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Abstract
We introduce a family ofMaxwellianDemons for which correlations among information bearing
degrees of freedom can be calculated exactly and in compact analytical form. This allows one to
precisely determineDemon functional thermodynamic operating regimes, when previousmethods
eithermisclassify or simply fail due to approximations they invoke. This reveals that theseDemons are
more functional than previous candidates. They too behave either as engines, lifting amass against
gravity by extracting energy from a single heat reservoir, or as Landauer erasers, consuming external
work to remove information from a sequence of binary symbols by decreasing their individual
uncertainty. Going beyond these, ourDemon exhibits a new functionality that erases bits not by
simply decreasing individual-symbol uncertainty, but by increasing inter-bit correlations (that is, by
adding temporal order)while increasing single-symbol uncertainty. In all cases, but especially in the
new erasure regime, exactly accounting for informational correlations leads to tight bounds on
Demon performance, expressed as a refined Second Lawof thermodynamics that relies on the
Kolmogorov–Sinai entropy for dynamical processes and not on changes purely in system
configurational entropy, as previously employed.We rigorously derive the refined Second Lawunder
minimal assumptions and so it applies quite broadly—forDemonswith andwithoutmemory and
input sequences that are correlated or not.We note that generalMaxwellianDemons readily violate
previously proposed, alternative such bounds, while the current bound still holds. As such, it broadly
describes theminimal energetic cost of any computation by a thermodynamic system.

1. Introduction

The Second Law of thermodynamics is only statistically true: while the entropy production in any process is non-
negative on the average, S 0áD ñ , if wewait long enough, we shall see individual events for which the entropy
production is negative. This is nicely summarized in the recent fluctuation theorem for the probability of
entropy production SD [1–7]:

S

S

Pr

Pr
e , 1S( )

( )
( )D

-D
= D

implying that negative entropy production events are exponentially rare but not impossible. Negative entropy
fluctuationswere knownmuch before thismodern formulation. In fact, in 1867Maxwell used the negative
entropy fluctuations in a clever thought experiment, involving an imaginary intelligent being—later called
Maxwell’sDemon—that exploits fluctuations to violate the Second Law [8, 9]. TheDemon controls a small
frictionless trapdoor on a partition inside a box of gasmolecules to sort, without any expenditure of work, faster
molecules to one side and slower ones to the other. This gives rise to a temperature gradient from an initially
uniform system—a violation of the Second Law.Note that the ‘very observant and neat fingered’Demon’s
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‘intelligence’ is necessary; a frictionless trapdoor connected to a spring acting as a valve, for example, cannot
achieve the same feat [10].

Maxwell’sDemon posed a fundamental challenge. Either such aDemon could not exist, even in principle, or
the Second Law itself neededmodification. A glimmer of a resolution camewith Szilard’s reformulation of
Maxwell’sDemon in terms ofmeasurement and feedback-control of a single-molecule engine. Critically, Szilard
emphasized hitherto-neglected information-theoretic aspects of theDemon’s operations [11]. Later, through
theworks of Landauer, Penrose, and Bennett, it was recognized that theDemon’s operation necessarily
accumulated information and, for a repeating thermodynamic cycle, erasing this information has an entropic
cost that ultimately compensates for the total amount of negative entropy production leveraged by theDemon to
extract work [12–14]. In other words, with intelligence and information-processing capabilities, theDemon
merely shifts the entropy burden temporarily to an information reservoir, such as itsmemory. The cost is repaid
whenever the information reservoir becomes full and needs to be reset. This resolution is concisely summarized
in Landauer’s principle [15]: theDemon’s erasure of one bit of information at temperatureTK requires at least
k T ln2B amount of heat dissipation, where kB is Boltzmann’s constant. (While it does not affect the following
directly, it has been known for some time that this principle is only a special case [16].)

Building on this, amodified Second Lawwas recently proposed that explicitly addresses information
processing in a thermodynamic system [17, 18]:

S k Hln2 0, 2B ( )áD ñ + D

where HD is the change in the information reservoir’s configurational entropy over a thermodynamic cycle.
This is the change in the reservoir’s ‘information-bearing degrees of freedom’ asmeasured using Shannon
information H [19]. These degrees of freedom are coarse-grained states of the reservoir’smicrostates—the
mesoscopic states that store information needed for theDemon’s thermodynamic control. Importantly for the
following, this Second Law assumes explicitly observedMarkov systemdynamics [17] and quantifies this relevant
information only in terms of the distribution of instantaneous systemmicrostates; not, to emphasize,microstate
path entropies. In short, while the system’s instantaneous distributions relax and change over time, the
information reservoir itself is not allowed to build up and storememory or correlations.

Note that this framework of information reservoirs differs from alternative approaches to the
thermodynamics of information processing, including: (i) active feedback control by externalmeans, where the
thermodynamic account of theDemon’s activities tracks themutual information betweenmeasurement
outcomes and system state [20–33]; (ii) themultipartite frameworkwhere, for a set of interacting, stochastic
subsystems, the Second Law is expressed via their intrinsic entropy production, correlations among them, and
transfer entropy [34–37]; and (iii) steady-statemodels that invoke time-scale separation to identify a portion of
the overall entropy production as an information current [38, 39]. A unified approach to these perspectives was
attempted in [40–42].

Recently,MaxwellianDemons have been proposed to explore plausible automatedmechanisms that appeal
to equation (2)ʼsmodified Second Law to do useful work, by decreasing the physical entropy, at the expense of
positive change in reservoir Shannon information [39, 43–48]. Paralleling themodified Second Law’s
development and the analysis of the alternatives above, they too neglect correlations in the information-bearing
components and, in particular, themechanisms bywhich those correlations develop over time. In effect, they
account forDemon information-processing by replacing the Shannon information of the components as a
whole by the sumof the components’ individual Shannon informations. Since the latter is larger than the former
[19], using it can lead to either stricter or looser bounds than the true boundwhich is derived fromdifferences in
total configurational entropies.More troubling, though, bounds that ignore correlations can simply be violated.
Finally, and just as critically, they refer to configurational entropies, not the intrinsic dynamical entropy over
system trajectories.

This letter proposes a newDemon forwhich, for the first time, all correlations among system components
can be explicitly accounted. This gives an exact, analytical treatment of the thermodynamically relevant Shannon
information change—one that, in addition, accounts for system trajectories not just information in
instantaneous state distributions. The result is that, underminimal assumptions, we derive a Second Law that
refines equation (2) by properly accounting for intrinsic information processing reflected in temporal
correlations via the overall dynamic’s Kolmogorov–Sinai entropy [49]. Conversely, it bounds the
thermodynamic cost of any computation.Helpfully, the hiddenMarkovmodel (HMM) representations we
introduce afford a compact representation of a large class of information reservoirs, much broader than has been
considered so far.Moreover, information reservoirs expressed as ò-machines lead to exact analytical treatment.

Notably, ourDemon is highly functional: depending onmodel parameters, it acts both as an engine, by
extracting energy from a single reservoir and converting it intowork, and as an information eraser, erasing
Shannon information at the cost of the external input of work.Moreover, it supports a new and counterintuitive
thermodynamic functionality. In contrast with previously reported erasure operations that only decreased
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single-bit uncertainty, wefind a new kind of erasure functionality duringwhichmultiple-bit uncertainties are
removed by adding correlation (i.e., by adding temporal order), while single-bit uncertainties are actually
increased. This new thermodynamic function provocatively suggests why real-world ratchets supportmemory:
The very functioning ofmemoryful Demons relies on leveraging temporally correlated fluctuations in their
environments.

2. Information ratchets

Ourmodel consists of four components, seefigure 1: (1) an ensemble of bits that acts as an information
reservoir; (2) aweight that acts as a reservoir for storingwork; (3) a thermal reservoir at temperatureT; and (4) a
finite-state ratchet thatmediates interactions between the three reservoirs. The bits interact with the ratchet
sequentially and, depending on the incoming bit statistics andDemonparameters, theweight is either raised or
lowered against gravity.

As a device that reads and processes a tape of bits, this class of ratchetmodel has a number of parallels that we
mention now, partly to indicate possible future applications. First, one imagines a sophisticated, stateful
biomolecule that scans a segment of DNA, say as aDNApolymerase does, leaving behind amodified sequence of
nucleotide base-pairs [50] or that acts as an enzyme sequentially catalyzing otherwise unfavorable reactions [51].
Second, there is a rough similarity to a Turingmachine sequentially recognizing tape symbols, updating its
internal state, and taking an action bymodifying the tape cell andmoving its read-write head [52].When the
control logic is stochastic, this sometimes is referred to as ‘Brownian computing’ [53, and references therein].
Finally, we are reminded of the deterministic finite-state tape processor of [54] that, despite its simplicity,
indicates howundecidability can be imminent in dynamical processes. Surely there are other intriguing
parallels, but these give a sense of a range of applications inwhich sequential information processing embedded
in a thermodynamic systemhas relevance.

The bit ensemble is a semi-infinite sequence, broken into incoming and outgoing pieces. The ratchet runs
along the sequence, interactingwith each bit of the input string step by step. During each interaction at stepN,
the ratchet stateXN and interacting bitYNfluctuate between different internal joint states within N N Ä ,
exchanging energywith the thermal reservoir andwork reservoir, and potentially changingYNʼs state. At the end
of stepN, after input bitYN interacts with the ratchet, it becomes the last bit YN¢ of the output string. By
interactingwith the ensemble of bits, transducing the input string into the output string, the ratchet can convert
thermal energy from the heat reservoir intowork energy stored in theweight’s height.

The ratchet interacts with each incoming bit for a time interval τ, starting at the 0th bitY0 of the input string.
AfterN time intervals, input bit YN 1- finishes interactingwith the ratchet and, with the coupling removed, it is
effectively ‘written’ to the output string, becoming YN 1¢ - . The ratchet then begins interactingwith input bitYN.
Asfigure 1 illustrates, the state of the overall system is described by the realizations of four randomvariables:XN

for the ratchet state, YN :¥ for the input string, Y N0:¢ for the output string, andZN for the thermal reservoir. A
randomvariable likeXN realizes elements xN of its physical state space, denoted by alphabet , with probability

X xPr N N( )= . Randomvariable blocks are denoted Y Y Y Ya b a a b: 1 1= ¼+ - , with the last index being exclusive. In
the following, we take binary alphabets for  and  ¢: y y, 0, 1N N

{ }¢ Î . The bit ensemble is considered two joint

variables Y Y Y YN N0: 0 1 1¢ = ¢ ¢¼ ¢ - and Y Y YN N N: 1= ¼¥ + rather than one Y0:¥, so that the probability of realizing a
word w 0, 1 b a{ }Î - in the output string is not the same as in the input string. That is, during ratchet operation
typically Y w Y wPr Pra b a b: :( ) ( )= ¹ ¢ = .

Figure 1. Information ratchet sequentially processing a bit string: at time stepN,XN is the randomvariable for the ratchet state andZN
that for the thermal reservoir. YN :¥ is the block randomvariable for the input bit string and Y N0:¢ that for the output bit string. The last
bitYN of the input string, highlighted in yellow, interacts with the ratchet. The arrowon the right of the ratchet indicates the direction
the ratchetmoves along the tape as it sequentially interacts with each input bit in turn.
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The ratchet steadily transduces the input bit sequence, described by the inputword distribution
Y Y wPr Pr w0: 0: 0,1( ) { ( )} { }º =¥ ¥ Î ¥—the probability for every semi-infinite input word—into the output

string, described by theword distribution Y Y vPr Pr v0: 0: 0,1( ) { ( )} { }¢ º ¢ =¥ ¥ Î ¥.We assume that theword
distributionsweworkwith are stationary,meaning that Y YPr Pra a b b: 0:( ) ( )=+ for all non-negative integers a
and b.

A key question inworkingwith a sequence such as Y0:¥ is how random it is. One commonly turns to
information theory to provide quantitativemeasures: themore informative a sequence is, themore random it is.
Forwords at a given lengthℓ the average amount of information in the Y0:ℓ sequence is given by the Shannon
block entropy [55]:

H Y Y w Y wPr log Pr . 3
w

0:
0,1

0: 2 0:[ ] ( ) ( ) ( )ℓ ℓ ℓ
{ } ℓ
åº - = =

Î

Due to correlations in typical process sequences, the irreducible randomness per symbol is not the single-symbol
entropyH Y0[ ]. Rather, it is given by the Shannon entropy rate [55]:

h
H Y

lim . 40:

ℓ
[ ] ( )

ℓ

ℓºm
¥

When applied to a physical systemdescribed by a suitable symbolic dynamics, as done here, this quantity is the
Kolmogorov–Sinai dynamical entropy of the underlying physical behavior.

Note that theseways ofmonitoring information are quantitatively quite different. For largeℓ,
h H Y0:ℓ [ ]ℓm  and, in particular, anticipating later use, h H Y0[ ]m , typicallymuch less. Equality between the
single-symbol entropy and entropy rate is only achievedwhen the generating process ismemoryless. Calculating
the single-symbol entropy is typically quite easy, while calculating hm for general processes has been known for
quite some time to be difficult [56] and it remains a technical challenge [57]. The entropy rates of the output
sequence and input sequence are h H Ylim 0: ℓ[ ]ℓ ℓ¢ = ¢m ¥ and h H Ylim 0: ℓ[ ]ℓ ℓ=m ¥ , respectively.

The informational properties of the input and outputword distributions set bounds on energyflows in the
system. Appendix A establishes one of ourmain results: the average work done by the ratchet is bounded above
by the difference inKolmogorov–Sinai entropy of the input and output processes4:

W k T h h

k T h

ln2

ln2 . 5

B

B

( )
( )

á ñ ¢ -

= D
m m

m

A complementary interpretation of this new Second Law is that it places a lower bound on the thermodynamic
cost (work) to perform information processing and intrinsic computation (change in Shannon entropy of the
information reservoir).

In light of the preceding remarks on the basic difference between H Y0[ ]and hm, we can now considermore
directly the differences between equations (2) and (5).Most importantly, the HD in the former refers to the
instantaneous configurational entropy H before and after a thermodynamic transformation. In the ratchet’s
steady state operation, HD vanishes since the configuration distribution is time invariant, evenwhen the overall
system’s information production is positive. The entropies h¢m and hm in equation (5), in contrast, are dynamical:
rates of active information generation in the input and output giving, in addition, the correctminimum rates
since they take all temporal correlations into account. Together they bound the overall system’s information
production in steady state away from zero. In short, though often conflated, configurational entropy and
dynamical entropy capture two very different kinds of information and they, per force, are associatedwith
different physical properties supporting different kinds of information processing. They are comparable only in
special cases.

For example, if one puts aside this basic difference to facilitate comparison and considers the Shannon
entropy change HD in the joint state space of all bits, the two equations are analogous in the current setup.
However, often enough, aweaker version of equation (2) is considered in the discussions onMaxwell’s Demon
[41, 43–45, 58] and information reservoirs [18], wherein the statistical correlations between the bits are
neglected, and one simply interprets HD to be the change in themarginal Shannon entropies H Y0[ ]of the
individual bits. This implies the following relation in the current context:

W k H Yln2 , 6B 0[ ] ( )á ñ D

where H Y H Y H Y0 0 0[ ] [ ] [ ]D = ¢ - .While equation (6) is valid for the studies in [18, 41, 43–45, 58], it can be
violated under certain scenarios [59]. In comparison, equation (5) is generally valid.

As an example, consider the casewhere the ratchet hasmemory and, for simplicity of exposition, is driven by
an uncorrelated input process,meaning the input process entropy rate is the same as the single-symbol entropy:

4
Reference [43]ʼs appendix suggests equation (5)without any detailed proof. An integrated version appeared also in [58] for the special case

ofmemoryless demons. Our appendix A gives amore general proof of equation (5) that, in addition, accounts formemory.
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h H Y0[ ]=m . However, the ratchet’smemory can create correlations in the output bit string, so:

h h H Y

H Y H Y

H Y . 7

0

0 0

0

[ ]

[ ] [ ]
[ ] ( )


D = ¢ -

¢ -
=D

m m

In this case, equation (5) is a tighter bound on thework done by the ratchet—a bound that explicitly accounts for
correlationswithin the output bit string generated by the ratchet during its operation. For example, for the
ratchet shown infigure 3with parameters p q0.5, 0.1{ }= = and input bias Pr(Yi= 0)= 0.9, the block
entropies H Y L0:[ ]¢ of the output process do not converge to the entropy rate evenwhen looking at block lengths
up to L=13. Thismeans that there are correlations within the output that are not captured evenwhen looking
at long blocks of symbols, resulting in an over-estimate of randomness. In short, generally the entropy rate is
necessary in order to properly account for the effects of all correlations in the output [55].

Previously, the effect of these correlations has not been calculated, but they have important consequences.
Due to correlations, it is possible to have an increase in the single-symbol entropy difference H Y0[ ]D but a
decrease in theKolmogorov–Sinai entropy rate hD m. In this situation, it is erroneous to assume that there is an
increase in the information content in the bits. There is, in fact, a decrease in information due to increased
correlations; see section 5. As a result, we can nowdetect an eraser regime (previously unexpected) in the phase
diagramof the system (figure 7). A similar regimemay be present also in themodel of [43]where the outgoing
bits were observed to have small butfinite correlations.

Note that a somewhat different situationwas considered in [58], amemoryless channel (ratchet) driven by a
correlated process. In this special case—ratchets unable to leverage or create temporal correlations—
equation (6) is a tighter bound onwork than equation (5).When amemoryless ratchet is driven by uncorrelated
input, though, the bounds are equivalent. Critically, formemoryful ratchets driven by correlated input
equation (6) can be violated. In all settings, equation (5) holds.

While we defer its development to a sequel, equation (5) also has implications for ratchet functioningwhen
the input bits are correlated as well. Specifically, correlations in the input bits can be leveraged by the ratchet to
do additional work—work that cannot be accounted for if one only considers single-symbol configurational
entropy of the input bits [60].

3. Energetics and dynamics

Topredict how the ratchet interacts with the bit string andweight, we need to specify the string and ratchet
energies.Whennot interacting with the ratchet the energies, E0 andE1, of both bit states,Y=0 andY=1, are
taken to be zero for symmetry and simplicity: E E 00 1= = . For simplicity, too, we say the ratchetmechanism
has just two internal statesA andB.When the ratchet is not interacting with bits, the two states can have different
energies.We takeEA=0 and E k TB Ba= - , without loss of generality. Since the bits interact with the ratchet
one at a time, we only need to specify the interaction energy of the ratchet and an individual bit. The interaction
energy is zero if the bit is in the stateY=0, regardless of the ratchet state, and it is k TBb- (or k TBb+ ) if the bit is
in stateY=1 and the ratchet is in stateA (orB). See figure 2 for a graphical depiction of the energy scheme under
‘Ratchet⊗Bit’.

The scheme is furthermodified by the interaction of theweight with the ratchet and bit string.We attach the
weight to the ratchet-bit system such that when the latter transitions from the B 0Ä state to theA⊗ 1 state it
lifts theweight, doing a constant amount wk TB ofwork. As a result, the energy of the composite system—

Demon, interacting bit, andweight—increases by wk TB whenever the transition B A0 1Ä  Ä takes place,
the required energy being extracted from the heat reservoirZN. The rightmost part offigure 2 indicates this by
raising the energy level of A 1Ä by wk TB compared to its previous value. Since the transitions between A 1Ä

Figure 2.Energy levels of theDemon states, interacting bits, their joint system, and their joint systemwith aweight in units of k TB[ ].
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and B 1Ä do not involve theweight, their relative energy difference remains unaffected. An increase in the
energy of A 1Ä by wk TB therefore implies the same increase in the energy of B 1Ä . Again, see figure 2 for the
energy scheme under ‘Ratchet⊗Bit⊗Weight’.

The time evolution over the joint state space of the ratchet, last bit of the input string, andweight is governed
by aMarkov dynamic, specified by state-transitionmatrixM. If, at the beginning of theNth interaction interval
at time t N 1 0( )t= - + +, the ratchet is in stateXN=xN and the input bit is in stateYN=yN, then let
Mx y x yN N N N1Ä  Ä ¢+ be the probability x y x yPr , ,N N N N1( ∣ )¢+ that the ratchet is in state X xN N 1= + and the bit is in

state Y yN N
= ¢ at the end of the interaction interval t N 1( )t t= - + -.XN andYN at the end of theNth

interaction interval become XN 1+ and YN¢ respectively at the beginning of the N 1+ th interaction interval.
Sincewe assume the system is thermalizedwith a bath at temperatureT, the ratchet dynamics obey detailed
balance. And so, transition rates are governed by the energy differences between joint states:

M

M
e . 8

x y x y

x y x y

E E k TN N N N

N N N N

xN y N xN yN
1

1

1 B ( )( )=
Ä  Ä ¢

Ä ¢  Ä

-+

+

+ Ä ¢ Ä

There is substantialflexibility in constructing a detailed-balancedMarkov dynamic for the ratchet,
interaction bit, andweight. Consistent with our theme of simplicity, we choose one that has only six allowed
transitions: A B0 0Ä « Ä , A B1 1Ä « Ä , and A B1 0Ä « Ä . Such amodel is convenient to consider,
since it can be described by just two transition probabilities p0 1  and q0 1  , as shown infigure 3.

TheMarkov transitionmatrix for this system is given by:

M

p

q

p

q

0 1 0 0

1 0 0

0 0 1

0 0 1 0

. 9( )

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
=

-

-

This allows allows us to calculate the state distribution Np 1(( ) )t t- + - at the end of theNth interaction
interval from the state distribution Np 1 0(( ) )t- + + at the interval’s beginning via:

N M Np p1 1 0 , 10(( ) ) (( ) ) ( )t t t- + = - +- +

where the probability vector is indexed A B A Bp Pr 0 , Pr 0 , Pr 1 , Pr 1( ( ) ( ) ( ) ( ))= Ä Ä Ä Ä . To satisfy
detailed balance, wefind thatα,β, andw should be:

pln 1 , 11( ) ( )a = - -

p q
1

2
ln 1 1 , and 12[( )( )] ( )b = - - -

w
q p

p q
ln

1

1
. 13( )

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟=

-

-

(Appendix B details the relationships between the transitions probabilities and energy levels.)
This simplemodel is particularly useful since, as we show shortly, it captures the full range of

thermodynamic functionality familiar frompreviousmodels and,more importantly, itmakes it possible to
exactly calculate informational properties of the output string analytically.

Now that we knowhow the ratchet interacts with the bit string andweight, we need to characterize the input
string to predict the energyflow through the ratchet. As in the ratchetmodels of [43, 47], we consider an input

Figure 3.TheMarkovian, detailed-balance dynamic over the joint states of the ratchet and interacting bit.
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generated by a biased coin— Y bPr 0N( )= = at eachN—which has no correlations between successive bits. For
this input, the steady state distributions at the beginning and end of the interaction interval τ are:

b
b

b
b

b p

b q bq

bp b

b q

p p0
1

2 1
1

and
1

2

1

1

1 1

. 14s s( ) ( )

( )

( )( )

( )

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
t=

-
-

=

-
+ -
+ -

- -

+ -

These distributions are needed to calculate thework done by the ratchet.
To calculate net work extracted by the ratchet we need to consider threework-exchange steps for each

interaction interval: (1)when the ratchet gets attached to a new bit, to account for their interaction energy; (2)
when the joint transitions B A0 1Ä « Ä take place, to account for the raising or lowering of theweight; and
(3)when the ratchet detaches itself from the old bit, again, to account for their nonzero interaction energy.We
refer to these incremental works asW1,W2, andW3, respectively.

Consider theworkW1. If the new bit is in state 0, from figure 2we see that there is no change in the energy of
the joint systemof the ratchet and the bit. However, if the newbit is 1 and the initial state of the ratchet isA,
energy of the ratchet-bit joint systemdecreases from0 to b- . The corresponding energy is gained aswork by the
mechanism thatmakes the ratchetmove past the tape of bits. Similarly, if the newbit is 1 and the initial state of
the ratchet isB, there is an increase in the joint state energy byβ; this amount of energy is now taken away from
the drivingmechanism of the ratchet. In the steady state, the averagework gain W1á ñ is then obtained from the
average decrease in energy of the joint (ratchet-bit) system:

W p E E E0

0, 15

x A B
y

x y x y x y1
,

0,1

s ( )( )

( )

{ }
{ }

åá ñ= - - -

=

Î
Î

Ä
+

Ä

wherewe used the probabilities in equation (14) andfigure 2ʼs energies.
By a similar argument, the averagework W3á ñ is equal to the average decrease in the energy of the joint system

on the departure of the ratchet, given by:

W
k T

q b p q
2

. 163
B [ ( )] ( )bá ñ = - + -

Note that the cost ofmoving theDemon on the bit string (ormoving the string past a stationaryDemon) is
accounted for inworksW1 andW3.

WorkW2 is associatedwith raising and lowering of theweight depicted infigure 1. Since transitions
B A0 1Ä  Ä raise theweight to give work k TwB and reverse transitions B A0 1Ä ¬ Ä lower theweight
consuming equal amount of work, the averagework gain W2á ñmust be k TwB times the net probability transition
along the former direction, which is T p T p0 0B A B A A A0 1 0

s
1 1 1

s[ ( ) ( )]-Ä  Ä Ä
+

Ä  Ä Ä
+ . This leads to the following

expression:

W
k Tw

q b p q
2

, 172
B [ ( )] ( )á ñ = - + +

wherewe used the probabilities in equation (14).
The total work supplied by the ratchet and a bit is their sum:

W W W W

k T
pb q qb

q

p
b q q pb p

2
ln 1 ln 1 ln 1 . 18

1 2 3

B [( ) ( ) ( ) ( )] ( )
⎛
⎝⎜

⎞
⎠⎟

á ñ = á ñ + á ñ + á ñ

= - + + - - + -

Note that we considered the total amount amount of work that can be gained by the system, not just that
obtained by raising theweight.Why?Aswe shall see in section 5, the former is the thermodynamicallymore
relevant quantity. A similar energetic scheme that incorporates the effects of interaction has also been discussed
in [48].

In this way, we exactly calculated thework term in equation (5).We still need to calculate the entropy rate of
the output and input strings to validate the proposed Second Law. For this, we introduce an information-
theoretic formalism tomonitor processing of the bit strings by the ratchet.

4. Information

To analytically calculate the input and output entropy rates, we consider how the strings are generated. A natural
way to incorporate temporal correlations in the input string is tomodel its generator by a finite-state hidden
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Markovmodel (HMM), sinceHMMs are strictlymore powerful thanMarkov chains. Finite-stateHMMs can
generate all processes produced byMarkov chains, but the reverse is not true. For example, there are processes
generated by finiteHMMs that cannot be generated by anyfinite-stateMarkov chain. In short, HMMs give a
compact representation for awider range ofmemoryful processes.

Consider possible input strings to the ratchet.With orwithout correlations between bits, they can be
described by anHMMgenerator with afinite set of, say,K states and a set of two symbol-labeled transition
matricesT 0( ) andT 1( ), where:

T Y y S s S sPr , 19s s
y

N N N N N N1 1N N
N

1
( ∣ ) ( )( ) = = = = + ++

is the probability of outputting yN for theNth bit of the input string and transitioning to internal state sN 1+ given
that theHMMwas in state sN.

When it comes to the output string, in contrast, we have no choice.We are forced to useHMMs. Since the
current input bit stateYN and ratchet stateXN are not explicitly captured in the current output bit state YN¢ ,YN
andXN are hidden variables. Aswe noted before, calculatingHMMentropy rates is a known challenging
problem [56, 57].Much of the difficulty stems from the fact that inHMM-generated processes the effects of
internal states are only indirectly observed and, even then, appear only over long output sequences.

We can circumvent this difficulty by using unifilarHMMs, inwhich the current state and generated symbol
uniquely determine the next state. This is a key technical contribution here since for unifilarHMMs the entropy
rate is exactly calculable, as we now explain. UnifilarHMMs internal states are a causal partitioning of the past,
meaning that every pastwmaps to a particular state through some function f and so:

Y y Y w Y y S f wPr Pr . 20N N N N N N0:( ∣ ) ( ∣ ( )) ( )= = = = =

As a consequence, the entropy rate hm in its block-entropy form (equation (4)) can be re-expressed in terms of
the transitionmatrices. First, recall the alternative, equivalent form for entropy rate: h H Y YlimN N N0:[ ∣ ]=m ¥ .
Second, since SN captures all the dependence ofYN on the past, h H Y SlimN N N[ ∣ ]=m ¥ . Thisfinally leads to a
closed-form expression for the entropy rate [55]:

h H Y S

T T

lim

log , 21

N
N N

y s s
s s s

y
s s

y

, ,
2

N N N

N N N
N

N N
N

1

1 1

[ ∣ ]

( )( ) ( )å p

=

=-

m
¥

 
+

+ +

whereπ is the stationary distribution over the unifilarHMM’s states.
Let us nowput these observations towork.Here, we assume the ratchet’s input stringwas generated by a

memoryless biased coin. Figure 4 shows its (minimal-size) unifilarHMM.The single internal stateC implies that
the process ismemoryless and the bits are uncorrelated. TheHMM’s symbol-labeled (1× 1) transitionmatrices
areT b0 [ ]( ) = andT b11 [ ]( ) = - . The transition from stateC to itself labeled b0: means that if the system is in
stateC, then it transitions to stateC and outputsY=0with probability b. Since thismodel is unifilar, we can
calculate the input-string entropy rate from equation (21) and see that it is the single-symbol entropy of bias b:

h H b

b b b blog 1 log 1 , 222 2

( )
( ) ( ) ( )

=
º- - - -

m

where H b( ) is the (base 2) binary entropy function [19].
Themore challenging part of our overall analysis is to determine the entropy rate of the output string. Even if

the input is uncorrelated, it is possible that the ratchet creates temporal correlations in the output string.
(Indeed, these correlations reflect the ratchet’s operation and so its thermodynamic behavior, as we shall see
below.)To calculate the effect of these correlations, we need a generating unifilarHMMfor the output process—
a process produced by the ratchet being driven by the input.

When discussing the ratchet energetics, therewas aMarkov dynamicM over the ratchet-bit joint state space.
Here, it is now controlled by bits from the input string andwrites the result of the thermal interactionwith the
ratchet to the output string. In this way,M becomes an input–outputmachine or transducer [61]. In fact, this
transducer is a communication channel in the sense of Shannon [62] that communicates the input bit sequence
to the output bit sequence.Moreover, it is a channel withmemory. Its internal states correspond to the ratchet’s

Figure 4.Biased coin input string as a unifilar hiddenMarkovmodel with bias Y bPr 0( )= = .
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states. ToworkwithM, we rewrite it componentwise as:

M M 23x x
y y

x y x yN N
N N

N N N N1 1 ( )( ∣ ) =
¢

Ä  Ä ¢+ +

to evoke its re-tooled operation. The probability of generating bit y
N
¢ and transitioning to ratchet state xN 1+ ,

given that the input bit is yN and the ratchet is in state xN, is:

M Y y X x Y y X xPr , , . 24x x
y y

N N N N N N N N1 1N N
N N

1
( ∣ ) ( )( ∣ ) = ¢ = ¢ = = =

¢
+ ++

This allows us to exactly calculate the symbol-labeled transitionmatrices,T 0( )¢ andT 1( )¢ , of theHMMthat
generates the output string:

T M T . 25s x s x
y

y
x x

y y
s s

y
N N N N

N

N

N N
N N

N N
N

1 1 1 1
( )( ) ( ∣ ) ( )å¢ =Ä  Ä

¢

¢

+ + + +

The joint states of the ratchet and the internal states of the input process are the internal states of the output
HMM,with x x A B, ,N N 1 { }Î+ and s s C,N N 1 { }Î+ in the present case. This approach is a powerful tool for
directly analyzing informational properties of the output process.

By adopting the transducer perspective, it is possible tofindHMMs for the output processes of previous
ratchetmodels, such as in [43, 47]. However, their generatingHMMs are highly nonunifilar,meaning that
knowing the current internal state and output allows formany alternative internal-state paths. And, this
precludes writing down closed-form expressions for informational quantities, as we do here. Said simply, the
essential problem is that thosemodels build in toomany transitions. Ameliorating this constraint led to the
Markov dynamic shown infigure 3with two ratchet states and sparse transitions. Although this ratchet’s
behavior cannot be produced by a rate equation, due to the limited transitions, it respects detailed balance.

Figure 5 shows our two-state ratchet’s transducer. As noted above, its internal states are the ratchet states.
Each transition is labeled y y p:∣¢ , where y¢ is the output, conditioned on an input y, with probability p.

We can drive this ratchet (transducer)with any input, but for comparisonwith previous work, we drive it
with thememoryless biased coin process just introduced and shown infigure 4. The resulting unifilarHMMfor
the output string is shown infigure 6. The corresponding symbol-labeled transitionmatrices are:

T
p b

b q b

0 1

1 0
, and 26

0 ( )
( )

( )( ) ⎡
⎣⎢

⎤
⎦⎥¢ =

-
+ -

T
p b

q b

0 1 1

1 1 0
. 27

1 ( )
( )( )

( )( ) ⎡
⎣⎢

⎤
⎦⎥¢ =

- -
- -

Using thesewe can complete our validation of the proposed Second Law, by exactly calculating the entropy
rate of the output string.Wefind:

Figure 5.TheMaxwellian ratchet’s transducer.

Figure 6.UnifilarHMM for the output string generated by the ratchet driven by a coinwith bias b.
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h H Y Y

H Y S

H b p H b q

lim

lim

1

2

1 1

2
. 28

N
N N

N
N N

0:[ ∣ ]

[ ∣ ]

( ( )) (( )( )) ( )

¢ = ¢ ¢

= ¢

=
-

+
- -

m
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Wenote that this is less than or equal to the (unconditioned) single-symbol entropy for the output process:

h H Y

H b p b q1 1 1 2 . 29
0[ ]

(( ( ) ( )( )) ) ( )
¢ ¢

= - + - -
m

Any difference between h¢m and single-symbol entropy H Y0[ ] indicates correlations that the ratchet created in the
output from the uncorrelated input string. In short, the entropy rate gives amore accurate picture of how
information isflowing between bit strings and the heat bath. And, as we nowdemonstrate, the entropy rate leads
to correctly identifying important classes of ratchet thermodynamic functioning—functionality the single-
symbol entropymisses.

5. Thermodynamic functionality

Let us step back to review and set context for exploring the ratchet’s thermodynamic functionality as we vary its
parameters. Ourmain results are analytical, provided in closed-form. First, we derived amodified version of the
Second Law of thermodynamics for information ratchets in terms of the difference between theKolmogorov–
Sinai entropy of the input and output strings:

W k T hln2 , 30B ( )á ñ D m

where h h hD = ¢ -m m m. The improvement here takes into account correlationswithin the input string and those
in the output string actively generated by the ratchet during its operation. Frombasic information-theoretic
identities we know this bound is stricter formemoryless inputs than previous relations [63] that ignored
correlations.However, by howmuch? And, this brings us to our secondmain result.We gave analytic
expressions for both the input and output entropy rates and thework done by theDemon.Now,we are ready to
test that the bound is satisfied and to see howmuch stricter andmore incisive it is than earlier approximations.

Wefinddiverse thermodynamic behaviors as shown infigure 7, which describes ratchet thermodynamic
function at input bias b=0.9.We note that there are analogous behaviors for all values of input bias.We
identified three possible behaviors for the ratchet:Engine,Dud, andEraser. Nowhere does the ratchet violate the
rule W k T hln2Bá ñ D m. The engine regime is defined by (p, q) for which k T h Wln2 0B D á ñ >m since
work is positive. This is the only condition forwhich the ratchet extracts work. The eraser regime is defined by

k T h W0 ln2B > D á ñm , meaning that work is extracted from thework reservoir while the uncertainty in the
bit string decreases. In the dud regime, those (p, q) for which k T h Wln2 0B  D á ñm , the ratchet is neither
able to erase information nor is it able to do useful work.

Atfirst blush, these are the same behavior types reported by [43], except that we have stronger bounds on the
work nowwith k T hln2B D m, compared to the single-symbol entropy approximation. The stricter bound gives
deeper insight into ratchet functionality. To give a concrete comparison, figure 8 plots the single-symbol entropy
difference H Y0[ ]D and the entropy rate difference hD m, with aflat surface identifying zero entropy change, for
all p and q and at b=0.9.

In the present settingwhere input symbols are uncorrelated, the blue H Y0[ ]D surface lies above the red hD m
surface for all parameters, confirming that the single-symbol entropy difference is always greater than the
entropy rate difference. It should also be noted for this choice of input bias b and for larger p, H Y0[ ]D and hD m
are close, but they diverge for smaller p. They diverge somuch, however, that looking only at single-symbol
entropy approximationmisses an entire low-p functional region, highlighted in orange infigures 7 and 8, where

hD m dips below zero and the ratchet functions as eraser.
The orange-outlined low-p erasure region is particularly interesting, as it hosts a new functionality not

previously identified: The ratchet removesmultiple-bit uncertainty, effectively erasing incoming bits by adding
temporal order, all thewhile increasing the uncertainty in individual incoming bits. The existence of thismode
of erasure is highly counterintuitive in light of the fact theDemon interacts with only one bit at a time. In
contrast, operation in the erasure region at high p, like that in previousDemons, simply reduces single-bit
uncertainty.Moreover, the low-p erasure region lies very close to the regionwhere ratchet functions as an
engine, as shown infigure 7. As one approaches p q, 0, 0( ) ( )= the eraser and engine regions become arbitrarily
close in parameter space. This is a functionallymeaningful region, too, since the device can be easily and
efficiently switched between distinctmodalities—an eraser or an engine.

In contrast, without knowing the exact entropy rate, it appears that the engine region of the ratchet’s
parameter space is isolated from the eraser region by a large dud region and that the ratchet is not tunable. Thus,
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knowing the correlations between bits in the output string allows one to predict additional functionality that
otherwise is obscuredwhen one only considers the single-symbol entropy of the output string.

As alluded to above, we can also consider structured input strings generated bymemoryful processes, unlike
thememoryless biased coin.While correlations in the output string are relevant to the energetic behavior of this
ratchet, it turns out that input string correlations are not. Thework done by the ratchet depends only on the
input’s single-symbol bias b. That said, elsewhere wewill exploremore intelligent ratchets that take advantage of
input string correlations to do additional work.

Conclusion

Thermodynamic systems that include information reservoirs as well as thermal andwork reservoirs are an area
of growing interest, driven inmany cases by contemporary advances in biomolecular chemistry and nanoscale
physics and engineering.With the ability tomanipulate thermal systems on energy scales closer and closer to the
level of thermalfluctuations k TB , information becomes critical to the flowof energy. Ourmodel of a ratchet and
a bit string as the information reservoir is very flexible and ourmethods showed how to analyze a broad class of
such controlled thermodynamic systems. In particular, usingHMMs greatly broadened the kind of information
reservoir that can be considered; they are substantiallymore general than those used to date.Moreover,

Figure 7. Information ratchet thermodynamic functionality at input bias b=0.9: Engine: (p, q) such that W k T h0 ln2B< á ñ D m.
Eraser: (p, q) such that W k T hln2 0Bá ñ D <m . Dud: (p, q) such that W k T h0 ln2B á ñ D m .

Figure 8.Exact entropy rate difference hD m (red) is amuch stricter bound onwork than the difference in single-symbol entropy
H Y0[ ]D (blue). The zero surface (light green) highlights where both entropies are greater than zero and so is an aid to identifying

functionalities.
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expressing them as ò-machines leads to exact analytical treatment. Central to identifying thermodynamic
functionality was our deriving equation (5), based on the control system’s Kolmogorov–Sinai entropy, that
holds in all situations ofmemoryful ormemoryless ratchets and correlated or uncorrelated input processes and
that typically provides the tightest quantitative bound onwork. This improvement comes directly from tracking
Demon information production over system trajectories, not from time-local, configurational entropies.

Given the parallel relationship between theKolmogorov–Chaitin complexity (size of theminimal universal
Turingmachine that generates a bit string) and theKolmogorov–Sinai entropy [19], the entropy difference

hD m is seen to be ameasure of the intrinsic computation performed by the ratchet in producing the output
string from the input string [64]. Thus, the new Second Lawhas a complementary interpretation for
thermodynamically embedded computations: it provides a lower bound on the energetic cost (work) required to
drive the information processing performed by the ratchet as it generates the output string. As such, it is a
substantial generalization of Landauer’s approach [12] to the physical limits of computation.

Though its perspective andmethodswere not explicitly highlighted, computational mechanics [64]played a
critical role in the foregoing analyses, from its focus on structure and calculating all system component
correlations to the technical emphasis on unifilarity inDemonmodels. Its full impact was not explicated here
and is left to sequels and sister works. Two complementary computationalmechanics analyzes of information
engines come tomind, in this light. Thefirst is [16]ʼs demonstration that the chaotic instability in Szilard’s
Engine, reconceived as a deterministic dynamical system, is key to its ability to extract heat from a reservoir.
This, too, highlights the role of Kolmogorov–Sinai dynamical entropy. Another is the thorough-going extension
offluctuation relations to showhow intelligent agents can harvest energywhen synchronizing to the fluctuations
from a structured environment [60]. This suite of works constitutes the first successful synthesis of
computationalmechanics and thermodynamics.

This is to say, in effect, the foregoing showed that computationalmechanics is a natural framework for
analyzing a ratchet interacting with an information reservoir to extract work from a thermal bath. The input and
output strings that compose the information reservoir are best described by unifilarHMMgenerators, since they
allow for exact calculation of any informational property of the strings,most importantly the entropy rate. In
fact, the control system components are the ò-machines and ò-transducers of computationalmechanics [61, 64].

The theoretical innovations had a practical consequence. By allowing one to exactly calculate the asymptotic
entropy rate, we identifiedmore functionality in the effective thermodynamic ò-transducers than previous
methods can reveal. Two immediate consequences were that we identified a new kind of thermodynamic eraser
and found that our ratchet is easily tunable between an eraser and an engine—functionalities suggesting that
real-world ratchets exhibitmemory to take advantage of correlated environmental fluctuations, as well as
hinting at useful future engineering applications.
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AppendixA.Derivation of equation (5)

Here, we reframe the Second Law of thermodynamics, deriving an expression of it thatmakes only one
assumption about the information ratchet operating along the bit string: the ratchet accesses only a finite
number of internal states. This constraint is rathermild and, thus, the bounds on thermodynamic functioning
derived from the new Second Law apply quite broadly.

The original Second Lawof thermodynamics states that the total change in entropy of an isolated system
must be non-negative over any time interval. By considering a system composed of a thermal reservoir,
information reservoir, and ratchet, in the followingwe derive an analog in terms of rates, rather than total
configurational entropy changes.

Due to the Second Law, we insist that the change in thermodynamic entropy of the closed system is positive
for any numberN of time steps. IfX denotes the ratchet,Y the bit string, andZ the heat bath, this assumption
translates to:

S X Y Z, , 0. A1[ ] ( ) 

Note that we do not include a term for theweight (amechanical energy reservoir), since it does not contribute to
the thermodynamic entropy. Expressing the thermodynamic entropy S in terms the Shannon entropy of the
randomvariables S X Y Z k H X Y Z, , ln2 , ,B[ ] [ ]= , we have the condition:
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H X Y Z, , 0. A2[ ] ( ) 
To bemore precise, this is true over any number of time stepsN. If we have our systemX, we denote the

randomvariable for its state at time stepN byXN. The information reservoirY is a semi-infinite string. At time
zero, the string is composed entirely of the bits of the input process, for which the random variable is denoted
Y0:¥. The ratchet transduces these inputs, startingwithY0 and generating the output bit string, the entirety of
which is expressed by the randomvariable Y0:¢ ¥. At theNth time step, thefirstN bits of the inputY have been
converted into thefirstN bits of the output Y ¢, so the randomvariable for the input–output bit string is
Y YN N: 0:Ä ¢¥ . Thus, the change in entropy from the initial time to theNth time step is:

H X Y Z H X Y Y Z H X Y Z, , , , , , , A3N N N N N: 0: 0 0: 0[ ] [ ] [ ] ( ) = ¢ -¥ ¥

H X Y Y H Z I X Y Y Z

H X Y H Z I X Y Z

, , , , ;

, , ; . A4
N N N N N N N N: 0: : 0:

0 0: 0 0 0: 0

[ ] [ ] [ ]
[ ] [ ] [ ] ( )

= ¢ + - ¢
- - +

¥ ¥

¥ ¥

Note that the internal states of an infinite heat bath do not correlate with the environment, since they have no
memory of the environment. Thismeans themutual informations I X Y Y Z, , ;N N N N: 0:[ ]¢¥ and I X Y Z, ;0 0: 0[ ]¥
of the thermal reservoirZwith the bit stringY and ratchetX vanish. Also, note that the change in thermal bath
entropy can be expressed in terms of the heat dissipatedQN over theN time steps:

H Z H Z H Z
Q k T ln2. A5

N

N

0

B

[ ] [ ] [ ]
( )

 = -
=

Thus, the Second Lawnaturally separates into energetic terms describing the change in the heat bath and
information terms describing the ratchet and bit strings:

H X Y Z
Q

k T
H X Y Y H X Y, ,

ln2
, , , . A6N

N
N N N

B
: 0: 0 0:[ ] [ ] [ ] ( ) = + ¢ -¥ ¥

Since H 0  , we can rewrite this as an entirely general lower bound on the dissipated heat over a length Nt
time interval, recalling that τ is the ratchet-bit interaction time:

Q k T H X Y H X Y Yln2 , , , . A7N N N NB 0 0: : 0:( [ ] [ ]) ( ) - ¢¥ ¥

This bound is superficially similar to equation (6), but it is true in all cases, as we have not yetmade any
assumptions about the ratchet. However, its informational quantities are difficult to calculate for largeN and, in
their current form, do not givemuch insight. Thus, we look at the infinite-time limit in order tease out hidden
properties.

Over a time interval Nt , the average heat dissipated per ratchet cycle is Q NN .Whenwe classify an engine’s
operation, we usually quantify energyflows that neglect transient dynamics. These are just the heat dissipated
per cycle over infinite time Q Q NlimN Ná ñ = ¥ , which has the lower bound:

Q k T
H X Y H X Y Y

N
lim ln2

, , ,
. A8

N

N N N
B

0 0: : 0:[ ] [ ] ( )á ñ
- ¢

¥

¥ ¥

Assuming the ratchet has afinite number of internal states, eachwithfinite energy, then the bound can be
simplified andwritten in terms of work. In this case, the averagework done is the opposite of the average
dissipated heat: W Qá ñ = -á ñ. And so, it has the upper bound:

W k T
H Y Y H Y

N

H X H X

N

I X Y I X Y Y

N

ln2 lim
,

; ; ,
, A9
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N N N

N N N

B
: 0: 0: 0

0 0: : 0:

[ ] [ ] [ ] [ ]

[ ] [ ] ( )

⎛
⎝⎜

⎞
⎠⎟

á ñ
¢ -

+
-

+
- ¢

¥

¥ ¥

¥ ¥

where the joint entropies are expanded in terms of their single-variable entropies andmutual informations.
The entropies over the initialX0 andfinalXN ratchet state distributionsmonitor the change in ratchet

memory—time-dependent versions of its statistical complexity C N H XN( ) [ ]=m [64]. This time
dependence can be used tomonitor how andwhen the ratchet synchronizes to the incoming sequence,
recognizing a sequence’s temporal correlations.However, sincewe assumed that the ratchet has finite states, the
ratchet state-entropy and alsomutual information terms involving it are bounded above by the logarithmof the
number states. And so, they go to zero as N  ¥, leaving the expression:

W k T
H Y Y H Y

N
ln2 lim

,
. A10

N

N N
B

: 0: 0:[ ] [ ] ( )
⎛
⎝⎜

⎞
⎠⎟á ñ

¢ -
¥

¥ ¥

With this, we have a very general upper bound for thework done by the ratchet in terms of just the input and
output string variables. And, in a complementary way, we see that it is also a very general bound on the
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thermodynamic cost of intrinsic computing—the information processing performed by the ratchet in
generating the output string from the input.

Once again, we split the joint entropy term into it is components:

W k T
H Y H Y

N

H Y

N

I Y Y

N
ln2 lim

;
. A11

N

N N N N
B

: 0: 0: : 0:[ ] [ ] [ ] [ ] ( )⎜⎛⎝
⎞
⎠⎟á ñ

-
+

¢
-

¢
¥

¥ ¥ ¥

In this we identify the output process’s entropy rate h H Y NlimN N0:[ ]¢ = ¢m ¥ .While
H Y H Y NlimN N : 0:( [ ] [ ])-¥ ¥ ¥ looks unfamiliar, it is actually the negative entropy rate hm of the input

process, sowe find that:

W k T h h
I Y Y

N
ln2 lim

;
. A12
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N N
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: 0:[ ] ( )
⎛
⎝⎜

⎞
⎠⎟á ñ ¢ - -

¢
m m

¥

¥

Tounderstand themutual information term, note that Y N0:¢ is generated from Y N0: , so it is independent of
YN :¥ conditioned on Y N0: . Essentially, Y N0: causally shields Y N0:¢ from YN :¥, as shown in information diagram
[65] offigure 9. Thismeans:

I Y Y I Y Y I Y Y Y; ; ; . A13N N N N N N N: 0: : 0: : 0: 0:[ ] [ ] [ ∣ ] ( )¢ = - ¢¥ ¥ ¥

This, in turn, gives: I Y Y I Y Y; ; 0N N N N: 0: : 0:[ ] [ ] ¢¥ ¥ . Thus, wefind the input process’s excess entropy E
[55]:

I Y Y I Y Y

E

lim ; lim ;

. A14
N

N N
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=
¥

¥
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However, dividing byN its contribution vanishes:

I Y Y

N

H Y
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H Y Y

N
h h
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0. A15

N
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( )

⎜ ⎟⎛
⎝

⎞
⎠= -

= -
=
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¥

¥

¥

¥

Thus, we are left with the inequality of equation (5):

W k T h hln2 ; A16B ( ) ( )á ñ ¢ -m m

derivedwithminimal assumptions. Also, the appearance of the statistical complexity and excess entropy, whose
contributions this particular derivation shows are asymptotically small, does indicate the potential role of
correlations in the input forfinite time—times duringwhich the ratchet synchronizes to the incoming
information [66].

One key difference between equation (A16) (equivalently, equation (5)) and themore commonly used
bound in equation (6), with the change in single-variable configurational entropy H Y H Y0 0[ ] [ ]¢ - , is that the
former bound is true for allfinite ratchets and takes into account the production of information over time via the
Kolmogorov–Sinai entropies hm and h¢m.More generally, we do not look at single-step changes in configurational
entropies—H X Y Z H X Y Z, , , ,N N N N N N1 1 1[ ] [ ]- - - —but rather the rate of production of information

Figure 9.TheNmost recent variables of the input process shield theN variables of output from the rest of the input variables.
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H W W W,N N N2 1[ ∣ ]¼ - - , whereW X Y Z, ,N N N N( )= . This global dynamical entropy rate has contributions from
output rate h¢m and input rate hm. This again indicates how equation (6) approximates equation (A16).

There are several special cases where the single-variable bound of equation (6) applies. In the case where the
input is uncorrelated, it holds, but it is a weaker bound than equation (5) using entropy rates. Also, in the case
when the ratchet has no internal states and so ismemoryless, equation (6) is satisfied. Interestingly, either it or
equation (A16) can be quantitatively stricter in this special case. However, in themost general case where the
inputs are correlated and the ratchet hasmemory, the bound using single-variable entropy is incorrect, since
there are cases where it is violated [67]. Finally, when the input-bit-ratchet interaction time τ grows the ratchet
spendsmuch time thermalizing. The result is that the output string becomes uncorrelatedwith the input and so
the ratchet is effectivelymemoryless.Whether by assumption or if it arises as the effective behavior, whenever
the ratchet ismemoryless, it is ignorant of temporal correlations and so it and the single-symbol entropy bounds
are of limited physical import. These issues will be discussed in detail in futureworks, but as a preview see [67].

Appendix B.Designing ratchet energetics

Figure 3 is one of the simplest information transducers for which the outcomes are unifilar for uncorrelated
inputs, resulting in the fact that the correlations in the outgoing bits can be explicitly calculated. As this
calculationwas a primarymotivation in ourwork, we introduced themodel infigure 3first and, only then,
introduced the associated energetic and thermodynamic quantities, as infigure 2. The introduction of energetic
and thermodynamic quantities for an abstract transducer (as infigure 3), however, is not trivial. Given a
transducer topology (such as the reverse ‘Z’ shape of the currentmodel), there aremultiple possible energy
schemes of which only a fraction are consistent with all possible values of the associated transition probabilities.
However,more than one scheme is generally possible.

To show that only a fraction of all possible energetic schemes are consistent with all possible parameter
values, consider the case where the interaction energy between the ratchet and a bit is zero, as in [43]. In our
model, this implies 0b = , or equivalently, p q 0= = (from equation (12)). In otherwords, we cannot describe
ourmodel, valid for all values p q0 , 1< < , by the energy scheme infigure 2with 0b = . This is despite the fact
that we have two other independent parametersα andw.

To show that, nonetheless,more than one scheme is possible, imagine the case with 0a b= = . Instead of
just onemass, consider threemasses such that, whenever the transitions A B0 0Ä  Ä , B A0 1Ä  Ä ,
and A B1 1Ä  Ä take place, we get works k TWB 1

~
, k TWB 2

~
, and k TWB 3

~
, respectively.We lose the

corresponding amounts of work for the reverse transitions. This picture is consistent with the abstractmodel of
figure 3 if the following requirements of detailed balance are satisfied:

p

M

M

1

1
e , B.1A B

B A

W0 0

0 0

1 ( )
-

= =Ä  Ä

Ä  Ä

-
~

p

q

M

M
e , and B.2B A

A B

W0 1

1 0

2 ( )= =Ä  Ä

Ä  Ä

-
~

q
M

M
1 e . B.3A B

B A

W1 1

1 1

3 ( )- = =Ä  Ä

Ä  Ä

-
~

Existence of such an alternative scheme illustrates the fact that given the abstractmodel offigure 3, there ismore
than one possible consistent energy scheme.We suggest that this will allow for future engineering flexibility.
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