
UCSF
UC San Francisco Previously Published Works

Title
The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans

Permalink
https://escholarship.org/uc/item/0285358r

Journal
Science, 376(6594)

ISSN
0036-8075

Authors
Jones, Robert C
Karkanias, Jim
Krasnow, Mark A
et al.

Publication Date
2022-05-13

DOI
10.1126/science.abl4896
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0285358r
https://escholarship.org/uc/item/0285358r#author
https://escholarship.org
http://www.cdlib.org/


The Tabula Sapiens: A multiple-organ, single-cell transcriptomic 
atlas of humans

The Tabula Sapiens Consortium*

Abstract

INTRODUCTION: Although the genome is often called the blueprint of an organism, it is 

perhaps more accurate to describe it as a parts list composed of the various genes that may or 

may not be used in the different cell types of a multicellular organism. Although nearly every 

cell in the body has essentially the same genome, each cell type makes different use of that 

genome and expresses a subset of all possible genes. This has motivated efforts to characterize 

the molecular composition of various cell types within humans and multiple model organisms, 

both by transcriptional and proteomic approaches. We created a human reference atlas comprising 

nearly 500,000 cells from 24 different tissues and organs, many from the same donor. This atlas 

enabled molecular characterization of more than 400 cell types, their distribution across tissues, 

and tissue-specific variation in gene expression.

RATIONALE: One caveat to current approaches to make cell atlases is that individual organs are 

often collected at different locations, collected from different donors, and processed using different 

protocols. Controlled comparisons of cell types between different tissues and organs are especially 

difficult when donors differ in genetic background, age, environmental exposure, and epigenetic 

effects. To address this, we developed an approach to analyzing large numbers of organs from the 

same individual.

RESULTS: We collected multiple tissues from individual human donors and performed 

coordinated single-cell transcriptome analyses on live cells. The donors come from a range of 

ethnicities, are balanced by gender, have a mean age of 51 years, and have a variety of medical 

backgrounds. Tissue experts used a defined cell ontology terminology to annotate cell types 

consistently across the different tissues, leading to a total of 475 distinct cell types with reference 

transcriptome profiles. The full dataset can be explored online with the cellxgene tool.

Data were collected for the bladder, blood, bone marrow, eye, fat, heart, kidney, large intestine, 

liver, lung, lymph node, mammary, muscle, pancreas, prostate, salivary gland, skin, small intestine, 
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spleen, thymus, tongue, trachea, uterus, and vasculature. Fifty-nine separate specimens in total 

were collected, processed, and analyzed, and 483,152 cells passed quality control filtering. On 

a per-compartment basis, the dataset includes 264,824 immune cells, 104,148 epithelial cells, 

31,691 endothelial cells, and 82,478 stromal cells. Working with live cells, as opposed to isolated 

nuclei, ensured that the dataset includes all mRNA transcripts within the cell, including transcripts 

that have been processed by the cell’s splicing machinery, thereby enabling insight into variation 

in alternative splicing.

The Tabula Sapiens also provided an opportunity to densely and directly sample the human 

microbiome throughout the gastrointestinal tract. The intestines from two donors were sectioned 

into five regions: the duodenum, jejunum, ileum, and ascending and sigmoid colon. Each section 

was transected, and three to nine samples were collected from each location, followed by 

amplification and sequencing of the 16S ribosomal RNA gene.

CONCLUSION: The Tabula Sapiens has revealed discoveries relating to shared behavior and 

subtle, organ-specific differences across cell types. We found T cell clones shared between 

organs and characterized organ-dependent hypermutation rates among B cells. Endothelial cells 

and macrophages are shared across tissues, often showing subtle but clear differences in gene 

expression. We found an unexpectedly large and diverse amount of cell type–specific RNA splice 

variant usage and discovered and validated many previously undefined splices. The intestinal 

microbiome was revealed to have nonuniform species distributions down to the 3-inch (7.62-cm) 

length scale. These are but a few examples of how the Tabula Sapiens represents a broadly useful 

reference to deeply understand and explore human biology at cellular resolution.

Abstract

Molecular characterization of cell types using single-cell transcriptome sequencing is 

revolutionizing cell biology and enabling new insights into the physiology of human organs. 

We created a human reference atlas comprising nearly 500,000 cells from 24 different tissues and 

organs, many from the same donor. This atlas enabled molecular characterization of more than 

400 cell types, their distribution across tissues, and tissue-specific variation in gene expression. 

Using multiple tissues from a single donor enabled identification of the clonal distribution of T 

cells between tissues, identification of the tissue-specific mutation rate in B cells, and analysis of 

the cell cycle state and proliferative potential of shared cell types across tissues. Cell type–specific 

RNA splicing was discovered and analyzed across tissues within an individual.

Graphical Abstract

Overview of Tabula Sapiens. Molecular characterization of cell types using single-cell 

transcriptome sequencing is revolutionizing cell biology and enabling new insights into the 

physiology of human organs. We created a human reference atlas comprising nearly 500,000 cells 

from 24 different tissues and organs, many from the same donor. This multimodal atlas enabled 

molecular characterization of more than 400 cell types.
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Although the genome is often called the blueprint of an organism, it is perhaps more 

accurate to describe it as a parts list composed of the various genes that may or may not be 

used in the different cell types of a multicellular organism. Although nearly every cell in the 

body has essentially the same genome, each cell type makes different use of that genome 

and expresses a subset of all possible genes (1). Therefore, the genome in and of itself does 

not provide an understanding of the molecular complexity of the various cell types of that 

organism. This has motivated efforts to characterize the molecular composition of various 

cell types within humans and multiple model organisms, both by transcriptional (2) and 

proteomic (3, 4) approaches.

Although such efforts are yielding insights (5–7), one caveat to current approaches is that 

individual organs are often collected at different locations or from different donors (8), are 

processed using different protocols, or lack replicate data (9). Controlled comparisons of 

cell types between different tissues and organs are especially difficult when donors differ in 

genetic background, age, environmental exposure, and epigenetic effects. To address this, we 

developed an approach to analyze large numbers of organs from the same individual (10), 

which we originally used to characterize age-related changes in gene expression in various 

cell types in the mouse (11).

Data collection and cell type representation

We collected multiple tissues from individual human donors (designated TSP1 to TSP15) 

and performed coordinated single-cell transcriptome analysis on live cells (12). We collected 

17 tissues from one donor, 14 tissues from a second donor, and five tissues from two 

other donors (Fig. 1). We also collected smaller numbers of tissues from a further 11 

Page 3

Science. Author manuscript; available in PMC 2023 May 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



donors, creating biological replicates for nearly all tissues. The donors come from a range 

of ethnicities, are balanced by gender, have a mean age of 51 years, and have a variety of 

medical backgrounds (table S1). Single-cell transcriptome sequencing was performed with 

both fluorescence-activated cell sorting (FACS)–sorted cells in well plates with smart-seq2 

amplification as well as 10x microfluidic droplet capture and amplification for each tissue 

(fig. S1). Tissue experts used a defined cell ontology terminology to annotate cell types 

consistently across the different tissues (13), leading to a total of 475 distinct cell types with 

reference transcriptome profiles (tables S2 and S3). The full dataset can be explored online 

with the cellxgene tool through the Tabula Sapiens data portal (14).

Data were collected for the bladder, blood, bone marrow, eye, fat, heart, kidney, large 

intestine, liver, lung, lymph node, mammary, muscle, pancreas, prostate, salivary gland, 

skin, small intestine, spleen, thymus, tongue, trachea, uterus, and vasculature. Fifty-nine 

separate specimens in total were collected, processed, and analyzed, and 483,152 cells 

passed quality control (QC) filtering (figs. S2 to S7 and table S2). On a per-compartment 

basis, the dataset includes 264,824 immune cells, 104,148 epithelial cells, 31,691 endothelial 

cells, and 82,478 stromal cells. Working with live cells as opposed to isolated nuclei ensured 

that the dataset includes all mRNA transcripts within the cell, including transcripts that have 

been processed by the cell’s splicing machinery, thereby enabling insights into variations in 

alternative splicing.

To characterize the relationship between transcriptome data and conventional histologic 

analysis, a team of pathologists analyzed hematoxylin and eosin (H&E)–stained sections 

prepared from nine tissues from donor TSP2 and 13 tissues from donor TSP14 (14). Cells 

were identified by morphology and classified broadly into epithelial, endothelial, immune, 

and stromal compartments as well as rarely detected peripheral nervous system (PNS) cell 

types. (Fig. 2A). These classifications were used to estimate the relative abundances of cell 

types across the four compartments and to estimate the uncertainties in these abundances 

resulting from spatial heterogeneity of each tissue type (Fig. 2B and fig. S8). We compared 

the histologically determined abundances with those obtained by single-cell sequencing 

(fig. S9). Although, as expected, there can be substantial variation between the abundances 

determined by these methods, in aggregate, we observed broad concordance over a large 

range of tissues and relative abundances. This approach enables an estimate of true cell type 

proportions because not every cell type survives dissociation with equal efficiency (15). For 

several of the tissues, we also performed literature searches and collected tables of prior 

knowledge of cell type identity and abundance within those tissues (table S4). We compared 

literature values with our experimentally observed frequencies for three well-annotated 

tissues: the lung, muscle, and bladder (fig. S10).

Immune cells: Variation in gene expression across tissues and a shared 

lineage history

The Tabula Sapiens can be used to study differences in the gene expression programs 

and lineage histories of cell types that are shared across tissues. We analyzed tissue 

differences in the 36,475 macrophages distributed among 20 tissues because tissue-resident 
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macrophages are known to carry out specialized functions (16). These shared and orthogonal 

signatures are summarized in a correlation map (fig. S11A), For example, macrophages 

in the spleen were different from most other macrophages, and this was driven largely by 

higher expression of CD5L, a regulator of lipid synthesis (fig. S11B). We also observed a 

shared signature of elevated epiregulin (EREG) expression in solid tissues, such as the skin, 

uterus, and mammary, compared with circulatory tissues (fig. S11B).

We characterized lineage relationships between T cells by assembling the T cell receptor 

sequences from donor TSP2. Multiple T cell lineages were distributed across various tissues 

in the body, and we mapped their relationships (Fig. 3A). Large clones often reside in 

multiple organs, and several clones of mucosalassociated invariant T cells are shared across 

donors (fig. S11C); these cells had characteristic expression of TRAV1-2 because they 

are thought to be innate-like effector cells (17). Lineage information can also reveal tissue-

specific somatic hypermutation rates in B cells. We assembled the B cell receptor sequences 

from donor TSP2 and inferred the germline ancestor of each cell. The mutational load varies 

markedly by tissue of residence, with blood having the lowest mutational load compared 

with solid tissues (fig. S11D). Solid tissues have an order of magnitude more mutations per 

nucleotide (mean = 0.076; SD = 0.026) compared with the blood (mean = 0.0069), which 

suggests that the immune infiltrates of solid tissues are dominated by mature B cells.

B cells also undergo class-switch recombination that diversifies the humoral immune 

response by using constant region genes with distinct roles in immunity. We classified 

every B cell in the dataset as immunoglobulin A (IgA)-, IgG-, or IgM-expressing and then 

calculated the relative amounts of each cellular isotype in each tissue (Fig. 3B and table S5). 

Secretory IgA is known to interact with pathogens and commensals at tlie mucosae, IgG is 

often involved in direct neutralization of pathogens, and IgM is typically expressed in naïve 

B cells or is secreted in the first response to pathogens. Consistent with this, our analysis 

revealed opposing gradients of prevalence of IgA- and IgM-expressing B cells across the 

tissues, with blood having the lowest relative abundance of IgA-producing cells and the 

large intestine having the highest relative abundance (and the converse for IgM-expressing B 

cells) (Fig. 3B).

Endothelial cell subtypes with tissue-specific gene expression programs

As another example of analyzing shared cell types across organs, we focused on endothelial 

cells (ECs). Although ECs are often categorized as a single cell type, they exhibit differences 

in morphology, structure, and immunomodulatory and metabolic phenotypes depending 

on their tissue of origin. We discovered that tissue specificity is also reflected in their 

transcriptomes because ECs mainly cluster by tissue of origin (table S6). Uniform manifold 

approximation and projection (UMAP) analysis (fig. S12A) revealed that the lung, heart, 

uterus, liver, pancreas, fat, and muscle ECs exhibited the most-distinct transcriptional 

signatures, reflecting their highly specialized roles. These distributions were conserved 

across donors (fig. S12B).

Notably, ECs from the thymus, vasculature, prostate, and eye were similarly distributed 

across several clusters, which suggests not only similarity in transcriptional profiles but in 
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their sources of heterogeneity. Differential gene expression analysis between ECs from these 

16 tissues revealed several canonical and previously undescribed tissue-specific vascular 

markers (Fig. 3C). These data recapitulate tissue-specific vascular markers, such as LCN1 

(tear lipocalin) in the eye, ABCG2 (transporter at the blood-testis barrier) in the prostate, and 

OIT3 (oncoprotein-induced transcript 3) in the liver. Of the potential previously undescribed 

markers determined by this analysis, SLC14A1 (solute carrier family 14 member 1) 

appears to be a specific marker for endothelial cells in the heart, whose expression was 

independently validated with data from the Human Protein Atlas (18) (fig. S13).

Lung ECs formed two distinct populations, which is in line with the aerocyte (aCap - 

EDNRB+) and general capillary (gCap - PLVAP+) cells described in the mouse and human 

lung (19) (fig. S12, C and D). The transcriptional profile of gCaps were also more similar 

to ECs from other tissues, indicative of their general vascular functions in contrast to the 

more specialized aCap populations. Lastly, we detected two distinct populations of ECs 

in the muscle, including a MSX1+ population with strong angiogenic and endothelial cell 

proliferation signatures and a CYPIB1+ population enriched in metabolic genes, which 

suggests the presence of functional specialization in the muscle vasculature (fig. S12, E and 

F).

Alternative splice variants are cell type specific

We used SICILIAN (20) to identify alternative splice junctions in Tabula Sapiens using 

both 10× and smart-seq2 sequencing technologies and found a total of 955,785 junctions 

(fig. S14, A to E, and table S7). Of these, 217,855 were previously annotated, so our data 

provide independent validation of 61% of the total junctions cataloged in the entire RefSeq 

database. Although annotated junctions made up only 22.8% of the total junctions, they 

represent 93% of total reads, which indicates that previously annotated junctions tend to 

be expressed at higher levels than previously unidentified junctions. We additionally found 

34,624 junctions between previously annotated 3′ and 5′ splice sites (3.6%). We identified 

119,276 junctions between a previously annotated site and a previously unannotated site in 

the gene (12.4%). This leaves 584,030 putative junctions for which both splice sites were 

previously unannotated—i.e., ~61% of the total detected junctions. Most of these have at 

least one end in a known gene (94.7%), whereas the remainder represent potential previously 

undescribed splice variants from unannotated regions (5.3%). In the absence of independent 

validation, we conservatively characterized all of the unannotated splices as putative 

previously unknown junctions. We then used the GTEx database (21) to seek independent 

corroborating evidence of these putative junctions and found that reads corresponding to 

nearly one-third of these previously unknown junctions can be found within the GTEx 

data (table S7); this corresponds to >300,000 previously undefined validated splice valiants 

revealed by the Tabula Sapiens.

Hundreds of splice variants are used in a highly cell type–specific fashion; these can be 

explored in the cellxgene browser (14), which uses a statistic called SpliZ (22). We focus 

on two examples of cell type–specific splicing of two well-studied genes: MYL6 and CD47. 

Similar cell type–specific splice usage was also observed with TPM1, TPM2, and ATP5F1C, 

three other genes with well-characterized splice variants (fig. S15).
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MYL6 is an essential light chain (ELC) for myosin and is highly expressed in all tissues and 

compartments. Yet, splicing of MYL6, particularly that involving the inclusion or exclusion 

of exon 6 (Fig. 4A), varies in a cell type- and compartment-specific manner (Fig. 4B). 

Although the isoform excluding exon 6 has previously been mainly described in phasic 

smooth muscle (23), we discovered that it can also be the predominant isoform in non–

smooth muscle cell types. Our analysis establishes pervasive regulation of MYL6 splicing 

in many cell types, such as endothelial and immune cells. These previously unknown, 

compartment-specific expression patterns of the two MYL6 isoforms are reproduced in 

multiple individuals from the Tabula Sapiens dataset (Fig. 4, A and B).

CD47 is a multispanning membrane protein involved in many cellular processes, including 

angiogenesis and cell migration and as a “do not eat me” signal to macrophages (24). 

Differential use of exons 7 to 10 (Fig. 4C and fig. S14F) composes a variably long 

cytoplasmic tail (25). Immune cells—but also stromal and endothelial cells—have a distinct, 

consistent splicing pattern in CD47 that dominantly excludes two proximal exons and 

splicing directly to exon 8. In contrast to other compartments, epithelial cells exhibit a 

different splicing pattern that increases the length of the cytoplasmic tail by splicing more 

commonly to exon 9 and exon 10 (Fig. 4D). Characterization of the splicing programs 

of CD47 in single cells may have implications for understanding the differential signaling 

activities of CD47 and for therapeutic manipulation of CD47 function.

Cell state dynamics can be inferred from a single time point

Although the Tabula Sapiens was created from a single moment in time for each donor, 

it is possible to infer dynamic information from the data. Cell division is an important 

transient change of internal cell state, and we computed a cycling index for each cell 

type to identify actively proliferating versus quiescent or postmitotic cell states. Rapidly 

dividing progenitor cells had among the highest cycling indices, whereas cell types from 

the endothelial and stromal compartments, which are known to be largely quiescent, had 

low cycling indices (Fig. 5A). In intestinal tissue, transient amplifying cells and the crypt 

stem cells divide rapidly in the intestinal crypts to give rise to terminally differentiated cell 

types of the villi (26). These cells were ranked with the highest cycling indices, whereas 

terminally differentiated cell types, such as the goblet cells, had the lowest ranks (fig. S16A). 

To complement the computational analysis of cell cycling, we performed immunostaining 

of intestinal tissue for the MKI67 protein (commonly referred to as Ki-67) and confirmed 

that transient amplifying cells abundantly express this proliferation marker (fig. S16, B and 

C), which supports the conclusion that this marker is differentially expressed in the G2/M 

cluster.

We observed several interesting tissue-specific differences in cell cycling. To illustrate 

one example, UMAP clustering of macrophages showed tissue-specific clustering of this 

cell type and that blood, bone marrow, and lung macrophages have the highest cycling 

indices compared with macrophages found in the bladder, skin, and muscle (fig. S16, D to 

G). Consistent with this finding, the expression values of cyclin-dependent kinase (CDK) 

inhibitors (in particular the gene CDKN1A), which block the cell cycle, have the lowest 

overall expression in macrophages from tissues with high cycling indices (fig. S16F).
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We used RNA velocity (27) as a further dynamic approach to study transdifferentiation 

of bladder mesenchymal cells to myofibroblasts (Fig. 5B). Latent time analysis, which 

provides an estimate of each cell’s internal clock using RNA velocity trajectories (28), 

correctly identified the direction of differentiation (Fig. 5C) across multiple donors. 

Ordering cells as a function of latent time shows clustering of the mesenchymal and 

myofibroblast gene expression programs for the most dynamically expressed genes (Fig. 

5D). Among these genes, ACTN1 (alpha actinin 1)—a key actin crosslinking protein 

that stabilizes cytoskeletonmembrane interactions (29)—increases across the mesenchymal-

to-myofibroblast transdifferentiation trajectory (fig. S16H). Another gene with a similar 

trajectory is MYLK (myosin lightchain kinase), which also rises as myofibroblasts attain 

more muscle-like properties (30). Finally, a random sampling of the most dynamic 

genes shared across TSP1 and TSP2 demonstrated that they share concordant trajectories 

and revealed some of the core genes in the transcriptional program underlying this 

transdifferentiation event within the bladder (fig. S16I).

Unexpected spatial variation in the microbiome

The Tabula Sapiens provided an opportunity to densely and directly sample the human 

microbiome throughout the gastrointestinal tract. The intestines from donors TSP2 and 

TSP14 were sectioned into five regions: the duodenum, jejunum, ileum, and ascending 

and sigmoid colon (Fig. 6A). Each section was transected, and three to nine samples 

were collected from each location, followed by amplification and sequencing of the 16S 
ribosomal RNA (rRNA) gene. Uniformly, there was a high (~10 to 30%) relative abundance 

of Proteobacteria, particularly Enterobacteriaceae (Fig. 6B), even in the colon. Samples from 

each of the duodenum, jejunum, and ileum were largely distinct from one another, with 

samples exhibiting individual patterns of blooming or absence of certain families (Fig. 6B). 

These data reveal that the microbiota are patchy, even at a 3-inch (7.62-cm) length scale. 

We observed similar heterogeneity in both donors (fig. S17, A to C). In the small intestine, 

richness (number of observed species) was also variable and was negatively correlated with 

the relative abundance of Burkholderiaceae (Fig. 6B); in TSP2, the Proteobacteria phylum 

was dominated by Enterobacteriaceae, which was present at >30% in all samples at a level 

negatively correlated with richness (fig. S17, A to C). In a comparison of species from 

adjacent regions across the gut, a large fraction of species was specific to each region (Fig. 

6C), reflecting the patchiness. These data are derived from only two donor samples, and 

further conclusions about the statistics and extent of microbial patchiness will require larger 

studies.

We analyzed host immune cells in conjunction with the spatial microbiome data; UMAP 

clustering analysis revealed that the small intestine T cell pool from TSP14 contained 

a population with distinct transcriptomes (Fig. 6D). The most significant transcriptional 

differences in T cells between the small and large intestine were genes associated with 

trafficking, survival, and activation (Fig. 6E and table S8). For example, expression of 

the long noncoding RNA MALAT1, which affects the regulatory function of T cells, and 

CCR9, which mediates T lymphocyte development and migration to the intestine (31), were 

high only in the small intestine, whereas GPR15 (colonic T cell trafficking), SELENBP1 

(selenium transporter), ANXA1 (repressor of inflammation in T cells), KLRC2 (T cell 
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lectin), CD24 (T cell survival), GDF15 (T cell inhibitor), and RARRES2 (T cell chemokine) 

exhibited much higher expression in the large intestine. Within the epithelial cells, we 

observed distinct transcriptomes between small and large intestine Paneth cells and between 

small and large intestine enterocytes, whereas there was some degree of overlap for each of 

the two cell types for either location (fig. S17, E and F). The site-specific composition of the 

microbiome in the intestine, paired with distinct T cell populations at each site, helps define 

local host-microbe interactions that occur in the gastrointestinal tract and is likely reflective 

of a gradient of physiological conditions that influence hostmicrobe dynamics.

Conclusion

The Tabula Sapiens is part of a growing set of data that, when analyzed together, will enable 

many interesting comparisons of both a biological and technical nature. Studying particular 

cell types across organs, datasets, and species will yield new biological insights—as shown 

with fibroblasts (32). Similarly, comparing fetal human cell types (33) with those determined 

in this work in adults may give insight into the loss of plasticity from early development 

to maturity. Having multiorgan data from individual donors may facilitate the development 

of methods to compare diverse datasets and yield understanding of technical artifacts from 

various approaches (8, 9, 34, 35). The Tabula Sapiens has enabled discoveries relating to 

shared behavior and organ-specific differences across cell types. For example, we found T 

cell clones shared between organs and characterized organ-dependent hypermutation rates 

among resident B cells. Endothelial cells and macrophages are cell types that are shared 

across tissues but often show subtle tissue-specific differences in gene expression. We 

found an unexpectedly large and diverse amount of cell type–specific RNA splice variant 

usage and discovered and validated many previously undiscovered splices. These are but a 

few examples of how the Tabula Sapiens represents a broadly useful reference to deeply 

understand and explore human biology at cellular resolution.

Materials and methods summary

Fresh, whole, and nontransplantable organs, or 1- to 2-cm3 organ samples, were obtained 

from surgery and then transported on ice by courier to tissue expert laboratories, where 

they were immediately prepared for transcriptome sequencing. Single-cell suspensions were 

prepared for 10× Genomics 3′ V3.1 droplet-based sequencing and for FACS-sorted 384-well 

plate smart-seq2. Preparation began with dissection, digestion with enzymes, and physical 

manipulation; tissue-specific details are available in the complete materials and methods 

(12). Cell suspensions from some organs were normalized by major cell compartment 

(epithelial, endothelial, immune, and stromal) using antibody-labeled magnetic microbeads 

to enrich rare cell types. cDNA and sequencing libraries were prepared and run on the 

Illumina NovaSeq 6000 with the goal to obtain 10,000 droplet-based cells and 1000 plate-

based cells for each organ. Sequences were demultiplexed and aligned to the GRCh38 

reference genome. Gene count tables were generated with CellRanger (droplet samples) or 

STAR and HTSEQ (plate samples). Cells with low unique molecular identifier (UMI) counts 

or low gene counts were removed. Droplet cells were filtered to remove barcode-hopping 

events and filtered for ambient RNA using DecontX. Sequencing batches were harmonized 

using scVI and projected to two-dimensional (2D) space with UMAP for analysis by the 
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tissue experts. Expert annotation was made through the cellxgene browser and regularized 

with a public cell ontology. Annotation was manually QC checked and cross-validated 

with PopV, an annotation tool that uses seven different automated annotation methods. For 

complete materials and methods, see the supplementary materials (12).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. Overview of Tabula Sapiens.
The Tabula Sapiens was constructed with data from 15 human donors; for detailed 

information on which tissues were examined for each donor, please refer to table S2. 

Demographic and clinical information about each donor is listed in the supplementary 

materials and methods and in table S1. Donors 1, 2, 7, and 14 contributed the largest number 

of tissues each, and the number of cells from each tissue is indicated by the size of each 

circle. Tissue contributions from additional donors who contributed single or small numbers 

of tissues are shown in the additional 11 donors column, and the total number of cells for 

each organ are shown in the final column on the right.
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Fig. 2. Comparison of single-cell transcriptomics with conventional histology.
Clinical pathology was performed on nine tissues from donors TSP2 and TSP14. (A) H&E–

stained image used for histology of the colon from TSP2, with compartments (solid colored 

lines) and individual cell types (dashed black ellipses) identified by the pathologists. (B) 

Coarse cell type representation of TSP2 as morphologically estimated by pathologists across 

several tissues, ordered by increasing heterogeneity of the tissue. Compartment colors are 

consistent between (A) and (B).
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Fig. 3. Analysis of immune and endothelial cell types shared across tissues.
(A) Illustration of clonal distribution of T cells across multiple tissues. The majority of T 

cell clones are found in multiple tissues and represent a variety of T cell subtypes. nk cell, 

natural killer cell. (B) Prevalence of B cell isotypes across tissues, ordered by decreasing 

abundance of IgA. (C) Expression levels of tissue-specific endothelial markers, shown 

as violin plots, in the entire dataset. Many of the markers are highly tissue specific and 

typically were derived from multiple donors, as follows: bladder (3 donors), eye (2), fat (2), 

heart (1), liver (2), lung (3), mammary (1), muscle (4), pancreas (2), prostate (2), salivary 
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gland (2), skin (2), thymus (2), tongue (2), uterus (1), and vasculature (2). A detailed 

donor-tissue breakdown is available in table S2.
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Fig. 4. Alternative splicing analysis.
(A and B) The sixth exon in MYL6 is skipped at different proportions in different 

compartments. Cells in the immune and epithelial compartments tend to skip the exon, 

whereas cells in the endothelial and stromal compartments tend to include the exon. Boxes 

are grouped by compartment and colored by tissue. The fraction of junctional reads that 

include exon 6 was calculated for each cell with >10 reads mapping to the exon-skipping 

event. Horizontal box plots in (B) show the distribution of exon inclusion in each cell type. 

(C and D) Alternative splicing in CD47 involves one 5′ splice site (exon 11; 108,047,292) 

and four 3′ splice sites. Horizontal box plots in (D) show the distribution of weighted 

averages of alternative 3′ splice sites in each cell type. Epithelial cells tend to use exons 

closer to the 5′ splice site compared with immune and stromal cells. Boxes are grouped by 

compartment and colored by tissue.
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Fig. 5. Dynamic changes in cell state.
(A) Cell types ordered by magnitude of cell cycling index per donor (each a separate 

color), with the most highly proliferative at the top and quiescent cells at the bottom of 

the list. (B) RNA velocity analysis demonstrating mesenchymal-to-myofibroblast transition 

in the bladder. The arrows represent a flow derived from the ratio of unspliced to spliced 

transcripts, which in turn predicts dynamic changes in cell identity. (C and D) Latent 

time analysis of the mesenchymal-to-myofibroblast transition in the bladder, demonstrating 

stereotyped changes in gene expression trajectory.
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Fig. 6. High-resolution view highlights patchiness of the gut microbiome.
(A) Schematic (left) and photo (right) of the colon from donor TSP2, with numbers 1 

to 5 representing microbiota sampling locations. (B) Relative abundances and richness 

(number of observed species) at the family level in each sampling location, as determined 

by 16S rRNA sequencing. The Shannon diversity, a metric of evenness, mimics richness. 

Variability in relative abundance and/or richness or Shannon diversity was higher in the 

duodenum, jejunum, and ileum compared with the ascending and sigmoid colon. (C) A 

Sankey diagram showing the inflow and outflow of microbial species from each section 

of the gastrointestinal tract. The stacked bar for each gastrointestinal section represents the 

number of observed species in each family as the union of all sampling locations for that 

section. The stacked bar flowing out represents gastrointestinal species not found in the 

subsequent section, and the stacked bar flowing into each gastrointestinal section represents 

the species not found in the previous section. ASVs, amplicon sequence variants. (D) UMAP 

clustering of T cells reveals distinct transcriptome profiles in the distal and proximal small 

and large intestines. (E) Dots in volcano plot highlight genes up-regulated in the large (left) 

and small (right) intestines. Labeled dots include genes with known roles in trafficking, 

survival, and activation.
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