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Chapter 1

Introduction

This dissertation presents the results of three independent projects. The

common thread across these projects is that they reside at the intersection of compu-

tational semantics and cognitive semantics, drawing upon the theoretical resources

and techniques of both fields. This is an especially fruitful intersection at which to

work, because these fields face similar challenges, yet have communicated relatively

little. This presents opportunities on two fronts.

On the one hand, many problems in cognitive semantics relate to large-scale

(language-wide or cross-linguistic) phenomena. Exhaustive, systematic corpus analysis

is one method that can be used to place hypotheses about such phenomena on a solid

footing. Unfortunately, such analysis is usually prohibitively expensive in terms of

both time and money. The plethora of new machine learning techniques that have

emerged in recent years have the potential to reshape corpus analysis via automation.

Meanwhile, computational semantics has generally focused on straightforwardly

applying new machine-learning techniques, with relatively little emphasis on existing

theory in cognitive semantics. Indeed, much of the substantial progress made in

1
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computational semantics in the past 15 years rests largely on a single idea from

cognitive semantics, the distributional hypothesis [Har54]. While it is impressive that

a single, 60-year-old concept could lead to so much practical progress, it raises the

question of how much more rapidly the field could advance if armed with the full

arsenal of empirical results from cognitive semantics.

1.1 A Brief Introduction to Distributional Seman-

tics

The distributional hypothesis asserts that the meaning of a word is reflected in

how the word is used in context: Words that have similar meanings are used in similar

contexts. As mentioned above, the importance of this hypothesis to computational

semantics lies in that it opens a window of empirical inquiry into linguistic meaning

through the powerful machinery of statistics and probability theory: We can compile

statistics of how a word is distributed across many documents. Using these statistics we

can build a semantic vector for the word, a numerical representation of the approximate

meaning of the word. Ideally, the closer that the semantic vectors for two words are,

the closer that their meanings are, and vice versa.

Figure 1.1 illustrates how the distributional hypothesis can be used to build a

distributional semantic model. Here we have a toy semantic space with three axes:

each one represents a context in which a word can appear. The word cup occurs

often near the words wine and drink, so in this toy distributional semantic model (or

DSM for short), it is represented by a semantic vector that is a mixture of these two

corresponding context axes. Conversely, cup doesn’t often occur in the context of the
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Figure 1.1: Illustration of the use of a word’s distributional statistics to
create semantic vectors for the word.

word zebra, so the magnitude of the cup’s semantic vector in the zebra context axis

would be near zero. The DSM could be updated with a sentence including a totally

novel word that is not present in its original training corpus. Suppose the novel word

is grole, and the phrase is They poured the wine into the grole and drank among friends.

Then we might reasonably guess that grole has a meaning (and a semantic vector) that

is close to that of cup in semantic space, because its is used in similar contexts. Indeed,

a grole looks like a cup in that you can drink out of it, but it has multiple spouts

for sharing. Note that the sorts of context axes in the figure are not usually used

directly, since they result in a very high-dimensional space. Usually, dimensionality

reduction techniques are used to obtain a dense, compact vector representation of each

word. There are many dimensionality reduction techniques that have been proposed;
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the major categories are explicit matrix factorization/spectral techniques [DDL+90],

Bayesian generative models [BNJ03], and neural-network [MSC+13] approaches; see

Turney and Pantel [TP10] for a thorough survey. DSMs also differ in how to define

the context of a word. For instance, Latent Semantic Analysis [DDL+90, LD97], one

of the first matrix factorization DSMs, defines each document as a context—a word

occurs in a document context if it is instantiated in that document. Meanwhile, HAL

[LBA95], a later matrix factorization-based technique, defined contexts as words; HAL

counts a word as occurring within a given context if it occurred within a window of

N words of the context word (for some integer N defined by the user). While most

DSM approaches ignore syntax (and are known as bag-of-words models), some models

even integrate syntactic information, for instance by taking account of the syntactic

relation between a term and its context [EP08], or, as described in chapter 2, by

learning vector representations optimized over syntactic trees [SPH+11].

1.2 Outline of the Rest of This Thesis

The projects described in this dissertation provide a small illustration of the

potential of working at the intersection of computational and cognitive semantics.

Chapter 3, which was completed in collaboration with Benjamin Bergen and

Roger Levy, concerns the relationship between the form and meaning of words in

the English lexicon. While the relationship between form and meaning is obvious

at the level of morphemes (e.g., glow and glowing share both the form (morpheme)

and meaning of glow), form-meaning systematicity is more controversial at the sub-

morphemic level. Arbitrariness of the sign—the notion that the forms of words are

unrelated to their meanings at the sub-morphemic level—is an underlying assumption
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of many linguistic theories. Two lines of research have recently challenged this assump-

tion, but they produce differing characterizations of non-arbitrariness in language.

Behavioral and corpus studies have confirmed the validity of localized form-meaning

patterns manifested in limited subsets of the lexicon. Meanwhile, global (lexicon-wide)

statistical analyses instead find diffuse form-meaning systematicity across the lexicon

as a whole. The approach in this chapter bridges the gap with an approach that can

detect both local and global form-meaning systematicity in language. In the kernel

regression formulation we introduce, form-meaning relationships can be used to predict

words’ distributional semantic vectors from their forms. Furthermore, we introduce a

novel metric learning algorithm that can learn weighted edit distances that minimize

kernel regression error. Our results suggest that the English lexicon exhibits far more

global form-meaning systematicity than previously discovered, and that much of this

systematicity is focused in localized form-meaning patterns.

Chapter 4, which was co-written with Ekaterina Shutova, Gerard de Melo, and

Patricia Lichtenstein, looks at how meaning interacts with opinions and the discourse

level, and how this differs across languages. Understanding cross-cultural differences

has important implications for world affairs and many aspects of the life of society.

Yet, the majority of text-mining methods to date focus on the analysis of monolingual

texts. In contrast, we present a statistical model that simultaneously learns a set of

common topics from multilingual, non-parallel data and automatically discovers the

differences in perspectives on these topics across linguistic communities. We perform a

behavioural evaluation of a subset of the differences identified by our model in English

and Spanish to investigate their psychological validity.

Chapter 2 formalizes the idea of conceptual metaphors as transformations (i.e.,
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mappings) within the context of distributional semantic (i.e., vector-space) models.

Metaphorical expressions are pervasive in natural language and pose a substantial

challenge for computational semantics. The inherent compositionality of metaphor

makes it an important test case for compositional distributional semantic models

(CDSMs). The work presented here is the first investigation of whether metaphorical

composition warrants a distinct treatment in the CDSM framework. We propose

a method to learn metaphors as linear transformations in a vector space and find

that, across a variety of semantic domains, explicitly modeling metaphor improves the

resulting semantic representations. We then use these representations in a metaphor

identification task, achieving high performance.



Chapter 2

Literal and Metaphorical Senses in

Compositional Distributional

Semantic Models

2.1 Introduction

An extensive body of behavioral and corpus-linguistic studies suggests that

metaphors are pervasive in everyday language [Cam03, SDH+10] and play an important

role in how humans define and understand the world. According to Conceptual

Metaphor Theory (CMT) [LJ81], individual metaphorical expressions, or linguistic

metaphors (LMs), are instantiations of broader generalizations referred to as conceptual

metaphors (CMs). For example, the phrases half-baked idea, food for thought, and

spoon-fed information are LMs that instantiate the CM ideas are food. These

phrases reflect a mapping from the source domain of food to the target domain of

ideas [Lak89]. Two central claims of the CMT are that this mapping is systematic,

7
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in the sense that it consists of a fixed set of ontological correspondences, such as

thinking is preparing, communication is feeding, understanding is digestion; and that

this mapping can be productively extended to produce novel LMs that obey these

correspondences.

Recent years have seen the rise of statistical techniques for metaphor detection.

Several of these techniques leverage distributional statistics and vector-space models

of meaning to classify utterances as literal or metaphorical [Uts06, SSK10, HSJ+13,

TBG+14]. An important insight of these studies is that metaphorical meaning is

not merely a property of individual words, but rather arises through cross-domain

composition. The meaning of sweet, for instance, is not intrinsically metaphorical. Yet

this word may exhibit a range of metaphorical meanings—e.g., sweet dreams, sweet

person, sweet victory–that are created through the interplay of source and target

domains. If metaphor is compositional, how do we represent it, and how can we use it

in a compositional framework for meaning?

Compositional distributional semantic models (CDSMs) provide a compact

model of compositionality that produces vector representations of phrases while

avoiding the sparsity and storage issues associated with storing vectors for each phrase

in a language explicitly. One of the most popular CDSM frameworks [BZ10, Gue10,

CSC10] represents nouns as vectors, adjectives as matrices that act on the noun vectors,

and transitive verbs as third-order tensors that act on noun or noun phrase vectors.

The meaning of a phrase is then derived by composing these lexical representations.

The vast majority of such models build a single representation for all senses of a

word, collapsing distinct senses together. One exception is the work of Kartsaklis

and Sadrzadeh [KS+13], who investigated homonymy, in which lexical items have
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identical form but unrelated meanings (e.g., bank). They found that deriving verb

tensors from all instances of a homonymous form (as compared to training a separate

tensor for each distinct sense) loses information and degrades the resultant phrase

vector representations. To the best of our knowledge, there has not yet been a study

of regular polysemy (i.e. metaphorical or metonymic sense distinctions) in the context

of compositional distributional semantics. Yet, due to systematicity in metaphorical

cross-domain mappings, there are likely to be systematic contextual sense distinctions

that can be captured by a CDSM, improving the resulting semantic representations.

In this paper, we investigate whether metaphor, as a case of regular polysemy,

warrants distinct treatment under a compositional distributional semantic framework.

We propose a new approach to CDSMs, in which metaphorical meanings are distinct

but structurally related to literal meanings. We then extend the generalizability of

our approach by proposing a method to automatically learn metaphorical mappings

as linear transformations in a CDSM. We focus on modeling adjective senses and

evaluate our methods on a new data set of 8592 adjective-noun pairs annotated for

metaphoricity, which we will make publicly available. Finally, we apply our models

to classify unseen adjective-noun (AN) phrases as literal or metaphorical and obtain

state-of-the-art performance in the metaphor identification task.

2.2 Background & Related Work

Metaphors as Morphisms. The idea of metaphor as a systematic mapping has

been formalized in the framework of category theory [Gog99, KF91]. In category

theory, morphisms are transformations from one object to another that preserve some

essential structure of the original object. Category theory provides a general formalism
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for analyzing relationships as morphisms in a wide range of systems (see Spivak [Spi14]).

Category theory has been used to formalize the CM hypothesis with applications to

user interfaces, poetry, and information visualization [KF91, GH10, GH05]. Although

these formal treatments of metaphors as morphisms are rigorous and well-formalized,

they have been applied at a relatively limited scale. This is because this work does

not suggest a straightforward and data-driven way to quantify semantic domains or

morphisms, but rather focuses on the transformations and relations between semantic

domains and morphisms, assuming some appropriate quantification has already been

established. In contrast, our methods can learn representations of source-target domain

mappings from corpus data, and so are inherently more scalable.

Compositional DSMs. Similar issues arose in modeling compositional semantics.

Formal semantics has dealt with compositional meaning for decades, by using mathe-

matical structures from abstract algebra, logic, and category theory [Mon70, Par94,

Lam99]. However, formal semantics requires manual crafting of features. The central

insight of CDSMs is to model the composition of words as algebraic operations on

their vector representations, as provided by a conventional DSM [ML08]. Guevara

[Gue10] and Baroni and Zamparelli [BZ10] were the first to treat adjectives and verbs

differently from nouns. In their models, adjectives are represented by matrices that act

on noun vectors. Adjective matrices can be learned using regression techniques. Other

CDSMs have also been proposed and successfully applied to tasks such as sentiment

analysis and paraphrase [SPH+11, SHMN12, TDSM13, Tur13].

Handling Polysemy in CDSMs. Several researchers argue that terms with am-

biguous senses can be handled by DSMs without any recourse to additional disam-
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biguation steps, as long as contextual information is available [BVCM12, EP10, PL02,

Sch98, TDSM13]. Baroni et al. [BBZ14] conjecture that CDSMs might largely avoid

problems handling adjectives with multiple senses because the matrices for adjectives

implicitly incorporate contextual information. However, they do draw a distinction

between two ways in which the meaning of a term can vary. Continuous polysemy—the

subtle and continuous variations in meaning resulting from the different contexts in

which a word appears—is relatively tractable, in their opinion. This contrasts with

discrete homonymy—the association of a single term with completely independent

meanings (e.g., light house vs. light work). Baroni et al. concede that homonymy is

more difficult to handle in CDSMs. Unfortunately, they do not propose a definite way

to determine whether any given variation in meaning is polysemy or homonymy, and

offer no account of regular polysemy (i.e., metaphor and metonymy) or whether it

would pose similar problems as homonymy for CDSMs.

To handle the problematic case of homonymy, Kartsaklis and Sadrzadeh

[KSP13] adapt a clustering technique to disambiguate the senses of verbs, and then

train separate tensors for each sense, using the previously mentioned CDSM framework

of Coecke et al. [CSC10]. They found that prior disambiguation resulted in semantic

similarity measures that correlated more closely with human judgments.

In principle, metaphor, as a type of regular polysemy, is different from the sort

of semantic ambiguity described above. General ambiguity or vagueness in meaning

(e.g. bright light vs bright color) is generally context-dependent in an unsystematic

manner. In contrast, in regular polysemy meaning transfer happens in a systematic

way (e.g. bright light vs. bright idea), which can be explicitly modeled within a CDSM.

The above CDSMs provide no account of such systematic polysemy, which is the gap
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this paper aims to fill.

Computational Work on Metaphor. There is now an extensive literature on

statistical approaches to metaphor detection. The investigated methods include

clustering [BS06, SSK10, LS10]; topic modeling [BLM09, LRS10, HGS+13]; topical

structure and imageability analysis [SBT+13]; semantic similarity graphs [SL09],

and feature-based classifiers [GBNC06, LS09, TNAC11, Dun13a, Dun13b, HSJ+13,

MBHT13, NAC+13, TMG13, TBG+14]. We refer readers to the survey by Shutova

[Shu15] for a more thorough review.

Most relevant to the present work are approaches that attempt to identify

whether adjective-noun phrases are metaphorical or literal. Krishnakumaran and Zhu

[KZ07] use AN co-occurrence counts and WordNet hyponym/hypernym relations for

this task. If the noun and its hyponyms/hypernyms do not occur frequently with the

given adjective, then the AN phrase is labeled as metaphorical. Krishnakumaran and

Zhu’s system achieves a precision of 0.67. Turney et al. [TNAC11] classify verb and

adjective phrases based on their level of concreteness or abstractness in relation to

the noun they appear with. They learn concreteness rankings for words automatically

(starting from a set of examples) and then search for expressions where a concrete

adjective or verb is used with an abstract noun (e.g., dark humor is tagged as a

metaphor; dark hair is not). They measure performance on a set of 100 phrases

involving one of five adjectives, attaining an average accuracy of 0.79. Tsvetkov et al.

[TBG+14] train a random-forest classifier using several features, including abstractness

and imageability rankings, WordNet supersenses, and DSM vectors. They report an

accuracy of 0.81 on the Turney et al. [TNAC11] AN phrase set. They also introduce

a new set of 200 AN phrases, on which they measure an F-score of 0.85.
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2.3 Experimental Data

Corpus. We trained our DSMs from a corpus of 4.58 billion tokens. Our corpus

construction procedure is modeled on that of Baroni and Zamparelli [BZ10]. The corpus

consisted of a 2011 dump of English Wikipedia, the UKWaC [BBFZ09], the BNC

[BNC07], and the English Gigaword corpus [GKCM03]. The corpus was tokenized,

lemmatized, and POS-tagged using the NLTK toolkit [BL04] for Python.

Metaphor Annotations. We created an annotated dataset of 8592 AN phrases

(3991 literal, 4601 metaphorical). Our choice of adjectives was inspired by the test

set of Tsvetkov et al. [TBG+14], though our annotated dataset is considerably larger.

We focused on 23 adjectives that can have both metaphorical and literal senses, and

which function as source-domain words in relatively productive CMs: temperature

(cold, heated, icy, warm), light (bright, brilliant, dim), texture (rough, smooth,

soft); substance (dense, heavy, solid), clarity (clean, clear, murky), taste (bitter,

sour, sweet), strength (strong, weak), and depth (deep, shallow). We extracted

all AN phrases involving these adjectives that occur in our corpus at least 10 times.

We filtered out all phrases that require wider context to establish their meaning or

metaphoricity—e.g., bright side, weak point.

The remaining phrases were annotated using a procedure based on Shutova et

al. [SSK10]. Annotators were encouraged to rely on their own intuition of metaphor,

but were provided with the following guidance:

• For each phrase, establish the meaning of the adjective in the context of the

phrase.

• Try to imagine a more basic meaning of this adjective in other contexts. Basic
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meanings tend to be: more concrete; related to embodied actions, perceptions,

or sensations; more precise; historically older/more “original”.

• If you can establish a basic meaning distinct from the meaning of the adjective

in this context, it is likely to be used metaphorically.

If requested, a randomly sampled sentence from the corpus that contained the phrase

in question was also provided. The annotation was performed by one of the authors.

The author’s annotations were compared against those of a university graduate native

English-speaking volunteer who was not involved in the research, on a sample of 500

phrases. Interannotator reliability [Coh60, FCE69] was κ = 0.80 (SE = .02). Our

annotated data set is publicly available at http://bit.ly/1R5Yhn1.

2.4 Representing Metaphorical Senses in a Com-

positional DSM

In this section we test whether separate treatment of literal and metaphorical

senses is justified in a CDSM framework. In that case, training adjective matrix

representations on literal and metaphorical subsets separately may result in system-

atically improved phrase vector representations, despite each matrix making use of

fewer training examples.

2.4.1 Method

Our goal is to learn accurate vector representations for unseen adjective-noun

(AN) phrases, where adjectives can take on metaphorical or literal senses. Our models

build off the CDSM framework of Baroni and Zamparelli [BZ10], as extended by Li et

http://bit.ly/1R5Yhn1
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al. [LBD14]. Each adjective a is treated as a linear map from nouns to AN phrases:

p = Aan,

where p is a vector for the phrase, n is a vector for the noun, and Aa is a matrix for

the adjective.

Contextual Variation Model. The traditional representations do not account for

the differences in meaning of an adjective in literal vs metaphorical phrases. Their

assumption is that the contextual variations in meaning that are encoded by literal and

metaphorical senses may be subtle enough that they can be handled by a single catch-

all matrix per adjective, ABOTH(a). In this model, every phrase i can be represented

by

pi = ABOTH(a)ni (2.1)

regardless of whether a is used metaphorically or literally in i. This model has the

advantage of simplicity and requires no information about whether an adjective is

being used literally or metaphorically. In fact, to our knowledge, all previous literature

has handled metaphor in this way.

Discrete Polysemy Model Alternatively, the metaphorical and literal senses of

an adjective may be distinct enough that averaging the two senses together in a

single adjective matrix produces representations that are not well-suited for either

metaphorical or literal phrases. Thus, the literal-metaphorical distinction could

be problematic for CDSMs in the way that Baroni et al. [BBZ14] suggested that

homonyms are. Just as Kartsaklis and Sadrzadeh [KS+13] solve this problem by
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representing each sense of a homonym by a different adjective matrix, we represent

literal and metaphorical senses by different adjective matrices. Each literal phrase i is

represented by

pi = ALIT(a)ni, (2.2)

where ALIT(a) is the literal matrix for adjective a. Likewise, a metaphorical phrase is

represented by

pi = AMET(a)ni, (2.3)

where AMET(a) is the metaphorical matrix for a.

Learning. Given a data set of noun and phrase vectors D(a) = {(ni,pi)}Ni=1 for

AN phrases involving adjective a extracted using a conventional DSM, our goal is to

learn AD(a). This can be treated as an optimization problem, of learning an estimate

ÂD(a) that minimizes a specified loss function. In the case of the squared error loss,

L(AD(a)) =
∑

i∈D(a) ‖pi −AD(a)ni‖22, the optimal solution can be found precisely using

ordinary least-squares regression. However, this may result in overfitting because

of the large number of parameters relative to the number of samples (i.e., phrases).

Regularization parameters λ = (λ1, λ2) can be introduced to keep ÂD(a) small:

∑
i∈D(a)

‖pi − ÂD(a)ni‖22 +R(λ; ÂD(a)),

where R(λ; ÂD) = λ1‖ÂD‖1+λ2‖ÂD‖2. This approach, known as elastic-net regression

[ZH05], produces better adjective matrices than unregularized regression [LBD14].

Note that the same procedure can be used to learn the adjective representations in
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both the Contextual Variation model and the Discrete Polysemy model by varying

what phrases are included in the training set D(a). In the Contextual Variation model

D(a) includes both metaphorical and literal phrases, while in the Discrete Polysemy

model it includes only metaphorical phrases when learning Âmet(a) and testing on

metaphorical phrases (and only literal phrases when learning Âlit(a) and testing on

literal phrases).

2.4.2 Experimental Setup

Extracting Noun & Phrase Vectors. Our approach for constructing term vector

representations is similar to that of Dinu et al. [DPB13]. We first selected the 10K most

frequent nouns, adjectives, and verbs to serve as context terms. We then constructed

a co-occurrence matrix that recorded term-context co-occurrence within a symmetric

5-word context window of the 50K most frequent POS-tagged terms in the corpus. We

then used these co-occurrences to compute the positive pointwise mutual information

(PPMI) between every pair of terms, and collected these into a term-term matrix. Next,

we reduced the dimensionality of this matrix to 100 dimensions using singular-value

decomposition. Additionally, we computed “ground truth” distributional vectors for

all the annotated AN phrases in our data set by treating the phrases as single terms

and computing their PPMI with the 50K single-word terms, and then projecting them

onto the same 100-dimensional basis.

Training Adjective Matrices. For each adjective a that we are testing, we split

the phrases involving that adjective into two subsets, the literal (lit) subset and the

metaphorical (met) subset. We then split the subsets into 10 folds, so that we do

not train and test any matrices on the same phrases. For each fold k, we train three
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adjective matrices: Âmet(a) using all phrases from the met set not in fold k; Âlit(a)

using all phrases from the lit set not in fold k; and Âboth(a) using all the phrases

from either subset not in fold k. Within each fold, we use nested cross-validation

as outlined in Li et al. [LBD14] to determine the regularization parameters for each

regression problem.

2.4.3 Evaluating Vector Representations

Evaluation. Our goal is to produce a vector prediction of each phrase that will be

close to its ground truth distributional vector. Phrase vectors directly extracted from

the corpus by treating the phrase as a single term are the gold standard for predicting

human judgment and producing paraphrases [DPB13], so we use these as our ground

truth. The quality of the vector prediction for phrase i is measured using the cosine

distance between the phrase’s ground truth vector pi and the vector prediction p̂i:

err(p̂i) = 1− cos(p̂i,pi).

We then analyze the benefit of training on a reduced subset by calculating a “subset

improvement” (SI) score for the met and lit subsets of each adjective a. We define

the SI for each subset D(a) ∈ {LIT(a),met(a)} as:

SI(D(a)) = 1−
∑

i∈D(a) err(ÂD(a)ni)∑
i∈D(a) err(Âboth(a)ni)

Positive values of SI thus indicate improved performance when trained on a reduced

subset compared to the full set of phrases. For example SIlit(a) = 5% tells us that

predicting the phrase vectors for lit phrases of adjective a using the lit matrix
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Figure 2.1: Reduction in error from training on targeted subset (met/lit)
rather than on all phrases.

resulted in a 5% reduction in mean cosine error compared to predicting the phrase

vectors using the both matrix.

Results. The results are summarized in Fig. 2.1. Each point indicates the SI for

a single adjective and for a single subset. Adjectives are grouped by source domain

along the y-axis. Overall, almost every item shows a subset improvement; and, for

every source domain, the majority of adjectives show a subset improvement.

We analyzed per-adjective SI by fitting a linear mixed-effects model, with a

fixed intercept, a fixed effect of test subset (met vs. lit), a random effect of source

domain, and the maximal converging random effects structure (uncorrelated random

intercepts and slopes) [BLST13]. Training on a targeted subset improved performance

by 4.4% ± 0.009(SE) (p = .002). There was no evidence that this differed by test
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subset (i.e., metaphorical vs. literal senses, p = .35). The positive SI from training on

a targeted subset suggests that metaphorical and literal uses of the same adjective are

semantically distinct.

2.4.4 Metaphor Classification

Method. The results of the previous section suggest a straightforward classification

rule: classify unseen phrase i involving adjective a as metaphorical if

cos(pi, Âmet(a)ni) < cos(Âlit(a)ni).

Otherwise, we classify it as literal.

Evaluation. We test this method on our data set of 8593 annotated AN phrases using

10-fold cross validation. It is possible that our method’s classification performance

is not due to the compositional aspect of the model, but rather to some semantic

coherence property among the nouns in the AN phrases that we are testing. To control

for this possibility, we compare the performance of our method against four baselines.

The first baseline, noun-NN, measures the cosine distance between the vector for the

noun of the AN phrase being tested and the noun vectors of the nouns participating

in an AN phrase in the training folds. The test phrase is then assigned the label of the

AN phrase whose noun vector is nearest. phrase-NN proceeds similarly, but using

the ground-truth phrase vectors for the test phrase and the training phrases. The

test phrase is then assigned the label of the AN phrase whose vector is nearest. The

baseline noun-cent first computes the centroid of the noun vectors of the training

phrases that are literal, and the centroid of the noun vectors of the training phrases
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that are metaphorical. It then assigns the test phrase the label of the centroid whose

cosine distance from the test phrase’s noun vector is smallest. phrase-cent, proceeds

similarly, but using phrase vectors. We measure performance against the manual

annotations.

Results. Our classification method achieved a held-out F-score of 0.817, recall of

0.793, precision of 0.842, and accuracy of 0.809. These results were superior to those

of the baselines (Table 2.1). These results are competitive with the state of the art

and demonstrate the importance of compositionality in metaphor identification.

2.5 Metaphors as Linear Transformations

One of the principal claims of the CM hypothesis is that CMs are productive:

A CM (i.e., mapping) can generate endless new LMs (i.e., linguistic expressions).

Cases where the LMs involve an adjective that has already been used metaphorically

and for which we have annotated metaphorical and literal examples can be handled

by the methods of §2.4, but when the novel LM involves an adjective that has only

Table 2.1: Performance of the method of §2.4.4 (met-lit) against various
baselines.

Method F-score Precision Recall Accuracy

met-lit 0.817 0.842 0.793 0.809
noun-NN 0.709 0.748 0.675 0.703
phrase-
NN

0.590 0.640 0.547 0.592

noun-
cent

0.717 0.741 0.695 0.706

phrase-
cent

0.629 0.574 0.695 0.559
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been observed in literal usage, we need a more elaborate model. According to the CM

hypothesis, an adjective’s metaphorical meaning is a result of the action of a source-

to-target CM mapping on the adjective’s literal sense. If so, then given an appropriate

representation of this mapping it should be possible to infer the metaphorical sense

of an adjective without ever seeing metaphorical exemplars—that is, using only the

adjective’s literal sense. Our next experiments seek to determine whether it is possible

to represent and learn CM mappings as linear maps in distributional vector space.

2.5.1 Model

We model each CM mapping M from source to target domain as a linear

transformation CM:

Amet(a)ni ≈ CMAlit(a)ni (2.4)

We can apply a two-step regression to learn CM. First we apply elastic-net regression

to learn the literal adjective matrix Âlit(a) as in §2.4.2. Then we can substitute

this estimate into Eq. (2.4), and apply elastic-net regression to learn the ĈM that

minimizes the regularized squared error loss:

∑
a∈M

∑
i∈D(a)

‖pi − ĈMÂlit(ai)ni‖22 +R(λ; ĈM).

To learn CM in this regression problem, we can pool together and train on phrases

from many different adjectives that participate in M.
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2.5.2 Experimental Setup

We used a cross-validation scheme where we treated each adjective in a source

domain as a fold in training the domain’s metaphor transformation matrix. The nested

cross-validation procedure we use to set regularization parameters λ and evaluate

performance requires at least 3 adjectives in a source domain, so we evaluate on the 6

source domain classes containing at least 3 adjectives. The total number of phrases

for these 19 adjectives is 6987 (3659 metaphorical, 3328 literal).

2.5.3 Evaluating Vector Representations

Evaluation. We wish to test whether CM mappings learned from one set of adjec-

tives are transferable to new adjectives for which metaphorical phrases are unseen.

As in §2.4, models were evaluated using cosine error compared to the ground truth

phrase vector representation. Since our goal is to improve the vector representation of

metaphorical phrases given no metaphorical annotations, we measure performance

on the met phrase subset for each adjective. We compare the performance of the

transformed lit matrix CMAlit(a) against the performance of the original lit matrix

Alit(a) by defining the metaphor transformation improvement (MTI) as:

MTI(a) = 1−
∑

i∈met err(CMÂlit(a))∑
i∈met err(Âlit(a))

.

Results. Per-adjective MTI was analyzed with a linear mixed-effects model, with a

fixed intercept, a random effect of source domain, and random intercepts. Transforming

the lit matrix using the CM mapping matrix improved performance by 11.5% ±

0.023(SE) (p < .001). On average, performance improved for 18 of 19 adjectives and
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Figure 2.2: Reduction in error from transforming lit matrix using metaphor-
ical mapping. Mean change was positive for every domain (large black), and
for all but one adjective (small red).

for every source domain (p = .03, binomial test; Fig. 2.2). Thus, mapping structure is

indeed shared across adjectives participating in the same CM.

2.5.4 Metaphor Classification

Method. Once again our results suggest a procedure for metaphor classification.

This procedure can classify phrases involving adjectives without seeing any metaphor-

ical annotations. For any unseen phrase i involving an adjective ai, we classify the

phrase as metaphorical if

cos(pi, ĈMÂlit(ai)ni) < cos(pi, Âlit(ai)ni)
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Otherwise, we classify it as literal. We used the same procedure as in §2.4.2 to learn

Âlit(ai).

Results. Our method achieved an F-score of 0.793 on the classification of phrases

involving unseen adjectives. On this same set of phrases, the method of §2.4.4 achieved

an F-score of 0.838. Once again, the performance of our method was superior to

the performance of the baselines (Table 2.2; the met-lit figures in Table 2.2 differ

slightly from those in Table 2.1 because only 19 of 23 adjectives are tested). For

comparison, we also include the classification performance using the met-lit method

of §2.4.4. While met-lit slightly outperforms trans-lit, the latter has the benefit

of not needing annotations for metaphorical phrases for the test adjective. Hence, our

approach is generalizable to cases where such annotations are unavailable with only

slight performance reduction.

2.6 Discussion

Overall, our results show that taking metaphor into account has the potential

to improve CDSMs and expand their domain of applicability. The findings of §2.4

suggest that collapsing across metaphorical and literal uses may hurt accuracy of

vector representations in CDSMs. While the method in §2.4 depends on explicit

annotations of metaphorical and literal senses, the method in §2.5 provides a way to

generalize these representations to adjectives for which metaphorical training data is

unavailable, by showing that metaphorical mappings are transferable across adjectives

from the same source domain. Note that an accurate matrix representation of the

literal sense of each adjective is still required in the experimental setup of §2.5. This
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particular choice of setup allowed a proof of concept of the hypothesis that metaphors

function as cross-domain transformations, but in principle it would be desirable to

learn transformations from a general both matrix representation for any adjective in

a source domain to its met matrix representation. This would enable improved vector

representations of metaphorical AN phrases without annotation for unseen adjectives.

The success of our models on the metaphor classification tasks demonstrates

that there is information about metaphoricity of a phrase inherent in the composition

of the meanings of its components. Notably, our results show that this metaphorical

compositionality can be captured from corpus-derived distributional statistics. We

also noticed some trends at the level of individual phrases. In particular, classification

performance and vector accuracy tended to be lower for metaphorical phrases whose

nouns are distributionally similar to nouns that tend to participate in literal phrases

(e.g., reception is similar to foyer and refreshment in our corpus; warm reception is

metaphorical while warm foyer is literal). Another area where classification accuracy

is low is in phrases with low corpus occurrence frequency. The ground truth vectors

for these phrases exhibit high sample variance and sparsity. Many such phrases sound

paradoxical (e.g., bitter sweetness).

Our results could also inform debates within cognitive science. First, cognitive

scientists debate whether words that are used both literally and figuratively (e.g., long

road, long meeting) are best understood as having a single, abstract meaning that

varies with context or two distinct but related meanings. For instance, some argue that

domains like space, time, and number operate over a shared, generalized magnitude

system, yet others maintain that our mental representation of time and number is

distinct from our mental representation of space, yet inherited metaphorically from it
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[WMM15]. Our results suggest that figurative and literal senses involve quite different

patterns of use. This is statistical evidence that adjectives that are used metaphorically

have distinct related senses, not a single abstract sense.

Second, the Conceptual Metaphor Theory account hypothesizes that LMs are

an outgrowth of metaphorical thought, which is in turn an outgrowth of embodied

experiences that conflate source and target domains—experience structures thought,

and thought structures language [Lak93]. However, recent critics have argued for

the opposite causal direction: Linguistic regularities may drive the mental mapping

between source and target domains [HL13, Cas14, HL14]. Our results show that, at

least for AN pairs, the semantic structure of a source domain and its mapping to a

metaphorical target domain are available in the distributional statistics of language

itself. There may be no need, therefore, to invoke embodied experience to explain the

prevalence of metaphorical thought in adult language users. A lifetime of experience

with literal and metaphorical language may suffice.

2.7 Conclusion

We have shown that modeling metaphor explicitly within a CDSM can improve

the resulting vector representations. According to our results, the systematicity of

metaphor can be exploited to learn linear transformations that represent the action of

metaphorical mappings across many different adjectives in the same semantic domain.

Our classification results suggest that the compositional distributional semantics of a

phrase can inform classification of the phrase for metaphoricity.

Beyond improvements to the applications we presented, the principles underly-

ing our methods also show potential for other tasks. For instance, the lit and met
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adjective matrices and the CM mapping matrix learned with our methods could be

applied to improve automated paraphrasing of AN phrases. Our work is also directly

extendable to other syntactic constructions. In the CDSM framework we apply, verbs

would be represented as third-order tensors. Tractable and efficient methods for

estimating these verb tensors are now available [FPC15]. It may also be possible to

extend the coverage of our system by using automated word-sense disambiguation to

bootstrap annotations and therefore construct lit and met matrices in a minimally

supervised fashion [KSP13]. Finally, it would be interesting to investigate modeling

metaphorical mappings as nonlinear mappings within the deep learning framework.

Chapter 2, in part, is a reprint of the material as it appears in Gutierrez, E.D.;

Shutova, Ekaterina; Marghetis, Tyler; Bergen, Benjamin. “Literal and Metaphorical

Senses in Compositional Distributional Semantic Models”, Proceedings of the Associa-

tion for Computational Linguistics, 2016. The dissertation author was the primary

investigator and author of this paper.
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Table 2.2: Performance of method of §2.5.4 (trans-lit) against method of
§2.4.4 (met-lit) and various baselines.

Method F-score Precision Recall Accuracy

trans-lit 0.793 0.716 0.819 0.804
met-lit 0.838 0.856 0820 0.833
noun-NN 0.692 0.732 0.655 0.693
phrase-
NN

0.575 0.625 0.532 0.587

noun-
cent

0.703 0.722 0.685 0.696

phrase-
cent

0.610 0.552 0.681 0.542



Chapter 3

Finding Non-Arbitrary

Form-Meaning Systematicity Using

String-Metric Learning for Kernel

Regression

3.1 Introduction

Arbitrariness of the sign refers to the notion that the phonetic/orthographic

forms of words have no relationship to their meanings [dS16]. It is a foundational

assumption of many theories of language comprehension, production, acquisition, and

evolution. For instance, Hockett's [Hoc60] influential enumeration of the design features

of human language gives arbitrariness a central role in enabling the combination and

recombination of phonemic units to create new words. Gasser [Gas04] uses simulations

to show that for large vocabularies, arbitrary form-meaning mappings may provide an

30
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advantage in acquisition. Meanwhile, modular theories of language comprehension

rely upon the duality of patterning to support the independence of the phonetic and

semantic aspects of language comprehension [LRM99]. Quantifying the extent to

which the arbitrariness principle actually holds is important for understanding how

language works.

Language researchers have long noted exceptions to arbitrariness. Most of

these are patterns that occur in some relatively localized subset of the lexicon. These

patterns are sub-morphemic because, unlike conventional morphemes, they cannot

combine reliably to produce new words. Phonaesthemes [Fir30] are one example.

A phonaestheme is a phonetic cluster that recurs in many words that have related

meanings. One notable phonaestheme is the onset gl-, which occurs at the beginning

of at least 38 English words relating to vision: glow, glint, glaze, gleam, etc. [Ber04].

At least 46 candidate phonaesthemes have been posited in the linguistics literature,

according to a list compiled by Hutchins [Hut98]. Iconicity is another violation of

arbitrariness that can lead to non-arbitrary local regularities. Iconicity occurs when

the form of a word is transparently motivated by some perceptual aspect of its referent.

When several referents share perceptual features, their associated word tokens may

tend to be similar as well. For instance, Ohala [Oha84] conjectures that vowels

with high acoustic frequency tend to associate with smaller items while vowels with

low acoustic frequency tend to associate with larger items, due to the experiential

association between vocalizer size and frequency. Iconicity is also manifested in sets

of onomatopoeic words that echo similar sounds (e.g., clink, clank). Although these

exceptions to non-arbitrariness differ, in each case, specific form-meaning relationships

emerge in a subset of the lexicon. We will refer to all such specific localized form-
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meaning patterns as phonosemantic sets.

In recent decades, behavioral and corpus studies have empirically confirmed the

psychological reality and statistical reliability of many phonosemantic sets that had

previously been identified by intuition and observation. Various candidate phonaes-

themes have significant effects on reaction times during language processing tasks

[Hut98, Mag98, Ber04]. Sagi and Otis [SO08] test the statistical significance of the

46 candidates in Hutchins’s [Hut98] list, and find that 27 of the 46 exhibit more

within-category distributional semantic coherence than would be expected by chance.

These results have been replicated using other corpora and distributional semantic

models [AFS13]. Klink [Kli00] shows that sound-symbolic attributes such as those

proposed by Ohala [Oha84] are associated with human judgments about nonwords’

semantic attributes, such as smallness or beauty. Using a statistical corpus analysis

and WordNet semantic features, Monaghan et al. [MLC14] look at a similar hypothe-

sis space of sound-symbolic phonological and semantic attributes, and reach similar

conclusions.

While these localized studies support the existence of some islands of non-

arbitrariness in language, their results do not address how pervasive non-arbitrariness

is at the global level—that is, in the lexicon of a language as a whole. After all,

some seemingly non-arbitrary local patterns can be expected to emerge merely by

chance. How can we measure whether local phonosemantic patterning translates

into global phonosemantic systematicity–that is, strong, non-negligible lexicon-wide

non-arbitrariness? Shillcock et al. [SKMB01] introduce the idea of measuring phonose-

mantic systematicity by analyzing the correlation between phonological edit distances

and distributional semantic distances. In a lexicon of monomorphemic and monosyl-
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labic English words, they find a small but statistically significant correlation between

these two distance measures. Monaghan et al. [MSCK14] elaborate on this methodol-

ogy, showing that the statistical effect is robust to different choices of form-distance

and semantic-distance metrics. They also look at the effect of leaving out each word in

the lexicon on the overall correlation measure; from this, they derive a phonosemantic

systematicity measure for each word. Interestingly, they find that systematicity is

diffusely distributed across the words in English in a pattern indistinguishable from

random chance. Hence, they conclude that “systematicity in the vocabulary is not

a consequence of small clusters of sound symbolism.” This line of work provides a

proof-of-concept that it is possible to detect the phonosemantic systematicity of a

language, and confirms that English exhibits significant phonosemantic systematicity.

Broadly speaking, both the localized tests of individual phonosemantic sets and

the global analyses of phonosemantic systematicity challenge the arbitrariness of the

sign. However, they attribute responsibility for non-arbitrariness differently. The local

methods reveal dozens of specific phonosemantic sets that have strong, measurable

behavioral effects and statistical signatures in corpora. Meanwhile, the global methods

find small and diffuse systematicity. How can we reconcile this discrepancy?

Original Contributions. We attempt to bridge the gap with a new approach

that builds off of previous lexicon-wide analyses, making two innovations. The first

addresses the concern that the lexicon-wide methods currently in use may not be

well suited to finding local regularities such as phonosemantic sets, because they

make the assumption that systematicity exists only in the form of a global correlation

between distances in form-space and distances in meaning-space. Instead, we model the

problem using kernel regression, a nonparametric regression model. Crucially, in kernel
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regression the prediction for a point is based on the predictions of neighboring points;

this enables us to conduct a global analysis while still capturing local, neighborhood

effects. As in previous work, we represent word-forms by their orthographic strings, and

word-meanings by their semantic vector representations as produced by a distributional

semantic vector space model. The goal of the regression is then to learn a mapping

from string-valued predictor variables to vector-valued target variables that minimizes

regression error in the vector space. Conveniently, our model allows us to produce

predictions of the semantic vectors associated with both words and nonwords.

Previous work may also underestimate systematicity in that it weights all

edits (substitutions, insertions, and deletions) equally in determining edit distance. A

priori, there is no reason to believe this is the case—indeed, the work on individual

phonosemantic sets suggests that some orthographic/phonetic attributes are more

important than others for non-arbitrariness. To address this, we introduce String-

Metric Learning for Kernel Regression (SMLKR), a metric-learning algorithm that is

able to learn a weighted edit distance metric that minimizes the prediction error in

kernel regression.

We find that SMLKR enables us to recover more systematicity from a lexicon

of monomorphemic English words than reported in previous global analyses. Using

SMLKR, we propose a new measure of per-word phonosemantic systematicity. Our

analyses using this systematicity measure indicate that specific phonosemantic sets

do contribute significantly to the global phonosemantic systematicity of English, in

keeping with previous local-level analyses. Finally, we evaluate our systematicity

measure against human judgments, and find that it accords with raters’ intuitions

about what makes a word’s form well suited to its meaning.
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3.2 Background & Related Work

3.2.1 Previous Approaches to Finding Lexicon-Wide System-

aticity

Measuring Form, Meaning, and Systematicity. To our knowledge, all previous

lexicon-level analyses of phonosemantic systematicity have used variations of the

method of Shillcock et al. [SKMB01]. The inputs for this method are form-meaning

tuples (yi, si) for each word i in the lexicon, where yi is the vector representation of

the word in a distributional semantic model, and si is the string representation of the

word (phonological, phonemic, or orthographic). Semantic distances are measured as

cosine distances between the vectors of each pair of words. Shillcock et al. [SKMB01]

and Monaghan et al. [MSCK14] measure form-distances in terms of edit distance

between each pair of strings. In addition Monaghan et al. [MSCK14] and Tamariz

[Tam06] study distance measures based on a selected set binary phonological features,

with similar results. Phonosemantic systematicity is then measured as the correlation

between all the pairwise semantic distances and all the pairwise string distances.

Hypothesis Testing. In this line line of work, statistical significance of the results

is assessed using the Mantel test, a permutation test of the correlation between two sets

of pairwise distances [Man67]. The test involves randomly shuffling the assignments

of semantic vectors to word-strings in the lexicon. We can think of each form-meaning

shuffle as a member of the set of all possible lexicons. Next, the correlation between the

semantic distances and the string distances is computed under each reassignment. An

empirical p-value for the true lexicon is then derived by performing many shufflings, and
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comparing the correlation coefficients measured under the shuffles to the correlation

coefficient measured in the true lexicon. Under the null hypothesis that form-meaning

assignments are arbitrary, the probability of observing a form-meaning correlation of

at least the magnitude actually observed in the true lexicon is asymptotically equal

to the proportion of reassignments that produce greater correlations than the true

lexicon.

Previous Findings. Shillcock et al. [SKMB01] find a statistically significant corre-

lation between semantic and phonological edit distances in a lexicon of the 1733 most

frequent monosyllabic monomorphemic words in the BNC. Tamariz [Tam08] extends

these results to Spanish data, looking only at words with one of three consonant-

vowel (CV) structures (CVCV, CVCCV, and CVCVCV). [SKMB01], Monaghan et al.

[MSCK14] derive a list of 5138 monomorphemic monosyllabic words and a list of 5604

monomorphemic polysyllabic from the CELEX database [BPG96], and find significant

form-meaning correlations in both.

3.2.2 Kernel Regression

In contrast to previous studies, we study form-meaning systematicity using a

kernel regression framework. Kernel regression is a nonparametric supervised learning

technique that is able to learn highly nonlinear relationships between predictor variables

and target variables. Rather than assuming any particular parametric relationship

between the predictor and target variables, kernel regression assumes only that the

value of the target variable is a smooth function of the value of the predictors. In

other words, given a new point in predictor space, the value of the target at that point

can reasonably be estimated by the value of the targets at points that are nearby in
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the predictor space. In this way, kernel regression is analogous to an exemplar model.

We performed kernel regression on our lexicon using the Nadaraya-Watson estimator

[Nad64]. Given a data set D of vector-valued predictor variables {xi}Ni=1, and targets

{yi}Ni=1, the Nadaraya-Watson estimator of the target for sample i is

ŷi = ŷ(xi) =

∑
j 6=i kijyj∑
j 6=i kij

, (3.1)

where kij is the kernel between point i and point j. A commonly used kernel is the

exponential kernel:

kij = k(xi,xj) = exp(−d(xi,xj)/h),

where d(·, ·) is a distance metric and h is a bandwidth that determines the radius

of the effective neighborhood around each point that contributes to its estimate.

For our purposes we use the Levenshtein string edit distance metric [Lev66]. The

Levenshtein edit distance between two strings is the minimum number of edits needed

to transform one string into the other, where an edit is defined as the insertion, deletion,

or substitution of a single character. Using this edit distance and semantic vectors

derived from a distributional semantic model, the Nadaraya-Watson estimator can

estimate the position in the semantic vector space for each word in the lexicon. The

exponential edit distance kernel has been useful for modeling behavior in many tasks

involving word similarity and neighborhood effects; see, for example the Generalized

Context Model [Nos86], which has been applied to word identification, recognition,

and categorization, to inflectional morphology, and to artificial grammar learning

[BH01].
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3.2.3 Metric Learning for Kernel Regression

In kernel regression, the bandwidth h of the kernel function must be fine-tuned

by testing out many different bandwidths. Moreover, for many tasks there is no reason

to assume that all of the dimensions of a vector-valued predictor are equally important.

This is problematic for conventional kernel regression, as the quality of its predictions

is wholly reliant on the appropriateness of the given distance metric.

Weinberger and Tesauro [WT07] introduce metric learning for kernel regression

(MLKR), an algorithm that can learn a task-specific Mahalanobis (i.e., weighted

Euclidean) distance metric over a real-vector-valued predictor space, in which small

distances between two vectors imply similar target values. They note that this metric

induces a kernel function whose parameters are set entirely from the data. Specifically,

MLKR can learn a weight matrix W for a Mahalanobis metric that optimizes the

leave-one out mean squared error of kernel regression (MSE), defined as:

L(D) =
1

N

N∑
i=1

L(ŷi,yi) =
1

N

N∑
i=1

‖ŷi − yi‖22,

where ŷi is estimated using ŷj for all i 6= j, as in Eq. 3.1.

In MLKR, the weighted distance metric is learned using stochastic gradient

descent. As an added benefit, MLKR is implicitly able to learn an appropriate kernel

bandwidth.
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3.3 String-Metric Learning for Kernel Regression

(SMLKR)

Our novel contribution is an extension of MLKR to situations where the

predictor variables are not real-valued vectors, but strings, and the distance metric we

wish to learn is a weighted Levenshtein edit distance. Vector-valued representations of

the strings themselves would only approximately preserve edit distance. Fortunately, it

turns out that we do not need vector-valued representations of the strings at all. Define

the minimum edit-distance path as the smallest-length sequence of edits that is needed

to transform one string into another. Observe that the weighted edit distance between

two strings si and sj can be represented as the weighted sum of all the edits that must

take place to transform one string into the other along the minimum edit-distance

path [BHS12]. In turn, these edits can be represented by a vector νij constructed as

in Fig 3.1, while the weights can be represented by a vector w = (w1, ..., wM)T :

dWL(si, sj) =
M∑
m=1

wmνijm = wTνij.

Each entry of νij corresponds to a particular type of edit operation (e.g., substitution

of character a for character b). The value assigned to each entry is the count of the

total number of times that the corresponding edit operation must be applied to achieve

transformation of string i to string j along the minimum edit-distance path.

We note that νij does not admit a unique representation, since there are

multiple ways to transform one string to another in the same number of edits, using

different edit operations. However, we adopt the convention that some class of edit

operations always takes priority over another—e.g., that deletions always occur before
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Figure 3.1: Each element in νij (the vector at left) represents a type of edit.
The entry νijm represents the number of edits of type m that occur as string
si (boot) is transformed into string sj (bee).

substitutions. This then enables us to specify νij uniquely. We also adopt the

convention that the weights for edit operations are symmetric—e.g., that the weight

for substituting character a for character b is the same as the weight for substituting

character b for character a, so we represent every such pair of edit operations by a

single entry in νij.

As in MLKR, our goal is to minimize the leave-one-out MSE,1 where kij =

e−w
T νij . The gradient of the regression error for MSE is

∂L(D)

∂w
=

2

N

N∑
i=1

(yi − ŷi)
∂ŷi
∂w

where

∂ŷi
∂w

=

∑
j 6=i(yj − ŷi)

Tkijνij∑
j 6=i kij

.

Using this exact gradient, we can find the edit weights that minimize the loss function.

We wish to constrain the weights to be nonnegative, since weighted edit distance only

1We attained similar results minimizing mean cosine error. The gradient for mean cosine error is

∂L(D)

∂w
=

1

N

N∑
i=1

(‖ŷi‖yi − L(yi, ŷi)ŷi)

‖ŷi‖2
∂ŷi

∂w
.
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makes sense with nonnegative weights. Thus, to minimize the loss we use the limited-

memory BroydenFletcherGoldfarbShanno algorithm for box constraints (L-BFGS-B)

[BLNZ95], a quasi-Newton method that allows bounded optimization. We made a

Python implementation of SMLKR available at http://bit.ly/22t1Jgx.

3.4 Experimental Setup

3.4.1 Data

Lexicon. A principal concern is the possibility that our models may detect mor-

phemes rather than sub-morphemic units. To minimize this concern, we adopted an

approach similar to that of Shillcock et al. [SKMB01], of training our model only on

monomorphemic words. Monomorphemic words were selected by cross-referencing

the morphemic analyses contained in the CELEX lexical database [BPG96] with the

morphemic analyses contained in the etymologies of the Oxford English Dictionary

Online (http://www.oed.com). Then, we went through the filtered list and removed

any remaining polymorphemic words as well as place names, demonyms, spelling

variants, and proper nouns. Finally, words that were not among the 40,000 most

frequent non-filler word types in the corpus were excluded. The final lexicon was

composed of 4,949 word types.

Corpus and Semantic Model. The corpus we used to train our semantic model

is a concatenation of the UKWaC, BNC, and Wikipedia corpora [FZBB08, BNC07,

PGK+11]. We trained our vector-space model on this corpus using the Word2Vec

[MSC+13], as instantiated in the Gensim package [ŘS10] for Python using default

parameters. We produced 100-dimensional word-embedding vectors using the Skip-
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Gram algorithm of Word2Vec and normalized the 100-dimensional vector for each

word so that its Euclidean norm was equal to 1.

3.4.2 Training

We trained SMLKR on the 100-dimensional Word2Vec embeddings using L-

BGFS-B, and placing non-negativity constraints on the weights w. We let SMLKR

run until convergence, as determined by the following criterion:

|L(k−1) − L(k)|
max(|L(k−1)|, |L(k)|)

= ε

where L(k) is the loss at the kth iteration of learning, and we set ε = 2 × 10−8. We

randomly initialized the L-BGFS-B algorithm 10 times to avoid poor local minima,

and kept the solution with the lowest loss.

3.4.3 Other Approaches

We tried several other, less successful approaches to finding systematicity in

the lexicon. The results of these experiments are presented in appendix A.

3.5 Experiments

3.5.1 Model Analysis

Weighted Edit Distance Reveals More Non-Arbitrariness. We first assessed

whether the structure found by kernel regression could arise merely by arbitrary,

random pairings of form and meaning (i.e., strings and semantic vectors). We adopt a



43

Monte Carlo testing procedure similar to the Mantel test of §3.2.1. We first randomly

shuffled the assignment of the semantic vectors of all the words in the lexicon. We then

trained SMLKR on the shuffled lexicon just as we did on the true lexicon. We measured

the mean squared error of the SMLKR prediction. Out of 1000 reassignments, none

produced a prediction error as small as the prediction error in the true lexicon (i.e.,

empirical p-value of p < .001).

For comparison, we analyzed our corpus using the correlation method of

Monaghan et al. [MSCK14]. In our implementation, we measured the correlation

between the pairwise cosine distances produced by Word2Vec and pairwise orthographic

edit distances for all pairs of words in our lexicon. The correlation between the

Word2Vec semantic distances and the orthographic edit distances in our corpus

was r = 0.0194, similar to the correlation reported by Monaghan et al. of r = 0.016

between the phoneme edit distances and the semantic distances in the monomorphemic

English lexicon. We also looked at the correlation between the weighted edit distances

produced by SMLKR and the Word2Vec semantic distances. The correlation between

these distances was r = 0.0464; thus, the weighted edit distance captures more than

5.7 times as much variance as the unweighted edit distance. Further, using the

estimated semantic vectors produced by the SMLKR model, we can actually produce

new estimates of the semantic distances between the words. The correlation between

these estimated semantic distances and the true semantic distances was r = 0.1028,

revealing much more systematicity than revealed by the simple linear correlation

method. The Mantel test with 1,000 permutations produced significant empirical

p-values for all correlations (p < .001).
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Systematicity Not Evenly Distributed Across Lexicon. What could be ac-

counting for the higher degree of systematicity detected with SMLKR? Applying

a more expressive model could result in a better fit simply because incidental but

inconsequential patterns are being captured. Conversely, SMLKR could be finding

phonosemantic sets which the correlation method of Monaghan et al. [MSCK14]

is unable to detect. We investigated further by determining what was driving the

better fit produced by SMLKR. Monaghan et al. measure per-word systematicity as

the change in the lexicon-wide form-meaning correlation that results from removing

the word from the lexicon. The more the correlation decreases from removing the

word, the more systematic the word is, according to this measure. They compared

the distribution of this systematicity measure across the words in the lexicon to

the distribution of systematicity in lexicons with randomly shuffled form-meaning

assignments, and found that the null hypothesis that the distributions were identical

could not be rejected. From this, they conclude that the observed systematicity of

the lexicon is not a consequence only of small pockets of sound symbolism, but is

rather a feature of the mappings from sound to meaning across the lexicon as a whole.

However, it is possible that their methods may not be sensitive enough to find localized

phonosemantic sets.

We developed our own measure of per-word systematicity by measuring the

per-word regression error of the SMLKR model. We presume words with lower

regression errors to be more systematic. A list of the words with the lowest per-word

regression error in our corpus can be found in Table 3.1. Notably, many of these words,

such as fluff, flutter, and flick, exhibit word beginnings or word endings that have

been previously identified as phonaesthemes [Hut98, OS08]. Others exhibit regular
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onomatopoeia, such as clang and croak.

We decided to investigate the distribution of systematicity across two-letter

word-beginnings in our lexicon using a permutation test. The goal of the permutation

test is to estimate a p-value for the likelihood that each set of words sharing a word

beginning would exhibit the mean regression error it exhibits, if systematicity is

randomly distributed across the lexicon. For each set Sω of words with word-beginning

ω, we measured the mean SMLKR regression error of the words in Sω. To get an

empirical p-value for each Sω with cardinality greater than 5 (i.e., more than 5 word

tokens), we randomly chose 105 sets of words in the lexicon with the same cardinality,

and measured the mean SMLKR regression error for each of these random sets. If r of

the randomly assembled sets had a lower mean regression error than Sω did, we assign

an empirical p-value of r
105

to Sω. A histogram of empirical p-values is in Fig. 3.2.

From the figure, it seems clear that the p-values are not uniformly distributed; instead,

an inordinate number of word-beginnings exhibit mean errors that are unlikely to

occur if error is distributed arbitrarily across word-beginnings.

We can confirm this observation statistically. On the assumption that sys-

tematicity is arbitrarily distributed across word-beginnings, the empirical p-values of

the permutation test should approximately conform to a Unif(0, 1) distribution. We

can test this hypothesis using a χ2 test on the negative logarithms of the p-values

[Fis32]. Using this test, we reject the hypothesis that the p-values are uniformly

distributed with p < .0001 (χ2
156 = 707.8). The particular word-beginnings with

statistically significant empirical p-values (p < .05 after Benjamini-Hochberg [BH95]

correction for multiple comparisons) are in Table 3.2. Eight of these ten features are

among the 18 two-letter onsets posited to be phonaesthemes by Hutchins [Hut98].
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Figure 3.2: Histogram showing distribution of systematicity across two-letter
word-beginnings, as measured by permutation-test empirical p-value.

For comparison, Otis and Sagi [OS08] identified eight of Hutchins’s 18 two-letter

word-beginning candidate phonaesthemes (and 12 two-letter word-beginnings overall)

as statistically significant, though they restricted their hypothesis space to only 50

pre-specified word-beginnings and word-endings. We are able to identify just as

many candidate phonaesthemes, but with a much less restricted hypothesis space of

candidates (225 rather than the 50 in Otis and Sagi’s analysis) and with a general

model not specifically attuned to finding phonaesthemes in particular, but rather

systematicity in general.
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3.5.2 Behavioral Evaluation of Systematicity Measure

We empirically tested whether the systematicity measure based on SMLKR

regression error accords with näıve human judgments about how well-suited a word’s

form is to its meaning (its “phonosemantic feeling”) [Ste02]. We recruited 60 native

English-speaking participants through Mechanical Turk, and asked them to judge the

phonosemantic feeling of the 60 words in Table 3.1 on a sliding scale from 1 to 5.2

We used Cronbach’s α to measure inter-annotator reliability at α = 0.96, indicating a

high degree of inter-annotator reliability [Cro51, Geo00]. The results showed that the

words in the SMLKR list were rated higher for phonosemantic feeling than the words

in the Correlation and Random lists. We fit a parametric linear mixed-effects model

to the phonosemantic feeling judgments [BDB08], as implemented in the lme4 library

for R. As fixed effects, we entered the list identity (SMLKR, Correlation, Random),

the word length, and the log frequency of the word in our corpus. Our random effects

structure included a random intercept for word, and random subject slopes for all

fixed effects, with all correlations allowed (a “maximal” random-effects structure

[BLST13]). Including list identity in the maximal mixed-effects model significantly

improved model fit (χ2
11 = 126.08, p < 10−6). Post-hoc analysis revealed that the

SMLKR list elicited average suitability judgments that were 0.49 points higher than

the Random list (p < 10−6) and 0.59 points higher than the Correlation list (p < 10−6).

Post-hoc analysis did not find a significant difference in suitability judgments between

the Random and Correlation lists (p > .16).3

2Participants were given the following guidance: “Your job is to decide how well-suited each word
is to what it means. This is known as the ‘phonosemantic feeling.’ Basically, most people feel like
some of the words in their native language sound right, given what they mean.” Full instructions
and experiment available at http://goo.gl/Z6Lzlp

3Post hoc analyses were produced by comparing the items in only two of the lists at a time, and
fitting the same mixed-effects model as above.
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3.6 Conclusion

In this paper, we proposed SMLKR, a novel algorithm that can learn weighted

string edit distances that minimize kernel regression error. We succeed in applying this

algorithm to the problem of finding form-meaning systematicity in the monomorphemic

English lexicon. Our algorithm offers improved global predictions of word-meaning

given word-form at the lexicon-wide level. We show that this improvement seems

related to localized pockets of form-meaning systematicity such as those previously

uncovered in behavioral and corpus analyses. Unlike previous lexicon-wide analyses,

we find that form-meaning systematicity is not randomly distributed throughout

the English lexicon. Moreover, the measure of systematicity that we compute using

SMLKR accords significantly with human raters’ judgments about form-meaning

correspondences in English.

Future work may investigate to what extent the SMLKR model can predict

human intuitions about form-meaning systematicity in language. We do not know,

for instance, if our model can predict human semantic judgments of novel words that

have never been encountered. This is a question that has received attention in the

market research literature, where new brand names are tested for the emotions they

elicit [Kli00]. We would also like to investigate the degree to which our statistical

model predicts the behavioral effects of phonosemantic systematicity during human

semantic processing that have been reported in the psycholinguistics literature. Our

model makes precise quantitative predictions that should allow us to address these

questions.

While developing our model on preliminary versions of the monomorphemic

lexicon, we noticed that the model detected high degrees of systematicity in words
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with suffixes such as -ate and -tet (e.g., quintet, quartet). We removed such words in

the final analysis since they are polymorphemic, but this observation suggests that

our algorithm may have applications in unsupervised morpheme discovery.

Finally, we would like to test our model using other representations of word-form

and word-meaning. We chose to use orthographic rather than phonetic representations

of words because of the variance in pronunciation present in the dialects of English

that are manifested in our corpus. However, it would be interesting to verify our

results in a phonological setting, perhaps using a monodialectal corpus. Moreover,

previous local-level analyses suggest that systematicity seems to be concentrated

in word-beginnings and word-endings. Thus, it may be worthwhile to augment the

representation of edit distance in our model by making it context-sensitive. Future

work could also test whether a more interpretable meaning-space representation such

as that provided by binary WordNet feature vectors reveals patterns of systematicity

not found using a distributional semantic space.

Chapter 3, in part, is a reprint of the material as it appears in Gutierrez, E.D.;

Levy, Roger; Bergen, Benjamin. “Finding Non-Arbitrary Form-Meaning Systematicity

Using String-Metric Learning for Kernel Regression”, Proceedings of the Association for

Computational Linguistics, 2016. The dissertation author was the primary investigator

and author of this paper.
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Table 3.1: Left : Most systematic words according to SMLKR. Center :
Most systematic words according to the leave-one-out correlation method
proposed by Monaghan et al. [MSCK14]. Right : Randomly generated list for
comparison.

SMLKR Correlation Random

gurgle emu tunic
tingle nexus decay
hoop asylum skirmish
chink ethic scroll
swirl odd silk
ladle slime prom
flick snare knob

wobble scarlet havoc
tangle deem irate

knuckle balustrade veer
glitter envoy wear
twig scrape phone
fluff essay surgeon
rasp ambit hiccup
quill echo bowel

flutter onus sack
whirl exam lens
croak pirouette hovel
squeal kohl challenge
clang chandelier box

Table 3.2: Word-beginnings with mean errors lower than predicted by random
distribution of errors across lexicon. Bold are among the phonaesthemes
identified by Hutchins [Hut98]. Italics were identified by Otis and Sagi [OS08].

Onset p-value

fl- < 1× 10−4

sn- < 1× 10−4

sw- < 1× 10−4

tw- < 1× 10−4

gl- 1× 10−3

sl- 1× 10−3

bu- 1× 10−3

mu- 2× 10−3

wh- 2× 10−3

sc-/sk- 3× 10−3



Chapter 4

Detecting Cross-Cultural

Differences Using a Multilingual

Topic Model

4.1 Introduction

Recent years have seen a growing interest in text-mining applications aimed

at uncovering public opinions and social trends [FRMQ07, MCQ08, GB11, PP11].

They rest on the assumption that the language we use is indicative of our underlying

worldviews. Research in cognitive and sociolinguistics suggests that linguistic variation

across communities systematically reflects differences in their cultural and moral

models and goes beyond lexicon and grammar [K0̈4, LW12]. Cross-cultural differences

manifest themselves in text in a multitude of ways, most prominently through the use

of explicit opinion vocabulary with respect to a certain topic (e.g. “policies that benefit

the poor”), idiomatic and metaphorical language (e.g. “the company is spinning its

51
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wheels”) and other types of figurative language, such as irony or sarcasm.

The connection between language, culture and reasoning remains one of the

central research questions in psychology. Thibodeau and Boroditsky [TB11] inves-

tigated how metaphors affect our decision-making. They presented two groups of

human subjects with two different texts about crime. In the first text, crime was

metaphorically portrayed as a virus and in the second as a beast. The two groups were

then asked a set of questions on how to tackle crime in the city. As a result, while the

first group tended to opt for preventive measures (e.g. stronger social policies), the

second group converged on punishment- or restraint-oriented measures. According to

Thibodeau and Boroditsky, their results demonstrate that metaphors have profound

influence on how we conceptualize and act with respect to societal issues. This suggests

that in order to gain a full understanding of social trends across populations, one

needs to identify subtle but systematic linguistic differences that stem from the groups’

cultural backgrounds, expressed both literally and figuratively. Performing such an

analysis by hand is labor-intensive and often impractical, particularly in a multilingual

setting where expertise in all of the languages of interest may be rare.

With the rise of blogging and social media, applying text-mining techniques to

aid political and social science has become an active research area in natural language

processing (NLP) [GS13]. NLP techniques have been successfully used for a number of

tasks in political science, including automatically estimating the influence of particular

politicians in the US senate [FRMQ07], identifying lexical features that differentiate

political rhetoric of opposing parties [MCQ08], predicting voting patterns of politicians

based on their use of language [GB11], and predicting political affiliation of Twitter

users [PP11]. Fang et al. [FSSY12] addressed the problem of automatically detecting
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and visualising the contrasting perspectives on a set of topics attested in multiple

distinct corpora. While successful in their tasks, all of these approaches focused

on monolingual data and did not reach beyond literal language. In contrast, we

present a method that detects fine-grained cross-cultural differences from multilingual

data, where such differences abound, expressed both literally and figuratively. Our

method brings together opinion mining and cross-lingual topic modelling techniques

for this purpose. Previous approaches to cross-lingual topic modelling [BGB09, JD10]

addressed the problem of mining common topics from multilingual corpora. We

present a model that learns such common topics, while simultaneously identifying

lexical features that are indicative of the underlying differences in perspectives on

these topics by speakers of English, Spanish and Russian. These differences are mined

from multilingual, non-parallel datasets of Twitter and news data. In contrast to

previous work, our model does not merely output a list of monolingual lexical features

for manual comparison, but also automatically infers multilingual contrasts.

Our system (1) uses word-document co-occur-rence data as input, where the

words are labeled as topic words or perspective words; (2) finds the highest-likelihood

dictionary between topic words in the two languages given the co-occurrence data; (3)

finds cross-lingual topics specified by distributions over topic-words and perspective-

words; and (4) automatically detects differences in perspective-word distributions in

the two languages. We perform a behavioural evaluation of a subset of the differences

identified by the model and demonstrate their psychological validity. Our data and

dictionaries are available from the first author upon request.
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4.2 Related work

View detection. Identifying different viewpoints is related to the well-studied area

of subjectivity detection, which aims at exposing opinion, evaluation, and speculation

in text [WWB+04]. There is a large literature on identifying such opinions and

attributing it to specific people [ARW11, AJDDR12]. In our work, we are less

interested in such explicit local forms of subjectivity, instead aiming at detecting more

general contrasts across linguistic communities.

Another line of research has focused on inferring author attributes such as

gender, age [GY09], location [JKPT07], or political affiliation [PP11]. Such studies

make use of of latent aspects of language, including syntactic style, discourse char-

acteristics, as well as lexical choice. The models used for this are typically binary

classifiers trained in a fully supervised fashion such as SVMs. In contrast, in our task,

we automatically infer the topic distributions and find topic-specific contrasts.

Probabilistic topic models. Probabilistic topic models have proven useful for a

variety of semantic tasks, such as selectional-preference induction [OS10, REE10],

sentiment analysis [BGR10] and studying the evolution of concepts and ideas [HJM08].

The goal of a topic model is to characterize observed data in terms of a much smaller

set of unobserved, semantically coherent topics. A particularly popular probabilistic

topic model is Latent Dirichlet Allocation (LDA) [BNJ03]. Under its assumptions,

each document has a unique mix of topics, and each topic is a distribution over terms

in the vocabulary. A topic is chosen for every word token according to the topic mix

of the document to which it belongs, and then the word’s identity is drawn from the

corresponding topic’s distribution.
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Handling multilingual corpora. LDA is designed for monolingual text and thus

it lacks the structure necessary to model cross-lingually valid topics. While topic

models can be trained individually on two languages and then the acquired topics can

be matched, the correspondences between the topics for the two terms will be highly

unstable. To address this, Boyd-Graber and Blei [BGB09] (MuTo) and Jagarlamudi

and Daumé [JD10] (JointLDA) introduced the notion of cross-lingually valid concepts

associated with different terms in different languages, using bilingual dictionaries to

model topics across languages. Based on a model by Haghighi et al. [HLBKK08],

MuTo is capable of learning translations–i.e., matching between terms in the different

languages being compared. The Polylingual Topic Model of Mimno et al. [MWN+09]

is another approach to finding topics in multilingual corpora, but it requires tuples

composed of comparable documents in each language of the corpus.

Topic models for view detection. LDA also assumes that the distribution of

each topic is fixed across all documents in a corpus. Therefore, a topic associated

with, e.g., war will have the same distribution over the lexicon regardless of whether

the document was taken from a pro-war editorial or an anti-war speech. However, in

reality we may expect a single topic to exhibit systematic and predictable variations

in its distribution based on authorship.

The cross-collection LDA model of Paul and Girju [PG09] addresses this by

specifically aiming to expose viewpoint differences across different document collections.

Ahmed and Xing [AX10] proposed a similar model for detecting ideological differences.

Fang et al.’s [FSSY12] Cross-Perspective Topic (CPT) model breaks up the terms

in the vocabulary into topic terms and perspective terms with different generative

processes, and differentiates between different collections of documents within the
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Figure 4.1: Basic generative model.

corpus. The topic terms are assumed to be generated as in LDA. However, the

distribution of perspective terms in a document is taken to be dependent on both the

topic mixture of the document as well as the collection from which the document is

drawn.

Recent works proposed models for specific types of data. Qiu and Jiang [QJ13]

use user identities and interactions in threaded discussions, while Gottipati et al.

[GQS+13] developed a topic model for Debatepedia, a semi-structured resource in

which arguments are explicitly enumerated. However, all of these models perform

their analyses on monolingual datasets. Thus, they are useful for comparing different

ideologies expressed in the same language, but not for cross-linguistic comparisons.
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4.3 Method

The goal of our model is to analyse large, non-parallel, multilingual corpora

and present cross-lingually valid topics and the associated perspectives, automatically

inferring the differences in conceptualization of these topics across cultures. Following

Boyd-Graber and Blei [BGB09] and Jagarlamudi and Daumé [JD10], our distributions

of latent topics range over latent, cross-lingual topic concepts that manifest themselves

as language-specific topic words. We use bilingual dictionaries, containing words in one

language and their translations in another language, to represent the topic concepts.

These are represented as a bipartite graph, with each translation entry being an edge

and each topic word in the two languages being a vertex. While the topic words

are tied together by the translation dictionary, the perspective words can vary freely

across languages. Following Fang et al. [FSSY12], we treat nouns as topic words

and verbs and adjectives as perspective words1. The model assumes that adjective

and verb tokens in each document are assigned to topics in proportion to the topic

assignments of the topic word tokens. Then, the perspective term for this topic is

drawn depending on the topic assignment and the language of the speaker.

4.3.1 Basic Generative Model

Given the languages ` ∈ {a, b}, our model infers the distributions of multi-

lingual topics and language-specific perspective-words (Fig. 4.1), as follows:

1. Draw a set C of concepts (u, v) matching topic word u from language a to topic

word v from language b, where the probability of concept (u, v) is proportional to a

1This approximation was adopted for convenience, computational efficiency and ease of interpre-
tation. However, in principle our method does not depend on it, since it can be applied with all
content words as topic or perspective words.
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prior πu,v (e.g. based on information from a translation dictionary).

2. Draw multinomial distributions:

• For topic indices k ∈ {1, ..., K}, draw language-independent topic-concept dis-

tributions φwk ∼ Dir(βw) over pairs (wa, wb) ∈ C.

• For topic indices k ∈ {1, ..., K} and languages ` ∈ {a, b}, draw language-specific

perspective-term distributions φ`,ok ∼ Dir(βo) over perspective-terms in language

`.

3. For each document d ∈ {1, ..., D} with lang. `d:

• Draw topic weights θd ∼ Dir(α)

• For each topic-word index i ∈ {1, ..., Nw
d } of document d:

– Draw topic zi ∼ θd

– Draw topic concept ci = (wa, wb) ∼ φwzi , and select w`d as the member of

that pair corresponding to language `d.

• For each perspective-word index j ∈ {1, ..., N o
d} of document d:

– Draw topic xj ∼ Uniform(zw1 , ..., zwNo
d
)

– Draw perspective-word oj ∼ φ`,oxj

4.3.2 Model Variants

We have experimented with several variants of our model, in order to account

for the translation of polysemous words, adapt the translation model to the corpus

used, and to handle words for which no translation is found. Two separate approaches
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to translation exist in the multi-lingual topic modelling literature, focusing on distinct

problematic aspects of translation. Boyd-Graber and Blei [BGB09] infer a bilingual

matching using both co-occurrence data and a bilingual dictionary as input. On the

other hand, by reducing the multiple translations available in multilingual dictionaries

to a set of one-to-one correspondences, much information about the meaning of a

word in relation to the words in the other language is lost; the MuTo [JD10] model

accounts for this by allowing multiple correspondences between terms in the languages.

We empirically investigate the effect of different translation models on the performance

of the topic model, by integrating both of these approaches into a broader framework

according to the presence or absence of three attributes, as follows:

1. Single variants of the model match each topic term in a language with at most

one topic term in the other language.

Multiple variants allow each term to match to multiple other words in the

other language.

2. Infer variants allow higher-likelihood matchings to be inferred from the data.

Static variants treat the matchings as fixed, which is equivalent to assigning a

probability of 0 or 1 to every edge in our bipartite graph C.

3. Relegate variants relegate all unmatched words in each language to a single

separate background topic distinct from the topics that are learned for the

matched topic words. This is akin to forcing the probability for currently

unmatched words to 0 in all topics except for one, and forcing the probability of

all currently matched words to 0 in this topic.
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Include variants do not restrict the assignment unmatched words; they are

assigned to the same set of topics as the matched words.

We test the following six variants: SingleStaticRelegate, SingleStaticInclude,

SingleInferRelegate, SingleInferInclude, MultipleStaticRelegate, and

MultipleStaticInclude. We do not test MultipleInfer variants because of the

complexity of inferring a multiple matching in a bipartite graph.

4.3.3 Learning & Inference

For all variants, a collapsed Gibbs sampler can be used to infer topics φ`,o and

φw, per-document topic distributions θ, as well as topic assignments z and x. This

corresponds to the S-step below. For Infer variants, we follow Boyd-Graber and

Blei in using an M-step involving a bipartite graph matching algorithm to infer the

matching m that maximizes the posterior likelihood of the matching.

S-Step: Sample topics for words in the corpus using a collapsed Gibbs sampler. For

topic-word wi = u belonging to document d, if the word occurs in concept ci = (u, v),

then sample the topic and entry according to:

p(zi = k, ci = (u, v) | wi = u, z−i, C)

∝ Ndk + αk∑
j

(Ndj + αj)
×

Nk(u,v) + βwk∑
v′

(
Nk(u,v′) + βwk

)
where the sum in the denominator of the first term is over all topics, and in the second

term is over all words matched to u. Ndk is the count of topic-words of topic k in

document d, Nk(u,v) is the count of topic-words either of type u or of type v assigned
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to topic k in all the corpora.2 For perspective-word oi = n, sample the topic according

to:

p(zi = k|oi = n, z−i, C) ∝

Ndk∑
j Ndj

× N `d
kv + βok∑

m

(
N `d
km + βok

)
where the sum in the second term of the denominator is over the perspective-word

vocabulary of language `d; Ndk is the count of topic words in document d with topic

k; and N `d
km is the count of perspective-word m being assigned topic k in language `d.

Note that in all the counts above, the current word token i is omitted from the count.

Given our sampling assignments, we can then estimate θd, φ`,o, and φw as

follows:

θ̂kd =
Ndk + αk∑

k

(Ndk + αk)
,

φ̂wk(u,v) =
Nk(u,v) + βw(u,v)∑

v′

(
Nk(u,v′) + βw(u,v′)

) ,
φ̂`,onk =

Nkn + βon∑
m

(
N `
km + βon

) .
M-Step: (for Infer variants only): Run the Jonker-Volgenant [JV87] bipartite

matching algorithm to find the optimal matching C given some weights. For topic-

term u from language a and topic-term v from language b, our weights correspond to

the log of the posterior odds that the occurrences of u and v come from a matched

2In Relegate variants, for u unmatched zi is sampled as:

p(zi = k|wi = u, z−i, C) ∝ Ndk + αk∑
k

(Ndk + αk)
,

which can be seen as βw
u· →∞ for unmatched terms.
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topic distribution, as opposed to coming from unmatched distributions:

µu,v =
∑

k\{a∗,b∗}

(
Nk(u,v) log φ̂wk(u,v)

)
−Nu log φ̂wk(u,·) −Nv log φ̂wk(·,v) + πu,v,

where Nu is the count of topic-term u in the corpus. This expression can also be

interpreted as a kind of pointwise mutual information [HLBKK08]. The Jonker-

Volgenant algorithm has time complexity of at most O(V 3), where V is the size of the

lexicon [JV87].

4.3.4 Inference of Perspective-Word Contrasts

Having learned our model and inferred how likely perspective-terms are for a

topic in a given language, we seek to know whether these perspectives differ significantly

in the two languages. More precisely, can we infer whether word m in language a and

the equivalent word n in language b have significantly different distributions under a

topic k? To do this, we make the assumption that the perspective-words in languages

a and b are in one-to-one correspondence to each other. Recall that, for a given topic

k and language `, N `
km is the count for term m and φ`,ok,m is the probability for word

m in language `. Just as we collect the probabilities into word-topic distribution

vectors φ`,ok , we collect the counts into word-topic count vectors [N `
k1, N

`
k2, ..]. Then,

since our model assumes a prior over the parameter vectors φ`,ok , we can infer the

likelihood for that observed word-topic counts Na
km and N b

kn were drawn from a single

word-topic-distribution prior denoted by φ̆ := φa,okm = φb,okn. Below all our probabilities

are conditioned implicitly on this event as well as on Na
k and N b

k being fixed.
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Denote the total count of word tokens in topic k from language ` by N `
k =∑

mN
`
km. Now, we derive the probability that we observe a ratio greater than δ

between the proportion of words in topic k that belong to word type m in language a

and to corresponding word type n in language b:

p

(
Na
km

Na
k

N b
k

N b
kn

≥ δ

)
+ p

(
N b
kn

N b
k

Na
k

Na
km

≥ δ

)
(4.1)

By symmetry, it suffices to derive an expression for the first term. We note that the

inequality in the probability is equivalent to a sum over a range of values of Na
km and

N b
kn. By rearranging terms, applying the law of conditional probability to condition

on the term φ̆, and exploiting the conditional independence of Na
km and N b

km given φ̆,

Na
k , and N b

k, we can rewrite this first term as

Nb
k∑

x=0

Na
k∑

y=xδNa/b

∫
p(N b

kn = x|φ̆)p(Na
km = y|φ̆)p(φ̆)dφ̆,

where Na/b =
Na

k

Nb
k
. Recall that φ`,ok ∼ Dir(βo) under our model. Assume a symmetric

Dirichlet distribution for simplicity. It can then be shown that the marginal distribution

of φ̆ is φ̆ ∼ Beta(βo, (V − 1)βo), where V is the total size of the perspective-word

vocabulary. Similarly, it can be shown that the marginal distribution of N `
km given φ`,ok

is N `
km ∼ Binom(N `

k, φ
`,o
i ) for ` ∈ {a, b}. Therefore, the integrand above is proportional

to the beta-binomial distribution with number of trials Na
k +N b

k , successes x+ y, and

parameters βo and (V − 1)βo, but with partition function
(
Na

k
y

)(
Nb

k
x

)
. Denote the PMF

of this distribution by f(Na
k +N b

k, x+ y, βo). Then expression (4.1) above becomes:
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Nb
k∑

x=0

Na
k∑

y=xδNa/b

f(Na
k +N b

k, x+ y, βo)

+

Na
k∑

x=0

Nb
k∑

y=xδNb/a

f(Na
k +N b

k, x+ y, βo). (4.2)

We cannot observe Na
kb, N

b
kn, Na

k and N b
k explicitly, but we can estimate them by

obtaining posterior samples from our Gibbs sampler. We substitute these estimates

into expression (4.2).

4.4 Experiments

4.4.1 Data

Twitter Data. We gathered Twitter data in English, Spanish and Russian during

the first two weeks of December 2013 using the Twitter API. Following previous work

[PECX10], we treated each Twitter user account as a document. We then tagged

each document for part-of-speech, and divided the word tokens in it into topic-words

and perspective-words. We constructed a lexicon of 2,000 topic terms and 1,500

perspective-terms for each language by filtering out any terms that occurred in more

than 10% of the documents in that language, and then selecting the remaining terms

with the highest frequency. Finally, we kept only documents that contained 4 or

more topic words from our lexicon. This left us with 847,560 documents in English

(4,742,868 topic-word and 1,907,685 perspective-word tokens); 756,036 documents in

Spanish (4,409,888 topic-word and 1,668,803 perspective-word tokens); and 260,981

documents in Russian (1,621,571 topic-word and 981,561 perspective-word tokens).
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News Data. We gathered all the articles published online during the year 2013

by the state-run media agencies of the United States (Voice of America or “VOA”–

English), Russia (RIA Novosti or “RIA”–Russian), and Venezuela (Agencia Venezolana

de Noticias or “AVN”–Spanish). These three news agencies were chosen because they

not only provide media in three distinct languages, but they are guided by the political

world-views of three distinct governments. We treated each news article as a document,

and removed duplicates. Once again, we constructed a lexicon of 2,000 topic terms

and 1,500 perspective-terms using the same criteria as for Twitter, and kept only

documents that contained 4 or more topic words from our lexicon. This left us with

23,159 articles (10,410,949 tokens) from VOA, 41,116 articles (11,726,637 tokens) from

RIA, and 8,541 articles (2,606,796 tokens) from AVN.

Dictionaries. To create the translation dictionaries, we extracted translations from

the English, Spanish, and Russian editions of Wiktionary, both from the translation

sections and the gloss sections if the latter contained single words as glosses. Multi-

word expressions were universally removed. We added inverse translations for every

original translation. From the resulting collection of translations, we then created

separate translation dictionaries for each language and part-of-speech tag combination.

In order to give preference to more important translations, we assigned each

translation an initial weight of 1+ 1
r
, where r was the rank of the translation within the

page. Since a translation (or its inverse) can occur on multiple pages, we aggregated

these initial weights and then assigned final weights of 1 + 1
r′

, where r′ was the rank

after aggregation and sorting in descending order of weights.
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4.4.2 Experimental Conditions

To evaluate the different variants of our model, we held out 30,000 documents

(test set) during training. We plugged in the estimates of φw and C acquired during

training using the rest of the corpus to produce a likelihood estimate for these held-out

documents. All models were initialized with the prior matching determined by the

dictionary data. For each number of topics K, we set α to 50/Kand the β variables

to 0.02, as in Fang et al. [FSSY12]. For the Multiple variants, we set πi,j = 1 if i

and j share an entry and 0 otherwise. For Infer variants, only three M -steps were

performed to avoid overfitting, at 250, 500, and 750 iterations of Gibbs sampling,

following the procedure in Boyd-Graber and Blei [BGB09].

4.4.3 Comparison of model variants

In order to compare the variants of our model, we computed the perplexity

and coherence for each variant on Twitter and News, for English–Spanish and

English–Russian language pairs.

Perplexity is a measure of how well a model trained on a training set predicts the co-

occurrence of words on an unseen test set H. Lower perplexity indicates better model

fit. We evaluate the held-out perplexity for topic words wi and perspective-words oi

separately. For topic words, the perplexity is defined as exp(−
∑

wi∈H logp(wi)/N
w).

As for standard LDA, exact inference of p(wi) is intractable under this model. Therefore

we adapted the estimator developed by Murray and Salakhutdinov [MS09] to our

models.

Coherence is a measure inspired by pointwise mutual information [NLGB10]. Let

D(v) be the the number of documents with at least one token of type v and let D(v, w)
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be the number of documents containing at least one token of type v and at least one

token of type w. Then Mimno et al. [MWT+11] define the coherence of topic k as

1(
M
2

) M∑
m=2

m−1∑
`=1

log
D(v

(k)
m , v

(k)
` ) + ε

D(v
(k)
` )

,

where V (k) = (v
(k)
1 , ..., v

(k)
M ) is a list of the M most probable words in topic k and ε

is a small smoothing constant used to avoid taking the logarithm of zero. Mimno

et al. [MWT+11] find that coherence correlates better with human judgments than

do likelihood-based measures. Coherence is topic-specific measure, so for each model

variant we trained, we computed the median topic coherence across all the topics

learned by the model. We set ε = 0.1.

Model performance and analysis. Fig. 4.2 shows perplexity for the variants

as a function of the number of iterations of Gibbs sampling on the English-Spanish

News corpus. The figure confirms that 1000 iterations of Gibbs sampling on the

News corpus was sufficient for convergence across model variants. We omit figures for

English-Russian and for the Twitter corpus, since the patterns were nearly identical.

Figure 4.3 shows how perplexity varies as a function of the number of topics. We

used this information to choose optimal models for the different corpora. The optimal

number of topics was K = 175 for the English-Spanish News corpus, K = 200 for the

English-Russian News, K = 325 for the English-Spanish Twitter, and K = 300 for

the English-Russian Twitter. Although the optimal number of topics varied across

corpora, the relative performance of the different models was the same. In all of our

corpora, the Multiple variants provided better fits than their corresponding Single

variants. There are several explanations for this. For one, the Multiple variants



68

are able to exploit the information from multiple translations, unlike the Single

variants, which discarded all but one translation per word. For another, the matchings

produced by the SingleInfer variants can be purely coincidental and the result of

overfitting (see some examples below). Include variants performed markedly better

than Relegate variants. Infer variants improved model fit compared to Static

variants, but required more topics to produce optimal fit.

Recall that we performed an M-step in the Infer variants 3 times, at 250, 500,

and 750 iterations. As noted in §4.3.3, the M-step in the Infer variants maximizes the

posterior likelihood of the matching. However, Fig. 4.2 shows that this maximization

causes held-out perplexity to increase substantially just after the first matching M-

step, around 250 iterations, before decreasing again after about 50 more iterations of

Gibbs sampling. We believe that this happens because the M-step is maximizing over

expectations that are approximate, since they are estimated using Gibbs sampling. If

the sampler has not yet converged, then the M-step’s maximization will be unstable.

We found support for this explanation when we re-ran the Infer variants using 1000

iterations between M-steps, giving the Markov chain enough time to converge. After

this change, perplexity went down immediately after the M-step and kept decreasing

monotonically, rather than increasing after the M-step before decreasing. However,

this did not result in a significantly lower final perplexity or coherence and thus did

not change the relative performance of the models. In addition, Fig. 4.2 suggests that

the second and third M-steps (at 500 and 750 iterations, respectively) had little effect

on perplexity. In light of the high computational expense of each inference step, this

suggests in practice a single inference step may be sufficient.

Fig. 4.4 shows that the MultipleStaticInclude variant was also the superior
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model as measured by median topic coherence. Once again, this general pattern held

true for the English-Russian pair and Twitter corpora. Overall, the results show that

MultipleStaticInclude provides superior performance across measures, corpora,

topic numbers, and languages. We therefore used this variant in further data analysis

and evaluation. Incidentally, the observed decrease in topic coherence as K increases

is expected, because as K increases, lower-likelihood topics tend to be more incoherent

[MWT+11]. Experiments by Stevens et al. [SKAB12] show that this effect is observed

for LDA-, NMF-, and SVD-based topic models.

Cross-linguistic matchings. The matchings inferred by the SingleInferInclude

variant were of mixed quality. Some of the matchings corrected low-quality translations

in the original dictionary. For instance, our prior dictionary matched passage in English

to pasaje in Spanish. Though technically correct, the dominant meaning of pasaje is

[travel] ticket. The Twitter model correctly matched passage to ruta instead. Many

of the matchings learned by the model did not provide technically correct translations,

yet were still revelatory and interesting. For instance, the dictionary translated the

Spanish word pito as cigarette in English. However, in informal usage this word

refers specifically to cannabis cigarettes, not tobacco cigarettes. The Twitter model

matches pito to the English slang word weed instead. The Spanish word Siria (Syria)

was unmatched in the prior dictionary; the News model matched it to the word

chemical, which makes sense in the context of extensive reporting of the usage of

chemical weapons in the ongoing Syrian conflict.
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Figure 4.2: Perplexity of different model variants for different numbers of
iterations at K=175.

4.4.4 Data analysis and discussion

We have conducted a qualitative analysis of the topics, perspectives and

contrasts produced by our models for English–Spanish and English–Russian, Twitter

and News datasets. While the topics were coherent and consistent across languages,

sets of perspective words manifested systematic differences revealing interesting cross-

cultural contrasts. Fig. 4.5 and 4.7 show the top perspective words discovered by

the model for the topic of finance and economy in English and Spanish News and
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Figure 4.3: Perplexity of different model variants.

Twitter corpora, respectively. While some of the perspective words are neutral,

mostly literal and occur in both English and Spanish (e.g. balance or authorize), many

others represent metaphorical vocabulary (e.g. saddle, gut, evaporate in English, or

incendiar, sangrar, abatir in Spanish) pointing at distinct models of conceptualization

of the topic. When we applied the contrast detection method (described in §4.3.4) to

these perspective words, it highlighted the differences in metaphorical perspectives,

rather than the literal ones, as shown in Fig. 4.6 and 4.8. English speakers tend to

discuss economic and financial processes using motion terms, such as “slow, drive,



72

Figure 4.4: Coherence of different model variants.

boost or sluggish”, or a related metaphor of horse-riding, e.g. “rein in debt”, “saddle

with debt”, or even “breed money”. In contrast, Spanish speakers tend to talk about

the economy in terms of size rather than motion, using verbs such as ampliar or

disminuir, and other metaphors, such as sangrar (to bleed) and incendiar (to light

up). These examples demonstrate coherent conceptualization patterns that differ

in the two languages. Interestingly, this difference manifested itself in both News

and Twitter corpora and echoes the findings of a previous corpus-linguistic study

of Charteris-Black and Ennis [CBE01], who manually analysed metaphors used in
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Topic EN budget debt deficit reduction
spend balance cut increase limit downtown
tax stress addition planet

Topic ES presupuesto deficit deuda reduccion
equilibrio disminucion gasto aumentacion tasa
sacerdote

Perspective EN balance default triple rein
accumulate accrue trim incur saddle slash pri-
oritize avert gut burden evaporate borrow pile
cap cut tackle

Perspective ES renegociar mejora etique-
tado desplomar recortar endeudar incendiar
destinar asignar autorizar aprobado ascender
sangrar augurar abatir

Figure 4.5: Top perspectives in system output for the topic of finance in
the News corpus (metaphors in red italics).

Contrasts EN: rein [in debt], saddle [with
debt], cap [debt], breed [money], gut [budget],
[debt] hit, tackle [debt], boost, slow, drive,
sluggish [economy], spur

Contrasts ES: sangrar [dinero], ampliar, dis-
minuir [la economı́a], superar [la tasa], emitir
[deuda]

Figure 4.6: Contrasts identified by the model in News.

English and Spanish financial discourse and reported that motion and navigation

metaphors that abound in English were rarely observed in Spanish.

For the majority of the topics we analysed the model revealed interesting

cross-cultural differences. For instance, the Spanish corpora exhibited metaphors

of battle when talking about poverty (with poverty seen as an enemy), while in the

English corpus poverty was discussed more neutrally as a social problem that needs a

practical solution. English-Russian News experiments revealed a surprising difference

with respect to the topic of protests. They suggested that while US media tend to use

stronger metaphorical vocabulary, such as clash, erupt or fire, in Russian protests are
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discussed more neutrally. Generally, the News corpora contained more abstract topics

and richer information about conceptual structure and sentiment in all languages.

Many of the topics discovered in Twitter related to everyday concepts, such as pets

or concerts, with fewer topics covering societal issues. Yet, a few Twitter-specific

contrasts could be observed: e.g., the sports topic tends to be discussed using war

and battle vocabulary in Russian to a greater extent than in English.

Our models tend to identify two general kinds of differences: (1) cross-corpus

differences representing world views of particular populations whom the corpora char-

acterize (such differences exist both across and within languages, e.g. the metaphors

used in the progressive New York Times would be different from the ones in the more

conservative Wall Street Journal); and (2) deeply entrenched cross-linguistic differ-

ences, such as the motion versus expansion metaphors for the economy in English and

Spanish. Such systematic cross-linguistic contrasts can be associated with contrastive

behavioural patterns across the different linguistic communities [CB08, FMC+11]. In

both News and Twitter data, our model effectively identifies and summarises such

contrasts simplifying the manual analysis of the data by highlighting linguistic trends

that are indicative of the underlying conceptual differences. However, the conceptual

differences are not straightforward to evaluate based on the surface vocabulary alone.

In order to investigate this further, we conducted a behavioural experiment testing a

subset of the contrasts discovered by our model.

4.5 Behavioural evaluation

We assessed the relevance of the contrasts through an experimental study with

native English-speaking and native Spanish-speaking human subjects. We focused
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Topic EN economy growth rate percent bank
economist interest reserve market policy

Topic ES economı́a crecimiento tasa banco
poltica mercado interés inflacin empleo
economista

Perspective EN economic financial grow
global expect remain cut boost low slow drive

Perspective ES económico mundial agregar
financiero informal pequeño significar interno
bajar

Figure 4.7: Top perspectives in system output for the economy topic in
Twitter (metaphors in red).

Contrasts EN: slow [the economy], push [the
economy], strong [economy], weak [economy],
stable [economy], boost [the economy]

Contrasts ES: caer [la economı́a], disminuir,
superar [la economı́a], ampliar [el crecimiento]

Figure 4.8: Contrasts identified by the model in Twitter.

on a linguistic difference in the metaphors used by English speakers versus Spanish

speakers when discussing changes in a nation’s economy. While English speakers

tend to use metaphors involving both locative motion verbs (e.g. slow) as well as

expansive/contractive motion verbs (e.g. shrink), Spanish speakers preferentially

employ expansive/contractive motion verbs (e.g. disminuir) to describe changes in the

economy. These differences could reflect linguistic artefacts (such as collocation

frequencies) or could reflect entrenched conceptual differences. Our experiment

addresses the question of whether such patterns of behaviour arise cross-linguistically

in response to non-linguistic stimuli. If the linguistic differences are indicative of

entrenched conceptual differences, then we expect to see responses to the non-linguistic

stimuli that correspond to the usage differences in the two languages.
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4.5.1 Experimental setup

We recruited 60 participants from one English-speaking country (the US) and

60 participants from three Spanish-speaking countries (Chile, Mexico, and Spain) using

the CrowdFlower crowdsourcing platform. Participants first read a brief description

of the experimental task, which introduced them to a fictional country in which

economists are devising a simple but effective graphic for “representing change in [the]

economy”. They then completed a demographic questionnaire including information

about their native language. Results from 9 US and 3 non-US participants were

discarded for failure to meet the language requirement.

Participants navigated to a new page to complete the experimental task. Stimuli

were presented in a 1200×700-pixel frame. The center of the frame contained a sphere

with a 64-pixel diameter. For each trial, participants clicked on a button to activate

an animation of the sphere which involved (1) a positive displacement (in rightward

pixels) of 10% or 20%, or a negative displacement (in leftward pixels) of 10% or 20%;3

and, (2) an expansion (in increased pixel diameter) of 10% or 20%, or a contraction

(in decreased pixel diameter) of 10% or 20%.4

Participants saw each of the resulting conditions 3 times. The displacement

and size conditions were drawn from a random permutation of 16 conditions using

a Fisher-Yates shuffle [FY63]. Crucially, half of the stimuli contained conflicts of

information with respect to the size and displacement metaphors for economic change

(e.g. the sphere could both grow and move to the left). Overall we expected the

3The use of leftward/rightward horizontal displacement to represent decreases/increases in magni-
tude is supported by research in numerical cognition showing that people associate smaller magnitudes
with the left side of space and larger magnitudes with the right side [Deh92, FBGd95].

4A demonstration of the English experimental interface can be accessed at http://goo.gl/W3YVfC.
The Spanish interface is identical, but for a direct translation of the guidelines provided by a native
Spanish/fluent English speaker.

http://goo.gl/W3YVfC
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Spanish speakers’ responses to be more closely associated with changes in diameter

due to the presence and salience of the size metaphor, and the English speakers’

responses to be influenced by both conditions. We expected these differences to be

most prominent in the conflicting trials, which force English speakers (unlike Spanish

speakers) to choose between two available metaphors. We focus on these conflicting

trials in our analysis and discussion of the results.

4.5.2 Results

In trials in which stimuli moving rightward were simultaneously contracting,

English speakers responded that the economy improved 66% of the time, whereas

Spanish speakers judged the economy to have improved 43% of the time. In trials in

which stimuli moving leftward were simultaneously expanding, English speakers judged

the economy to have improved 34% of the time, and Spanish speakers responded that

the economy improved 55% of the time. The results are illustrated in Figure 4.9.

These results indicate three effects: (1) English speakers exhibit a pronounced

bias for using horizontal displacement rather than expansion/contraction during

the decision-making process; (2) Spanish speakers are more biased toward expan-

sion/contraction in formulating a decision; and, (3) across the two languages the

responses show contrasting patterns. The results support our expectation on the

relevance of different metaphors when reasoning about the economy by the English

and Spanish speakers.

To examine the significance of these effects, we fit a binary logit mixed effects

model5 to the data. The full analysis modeled judgment with native language,

5See Fox and Weisberg [FW11] for a discussion of such models including application of the Type
II Wald test.
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Figure 4.9: “Economy Improved” response rate in conflicting stimulus
conditions.

displacement, and size as fully crossed fixed effects and participant as a random effect.

This analysis confirmed that native language was associated with judgments about

economic change. In particular, it indicated that changes in size affected English

speakers’ judgments and Spanish speakers’ judgments differently (p < 0.001), with an

increase in size increasing the odds (eβ = 2.5) of a judgment of Improved by Spanish

speakers and decreasing the odds (eβ = 0.44) of a judgment of Improved by English

speakers. A Type II Wald test revealed the interaction between language and size to

be highly statistically significant (χ2(1) < 0.001).

In summary, the patterns we see in the behavioural data are consistent with

the patterns uncovered in the output of our model. While much territory remains to
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be investigated to delimit the nature of this relationship, our results represent a first

step toward establishing an association between information mined from large textual

data collections and information observed through behavioural responses on a human

scale.

4.6 Conclusion

We presented the first model that detects common topics from multilingual,

non-parallel data and automatically uncovers differences in perspectives on these topics

across linguistic communities. Our data analysis and behavioural evaluation offer

evidence of a symbiotic relationship between ecologically sound corpus experiments

and scientifically controlled human subject experiments, paving the way for the use of

large-scale text mining to inform cognitive linguistics and psychology research.

We believe that our model represents a good foundation for future projects

in this area. A promising area for further work is in developing better methods for

identifying contrasts in perspective terms. This could perhaps involve modifying

the generative process for perspective terms or incorporating syntactic dependency

information. It would also be interesting to investigate the effect of dictionary quality

and corpus size on the relative performance of Static and Infer variants. Finally, we

note that the model can be applied to identify contrastive perspectives in monolingual

as well as multilingual data, providing a general tool for the analysis of subtle, yet

important, cross-population differences.

Chapter 4, in part, is a reprint of the material as it appears in Gutierrez,

E.D.; Shutova, Ekaterina; Lichtenstein, Patricia; de Melo, Gerard; Gilardi, Luca.

“Detecting cross-cultural differences using a probabilistic topic model”, Transactions of
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the Association for Computational Linguistics, vol. 4, 2016. The dissertation author

was the primary investigator and author of this paper.



Chapter 5

Conclusion

The work in this thesis highlights some ways that cognitive semantics and

computational semantics can benefit from each other. As we have shown However, it

skirts around many open questions about how a more complete fusion of these two

fields can be achieved. It is unclear, for instance, to what extent computational and

statistical models can adjudicate on open scientific questions in cognitive semantics.

What does the success of statistical modeling in computational semantics say about

the role of statistics versus the role of embodiment in human semantic learning and

processing? Conversely, the current trend in computational semantics toward nearly

language-agnostic language models (often driven by deep learning—cf. [JVS+16])

raises doubts about what role, if any, cognitive semantic theories, or any theory of

language in general, will play in the future of natural language processing. Still, we

conjecture that as deep learning matures, researchers will find a productive role for

linguistic theory in such language-agnostic language models.
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Appendix A

Alternative Approaches to

Characterizing Systematicity

This appendix contains some approaches to characterizing the non-arbitrary

systematicity in the lexicon that did not make it into chapter 3

A.1 Linear Regression: The Feature-based Model

The orthographic features that are most of interest to us involve the presence

or absence of position-dependent orthographic clusters (e.g., word-initial gl-; word-

final -ign), so we attempted to employ several linear regression techniques that

detect relationships between binary predictors and continuous responses. Interestingly,

these regression methods described below have found broad application in genomics,

especially for the task of associating genotypes with phenotypes in large populations

[LTB11]. Indeed, this task shares many similarities with the task of finding semantically

predictive orthographic features: like our phonetic features, the presence or absence of
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each polymorphism in the genotype can be modeled as a binary variable (assuming

complete dominance of alleles); the most effects of genotype on phenotype are taken

to be complex and noisy (just like the effect of orthographic features on our semantic

vectors); and the task is to identify a relatively small number of candidate genotypes

with an effect from a very large overall number of genotypes.

A.1.1 Regularized Multivariate Regression.

For our regularized linear regression models, our orthographic features consisted

of all two- and three-letter combinations that occurred at the beginning and end

of words in our lexicon. We regressed the values of our semantic vectors on these

responses using multi-task elastic net regression [ZH05]. Elastic net regression is a

regularization framework that combines L1 and L2 regularization penalties. Unlike

L1 regression, elastic net regularization can deal with collinear predictor variables

without shrinking all but one of their coefficients to zero. Unlike L2 regression, elastic

net regularization produces a sparse solution that shrinks irrelevant variables to zero.

The added cost to elastic net regression comes in having to fine-tune two parameters,

the ratio of L1 penalty to L2 penalty, and the overall magnitude of the combined

L1/L2 penalty. We used a grid search under 10-fold cross-validation to perform this

fine-tuning, as implemented in the Scikit-Learn package for Python.

The greatest drawback of multivariate linear regression is that it encodes strong

parametric assumptions. Each dimension of the predictor variable is assumed to have

an additive effect on the overall prediction.
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Null Results with Multivariate Regularized Regression. Our multivariate

regularized regression did not identify any statistically reliable word-initial or word-

final feature. This may be due to the strong parametric assumptions of linear regression

where each feature has an independent additive effect, and due to the low power of our

sample size, which is limited by the number of monosyllabic monomorphemic words.

A.1.2 Mass Univariate Regression.

Another technique common in genetic association studies is mass univariate

linear regression. With the mass univariate analysis we hoped to evaluate whether

orthographic features exhibit a global, if weak, effect on the values of the semantic

vectors. Since our features are binary random variables, this technique involves simply

finding the means of the words with each feature and without each feature.

Attempt to Measure Distribution of Systeamaticity across Features. On

the assumption that there is no relationship between the orthographic features and

the semantic values, the p-values of the mass univariate regressions should roughly

adhere to a Unif(0, 1) distribution. On the other hand, if phonetic features do tend to

predict meaning, then the distribution of the p-values should be more skewed toward

zero. Define W as the sum of the negative logarithms of the p-values of each of the D

features. Then W is distributed chi-squared with N degrees of freedom, so the overall

p-value for the hypothesis that features tend to predict meaning is p = 1 − χ2
N(W )

[War13].

In the case of binary predictors and continuous responses, the problem of finding

p-values for the coefficients of univariate regression reduces to a t-test. p-values are

readily calculated for the t-test. We first performed a Welch's t-test for independent
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samples with unequal variance and compiled the p-values. However, the reliability of p-

values for Welch's t-test relies somewhat upon the assumption of normally distributed

predictor values within each grouping; our data do not hold to this standard, so we

applied a transform to our data so that they would closer match a normal distribution.

We applied Welch's t-test to each of the 50 principal components of our vector-space

model independently. We found that at the significance level of p < .05, Bonferroni-

corrected for 50 comparisons (i.e., uncorrected p < .001), the null hypothesis of no

relationship between the orthographic features and the semantic values was rejected

for 11 of the 50 semantic dimensions. In other words, for 11 of the 50 dimensions, a

significant portion of the p-values were concentrated near or at significance. Looking to

eliminate any concerns about whether our transform actually normalized our data, we

repeated our analysis using the Mann-Whitney rank-sum test. The Mann-Whitney test

is a non-parametric alternative to the t-test that does not rely on any distributional

assumptions about the response variables [HM98]; instead the response values are

transformed into ordinal ranks. Using the rank-sum test, the null hypothesis of no

relationship was rejected for 10 of the 50 dimensions at the Bonferroni-corrected

significance level of p < .05.
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importance of magnitude information in numerical processing: evidence
from the SNARC effect. Mathematical Cognition, 2(1):95–110, 1995.

[FCE69] Joseph L. Fleiss, Jacob Cohen, and B.S. Everitt. Large sample standard
errors of kappa and weighted kappa. Psychological Bulletin, 72(5):323,
1969.

[Fir30] John R. Firth. Speech. Benn’s Sixpenny Library, London, 1930.

[Fis32] R.A. Fisher. Statistical methods for research workers. Oliver and Boyd,
London, 1932.



90

[FMC+11] Orly Fuhrman, Kelly McCormick, Eva Chen, Heidi Jiang, Dingfang Shu,
Shuaimei Mao, and Lera Boroditsky. How linguistic and cultural forces
shape conceptions of time: English and Mandarin time in 3D. Cognitive
Science, 35:1305–1328, 2011.

[FPC15] Daniel Fried, Tamara Polajnar, and Stephen Clark. Low-rank tensors
for verbs in compositional distributional semantics. In Proceedings of the
53nd Annual Meeting of the Association for Computational Linguistics,
Beijing, 2015.

[FRMQ07] Anthony Fader, Dragomir Radev, Burt L. Monroe, and Kevin M. Quinn.
MavenRank: Identifying influential members of the US senate using
lexical centrality. In In Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Processing and Computational
Natural Language Learning, pages 658–666, 2007.

[FSSY12] Yi Fang, Luo Si, Naveen Somasundaram, and Zhengtao Yu. Mining
contrastive opinions on political texts using cross-perspective topic model.
In Proceedings of the Fifth ACM International Conference on Web Search
and Data Mining (WSDM ’12), pages 63–72, New York, 2012. New York:
ACM.

[FW11] John Fox and Sanford Weisberg. An R Companion to Applied Regression.
SAGE Publications, CA: Los Angeles, 2011.

[FY63] Ronald A. Fisher and Frank Yates. Statistical Tables for Biological,
Agricultural and Medical Research. Oliver and Boyd, Edinburgh, 1963.

[FZBB08] Adriano Ferraresi, Eros Zanchetta, Marco Baroni, and Silvia Bernardini.
Introducing and evaluating UKWaC, a very large web-derived corpus of
English. In Proceedings of the 4th Web as Corpus Workshop (WAC-4)
Can we beat Google, pages 47–54, 2008.

[Gas04] Michael Gasser. The origins of arbitrariness in language. In Proceedings of
the 26th Annual Conference of the Cognitive Science Society, volume 26,
pages 4–7, 2004.

[GB11] Sean M. Gerrish and David M. Blei. Predicting legislative roll calls from
text. In Proceedings of ICML, 2011.

[GBNC06] Matt Gedigian, John Bryant, Srini Narayanan, and Branimir Ciric. Catch-
ing metaphors. In Proceedings of the Third Workshop on Scalable Natural
Language Understanding, pages 41–48, New York, 2006. Association for
Computational Linguistics.

[Geo00] Darren George. SPSS for Windows Step by Step: A Simple Guide and
Reference, 11.0 Update (4th ed.). Allyn & Bacon, London, 2000.



91

[GH05] Joseph A. Goguen and D. Fox Harrell. 7 information visualisation and
semiotic morphisms. Studies in Multidisciplinarity, 2:83–97, 2005.

[GH10] Joseph A. Goguen and D. Fox Harrell. Style: A computational and
conceptual blending-based approach. In The Structure of Style, pages
291–316. Springer, New York, 2010.

[GKCM03] David Graff, Junbo Kong, Ke Chen, and Kazuaki Maeda. English
Gigaword. Linguistic Data Consortium, Philadelphia, 2003.

[Gog99] Joseph Goguen. An introduction to algebraic semiotics, with application
to user interface design. In Computation for metaphors, analogy, and
agents, pages 242–291. Springer, 1999.

[GQS+13] Swapna Gottipati, Minghui Qiu, Yanchuan Sim, Jing Jiang, and Noah A.
Smith. Learning topics and positions from Debatepedia. In Proceed-
ings of the 2013 Conference on Empirical Methods in Natural Language
Processing, pages 1858–1868, Seattle, Washington, USA, October 2013.
Association for Computational Linguistics.

[GS13] Justin Grimmer and Brandon M. Stewart. Text as Data: The Promise
and Pitfalls of Automatic Content Analysis Methods for Political Texts.
Political Analysis, January 2013.

[Gue10] Emiliano Guevara. A regression model of adjective-noun composition-
ality in distributional semantics. In Proceedings of the 2010 Workshop
on GEometrical Models of Natural Language Semantics, pages 33–37.
Association for Computational Linguistics, 2010.

[GY09] Nikesh Garera and David Yarowsky. Modeling latent biographic attributes
in conversational genres. In Proceedings of the Joint Conference of
the 47th Annual Meeting of the ACL and the 4th International Joint
Conference on Natural Language Processing of the AFNLP: Volume
2 - Volume 2, ACL ’09, pages 710–718, Stroudsburg, PA, USA, 2009.
Association for Computational Linguistics.

[Har54] Zellig S. Harris. Distributional structure. Word, 10(23):146–162, 1954.

[HGS+13] Ilana Heintz, Ryan Gabbard, Mahesh Srinivasan, David Barner, Donald S
Black, Marjorie Freedman, and Ralph Weischedel. Automatic extraction
of linguistic metaphor with lda topic modeling. In Proceedings of the
First Workshop on Metaphor in NLP, pages 58–66, 2013.

[HJM08] David Hall, Daniel Jurafsky, and Christopher D. Manning. Studying the
history of ideas using topic models. In Proceedings of the 2008 Conference
on Empirical Methods in Natural Language processing, pages 363–371.
Association for Computational Linguistics, 2008.



92

[HL13] Sterling Hutchinson and Max Louwerse. Language statistics and individ-
ual differences in processing primary metaphors. Cognitive Linguistics,
24(4):667–687, 2013.

[HL14] Sterling Hutchinson and Max M. Louwerse. Language statistics explain
the spatial–numerical association of response codes. Psychonomic Bulletin
& Review, 21(2):470–478, 2014.

[HLBKK08] Aria Haghighi, Percy Liang, Taylor Berg-Kirkpatrick, and Dan Klein.
Learning bilingual lexicons from monolingual corpora. In Proceedings of
the 46th Annual Meeting of the Association for Computational Linguistics,
ACL-’08:HLT, pages 771–779, Columbus, Ohio, USA, 2008.

[HM98] T. P. Hettmansperger and J. W. McKean. Robust nonparametric statisti-
cal methods. In Kendall’s Library of Statistics 5, pages xiv–467. Edward
Arnold, London, 1998.

[Hoc60] Charles F. Hockett. The origin of speech. Scientific American, 203:88–96,
1960.

[HSJ+13] Dirk Hovy, Shashank Srivastava, Sujay Kumar Jauhar, Mrinmaya Sachan,
Kartik Goyal, Huiying Li, Whitney Sanders, and Eduard Hovy. Identify-
ing metaphorical word use with tree kernels. In Proceedings of the First
Workshop on Metaphor in NLP, pages 52–57, 2013.

[Hut98] Sharon Suzanne Hutchins. The psychological reality, variability, and
compositionality of English phonesthemes. PhD thesis, Emory University,
Atlanta, 1998.

[JD10] Jagadeesh Jagarlamudi and Hal Daumé III. Extracting multilingual
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