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Introduction 

Identifying the drivers of larval dispersal patterns 

and connectivity in marine populations is essential 

both to understand marine metapopulation dy-

namics and to successfully manage marine species 

and populations (Palumbi 2004, Kritzer and Sale 

2006, Fogarty and Botsford 2007). The majority of 

marine taxa have a biphasic lifestyle, with seden-

tary adults, but a pelagic larval stage that persists 

in the water column from a few minutes to multi-

ple years (Thorson 1950, Strathmann 1987, McEd-

ward 1995). This larval phase enables individuals 

that may not move at all as adults to produce off-

spring that are capable of settling thousands of 

kilometers away. An intuitive expectation is the 

duration of the larvae in the water column will 

positively correlate with the distance larvae dis-

perse, and in turn, the spatial scale at which popu-

lations are connected (Kinlan and Gaines 2003, 

Shanks et al. 2003). However, as the number of 

studies investigating correlations between pelagic 

larval duration (PLD), dispersal distance, and the 

genetic structure of populations has increased, 

the evidence has not supported these expecta-

tions, but instead has indicated a generally weak 

relationship between dispersal potential (PLD) and 

genetic structure (F-statistics) (reviewed in 

Bradbury et al. 2008, Shanks 2009, Weersing and 

Toonen 2009, Riginos et al. 2011, Selkoe and 

Toonen 2011). 

 When examined more closely, the PLDs 

across the 10s to 100s of studies in each of these 

meta-analyses generally fit a bimodal distribution, 

with propagules of some species in the water col-

umn for less than 10 hours, and the rest with PLD 

greater than 24 hours (Shanks et al. 2003, Shanks 
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2009). Below the lower PLD threshold, the correla-

tion between PLD, dispersal, and FST is actually 

strong: propagules in the water column for less 

than 10 hours tend rarely to disperse farther than 

1 km, and in turn have higher levels of genetic 

structure. 

 Above the 24 hour threshold, the relation-

ship is less clear: PLD can exceed four years 

(Strathmann and Strathmann 2007), dispersal dis-

tance varies from meters to 1000s of kilometers, 

and genetic structure ranges from low to high. 

The majority of propagules do not disperse as far 

as their PLD predicts, whether dispersal distance is 

estimated by a passive particle model (Shanks et 

al. 2003, Shanks 2009) or Lagrangian dispersal 

model (Siegel et al. 2003, Shanks 2009). However, 

newer biophysical models have successfully pre-

dicted dispersal patterns, often by incorporating 

environmental variables and/or larval behaviors 

hypothesized to reduce larval dispersal (Gilg and 

Hilbish 2003, Baums et al. 2006, Cowen et al. 

2006, Galindo et al. 2006, White et al. 2010, 

Rivera et al. 2011, Foster et al. 2012). Further-

more, when factors such as geographic history 

and coalescence time can be controlled for by us-

ing synchronously diverging, co-distributed (SDC) 

taxa, the relationship between PLD and genetic 

structure are drastically improved for some spe-

cies (Dawson 2012, 2014, Dawson et al. 2014). 

 Many factors may prevent larvae from real-

izing their full dispersal potential, including bio-

geographic barriers (Barber et al. 2002, Crandall et 

al. 2008, Gaither et al. 2010, but see Lessios and 

Robertson 2006, and review in Riginos et al. 

2011), contemporary oceanographic currents 

(Shulman and Bermingham 1995, Baums et al. 

2006, White et al. 2010), larval behavior (Jones et 

al. 1999, Leis 2006, Montgomery et al. 2006, 

Toonen and Tyre 2007), ecological barriers (Rocha 

et al. 2005, Selkoe et al. 2010), and even anthro-

pogenic effects (Puritz and Toonen 2011). As Daw-

son’s SDC approach (2012, 2014) suggests, con-

founding factors such as geographic distributions, 

recent bottlenecks or founder events, and histori-

cal population size fluctuations may obscure the 

relationship between PLD and dispersal distance. 

Similarly, PLD may act as confounding factor when 

examining contemporary barriers to dispersal in 

specific regions. The majority of species studied to 

date, including those in the meta-analytical re-

views, have PLDs less than ~60 days, allowing for 

the possibility that PLD may be a limiting or a con-

founding factor when evaluating the drivers of 

contemporary genetic patterns. What about spe-

cies that have much longer PLDs (>180 days)? Is 

there an upper threshold PLD level, similar to the 

lower 24-hour threshold revealed by recent re-

views, over which pelagic larvae will overcome 

any of the aforementioned barriers to dispersal 

and theoretically allow for effectively panmictic 

populations? Alternatively, can these species with 

long PLD be used to identify dispersal barriers and 

other factors shaping biogeographic distributions 

and influencing population connectivity without 

the confounding factor of PLD? 

 Scheltema (1971) named long-lived, pelagic 

larval dispersers “teleplanic”: larvae that originate 

in the continental-shelf benthos, but are often 

found in the open ocean, providing a potential 

means for dispersal over very long distances. 

These larvae have been collected over 1500 km 

from coastal waters (Johnson 1956, 1960, Jeffs et 

al. 2005), and have been hypothesized not only to 

allow the colonization of new regions, but also to 

sustain gene flow across a full species distribution 

over ecological time scales (Scheltema 1971). Al-

ternatively, Johnson (1971, 1974) proposed that 

the larvae found far offshore, past local entrain-

ment features, had a very low probability of sur-

vival, and therefore represented a loss from their 

site of origin, rather than a potential recruit to a 

distant site. Further, Strathmann et al. (2002) hy-

pothesize that the long PLD did not evolve in re-

sponse to selection for the broad dispersal of lar-

vae, but rather for the avoidance of predation 

during the larval phase (e.g., Morgan and Anasta-

sia 2008), and that survivorship of larvae generally 

decreased with increasing distance from the natal 

site (Strathmann et al. 1981). In this case, the lar-

vae found far offshore would be temporarily re-

siding in an environment that is favorable to their 

survival (due to lower predation levels), but the 

majority would return to recruit proximate to 

their natal site. 
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 For my dissertation, I use genetic data from 

three species of spiny lobsters within the genus 

Panulirus, each of which has a PLD exceeding 180 

days (Phillips et al. 2006), to gain a more funda-

mental understanding of the role of the teleplanic 

larval phase in maintaining population connec-

tivity and geographic range sizes in marine spe-

cies: do teleplanic larvae sustain effectively pan-

mictic populations across broad geographic ex-

panses? 

 

Methods 

I use a combination of mitochondrial DNA 

(mtDNA) sequence data and nuclear microsatellite 

markers to assess the scales of population genetic 

connectivity in three different Panulirus lobster 

species using standard genetic analysis techniques 

(e.g., diversity indices, AMOVA, pairwise FSTST/

Dest_Chao, median-joining networks). I first examine 

genetic connectivity with mtDNA sequence data 

(cytochrome c oxidase subunit I; COI) at the 

broadest spatial scale, using 751 samples from 32 

sites throughout the distribution of Panulirus peni-

cillatus (Olivier, 1791) from the Red Sea to the 

East Pacific Ocean (Iacchei 2013: Chapter 2). Next, 

I examine species distributions (Chapter 3, Iacchei 

and Toonen 2013) and patterns of genetic connec-

tivity in mtDNA (Chapter 3, Iacchei and Toonen 

2013; Chapter 4, Iacchei et al. 2014) of P. penicilla-

tus at a smaller spatial scale (the Hawaiian Archi-

pelago: 10 sites, 281 samples). I compare these 

data to those of a congeneric species, Panulirus 

marginatus (Quoy and Gaimard, 1825) from 13 

sites (564 samples, COII genetic marker) in the 

Hawaiian Archipelago (Chapter 4, Iacchei et al. 

2014). Panulirus marginatus is sympatric with P. 

penicillatus over this geographic extent, but is en-

demic to Hawai‘i. Finally, I conduct a deeper inves-

tigation into the genetic structuring of a third spe-

cies, Panulirus interruptus (Randall, 1840), across 

the majority of its species distribution along the 

West Coast of North America from Monterey Bay, 

CA to Bahía Magdalena, Mexico (17 sites, 1102 

samples). I develop eight microsatellite markers to 

detect finer spatial genetic partitioning in P. inter-

ruptus (Chapter 5, Ben-Horin et al. 2009). I then 

combine mtDNA COI sequence data and seven of 

the eight nuclear microsatellites (nDNA) to exam-

ine population connectivity in this species, and 

also propose a new analysis mechanism that uses 

microsatellite data to assess kinship, and gain a 

richer understanding of population genetic struc-

turing in marine species (Chapter 6, Iacchei et al. 

2013). 

 

Results and Discussion 

Is there an upper threshold PLD level over 

which pelagic larvae will overcome any barri-

ers to dispersal and maintain effectively pan-

mictic populations?  

Although each of the three lobster species has 

one or more haplotypes that are shared across 

most of the sampling sites within their species 

distributions, each species also has significant ge-

netic differentiation across its species range. 

Panulirus penicillatus was significantly differenti-

ated from the Red Sea to the East Pacific (ST = 

0.175, P < 0.000005; Chapter 2), despite a nine-

month PLD (Matsuda et al. 2006). Global FST for P. 

marginatus across the Hawaiian Archipelago is 

low (0.0037) but statistically significant (P = 0.007; 

Iacchei et al. 2014), despite an estimated 12-

month PLD (Polovina and Moffitt 1995). Similarly, 

P. interruptus, with an estimated PLD of 8–11 

months (Johnson 1956, 1960, Serfling and Ford 

1975) has low, but statistically significant, genetic 

structure for both mtDNA (ST = 0.006, P = 0.001), 

and seven nuclear microsatellite markers (FST = 

0.004, P < 0.0005; Iacchei et al. 2013). These data 

refute the hypothesis that there is an upper 

threshold level PLD above which pelagic larvae 

will overcome any barriers to dispersal, unless 

that threshold is longer than 12 months. Other 

species with comparable PLDs have given mixed 

results. A number of genetic investigations of ma-

rine species have identified minimal population 

structuring across broad geographic scales, both 

for other lobsters (Ovenden et al. 1992, Silberman 

et al. 1994, Thompson et al. 1996, Tolley et al. 

2005, Inoue et al. 2007, García-Rodríguez and 

Perez-Enriquez 2008) and for species with longer 

PLDs, such as moray eels with leptocephalus lar-

vae and a PLD greater than 2-years (Reece et al. 
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2011). In other studies, genetic discontinuities 

have corresponded with known biogeographic 

barriers, or oceanographic transitions (Palero et 

al. 2008, Babbucci et al. 2010, Chow et al. 2011), 

but there has also been some evidence of local 

recruitment in species with greater than 180-day 

PLD (Silberman and Walsh 1994, Johnson and 

Wernham 1999). 

 Although few marine species have PLDs of 

this length, amphidromous species can have com-

parable PLDs (e.g., Radtke et al. 2001, Hoareau et 

al. 2007) and yield unique insights. Many am-

phidromous species show little to no genetic 

structure across their geographic ranges (cf., ref-

erences in Crandall et al. 2010, Castelin et al. 

2013), matching the expectation of their high dis-

persal potential. However, other species exhibit 

spatial genetic structure aligned with boundaries 

of biogeographic provinces (Briggs 1974, Briggs 

and Bowen 2012) that delimit species in taxa with 

shorter PLDs (Crandall et al. 2010, Lord et al. 2012, 

Castelin et al. 2013); and at least one amphidro-

mous species has isolated populations within 

these biogeographic provinces (Minegishi et al. 

2008). Even species that spend their whole lives in 

the plankton have genetically distinct populations 

isolated by large oceanographic features (Norton 

and Goetze 2013). These combined studies refute 

the hypothesis that there is a PLD threshold above 

which gene flow is maintained across all oceano-

graphic barriers within a species range. Effective 

panmixia may occur within certain species, but 

those species cannot be predicted using a specific 

larval trait. 
 

What mechanisms are potentially driving 

population differentiation? 

The patterns of genetic differentiation varied 

across species and spatial scale, even in the Ha-

waiian Archipelago, where P. marginatus and P. 

penicillatus are sympatric (Iacchei et al. 2014), 

indicating that no single factor is driving genetic 

differentiation. All three patterns of differentia-

tion identified in amphidromous species above 

were also observed in the spiny lobsters. At the 

broadest scale, P. penicillatus exhibits high levels 

of genetic differentiation corresponding with 

known biogeographic barriers that often form 

species-level boundaries in other clades. For ex-

ample, there is significant differentiation (CT = 

0.69, P = 0.011) across the three regions defined 

by the major Indo-Pacific biogeographic barriers 

(Western Indian Ocean, Western and Central Pa-

cific, East Pacific). Of particular note, there has 

likely been no recent gene flow across the East 

Pacific Barrier, Darwin’s (1872) ‘impassable’ bar-

rier (CT = 0.847, P = 0.039), in contrast to some 

species with significantly shorter pelagic durations 

(Lessios and Robertson 2006). Based on the high 

level of genetic differentiation and the sequence 

divergence between these regions, the East Pacific 

P. penicillatus, designated “P. penicillatus Red” by 

George (2006), deserves species-level recognition, 

distinct from the Indo-West Pacific P. penicillatus. 

Within the Western and Central Pacific, there are 

also significant genetic breaks between the Sino-

Japanese Province and the rest of the tropical 

Indo-Pacific (Chapter 2). However, there is no dif-

ferentiation across the Indo-Pacific biogeographic 

barrier (CT = 0.00032, P = 0.259), which limits 

species distributions for many reef organisms and 

serves as a strong filter for others.  

 There is also regional isolation in Hawai‘i, 

where P. penicillatus and P. marginatus have over-

lapping, though distinct distributions (Iacchei and 

Toonen 2013). Each species shows weak, but sig-

nificant differentiation between the high islands in 

the main Hawaiian Islands and the northwestern 

Hawaiian Island atolls (P. marginatus FCT = 0.002, P 

= 0.047; P. penicillatus FCT = 0.008, P = 0.0083; Iac-

chei et al. 2014). There was not a signal of re-

gional differentiation across the range of P. inter-

ruptus, despite its span of a known faunal bound-

ary at Punta Eugenia, Mexico (Iacchei et al. 2013).  

 Notably, all three species show indications 

of site-specific drivers of genetic isolation particu-

lar to each species. In P. penicillatus, there is rela-

tive genetic isolation of a number of islands within 

the Indo-Polynesian province, while other sites 

within this province are well connected to loca-

tions throughout the species distribution (Chapter 

2). Across Hawai‘i, the genetic structure for P. 

penicillatus is weak, and mostly driven by isolation 

of two of the northernmost atolls (Iacchei et al. 

Matthew Iacchei — Patterns of genetic structure in Panulirus spp.  

 32 frontiers of biogeography 6.1, 2014 — © 2014 the authors; journal compilation © 2014 The International Biogeography Society 



2014). In contrast, P. marginatus sites in the Main 

Hawaiian Islands (Kaua‘i and Maui) are signifi-

cantly differentiated from the majority of other 

locations in the archipelago and drive the appar-

ent regional pattern, while O‘ahu, just over 100 

and 150 km from Maui and Kaua‘i respectively, is 

only distinct from Maui, and not any of the atolls 

located as far as 2000 km to the northwest 

(Iacchei et al. 2014). Similar patterns of site-

specific differentiation are becoming more evi-

dent as multiple species are examined across the 

same locations (e.g., Kelly and Palumbi 2010, 

Selkoe et al. 2010, Toonen et al. 2011). However, 

given the identical oceanographic conditions that 

these lobsters encounter in Hawai‘i, species-

specific behaviors are likely driving genetic con-

nectivity in this regime (e.g., Butler et al. 2011, 

Miller and Morgan 2013).  

 Similarly, for P. interruptus, there are four 

locations within Central and Northern Baja Califor-

nia, Mexico that are significantly differentiated 

from almost all other locations, while most sites 

throughout the range are genetically well con-

nected. Kinship data for P. interruptus derived 

from multiple microsatellites provides evidence 

that the sites with the greatest level of differentia-

tion from other sites also had the highest propor-

tion of closely related individuals. The most 

closely related individuals (quarter to full-sibs) 

were almost exclusively found at the same loca-

tion, rather than at different sites (Iacchei et al. 

2013). The elevated levels of kinship at specific 

sites could be driven by localized recruitment, or 

by timed settlement of related individuals (i.e., 

Selkoe et al. 2006, Buston et al. 2009, Bernardi et 

al. 2012). Most of the isolated sites occurred 

within Baja California, Mexico, where there is a 

much stronger and more consistent upwelling re-

gime, rather than in the Southern California Bight, 

where upwelling is almost non-existent. The pro-

portion of kin at a site was positively correlated 

with the proximity of a site to an upwelling center: 

the closer to an upwelling center, the higher the 

proportion of kin. This evidence provides a poten-

tial mechanism driving the observed genetic cohe-

sion within sites (Iacchei et al. 2013). This synthe-

sis of population level F-statistics, individual-based 

kinship analyses, and oceanographic data provides 

novel insight into a common scenario for marine 

species: low, but significant pairwise differentia-

tion between locations, but with no particular re-

gional separation or isolation-by-distance pattern, 

and without any known biogeographic explana-

tion. With only one genetic marker per species, I 

was not able to assess kinship for P. marginatus or 

P. penicillatus. As more genetic markers become 

available through next-generation sequencing 

technology, and regional oceanographic models 

become more refined, this avenue of research 

should provide substantial insights into the pat-

terns of genetic differentiation in marine taxa with 

a biphasic lifestyle. 

 The combined data from this dissertation 

lend some support to both the hypothesis of 

Scheltema (1971), and of Strathmann et al. (2002) 

on the role of teleplanic larvae in the maintenance 

of marine populations. These data do not speak to 

the specific function for which traits that enable 

teleplanic larval dispersal were selected. However, 

the data do provide evidence for both frequent 

long distance dispersal, as well as for the ability to 

recruit close to the natal site. As Iacchei et al. 

(2013) demonstrate, the coupling of F-statistics, 

individual-based kinship analyses, and oceano-

graphic data yields substantially greater insight 

into drivers of genetic connectivity than F-

statistics alone. This is an exciting time for the 

field because genetic, oceanographic, habitat, and 

environmental data are all increasing at exponen-

tial rates, and the computational power to analyze 

the data influx is more cheaply available. Forth-

coming work on these species will incorporate 

coalescent simulations (Kingman 1982) using next-

generation sequencing data to more accurately 

distinguish between ecological and evolutionary 

drivers of population differentiation, and to iso-

late the effects of population size (Ne), migration, 

and demographic history that F-statistics summa-

rize (cf., Marko and Hart 2011, 2012). In addition, I 

hope to relate migration results to oceanographic 

current simulations (e.g., Crandall et al. 2012) and 

assess the effects of habitat extent (e.g., Reece et 

al. 2011) and stability on patterns of genetic dif-

ferentiation. I aim to compare these patterns with 
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other marine species with long PLDs, as well as 

amphidromous species across overlapping geo-

graphic ranges. These comparisons will provide a 

more robust picture of the shared divers of ge-

netic differentiation and the traits upon which 

these drivers act (e.g., Toonen et al. 2011, Dawson 

et al. 2014). 
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