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[1] Using two bias reduced forcing data sets we have
simulated the initial soil moisture state for the North
American continent (1985–1993). Differences between
simulations were shown to persist over regions with the
greatest soil memory, and are not strongly associated to
patterns of difference in forcing fields. Therefore, processes
that contribute to soil memory will also limit our ability to
accurately estimate its initial state. Moreover, the regions
associated with high soil memory may not be directly
observable with present and near future sensors due to high
vegetation water contents. Thus, research in these regions
should be directed toward minimizing forcing variance and
extension of observation networks and technology to
increase the ability for monitoring soil moisture. INDEX
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1. Introduction

[2] The presence of wet or dry soil moisture anomalies
can impose a regional perturbation to the overlying atmos-
pheric state, thus influencing the processes that control
precipitation formation. Due to the slow dissipative pro-
cesses that govern the recovery of a soil moisture anomaly,
memory of past atmospheric conditions can feedback to the
overlying atmosphere thus enhancing climate prediction in
modeling studies over time scales ranging from days to
months [e.g., Fennessy and Shukla, 1999; Koster et al.,
2000a]. Recognizing the importance of the initial soil wet-
ness state, the production of retrospective and near real time
soil water estimates are part of the NASA Seasonal to
Interannual Prediction Project (NSIPP), the Global Soil
Wetness Project (GSWP) [Dirmeyer et al., 1999] and the
Global Land Data Assimilation System (GLDAS) [Rodell et
al., The global land data assimilation system, submitted to
Bull. Amer. Meteor. Soc., 2002]. In the near-term, microwave
remote sensors will provide surface soil moisture observa-
tions [Njoku and Li, 1999]; and real-time assimilation of this
data [e.g. Reichle et al., 2001;Walker and Houser, 2001] will
produce soil moisture estimates through the entire soil
profile. Unfortunately however, microwave remote sensing
will be limited to regions of low to moderate vegetation
cover [Njoku and Entekhabi, 1996], and therefore in regions
without observations, the initial soil moisture state may have
large uncertainties. Inconsistencies in the modeled initial soil

moisture state would result from uncertainties between
model parameterizations [Dirmeyer et al., 1999; Koster
and Milly, 1997], inaccuracies in the specification in land
surface properties and from variations in the forcing prod-
ucts [Berg et al., 2003]. To date, there has been much
emphasis on understanding how differences between land
surface parameterization schemes will influence hydrolog-
ical simulations including soil moisture [Dirmeyer et al.,
1999; Henderson-Sellers et al., 1996; Wood et al., 1998].
However much of the uncertainty may also be related to
inaccuracies in the forcing used to drive land surface models.
[3] In this study, we concentrate on the impact of

uncertainty in the forcing on estimates of the initial soil
moisture state. To accurately predict hydrological fluxes and
soil moisture within a land surface model (LSM) a com-
prehensive suite forcing variables (short and long wave
radiation, air and dew point temperature, precipitation, wind
speed and surface pressure) are necessary over consistent
temporal and spatial scales. For many regions of the globe,
such data are not available aside from weather reanalysis
products. However, the use of reanalysis products for
driving LSM simulations is not recommended due to errors
in the forcing fields [Betts et al., 1998; Lenters et al., 2000;
Maurer et al., 2001; Roads and Betts, 2000]. Therefore, in
order to utilize reanalysis products for forcing in LSM
simulations, previous work has focused on their improve-
ment through bias removal. Berg [2001] and Berg et al.
[2003] has removed bias associated with the European
Centre for Medium-Range Weather Forecasts (ECMWF)
and National Center for Environmental Prediction and
National Center for Atmospheric Research (NCEP/NCAR)
reanalyses [Gibson et al., 1997; Kalnay et al., 1996], and
used this forcing to produce realistic estimates of the
hydrological budget over the Mississippi River basin. The
objectives of this study are 1) to use these two bias reduced
forcing data sets to produce estimates of the initial soil
moisture state over the North American continent and 2) to
understand the sensitivity of root zone soil moisture esti-
mates to modest variations (at the sub-monthly timeframe)
in the forcing products. The results of this study demon-
strate uncertainty in the initial soil moisture state and define
regions where LSM simulations are most sensitive to
variance in the forcing products.

2. Methods and Modeling Framework

[4] This study utilizes the catchment-based LSM (CLSM)
[Koster et al., 2000b; Ducharne et al., 2000]. The CLSM
uses atmospheric forcing (short and longwave downwelling
radiation, convective and total precipitation, two-meter air
and dew point temperatures, ten-meter wind speed, and
surface pressure) and surface parameter descriptions (veg-
etation type, height, greenness, and leaf area index, rough-
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ness length at the surface, albedo, and the soil hydrologic
properties) to perform calculations of land surface energy
and mass exchange.
[5] The atmospheric forcing supplied to the CLSM was

corrected using the methodology of Berg [2001] and Berg et
al. [2003]. Bias to ECMWFandNCEP/NCAR reanalysis was
removed for 2-meter air and dew point temperature, short and
longwave downwelling radiation, and precipitation through
difference and ratio-based corrections to monthly observa-
tional datasets. Because both reanalyses were bias corrected
to the same monthly observations, differences between the
datasets are related to sub-monthly differences in the forcing
products (including the diurnal range of the 2-meter air and
dew point temperatures, short and longwave downwelling
radiation, and the frequency of reanalysis precipitation).
Differences also exist between the uncorrected forcing fields,
which include wind speed and surface pressure.
[6] To evaluate the differences between the root zone soil

moisture simulated with each of the bias corrected forcing
products, the CLSMwas driven with the corrected version of
the ECMWF re-analysis (CERA) and NCEP/NCAR re-anal-
ysis (CNRA) for the time period 01/1985–12/1993. We
performed both simulations with identical versions of the
CLSM, employing identical initialization (spin-up) schemes.
During model spin up, the initial model state is determined
by driving the model to equilibrium for January 1, 1985.
Therefore, each run (CERA and CNRA) have starting
positions in equilibrium with the forcing data. Here our
analysis focuses on the initial soil water conditions fore-
casted for the snow free season (May–July) as previous
work by other researchers [e.g., Koster et al., 2000a] have
shown that greater coupling between the land surface and
the atmosphere occurs over summer.

3. Results and Discussion

[7] We created estimates of the initial soil moisture state
using the CLSM driven by the two bias reduced forcing data
sets described above for the period 1985–1993. Images of
average (1985–1993) July root zone soil moisture (top
meter) as forecast by the CLSM are presented in Figures
1a and 1b. Soil moisture patterns obtained from the CERA
forcing (Figure 1a) are slightly drier than those derived from
the CNRA (Figure 1b), although the patterns observed in
both simulations are well replicated over the entire spatial
domain. In Figure 1c we present average differences
between the two simulations of root zone soil moisture (July,
1985–1993). The differences observed in Figure 1c, are due
to modest variations (sub-monthly time scale) to the atmos-
pheric forcing and are most significant over the US southeast
extending northwards along 95th meridian towards Hud-
son’s Bay and north of 55 degrees latitude, extending from
Hudson’s Bay to Alaska. Over the illustrated region (area in
yellow and orange in Figure 1c), the average volumetric soil
moisture difference (cm3/cm3) between the simulations was
4.2%, and the maximum difference observed was 13%. This
corresponds to relative differences of approximately 10 to
30%, which are significant and likely to result in important
feedbacks to the atmosphere.
[8] To understand the relationship between the differ-

ences in the forcing and resulting differences in patterns
observed in the soil moisture fields, we evaluate average
daily differences between the CERA and CNRA forcing

fields for the months of May, June, and July. Average
monthly differences in the daily maximum, minimum,
range, average, and standard deviation were calculated for
air and dew point temperature, short and longwave radia-
tion, and ten-meter wind speed. For precipitation, we
calculated average daily differences, and differences
between the frequencies of precipitation for each of the
months listed above. Next, we calculated the pattern corre-
lations between the forcing fields (CERA and CNRA
forcing differences), and the differences in soil moisture
simulation presented in Figure 1c. In Table 1, we present the
variables with the highest levels of correlation (all correla-
tion statistics presented in this study are significant at the
1% level). Of the forcing fields, it appears that differences to
daily maximum temperatures, the frequency of precipita-
tion, average daily vapor pressure, maximum shortwave
radiation, and daily minimum longwave radiation account
for greatest effect on soil moisture differences. However, the

Figure 1. Average July (1985–1993) volumetric (cm3/
cm3) root zone soil moisture conditions for simulations
completed with a) CERA, and b) CNRA forcing. Differ-
ences between a) and b) are shown in c).
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correlations between the spatial patterns in the forcing
products and differences in soil moisture (Figure 1c) are
weak overall. This suggests that while differences in forcing
fields are responsible for the results presented in Figure 1c,
no one forcing field stands out as the main cause of the
observed pattern of differences.
[9] To ensure that the differences observed (Figure 1c)

are not due to an identifiable pattern contained within a
combination of many of the variables presented above, we
calculated the principle components (PC) of the differences
to forcing fields (for all fields presented in Table 1). Next,
correlations between the PC fields and the results of Figure
1c were calculated. The highest correlations are between
Figure 1c and PC1, PC2, and PC5 (�0.27, �0.25, and
0.29 respectively). Based on the results of this analysis,
observed differences in soil moisture are not highly corre-
lated to observable patterns in the forcing fields (as
defined by their PC fields). Thus, we cannot explain the
results of Figure 1c through observable patterns in the
forcing.
[10] Lagged autocorrelations are used in several climate-

modeling studies to understand how wet or dry anomalies in
soil moisture persist [Delworth and Manabe, 1989; Huang
et al., 1996; Maurer et al., 2001]. Koster and Suarez [2001]
present a framework for predicting regions with high soil
moisture memory based on a number of model and climatic
factors. In this study, we calculate one-month lagged auto-
correlation of soil moisture in the CLSM driven by the bias
reduced forcing data. Here the one-month autocorrelation
considers root zone soil moisture on July 1 with that on July
31 for both the CERA and CNRA simulation (1985–1993).
The results, plotted in Figure 2, are an average of the CERA
and CNRA autocorrelation maps (because both maps
showed excellent agreement averaging the fields was appro-
priate). In Figure 2, an arc of high autocorrelation is visible
surrounding the Great Plains region of the United States and
Canada. This region of high autocorrelation is similar to that
illustrated in the Koster and Suarez [2001] study although
different LSMs were used.
[11] It is important to note that the areas of high auto-

correlation (Figure 2) correspond closely to the regions
identified in Figure 1c, which identified regions where
differences between the two simulations of soil moisture
were most pronounced. Correlations between patterns of
July soil moisture autocorrelation and differences between
the CERA-CNRA simulations are much higher (r = 0.44)
than to any of the correlations calculated between the
forcing fields or the principle component fields. High
correlation between Figure 1c and Figure 2 demonstrates
that uncertainty in forcing is manifest most directly in soil
moisture estimates over regions with high soil memory (as
identified by high July 1 to July 31 autocorrelations).

Therefore, an estimate of the initial soil moisture state will
have the lowest certainty over these regions unless steps are
taken to reduce inconsistencies in forcing data or incorpo-
rate data assimilation techniques.
[12] To understand the significance of regions illustrated

in Figure 1c we consider the results of Koster et al. [2000a]
and Owe et al. [2001]. Koster et al. [2000a] examine
precipitation predictably over the continents given sea sur-
face temperatures (SST), and SSTs together with informa-
tion of the land surface moisture state. Their results
demonstrate that knowledge of soil moisture enhances
precipitation predictability particularly over the south cen-
tral and southeast regions of the United States, extending
north and westward towards the Pacific Northwest, an area
that shows important overlap with region identified in
Figure 1c. Therefore, the results of Figure 1c have impli-
cations to the Koster et al. [2000a] study because for certain
regions over North America, the areas where knowledge of
the land surface wetness state is important for precipitation
prediction may have higher uncertainty in the initial soil
moisture content.
[13] Furthermore, soil moisture may not be observable by

satellite over this same region. The study of Owe et al.
[2001] describes the production of a surface soil moisture
data set from Scanning Multichannel Microwave Radio-
meter (SMMR) satellite observations (1978–1987). Their
methodology solves for soil wetness using a radiative
transfer equation and observed brightness temperatures at
6.6GHz. Areas where soil moisture estimates were obtained
by SMMR are comparable to those where the Advanced
Microwave Scanning Radiometer (AMSR) will retrieve soil
wetness observations as both instruments operate over
similar frequencies [Njoku and Li, 1999]. In Figure 3, we
plot the average number of SMMR based observations
1979–1987 derived from the Owe et al. [2001] study for
the month of July.
[14] As discussed in Njoku and Entekhabi [1996] and

illustrated in Figure 3, observations of soil moisture over the
North American continent are limited to areas of low
vegetational water contents. Comparison of Figure 1c to
Figure 3 shows that the regions where there is the most
uncertainty in the estimate (Figure 1c) exist over regions
where AMSR satellite soil moisture observations may not
be possible (Figure 3), moreover, some of these regions may

Table 1. Correlations Between Forcing Differences and Figure 1c

Forcing Field

Correlation

May June July

2-meter air temperature (daily maximum) .35 .30 .23
2 meter vapor pressure (daily average) .22 .26 .26
Precipitation Frequency (monthly) 0.17 .21 .20
Longwave Radiation (daily minimum) .20 .24 .25
Shortwave Radiation (daily maximum) .17 .11 .07
Wind speed (daily average) .24 .25 .23

Figure 2. Simulated lagged autocorrelations of root zone
soil moisture for July 1 to July 31 (1985–1993).
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be important for precipitation predictability [Koster et al.,
2000a]. Therefore, these uncertainties are unlikely to be
constrained with current observations and assimilation
approaches [e.g., Walker and Houser, 2001]. However,
future (L-band) passive microwave sensors [e.g., Jackson
et al., 1999] that are less affected by high vegetation water
contents may expand the observable region and thus min-
imize the differences observed.

4. Conclusions

[15] The results of this work suggest that the processes
that contribute to soil memory will also limit our ability to
accurately estimate its initial state for climate model simu-
lations. Differences in simulated soil moisture resulting
from inconsistencies in the CERA and CNRA forcing are
manifest most clearly over regions associated with higher
soil memory. Moreover, these same areas may be important
for weather and climate predictions but are not directly
observable with present sensors. Therefore, the results of
this study suggest that further research towards minimizing
forcing uncertainty and extending observational networks
(both satellite and ground-based) are necessary for increas-
ing the capability to accurately resolve the initial soil
moisture state.

[16] Acknowledgments. This work was supported by NASA grants
NAG5-11645, 12344, and the NASA Earth Science Fellowship Program.
We would also like to acknowledge the comments and insights of two
anonymous reviewers.
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Figure 3. Average number of SMMR based soil moisture
observations over North America for July (1979–1987).
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