensionality on scalabil-
ity in DSL.

which according to [8] satisfies most real world applications involving multi-objective
decisions.

Figure 10 shows the effect of dimensionality on the average bandwidth usage on the
anti-correlated data set. The y-axis represents the average number of data points trans-
mitted by every node for each query and the x-axis plots the dimensionality. Overall,
the bandwidth usage steadily increases with the dimensionality. Specifically, on a 2-d
data set, an average node only injects 1 data point into the network and this number
grows to 20 on the 5-d data set. The main reason for this increase is that the original
size of the skyline result set increases rapidly with dimensionality and thus more result
points need to be transmitted with the query message from the “upstream” machines to
the “downstream” nodes, leading to greater bandwidth consumption.

Effects of Dimensionality on Scalability Figure 11 shows the effects of dimensional-
ity on the percentage of nodes visited per query on the independent data set. We vary the
dimensionality from 2 to 5 and show the relationship between the query load percentage
and node percentage involved. With the increase of the dimensionality, more nodes are
involved in query processing. This is due to two reasons. First, as described above, with
the increase in dimensionality, the skyline result size increases dramatically and thus
more nodes are likely to store data points in the final result set. Second, with higher
dimensionality, more virtual space needs to be visited while the number of machines
used to partition the virtual spaces remains the same. Note that even when the dimen-
sion number grows to as large as 5, most queries are evaluated across a small portion
of the nodes. Specifically, more than 90% of queries each require less than 10% of all
nodes. This demonstrates that DSL is scalable with the increase of dimensionality.

Effects of Dimensionality on Response Time In Figure 12, we study the effects of
dimensionality on the query response time. We use the independent data set while vary-
ing the dimensionality from 2 to 5. In this experiment, we still use one global skyline
query as our query load. Under each dimensionality setting, Figure 12 shows the aver-
age response delay for all skyline results reported by DSL. Due to the progressiveness
of DSL, initial result points are typically received much faster than this average number.

As the number of dimensions grows, the average delay increases steadily. On the
2-d data set, the average response delay is 0.6 seconds. As the number of dimensions
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time.

grows to 5, the average response time grows to roughly 2 seconds. This is explained by
three factors. First, as was shown in Figure 10, DSL’s bandwidth consumption increases
with dimensionality, and therefore more time is spent on data transmission between
nodes. Second, as was shown in simulations (Figure 11), the percentage of nodes visited
per query also increases in the higher dimensional data sets. Since more machines are
involved, it takes more time for the query to propagate to the “downstream” nodes,
further delaying the reporting of results from these machines. Finally, local skyline
calculations at each node also becomes more expensive in higher dimension datasets.

Effects of Query Range on Response Time In Figure 13, we investigate the effects
of query box size on the response time. For each query box size, we generate 10 con-
strained skyline queries, each of which has a query range covering a certain percentage
of the entire data space. We show the average response delay of 10 queries. For each
point along the line, we also draw a bounding box that depicts the standard deviation
of the response delay. In the case of 100% query range, the standard deviation is very
small. Clearly, the average response delay increases with the growth of the query box
size. In particular, when the query range equals 20%, the average delay is less than 0.2
seconds. The delay increases to 0.85 seconds when the query range grows to 100%.

6 Related Work

Skyline query processing algorithms have received considerable attention in recent
database research. Early work [8] proposed the Block-nested loops, Divide and conquer,
and B-tree solutions. Later work proposed the Indexing and Bitmaps solutions [23].
This was further improved in [17], where Nearest neighbor search (NN) was used on
a R-tree indexed data set to progressively discover skyline points. The best centralized
method, BBS [19], has been shown to be I/O optimal, and outperforms NN. Other work
addresses continuous skyline queries over data streams [18], extends skyline query to
categorical attribute domains where total order may not exist [9]. One latest work [14]
introduces a new generic algorithm LESS with O(n) average case running time. Simi-
lar results are presented in [25] and [20] on efficient computation methods of finding
skyline points in subspaces through exploiting various sharing strategies.



The notion of recursive partitioning of the data space in DSL is similar to NN and
BBS. However, fundamental differences distinguish our effort from these two works.
In NN, the order of the intermediate partitions will not influence its correctness since
the nearest neighbor query guarantees to find the lower left skyline point each time. In
DSL, the lower left partition may not contain any data points at all. On the other hand,
unlike BBS, there does not exist an “oracle” in the distributed environment to order the
candidate partitions in a centralized priority queue. Moreover, DSL partitions the query
region during run-time to match the underlying node zones, since, unlike BBS, there
does not exist certain a-priori “recursive” index structures like R-Tree. Therefore, the
novelty of DSL mainly lies in the exploitation of the partial order over data regions and
the dynamic region partitioning and encoding schemes to enforce this order at runtime
in a share-nothing architecture.

The only previous work that calculates skyline query over distributed sources was
presented in [6]. In this work, data is vertically distributed across different web infor-
mation services with each site providing one attribute of the data object. Skyline points
are calculated per site and reported to users at a central point. This can limit the scale
of distribution. In contrast, we horizontally partition data across different machines,
i.e. each machine stores a subset of the entire data record set. Unlike the previous ap-
proach, our solution provides incremental scalability, where performance is improved
by adding additional machines to the cluster. Our system automatically balances load
by distributing objects to the new node.

Parallel databases [10] and distributed database systems such as Mariposa [22] used
multiple machines to efficiently process queries on partitioned data relations. In partic-
ular, previous research on parallel database systems have shown that “range partition-
ing” can successfully help query processing in share-nothing architectures(e.g. parallel
sorting [11] and parallel join [12]). Skyline processing in these settings has not been
studied, and is the problem addressed in this paper.

7 Conclusion and Future Work

In this paper, we address an important problem of parallelizing the progressive skyline
queries on share nothing architectures. Central to our DSL algorithm is the use of partial
orders over data partitions. We propose two methods, recursive region partitioning and
dynamic region encoding, to implement this partial order for pipelining machines in
query execution. We provide an analytical result that shows our algorithm to be optimal
in minimizing local queries. Finally, we introduce the use of dynamic zone replication
to distribute computation evenly across nodes.

We implemented the DSL system on top of the PIER code base, and used the re-
sult to perform extensive experiments on a simulation platform and a real cluster de-
ployment. Our evaluation shows DSL to significantly outperform other distribution ap-
proaches, and that dynamic zone replication is extremely effective in distribution query
load. As future work, we will further explore the resilience of query processing to node
failures and replications, and DSL’s bandwidth consumption in higher dimension data
sets.
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