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Abstract

We introduce a family of Maxwellian Demons for which correlations among information bearing
degrees of freedom can be calculated exactly and in compact analytical form. This allows one to
precisely determine Demon functional thermodynamic operating regimes, when previous methods
either misclassify or simply fail due to approximations they invoke. This reveals that these Demons are
more functional than previous candidates. They too behave either as engines, lifting a mass against
gravity by extracting energy from a single heat reservoir, or as Landauer erasers, consuming external
work to remove information from a sequence of binary symbols by decreasing their individual
uncertainty. Going beyond these, our Demon exhibits a new functionality that erases bits not by
simply decreasing individual-symbol uncertainty, but by increasing inter-bit correlations (that is, by
adding temporal order) while increasing single-symbol uncertainty. In all cases, but especially in the
new erasure regime, exactly accounting for informational correlations leads to tight bounds on
Demon performance, expressed as a refined Second Law of thermodynamics that relies on the
Kolmogorov—Sinai entropy for dynamical processes and not on changes purely in system
configurational entropy, as previously employed. We rigorously derive the refined Second Law under
minimal assumptions and so it applies quite broadly—for Demons with and without memory and
input sequences that are correlated or not. We note that general Maxwellian Demons readily violate
previously proposed, alternative such bounds, while the current bound still holds. As such, it broadly
describes the minimal energetic cost of any computation by a thermodynamic system.

1. Introduction

The Second Law of thermodynamics is only statistically true: while the entropy production in any process is non-
negative on the average, (AS) > 0, if we wait long enough, we shall see individual events for which the entropy
production is negative. This is nicely summarized in the recent fluctuation theorem for the probability of
entropy production AS [1-7]:

Pr(AS) eAS

Pr(—AS) )

implying that negative entropy production events are exponentially rare but not impossible. Negative entropy
fluctuations were known much before this modern formulation. In fact, in 1867 Maxwell used the negative
entropy fluctuations in a clever thought experiment, involving an imaginary intelligent being—Tlater called
Maxwell’s Demon—that exploits fluctuations to violate the Second Law [8, 9]. The Demon controls a small
frictionless trapdoor on a partition inside a box of gas molecules to sort, without any expenditure of work, faster
molecules to one side and slower ones to the other. This gives rise to a temperature gradient from an initially
uniform system—a violation of the Second Law. Note that the ‘very observant and neat fingered” Demon’s
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‘intelligence’ is necessary; a frictionless trapdoor connected to a spring acting as a valve, for example, cannot
achieve the same feat [10].

Maxwell’s Demon posed a fundamental challenge. Either such a Demon could not exist, even in principle, or
the Second Law itself needed modification. A glimmer of a resolution came with Szilard’s reformulation of
Maxwell’s Demon in terms of measurement and feedback-control of a single-molecule engine. Critically, Szilard
emphasized hitherto-neglected information-theoretic aspects of the Demon’s operations [11]. Later, through
the works of Landauer, Penrose, and Bennett, it was recognized that the Demon’s operation necessarily
accumulated information and, for a repeating thermodynamic cycle, erasing this information has an entropic
cost that ultimately compensates for the total amount of negative entropy production leveraged by the Demon to
extract work [ 12—14]. In other words, with intelligence and information-processing capabilities, the Demon
merely shifts the entropy burden temporarily to an information reservoir, such as its memory. The cost is repaid
whenever the information reservoir becomes full and needs to be reset. This resolution is concisely summarized
in Landauer’s principle [15]: the Demon’s erasure of one bit of information at temperature TK requires at least
ks T In2 amount of heat dissipation, where kg is Boltzmann’s constant. (While it does not affect the following
directly, it has been known for some time that this principle is only a special case [16].)

Building on this, a modified Second Law was recently proposed that explicitly addresses information
processing in a thermodynamic system [17, 18]:

(AS) + ks In2 AH > 0, (@)

where AH is the change in the information reservoir’s configurational entropy over a thermodynamic cycle.
This is the change in the reservoir’s ‘information-bearing degrees of freedom’ as measured using Shannon
information H [19]. These degrees of freedom are coarse-grained states of the reservoir’s microstates—the
mesoscopic states that store information needed for the Demon’s thermodynamic control. Importantly for the
following, this Second Law assumes explicitly observed Markov system dynamics [17] and quantifies this relevant
information only in terms of the distribution of instantaneous system microstates; not, to emphasize, microstate
path entropies. In short, while the system’s instantaneous distributions relax and change over time, the
information reservoir itself is not allowed to build up and store memory or correlations.

Note that this framework of information reservoirs differs from alternative approaches to the
thermodynamics of information processing, including: (i) active feedback control by external means, where the
thermodynamic account of the Demon’s activities tracks the mutual information between measurement
outcomes and system state [20—33]; (ii) the multipartite framework where, for a set of interacting, stochastic
subsystems, the Second Law is expressed via their intrinsic entropy production, correlations among them, and
transfer entropy [34-37]; and (iii) steady-state models that invoke time-scale separation to identify a portion of
the overall entropy production as an information current [38, 39]. A unified approach to these perspectives was
attempted in [40—42].

Recently, Maxwellian Demons have been proposed to explore plausible automated mechanisms that appeal
to equation (2)’s modified Second Law to do useful work, by decreasing the physical entropy, at the expense of
positive change in reservoir Shannon information [39, 43—48]. Paralleling the modified Second Law’s
development and the analysis of the alternatives above, they too neglect correlations in the information-bearing
components and, in particular, the mechanisms by which those correlations develop over time. In effect, they
account for Demon information-processing by replacing the Shannon information of the components asa
whole by the sum of the components’ individual Shannon informations. Since the latter is larger than the former
[19], using it can lead to either stricter or looser bounds than the true bound which is derived from differences in
total configurational entropies. More troubling, though, bounds that ignore correlations can simply be violated.
Finally, and just as critically, they refer to configurational entropies, not the intrinsic dynamical entropy over
system trajectories.

This letter proposes a new Demon for which, for the first time, all correlations among system components
can be explicitly accounted. This gives an exact, analytical treatment of the thermodynamically relevant Shannon
information change—one that, in addition, accounts for system trajectories not just information in
instantaneous state distributions. The result is that, under minimal assumptions, we derive a Second Law that
refines equation (2) by properly accounting for intrinsic information processing reflected in temporal
correlations via the overall dynamic’s Kolmogorov—Sinai entropy [49]. Conversely, it bounds the
thermodynamic cost of any computation. Helpfully, the hidden Markov model (HMM) representations we
introduce afford a compact representation of a large class of information reservoirs, much broader than has been
considered so far. Moreover, information reservoirs expressed as e-machines lead to exact analytical treatment.

Notably, our Demon is highly functional: depending on model parameters, it acts both as an engine, by
extracting energy from a single reservoir and converting it into work, and as an information eraser, erasing
Shannon information at the cost of the external input of work. Moreover, it supports a new and counterintuitive
thermodynamic functionality. In contrast with previously reported erasure operations that only decreased
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Figure 1. Information ratchet sequentially processing a bit string: at time step N, Xy is the random variable for the ratchet state and Zy
that for the thermal reservoir. Yy, is the block random variable for the input bit string and Yy, that for the output bit string. The last
bit Yy of the input string, highlighted in yellow, interacts with the ratchet. The arrow on the right of the ratchet indicates the direction
the ratchet moves along the tape as it sequentially interacts with each input bit in turn.

single-bit uncertainty, we find a new kind of erasure functionality during which multiple-bit uncertainties are
removed by adding correlation (i.e., by adding temporal order), while single-bit uncertainties are actually
increased. This new thermodynamic function provocatively suggests why real-world ratchets support memory:
The very functioning of memoryful Demons relies on leveraging temporally correlated fluctuations in their
environments.

2. Information ratchets

Our model consists of four components, see figure 1: (1) an ensemble of bits that acts as an information
reservoir; (2) a weight that acts as a reservoir for storing work; (3) a thermal reservoir at temperature T; and (4) a
finite-state ratchet that mediates interactions between the three reservoirs. The bits interact with the ratchet
sequentially and, depending on the incoming bit statistics and Demon parameters, the weight is either raised or
lowered against gravity.

As a device that reads and processes a tape of bits, this class of ratchet model has a number of parallels that we
mention now, partly to indicate possible future applications. First, one imagines a sophisticated, stateful
biomolecule that scans a segment of DNA, say as a DNA polymerase does, leaving behind a modified sequence of
nucleotide base-pairs [50] or that acts as an enzyme sequentially catalyzing otherwise unfavorable reactions [51].
Second, there is a rough similarity to a Turing machine sequentially recognizing tape symbols, updating its
internal state, and taking an action by modifying the tape cell and moving its read-write head [52]. When the
control logic is stochastic, this sometimes is referred to as ‘Brownian computing’ [53, and references therein].
Finally, we are reminded of the deterministic finite-state tape processor of [54] that, despite its simplicity,
indicates how undecidability can be imminent in dynamical processes. Surely there are other intriguing
parallels, but these give a sense of a range of applications in which sequential information processing embedded
in a thermodynamic system has relevance.

The bit ensemble is a semi-infinite sequence, broken into incoming and outgoing pieces. The ratchet runs
along the sequence, interacting with each bit of the input string step by step. During each interaction at step N,
the ratchet state Xjyand interacting bit Yy fluctuate between different internal joint states within Ay ® Vv,
exchanging energy with the thermal reservoir and work reservoir, and potentially changing Yy's state. At the end
of step N, after input bit Yy interacts with the ratchet, it becomes the last bit Yy, of the output string. By
interacting with the ensemble of bits, transducing the input string into the output string, the ratchet can convert
thermal energy from the heat reservoir into work energy stored in the weight’s height.

The ratchet interacts with each incoming bit for a time interval 7, starting at the Oth bit Y, of the input string.
After N time intervals, input bit Yy_ ; finishes interacting with the ratchet and, with the coupling removed, it is
effectively ‘written’ to the output string, becoming Y};_,. The ratchet then begins interacting with input bit Yy,
As figure 1 illustrates, the state of the overall system is described by the realizations of four random variables: Xy
for the ratchet state, Yy, for the input string, Y;.  for the output string, and Zy, for the thermal reservoir. A
random variable like Xy realizes elements xyy of its physical state space, denoted by alphabet X', with probability
Pr(Xy = xn). Random variable blocks are denoted Y,.;, = Y, Y, ;... Y,_;, with the last index being exclusive. In
the following, we take binary alphabets for Y and )': y;, y,, € {0, 1}. The bit ensemble is considered two joint
variables Y., = Yy ¥{...Y}_;and Yx.oo = Yn Yary1... rather than one Yj.., so that the probability of realizing a
word w € {0, 1}*~%in the output string is not the same as in the input string. That is, during ratchet operation
typically Pr(Y,., = w) = Pr(Y., = w).
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The ratchet steadily transduces the input bit sequence, described by the input word distribution
Pr(Yo.00) = {Pr(Yo:00 = W) hweo,1}~—the probability for every semi-infinite input word—into the output
string, described by the word distribution Pr(Yy...) = {Pr(Yy... = v)},e {0,1 - We assume that the word
distributions we work with are stationary, meaning that Pr(Y,.,, ;) = Pr(Y;.;) for all non-negative integers a
and b.

A key question in working with a sequence such as Yj., is how random it is. One commonly turns to
information theory to provide quantitative measures: the more informative a sequence is, the more random it is.
For words at a given length ¢ the average amount of information in the Y., sequence is given by the Shannon
block entropy [55]:

H[YO:f] = — Z Pr(YO:f = W)lOgZPI‘(YOf = W) (3)
we{0,1}7
Due to correlations in typical process sequences, the irreducible randomness per symbol is not the single-symbol
entropy H [ Yy]. Rather, it is given by the Shannon entropy rate [55]:

H [Yor] @

= Jim

When applied to a physical system described by a suitable symbolic dynamics, as done here, this quantity is the
Kolmogorov-Sinai dynamical entropy of the underlying physical behavior.

Note that these ways of monitoring information are quantitatively quite different. For large £,
h,¢ < H[Y,./] and, in particular, anticipating later use, h, < H [¥y], typically much less. Equality between the
single-symbol entropy and entropy rate is only achieved when the generating process is memoryless. Calculating
the single-symbol entropy is typically quite easy, while calculating k,, for general processes has been known for
quite some time to be difficult [56] and it remains a technical challenge [57]. The entropy rates of the output
sequence and input sequence are h/’,, = limy_, H[Y.,] / ¢and h, = lim,_,, H [Yy./]/¢, respectively.

The informational properties of the input and output word distributions set bounds on energy flows in the
system. Appendix A establishes one of our main results: the average work done by the ratchet is bounded above
by the difference in Kolmogorov-Sinai entropy of the input and output processes:

(W) < ksT In2 (b, — hy)
= ks T In2 Ah,. ©)

A complementary interpretation of this new Second Law is that it places a lower bound on the thermodynamic
cost (work) to perform information processing and intrinsic computation (change in Shannon entropy of the
information reservoir).

In light of the preceding remarks on the basic difference between H [¥;] and ,,, we can now consider more
directly the differences between equations (2) and (5). Most importantly, the AH in the former refers to the
instantaneous configurational entropy H before and after a thermodynamic transformation. In the ratchet’s
steady state operation, AH vanishes since the configuration distribution is time invariant, even when the overall
system’s information production is positive. The entropies h/L and h,, in equation (5), in contrast, are dynamical:
rates of active information generation in the input and output giving, in addition, the correct minimum rates
since they take all temporal correlations into account. Together they bound the overall system’s information
production in steady state away from zero. In short, though often conflated, configurational entropy and
dynamical entropy capture two very different kinds of information and they, per force, are associated with
different physical properties supporting different kinds of information processing. They are comparable only in
special cases.

For example, if one puts aside this basic difference to facilitate comparison and considers the Shannon
entropy change AH in the joint state space of all bits, the two equations are analogous in the current setup.
However, often enough, a weaker version of equation (2) is considered in the discussions on Maxwell’s Demon
[41, 4345, 58] and information reservoirs [ 18], wherein the statistical correlations between the bits are
neglected, and one simply interprets AH to be the change in the marginal Shannon entropies H [Yp] of the
individual bits. This implies the following relation in the current context:

(W) < ks In2 AH[Y], (6)

where AH [Yy] = H[Yy] — H[Yy]. While equation (6) is valid for the studies in [18, 41, 43-45, 58], it can be
violated under certain scenarios [59]. In comparison, equation (5) is generally valid.

As an example, consider the case where the ratchet has memory and, for simplicity of exposition, is driven by
an uncorrelated input process, meaning the input process entropy rate is the same as the single-symbol entropy:

* Reference [43]’s appendix suggests equation (5) without any detailed proof. An integrated version appeared also in [58] for the special case
of memoryless demons. Our appendix A gives a more general proof of equation (5) that, in addition, accounts for memory.
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—a+ B+ w

—B+w

Ratchet Bit Ratchet ® Bit

Ratchet ® Bit ® Weight

Figure 2. Energy levels of the Demon states, interacting bits, their joint system, and their joint system with a weight in units of [kg T'].

h, = H [Y;]. However, the ratchet’s memory can create correlations in the output bit string, so:
Ah, = h;, — H[Y]
< H[Yg] — H[Y)]
= AH[Y,]. (7

In this case, equation (5) is a tighter bound on the work done by the ratchet—a bound that explicitly accounts for
correlations within the output bit string generated by the ratchet during its operation. For example, for the
ratchet shown in figure 3 with parameters {p = 0.5, ¢ = 0.1} and input bias Pr(Y; = 0) = 0.9, the block
entropies H [Yy,;] of the output process do not converge to the entropy rate even when looking at block lengths
up to L = 13. This means that there are correlations within the output that are not captured even when looking
atlong blocks of symbols, resulting in an over-estimate of randomness. In short, generally the entropy rate is
necessary in order to properly account for the effects of all correlations in the output [55].

Previously, the effect of these correlations has not been calculated, but they have important consequences.
Due to correlations, it is possible to have an increase in the single-symbol entropy difference AH [Yy]buta
decrease in the Kolmogorov-Sinai entropy rate Ah,,. In this situation, it is erroneous to assume that there is an
increase in the information content in the bits. There is, in fact, a decrease in information due to increased
correlations; see section 5. As a result, we can now detect an eraser regime (previously unexpected) in the phase
diagram of the system (figure 7). A similar regime may be present also in the model of [43] where the outgoing
bits were observed to have small but finite correlations.

Note that a somewhat different situation was considered in [58], a memoryless channel (ratchet) driven by a
correlated process. In this special case—ratchets unable to leverage or create temporal correlations—
equation (6) is a tighter bound on work than equation (5). When a memoryless ratchet is driven by uncorrelated
input, though, the bounds are equivalent. Critically, for memoryful ratchets driven by correlated input
equation (6) can be violated. In all settings, equation (5) holds.

While we defer its development to a sequel, equation (5) also has implications for ratchet functioning when
the input bits are correlated as well. Specifically, correlations in the input bits can be leveraged by the ratchet to
do additional work—work that cannot be accounted for if one only considers single-symbol configurational
entropy of the input bits [60].

3. Energetics and dynamics

To predict how the ratchet interacts with the bit string and weight, we need to specify the string and ratchet
energies. When not interacting with the ratchet the energies, E; and E;, of both bit states, Y = 0and Y = 1, are
taken to be zero for symmetry and simplicity: Ey = E; = 0. For simplicity, too, we say the ratchet mechanism
has just two internal states A and B. When the ratchet is not interacting with bits, the two states can have different
energies. We take E4 = 0and Eg = —akg T, without loss of generality. Since the bits interact with the ratchet
one at a time, we only need to specify the interaction energy of the ratchet and an individual bit. The interaction
energy is zero if the bit is in the state Y = 0, regardless of the ratchet state, and itis — Gkg T (or + kg T') if the bit is
in state Y = 1 and the ratchetisin state A (or B). See figure 2 for a graphical depiction of the energy scheme under
‘Ratchet ® Bit’.

The scheme is further modified by the interaction of the weight with the ratchet and bit string. We attach the
weight to the ratchet-bit system such that when the latter transitions from the B ® 0 state to the A ® 1 state it
lifts the weight, doing a constant amount wkg T of work. As a result, the energy of the composite system—
Demon, interacting bit, and weight—increases by wkg T whenever the transition B ® 0 — A ® 1 takes place,
the required energy being extracted from the heat reservoir Zy. The rightmost part of figure 2 indicates this by
raising the energy level of A ® 1by wkg T compared to its previous value. Since the transitions between A ® 1
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Figure 3. The Markovian, detailed-balance dynamic over the joint states of the ratchet and interacting bit.

and B ® 1donotinvolve the weight, their relative energy difference remains unaffected. An increase in the
energyof A ® 1by wkp T therefore implies the same increase in the energy of B ® 1. Again, see figure 2 for the
energy scheme under ‘Ratchet ® Bit @ Weight’.

The time evolution over the joint state space of the ratchet, last bit of the input string, and weight is governed
by a Markov dynamic, specified by state-transition matrix M. If, at the beginning of the Nth interaction interval
attimet = 7(N — 1) + 07, theratchet s in state Xy = xyand the input bitis in state Yy = yn, thenlet

Mo —xva@y, be the probability Pr(xn 1, )’MXN) yy) that the ratchet is in state Xy = xy1and thebitisin
state Yy = yz(r atthe end of the interaction interval t = 7 (N — 1) + 7. Xjyand Yyat the end of the Nth
interaction interval become Xy, and Yy, respectively at the beginning of the N + 1 th interaction interval.
Since we assume the system is thermalized with a bath at temperature T, the ratchet dynamics obey detailed

balance. And so, transition rates are governed by the energy differences between joint states:

M /
ANO YN AN+ 1Oy _ e(EXNHXV’N_EXN@WN)/kBT' (8)

MXN+1®}’1(]"’CN®J’N

There is substantial flexibility in constructing a detailed-balanced Markov dynamic for the ratchet,
interaction bit, and weight. Consistent with our theme of simplicity, we choose one that has only six allowed
transitions: A 0 <+ B 0,A® 1+~ B® l,and A ® 1 «+ B ® 0.Such amodel is convenient to consider,
since it can be described by just two transition probabilities 0 < p < 1and 0 < g < 1,asshownin figure 3.

The Markov transition matrix for this system is given by:

0l—p 0 0
|l g 0 ©
0 p 0 1f
0 0 1-q0

This allows allows us to calculate the state distribution p((N — 1)7 + 77) at the end of the Nth interaction
interval from the state distribution p((N — 1)7 + 07) at the interval’s beginning via:

p((N — )7+ 77) = Mp((N — )7 + 01), (10)

where the probability vector is indexed p = (Pr(A ® 0), Pr(B ® 0), Pr(A ® 1), Pr(B ® 1)) . Tosatisfy
detailed balance, we find that «, 3, and w should be:

a = —In(l - p), (11)
8= —%lnm — ) — g, and (12)

w= ln(qi'l_l)) (13)

(Appendix B details the relationships between the transitions probabilities and energy levels.)

This simple model is particularly useful since, as we show shortly, it captures the full range of
thermodynamic functionality familiar from previous models and, more importantly, it makes it possible to
exactly calculate informational properties of the output string analytically.

Now that we know how the ratchet interacts with the bit string and weight, we need to characterize the input
string to predict the energy flow through the ratchet. As in the ratchet models of [43, 47], we consider an input

6
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generated by a biased coin—Pr(Yy = 0) = b ateach N—which has no correlations between successive bits. For
this input, the steady state distributions at the beginning and end of the interaction interval T are:

b b1 —p)
1 b _ 1| b+q9—0q
s(0t) = — s —
PO = 7| andp(r) =2 bp+ 1 b (14)
1-b (1-b0a —q)

These distributions are needed to calculate the work done by the ratchet.

To calculate net work extracted by the ratchet we need to consider three work-exchange steps for each
interaction interval: (1) when the ratchet gets attached to a new bit, to account for their interaction energy; (2)
when the joint transitions B ® 0 < A ® 1 take place, to account for the raising or lowering of the weight; and
(3) when the ratchet detaches itself from the old bit, again, to account for their nonzero interaction energy. We
refer to these incremental works as Wy, W,, and W3, respectively.

Consider the work W. If the new bit is in state 0, from figure 2 we see that there is no change in the energy of
the joint system of the ratchet and the bit. However, if the new bit is 1 and the initial state of the ratchet is A,
energy of the ratchet-bit joint system decreases from 0 to — 3. The corresponding energy is gained as work by the
mechanism that makes the ratchet move past the tape of bits. Similarly, if the new bit is 1 and the initial state of
the ratchet is B, there is an increase in the joint state energy by 3; thisamount of energy is now taken away from
the driving mechanism of the ratchet. In the steady state, the average work gain (W) is then obtained from the
average decrease in energy of the joint (ratchet-bit) system:

W)=~ > p, (0)(Essy — Ex — E))
x€{A,B}

y€{0,1}
=0, (15)

where we used the probabilities in equation (14) and figure 2’s energies.
By a similar argument, the average work (W5) is equal to the average decrease in the energy of the joint system
on the departure of the ratchet, given by:

(W;) = —kBTTﬁ[q +b(p — 91 (16)

Note that the cost of moving the Demon on the bit string (or moving the string past a stationary Demon) is
accounted for in works W, and W.

Work W, is associated with raising and lowering of the weight depicted in figure 1. Since transitions
B ® 0 — A ® 1raise the weight to give work kg Tw and reverse transitions B ® 0 < A ® 1lower the weight
consuming equal amount of work, the average work gain (W) must be kg Tw times the net probability transition
along the former direction, whichis [Tpe0 401054, (0%) — Tawi-ax1P, o1 (0™)]. This leads to the following
expression:

T
(W) = "BTW[—q b+ @l 17)

where we used the probabilities in equation (14).
The total work supplied by the ratchet and a bit is their sum:

(W)= (W) + (W) + (Wy)

= kBTT[(pb —q+qb) ln(%) + (1 —=bgqIln(1 —¢q) + pbIn(1l — p)]. (18)

Note that we considered the total amount amount of work that can be gained by the system, not just that
obtained by raising the weight. Why? As we shall see in section 5, the former is the thermodynamically more
relevant quantity. A similar energetic scheme that incorporates the effects of interaction has also been discussed
in [48].

In this way, we exactly calculated the work term in equation (5). We still need to calculate the entropy rate of
the output and input strings to validate the proposed Second Law. For this, we introduce an information-
theoretic formalism to monitor processing of the bit strings by the ratchet.

4, Information

To analytically calculate the input and output entropy rates, we consider how the strings are generated. A natural
way to incorporate temporal correlations in the input string is to model its generator by a finite-state hidden

7
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Figure 4. Biased coin input string as a unifilar hidden Markov model with bias Pr(Y = 0) = b.

Markov model (HMM), since HMMs are strictly more powerful than Markov chains. Finite-state HMMs can
generate all processes produced by Markov chains, but the reverse is not true. For example, there are processes
generated by finite HMM:s that cannot be generated by any finite-state Markov chain. In short, HMMs give a
compact representation for a wider range of memoryful processes.

Consider possible input strings to the ratchet. With or without correlations between bits, they can be
described by an HMM generator with a finite set of, say, K states and a set of two symbol-labeled transition
matrices T and T®, where:

T, = Pr(Wy = yy» Sn1 = sw+ilSy = sv) (19)

is the probability of outputting y for the Nth bit of the input string and transitioning to internal state sy ; given
that the HMM was in state sy.

When it comes to the output string, in contrast, we have no choice. We are forced to use HMMs. Since the
current input bit state Y) and ratchet state X are not explicitly captured in the current output bit state Yy, Yy,
and X are hidden variables. As we noted before, calculating HMM entropy rates is a known challenging
problem [56, 57]. Much of the difficulty stems from the fact thatin HMM-generated processes the effects of
internal states are only indirectly observed and, even then, appear only over long output sequences.

We can circumvent this difficulty by using unifilar HMMs, in which the current state and generated symbol
uniquely determine the next state. This is a key technical contribution here since for unifilar HMMs the entropy
rate is exactly calculable, as we now explain. Unifilar HMM:s internal states are a causal partitioning of the past,
meaning that every past w maps to a particular state through some function fand so:

Pr(Yy = yylYo.n = w) = Pr(Yy = yy|Snv = f (w)). (20)

Asa consequence, the entropy rate hy, in its block-entropy form (equation (4)) can be re-expressed in terms of
the transition matrices. First, recall the alternative, equivalent form for entropy rate: i, = limy_, o H [Yn]Yo.n].
Second, since Sy captures all the dependence of Yy on the past, h, = limy_,o.H [Yy|Sy]. This finallyleads toa
closed-form expression for the entropy rate [55]:

hﬂ = lim H[YleN]
N—oo

= Z 7T5N Ts(l\)llli)»sNJFllongs(;]ﬁL)sNH) (21)

INSN>SN+1

where 7 is the stationary distribution over the unifilar HMM’s states.

Let us now put these observations to work. Here, we assume the ratchet’s input string was generated by a
memoryless biased coin. Figure 4 shows its (minimal-size) unifilar HMM. The single internal state Cimplies that
the process is memoryless and the bits are uncorrelated. The HMM’s symbol-labeled (1 x 1) transition matrices
are T® = [b]and TV = [1 — b]. The transition from state Cto itselflabeled 0: b means that if the system is in
state C, then it transitions to state Cand outputs Y = 0 with probability b. Since this model is unifilar, we can
calculate the input-string entropy rate from equation (21) and see that it is the single-symbol entropy of bias b:

hp, = H(b)
= —blog,b — (1 — b)log,(1 — b), (22)

where H (b) is the (base 2) binary entropy function [19].

The more challenging part of our overall analysis is to determine the entropy rate of the output string. Even if
the input is uncorrelated, it is possible that the ratchet creates temporal correlations in the output string.
(Indeed, these correlations reflect the ratchet’s operation and so its thermodynamic behavior, as we shall see
below.) To calculate the effect of these correlations, we need a generating unifilar HMM for the output process—
a process produced by the ratchet being driven by the input.

When discussing the ratchet energetics, there was a Markov dynamic M over the ratchet-bit joint state space.
Here, it is now controlled by bits from the input string and writes the result of the thermal interaction with the
ratchet to the output string. In this way, M becomes an input—output machine or transducer [61]. In fact, this
transducer is a communication channel in the sense of Shannon [62] that communicates the input bit sequence
to the output bit sequence. Moreover, it is a channel with memory. Its internal states correspond to the ratchet’s

8
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0]1:q
1|1:(1—q)

Figure 5. The Maxwellian ratchet’s transducer.

0:(1—p)b
1:1—(1—p)b
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Figure 6. Unifilar HMM for the output string generated by the ratchet driven by a coin with bias b.

states. To work with M, we rewrite it componentwise as:

MOy —

in—xne - M@y —xn1®yy (23)

to evoke its re-tooled operation. The probability of generating bit yli, and transitioning to ratchet state xy 1,
given that the input bit is yx and the ratchet is in state xp, is:

MO = Pr(Y( =yl Xne1 = xvel Yy = py» X = xw). (24)
This allows us to exactly calculate the symbol-labeled transition matrices, T"® and T"", of the HMM that
generates the output string:

/0% — S Moy TO0 (25)

SNOXN—SN+1QXN+1 XN 7XN4+17 SN—SN+1°
N

The joint states of the ratchet and the internal states of the input process are the internal states of the output
HMM, with xy, xy+1 € {A, B}and sy, sy+1 € {C} inthe present case. This approach is a powerful tool for
directly analyzing informational properties of the output process.

By adopting the transducer perspective, it is possible to find HMMs for the output processes of previous
ratchet models, such as in [43, 47]. However, their generating HMM s are highly nonunifilar, meaning that
knowing the current internal state and output allows for many alternative internal-state paths. And, this
precludes writing down closed-form expressions for informational quantities, as we do here. Said simply, the
essential problem is that those models build in too many transitions. Ameliorating this constraint led to the
Markov dynamic shown in figure 3 with two ratchet states and sparse transitions. Although this ratchet’s
behavior cannot be produced by a rate equation, due to the limited transitions, it respects detailed balance.

Figure 5 shows our two-state ratchet’s transducer. As noted above, its internal states are the ratchet states.
Each transition is labeled y'|y: p, where y’ is the output, conditioned on an input y, with probability p.

We can drive this ratchet (transducer) with any input, but for comparison with previous work, we drive it
with the memoryless biased coin process just introduced and shown in figure 4. The resulting unifilar HMM for
the output string is shown in figure 6. The corresponding symbol-labeled transition matrices are:

() 0 (1 —p)b
T = [b +q(l— b) 0 ], and (26)

O 0 1 — (1 — p)b
! _Ll—ma—w 0 ]‘ @7

Using these we can complete our validation of the proposed Second Law, by exactly calculating the entropy
rate of the output string. We find:
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h = lim H[Y}{|Ys.n]

1
N—oo

= lim H[Y}]|Sy]

N—oo

_H@®A - p)) + H(-bd -g)
2 2

(28)

We note that this is less than or equal to the (unconditioned) single-symbol entropy for the output process:
hy, < H[Yq]
=H((bA —p)+ 1A =b)(1 —9)/2). (29)

Any difference between h,: and single-symbol entropy H [Yp] indicates correlations that the ratchet created in the
output from the uncorrelated input string. In short, the entropy rate gives a more accurate picture of how
information is flowing between bit strings and the heat bath. And, as we now demonstrate, the entropy rate leads
to correctly identifying important classes of ratchet thermodynamic functioning—functionality the single-
symbol entropy misses.

5. Thermodynamic functionality

Let us step back to review and set context for exploring the ratchet’s thermodynamic functionality as we vary its
parameters. Our main results are analytical, provided in closed-form. First, we derived a modified version of the
Second Law of thermodynamics for information ratchets in terms of the difference between the Kolmogorov—
Sinai entropy of the input and output strings:

(W) < kT In2 Ah,, (30)

where Ah, = h[t — h,,. Theimprovement here takes into account correlations within the input string and those
in the output string actively generated by the ratchet during its operation. From basic information-theoretic
identities we know this bound is stricter for memoryless inputs than previous relations [63] that ignored
correlations. However, by how much? And, this brings us to our second main result. We gave analytic
expressions for both the input and output entropy rates and the work done by the Demon. Now, we are ready to
test that the bound is satisfied and to see how much stricter and more incisive it is than earlier approximations.

We find diverse thermodynamic behaviors as shown in figure 7, which describes ratchet thermodynamic
function at input bias b = 0.9. We note that there are analogous behaviors for all values of input bias. We
identified three possible behaviors for the ratchet: Engine, Dud, and Eraser. Nowhere does the ratchet violate the
rule (W) < kgT In2 Ah,. The engine regime is defined by (p, q) for which kg T In2 Ah, > (W) > 0since
work is positive. This is the only condition for which the ratchet extracts work. The eraser regime is defined by
0 > kgT In2 Ah, > (W), meaning that work is extracted from the work reservoir while the uncertainty in the
bit string decreases. In the dud regime, those (p, q) for which kg T' In2 Ah,, > 0 > (W), the ratchet is neither
able to erase information nor is it able to do useful work.

At first blush, these are the same behavior types reported by [43], except that we have stronger bounds on the
work now with kg T' In2 Ah,,, compared to the single-symbol entropy approximation. The stricter bound gives
deeper insight into ratchet functionality. To give a concrete comparison, figure 8 plots the single-symbol entropy
difference AH [Y] and the entropy rate difference Ah,,, with a flat surface identifying zero entropy change, for
allpandqandatb = 0.9.

In the present setting where input symbols are uncorrelated, the blue AH [Y] surface lies above thered Ah,
surface for all parameters, confirming that the single-symbol entropy difference is always greater than the
entropy rate difference. It should also be noted for this choice of input bias b and for larger p, AH [Yp] and Ah,
are close, but they diverge for smaller p. They diverge so much, however, that looking only at single-symbol
entropy approximation misses an entire low-p functional region, highlighted in orange in figures 7 and 8, where
Ah,, dips below zero and the ratchet functions as eraser.

The orange-outlined low-p erasure region is particularly interesting, as it hosts a new functionality not
previously identified: The ratchet removes multiple-bit uncertainty, effectively erasing incoming bits by adding
temporal order, all the while increasing the uncertainty in individual incoming bits. The existence of this mode
of erasure is highly counterintuitive in light of the fact the Demon interacts with only one bit at a time. In
contrast, operation in the erasure region at high p, like that in previous Demons, simply reduces single-bit
uncertainty. Moreover, the low-p erasure region lies very close to the region where ratchet functions as an
engine, as shown in figure 7. As one approaches (p, q) = (0, 0) the eraser and engine regions become arbitrarily
close in parameter space. This is a functionally meaningful region, too, since the device can be easily and
efficiently switched between distinct modalities—an eraser or an engine.

In contrast, without knowing the exact entropy rate, it appears that the engine region of the ratchet’s
parameter space is isolated from the eraser region by a large dud region and that the ratchet is not tunable. Thus,
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Dud
P

0
0 q 1

Figure 7. Information ratchet thermodynamic functionality at input bias b = 0.9: Engine: (p, q) such that 0 < (W) < kgT In2 Ah,.
Eraser: (p, g) such that (W) < kgT In2 Ah, < 0.Dud: (p, q) such that (W) < 0 < kgT In2 Ah,,.

Figure 8. Exact entropy rate difference Ah,, (red) is a much stricter bound on work than the difference in single-symbol entropy
AH [Yy] (blue). The zero surface (light green) highlights where both entropies are greater than zero and so is an aid to identifying
functionalities.

knowing the correlations between bits in the output string allows one to predict additional functionality that
otherwise is obscured when one only considers the single-symbol entropy of the output string.

As alluded to above, we can also consider structured input strings generated by memoryful processes, unlike
the memoryless biased coin. While correlations in the output string are relevant to the energetic behavior of this
ratchet, it turns out that input string correlations are not. The work done by the ratchet depends only on the
input’s single-symbol bias b. That said, elsewhere we will explore more intelligent ratchets that take advantage of
input string correlations to do additional work.

Conclusion

Thermodynamic systems that include information reservoirs as well as thermal and work reservoirs are an area
of growing interest, driven in many cases by contemporary advances in biomolecular chemistry and nanoscale
physics and engineering. With the ability to manipulate thermal systems on energy scales closer and closer to the
level of thermal fluctuations kg T', information becomes critical to the flow of energy. Our model of a ratchet and
abit string as the information reservoir is very flexible and our methods showed how to analyze a broad class of
such controlled thermodynamic systems. In particular, using HMMs greatly broadened the kind of information
reservoir that can be considered; they are substantially more general than those used to date. Moreover,
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expressing them as e-machines leads to exact analytical treatment. Central to identifying thermodynamic
functionality was our deriving equation (5), based on the control system’s Kolmogorov—Sinai entropy, that
holds in all situations of memoryful or memoryless ratchets and correlated or uncorrelated input processes and
that typically provides the tightest quantitative bound on work. This improvement comes directly from tracking
Demon information production over system trajectories, not from time-local, configurational entropies.

Given the parallel relationship between the Kolmogorov—Chaitin complexity (size of the minimal universal
Turing machine that generates a bit string) and the Kolmogorov—Sinai entropy [19], the entropy difference
Ah,, is seen to be a measure of the intrinsic computation performed by the ratchet in producing the output
string from the input string [64]. Thus, the new Second Law has a complementary interpretation for
thermodynamically embedded computations: it provides a lower bound on the energetic cost (work) required to
drive the information processing performed by the ratchet as it generates the output string. As such, itisa
substantial generalization of Landauer’s approach [12] to the physical limits of computation.

Though its perspective and methods were not explicitly highlighted, computational mechanics [64] played a
critical role in the foregoing analyses, from its focus on structure and calculating all system component
correlations to the technical emphasis on unifilarity in Demon models. Its full impact was not explicated here
and is left to sequels and sister works. Two complementary computational mechanics analyzes of information
engines come to mind, in this light. The first is [16]’s demonstration that the chaotic instability in Szilard’s
Engine, reconceived as a deterministic dynamical system, is key to its ability to extract heat from a reservoir.
This, too, highlights the role of Kolmogorov—Sinai dynamical entropy. Another is the thorough-going extension
of fluctuation relations to show how intelligent agents can harvest energy when synchronizing to the fluctuations
from a structured environment [60]. This suite of works constitutes the first successful synthesis of
computational mechanics and thermodynamics.

This is to say, in effect, the foregoing showed that computational mechanics is a natural framework for
analyzing a ratchet interacting with an information reservoir to extract work from a thermal bath. The input and
output strings that compose the information reservoir are best described by unifilar HMM generators, since they
allow for exact calculation of any informational property of the strings, most importantly the entropy rate. In
fact, the control system components are the e-machines and e-transducers of computational mechanics [61, 64].

The theoretical innovations had a practical consequence. By allowing one to exactly calculate the asymptotic
entropy rate, we identified more functionality in the effective thermodynamic e-transducers than previous
methods can reveal. Two immediate consequences were that we identified a new kind of thermodynamic eraser
and found that our ratchet is easily tunable between an eraser and an engine—functionalities suggesting that
real-world ratchets exhibit memory to take advantage of correlated environmental fluctuations, as well as
hinting at useful future engineering applications.
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Appendix A. Derivation of equation (5)

Here, we reframe the Second Law of thermodynamics, deriving an expression of it that makes only one
assumption about the information ratchet operating along the bit string: the ratchet accesses only a finite
number of internal states. This constraint is rather mild and, thus, the bounds on thermodynamic functioning
derived from the new Second Law apply quite broadly.

The original Second Law of thermodynamics states that the total change in entropy of an isolated system
must be non-negative over any time interval. By considering a system composed of a thermal reservoir,
information reservoir, and ratchet, in the following we derive an analog in terms of rates, rather than total
configurational entropy changes.

Due to the Second Law, we insist that the change in thermodynamic entropy of the closed system is positive
for any number N of time steps. If X denotes the ratchet, Y the bit string, and Z the heat bath, this assumption
translates to:

AS[X, Y, Z] = 0. (A1)

Note that we do not include a term for the weight (a mechanical energy reservoir), since it does not contribute to
the thermodynamic entropy. Expressing the thermodynamic entropy S in terms the Shannon entropy of the
random variables S[X, Y, Z] = kg In2 H [X, Y, Z], we have the condition:
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MH[X, Y, Z] > 0. (A2)

To be more precise, this is true over any number of time steps N. If we have our system X, we denote the
random variable for its state at time step N by Xy. The information reservoir Yis a semi-infinite string. At time
zero, the string is composed entirely of the bits of the input process, for which the random variable is denoted
Y0.00- The ratchet transduces these inputs, starting with Y, and generating the output bit string, the entirety of
which is expressed by the random variable Y;, .. At the Nth time step, the first N'bits of the input Y have been
converted into the first N'bits of the output Y’, so the random variable for the input—output bit string is
Yi:oo @ Y{.n. Thus, the change in entropy from the initial time to the Nth time step is:

AI_IN [X) Y) Z] - H[XN> YN:oc: Y(;:N: ZN] - H[XO: YO:oc: ZO] (A3)
= H[XN, Ynioor Yonl + HIZn] — I[XN> YNioor Youns 2]
— H[Xo, Yo:00] — H[Zo] + I[Xo, Y0005 Zo]- (A4)

Note that the internal states of an infinite heat bath do not correlate with the environment, since they have no
memory of the environment. This means the mutual informations I [Xy, Y. Yo.n3 Zn]and I[Xo, Y00 Zo]
of the thermal reservoir Z with the bit string Yand ratchet X vanish. Also, note that the change in thermal bath
entropy can be expressed in terms of the heat dissipated Qy over the N time steps:

AH[Z]= H[ZN] — H[Zo]

Thus, the Second Law naturally separates into energetic terms describing the change in the heat bath and
information terms describing the ratchet and bit strings:

Qn /
_ON L H Xy Yaees Y] — H[Xo, Youodl. A6
T In2 [XNs> Y. 0:N] [Xos> Yo:00] (A6)

AHNI[X, Y, Z]=
Since AH > 0, we can rewrite this as an entirely general lower bound on the dissipated heat over alength N7
time interval, recalling that 7 is the ratchet-bit interaction time:

Qn = ks T In2(H [Xo, Yool — HI[Xn> Yaioor Yon)- (A7)

This bound is superficially similar to equation (6), but it is true in all cases, as we have not yet made any
assumptions about the ratchet. However, its informational quantities are difficult to calculate for large Nand, in
their current form, do not give much insight. Thus, we look at the infinite-time limit in order tease out hidden
properties.

Over a time interval N7, the average heat dissipated per ratchet cycle is Qn/N. When we classify an engine’s
operation, we usually quantify energy flows that neglect transient dynamics. These are just the heat dissipated
per cycle over infinite time (Q) = limy_,,,Qx/N, which has the lower bound:

!
(Q) > lim kgT In2 H[Xo, Yool I[{][XN) YN0 YO:N].
N*?DO

(A8)

Assuming the ratchet has a finite number of internal states, each with finite energy, then the bound can be
simplified and written in terms of work. In this case, the average work done is the opposite of the average
dissipated heat: (W) = —(Q). And so, it has the upper bound:

H [ Yy.o0, Yonl — H[Yo:00] L HiXyl = HIXo]
N N

I[X0; Yorool — T1Xn5 Yeoos Yé:N])
N bl

N—oo

(W) < kgT In2 lim (

+

(A9)

where the joint entropies are expanded in terms of their single-variable entropies and mutual informations.
The entropies over the initial X, and final X ratchet state distributions monitor the change in ratchet

memory—time-dependent versions of its statistical complexity C, (N) = H [Xy][64]. This time

dependence can be used to monitor how and when the ratchet synchronizes to the incoming sequence,

recognizing a sequence’s temporal correlations. However, since we assumed that the ratchet has finite states, the

ratchet state-entropy and also mutual information terms involving it are bounded above by the logarithm of the

number states. And so, they go to zero as N — 00, leaving the expression:

H [ YN0, Yol = H [Yo:oc]
N .

(W) < kgT In2 lim

N—oo

(A10)

With this, we have a very general upper bound for the work done by the ratchet in terms of just the input and
output string variables. And, in a complementary way, we see that it is also a very general bound on the
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H[Yo.n]

I[YJ:N e

H[Y} 5 H[Yn.00)

Figure 9. The N most recent variables of the input process shield the N variables of output from the rest of the input variables.

thermodynamic cost of intrinsic computing—the information processing performed by the ratchet in
generating the output string from the input.
Once again, we split the joint entropy term into it is components:

] = . HIY,. I[Ynioo; Yo,
(W) < ks T In2 lim (H[YN.OC] H [Y:00] 4 Yonl Il 0:n1 . (A11)
N—oo N N N
In this we identify the output process’s entropy rate h/t = limy_ . H [Y].x] / N.While
limy oo (H [YN:00] — H [Yo.00])/N looks unfamiliar, it is actually the negative entropy rate h,, of the input
process, so we find that:
I[Yn:oo; Y5,
(W) < kg T lnz(hL — h, — lim M) (A12)
N—oo

To understand the mutual information term, note that Yy, is generated from Y.y, so it is independent of
Yn.oo conditioned on Yy.n. Essentially, Yy, causally shields Yé . from Yy. oo, as shown in information diagram
[65] of figure 9. This means:

I[YN:oo; Y(;:N] - I[YN:OO; YO:N] - I[YN:oo; YO:N|Y63N]- (A13)
This, in turn, gives: I [Yx:o0; Yo:n1 = I[Ya:o0s Yo.n] = 0. Thus, we find the input process’s excess entropy E
[55]:
111’1’1 I[YN:oo; Y(;;N] g 111’1’1 I[YNZOO; YZ):N]
N—oo N—oo
=E. (A14)
However, dividing by N its contribution vanishes:
. I[YN:OO; YO:N] 1 H[YON] H[Y()2N|YN:OO]
lim ————————— = lim -
N N

N—oo N N—oo
= hu — hy,
=0. (A15)
Thus, we are left with the inequality of equation (5):
(W) < kgT In2(hy, — hy); (A16)

derived with minimal assumptions. Also, the appearance of the statistical complexity and excess entropy, whose
contributions this particular derivation shows are asymptotically small, does indicate the potential role of
correlations in the input for finite time—times during which the ratchet synchronizes to the incoming
information [66].

One key difference between equation (A16) (equivalently, equation (5)) and the more commonly used
bound in equation (6), with the change in single-variable configurational entropy H [Yy] — H [Y;], is that the
former bound is true for all finite ratchets and takes into account the production of information over time via the
Kolmogorov—Sinai entropies h,, and h,i. More generally, we do not look at single-step changes in configurational
entropies—H [Xy_1, Yn_1, Zv—1] — H[XN, Yn, Zy]—Dbutrather the rate of production of information
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H [Wyl...Wy_2, Wy_1], where Wy = (Xy, YN, Zn). This global dynamical entropy rate has contributions from
output rate h;; and input rate k. This again indicates how equation (6) approximates equation (A16).

There are several special cases where the single-variable bound of equation (6) applies. In the case where the
inputis uncorrelated, it holds, but it is a weaker bound than equation (5) using entropy rates. Also, in the case
when the ratchet has no internal states and so is memoryless, equation (6) is satisfied. Interestingly, either it or
equation (A16) can be quantitatively stricter in this special case. However, in the most general case where the
inputs are correlated and the ratchet has memory, the bound using single-variable entropy is incorrect, since
there are cases where it is violated [67]. Finally, when the input-bit-ratchet interaction time 7 grows the ratchet
spends much time thermalizing. The result is that the output string becomes uncorrelated with the input and so
the ratchet is effectively memoryless. Whether by assumption or if it arises as the effective behavior, whenever
the ratchet is memoryless, it is ignorant of temporal correlations and so it and the single-symbol entropy bounds
are of limited physical import. These issues will be discussed in detail in future works, but as a preview see [67].

Appendix B. Designing ratchet energetics

Figure 3 is one of the simplest information transducers for which the outcomes are unifilar for uncorrelated
inputs, resulting in the fact that the correlations in the outgoing bits can be explicitly calculated. As this
calculation was a primary motivation in our work, we introduced the model in figure 3 first and, only then,
introduced the associated energetic and thermodynamic quantities, as in figure 2. The introduction of energetic
and thermodynamic quantities for an abstract transducer (as in figure 3), however, is not trivial. Given a
transducer topology (such as the reverse ‘Z’ shape of the current model), there are multiple possible energy
schemes of which only a fraction are consistent with all possible values of the associated transition probabilities.
However, more than one scheme is generally possible.

To show that only a fraction of all possible energetic schemes are consistent with all possible parameter
values, consider the case where the interaction energy between the ratchet and a bit is zero, as in [43]. In our
model, thisimplies 5 = 0, or equivalently, p = g = 0 (from equation (12)). In other words, we cannot describe
our model, valid for all values 0 < p, g < 1, bythe energy scheme in figure 2 with 3 = 0. This is despite the fact
that we have two other independent parameters o and w.

To show that, nonetheless, more than one scheme is possible, imagine the case with « = 3 = 0. Instead of
just one mass, consider three masses such that, whenever the transitions A ® 0 = B® 0,BR® 0 — A ® 1,
and A ® 1 — B ® 1take place, we get works kg TVer, kg TWJZ, and kg TW;, respectively. We lose the
corresponding amounts of work for the reverse transitions. This picture is consistent with the abstract model of
figure 3 if the following requirements of detailed balance are satisfied:

1 Maso-sso _ W (B.1)
1 —p  Mpgo-axo
Mpgo— W
P _ Mpeo—ssr _ e "2 and (B.2)
q MA@IHB@O
1 —gq= Mag1—Be1 _ oW (B.3)
Mpg1-as1

Existence of such an alternative scheme illustrates the fact that given the abstract model of figure 3, there is more
than one possible consistent energy scheme. We suggest that this will allow for future engineering flexibility.
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