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Abstract
Algebraic methods are developed for generating NMR spin species

and irreducible representations spahﬁgd by spin fﬁnctions. These
methods use generalized character cycle indices (S~function when NMR_
groups are symmetric groups). A cdrrespohdence between the unitary
group approaqh and the permutation group method for NMR is established
byvgénerating_NMR Gel'fand states using Schur.functions. The
generalized character cycle indices_qf molecules whose NMR groups
are expressible as generalized wreath produéﬁs are shown to be

, generélized NMR plethysms of Schur functioné. These techniques enable
generation of spin species without the knoylédge of the character
tables of NMR groups. We illustrate the methods developed ﬁere with
several examples. Thebuse of these techniques iﬁ géneratingvsymhetry:

adapted NMR spin functions can be found in the accombanying paper.



1. Introduction
The first applications of group theory to thg simplification of NMR spin
interactions are due to McConnellMcLean and Reillyl' and Wilson.2 Longuet-
Higgins3 developed the general permutational frame work for the symmetry groups
of non-rigid molecules. Woodman4 showed that tﬁe NMR groups of molecules can
be expressed as permutation groups and these groups have the structure of'semi:
~ direct products. Flurry and Siddall5 developed the groups for indépendent
particle Hamiltonian operators. Using this, the unitary group structure of
NMR groups of several molecules was established by these authors.6 Further,
these authors have considered computational and algebraic techniques for NMR
with spin 7.8

of molecules including the molecules which contain nuclei/mqre than spin k.’
The ﬁresent au£h0r9 showed thazyﬁMR group of any molecule can be obtained by
collecﬁing.che set of permutations that.leéve‘tﬁe.aséoéiated-spin interaction
diagram (known as NMR graph) invariant. Systematic procedures and algorithms
were devéloped foflobtaining NMR groﬁps as permutatioh-groups. Iﬁ’was shown

in that paper that NMR groups of several non-rigi& molecules are generalized
wréath ptoduct groups. Using the representation theory of generﬁlized wreath
products outlined in another paper of the author,10 we showed that the char-
acter tables of NMR groups can be obtained. As pointed out by Woodman4 and
Flurry and c:o-wox:k.ers,'s_8 the composite particle method is superior to fhe
complete Hamiltonian methods at every étage of NMR cdmputétions. One of the
objectives of this paper is to develpp algebraic techniques to'generatevsyﬁ—
metry-adapted composite particle spin functions which in turn faptor the
composite particle Hamiltonian matrix into matrices of smaller order.

In the present paper we develop techniques to geﬁerate irreducible

:epresentations contained in the set of spin functions using group generators
known as generalized character cycle indices. A éorrespondeﬁce betweeﬁ?ﬁnitary

the
group approach and/permutation  group method is established by_generating NMR



[C

" where v, is the chemical shift of the 1th nucleué, J

N

Gel'fand bases using Schur functions. Generalized NMR plethysm techniques are
introduced for the generation of NMR spin species of non-rigid molecules.
Section 2 outlines preliminary concepts related to NMR groups, cycle indices,
NMR spin functions, etc. In Section 3 we demonstfate the use of Imminants and
S-functions i; NMR and establish a correspondence between the unitary group
approaéh and?pzrmutation group method. Section 4 describes generalized NMR
Pleythsms and their use in generating NMR spin species. Further.formnlations
of projection operator methods and applications of the methods developed here

can be found in the accompanying paper.

2. NMR Groups, Cycle Indices, NMR Spin Functions and NMR Spin Patterné
A. NMR Groups
NMR groups can be defined as the set of permutations of the nuélei

that leave the NMR spin Hamiltonian (2.1) invariant.

hor = E TR ) Ii -fi.fj | (2.1)

i<j

1 13 is the coupling constant

between the nuclei i and i, Izi is the spin component in the z direction
(assuming the external magnetié field is in the 2 difectiqn);_fi'fj is the

scalar product of the spinaoperators f and fﬁ. The present authorgdeveloped

i
a diagrammatic approach for obtaining NMR group as a permutation group. It

was shown ip that paper that NMR groups aré either direct products of symmetric
groups (special cases of wreath products) or in the most'geﬁerél cases can be
expressed as generalized wreath products of symmetric groups by way of exﬁres-
sing NMR graphs as generalized'coﬁpositions of smaller graphs. We showed

that NMR groups of several molecules are géneralized.wreath products. The
coupling gonstahts among a set of'equivalent nuclei whichhhavé identical

' the

coupling constants among themselves and with the rest of /nuclei do not affect

the NMR spectrum. Consequently, one can think of this cOmpiete set of



magnetically equivalent nuclei as a single composite particle and the NMR

Hamiltonian can be expressed in terms of these composite particles as

H=) v, I + Y 3 .1 «'f,' (2.2)
ng(G) B T el . '

In 2.2 each "nucleus" G is a composite particle. We also showed in our earlier
paper that the NMR group of the composite particle Hamiltonian can also be

obtained using diagrammatic techniques.
' efficient
. In this paper we will consider very / techniques for generating

composite particle spin functions of very complex polyatomic molecules.

B. Cycle Indices, NMR Spin Patterns and Functions

Consider a set D of nuclei (whose NMR is under consideration) and let
the

R be the set of possible spin states of/nuclei in D. If M is the molecular
symmetry group then M partitions D into equivalence classes. For non-rigid

molecules possessing internal rotors M can be expressed as generalized wreath
14
products and methods were formulated/for obtaining the number of equivalence
equivalence classes
pre--Y, be the / of D under the action of M. Note
~ in the low resolution spectrum since :
that t is the number of NMR signals / this corresponds to the number of
- the
magnetic equivalence classes of/nuclei in D. Let F be a set of maps from D

classes. Let Yl; Y

to R (i.e., the set of possible spin functions). It can be seen that |F| =
|R[|D|, where lS{ is the number of elements in a . set S. Let G be the NMR
group of the molecule under consideration. Any geG actsonan feF (the set of

NMR spin functions) by the recipe shown below.
-1
gf(1) = £(g 1) for every ieD.

To illustrate, consider the methane molecule. A map fl which generates

the spin function (for protous) @ a BB 1is shown below.



£,() = ¢
£,(2) = ¢
£,(3) =8
£,(4) =8 .

Then the permutation (1234) acts on £, to generate f

1 2°

£,(1) = (1234) £,(1) = £,((1432)1) = £,(4) = B
£,(2) = £,(1) =g

£,(3) = £,(2) = ¢

£,(4) = fl(s) =8 .

Thus the NMR spiﬁ function ¢ o 8 B gété permuted to the NMR spin function
gbg a B by the action of the permutatioﬁ (1234) in the NMR group of methane.
Two maps fi and fj (i3 are»equivalent if gfi = fj. Define a generalized
character cycle index (GCCI) of G corresponding to the charactgr x of an.

' ifreducible representation T in the group G as follows.

GeCrX = 1 T x(2) xblxbz ..xb“
Tc;_['geG 172 "
'bl b2 bn : _
where X Ry eeeeX is a representation of a typical permutation geG which
generates bl cycl:: ;f length.l, b2 cycles. of ;eﬁgth 2,....bn cycles of length

n under the action/on the set D. >Invorder to book-keep‘the'number of various
nuclear spin states in a_given NMR spin function let us introduce the concept
of?gzight of a NMR function. ?With each spin state in R let us associate a
formal symbol w(r). Then'defin; éhe weight ofan feF whiéh generates-a NMR
spin function as | |

W(E) = >H w(f(d))
deD



To illustrate the weight of the spin function ¢ o B 8 of methane would be

az Bz if a is the weight corresponding to the spin state a and 8 is the weight

corresponding to 8. When ' is the identity representation of the NMR group of
the molecule (which we can denote by Al) the following substitution generates
the equivalence classes of NMR spin functions.

A A o
G.F. ! = geer 1'(xk > ) W ().

TeER

b, b
coefficient of a typical term vy w22

of NMR spin functions containing b

++..gives the number of equivalence classes

spin states of the type 1, b, spin states

1 2
of the type 2, etc. This is because-the number of A1 representations in an
equivalence class is the number of equivalence classes both by P61ya'sll‘(a
more general theorem) theorem and Frobenius theorem. To illustrate if we let
G be the NMR group of methane, then.the coefficient of aze? in the GCCIA1 gives
the number of equivalence classes of NMR spin functions. which contain 2 u'é
and 2 B8's. Each equivalence class of NMR: spin functions.can be called a NMR
spin pattern. Note that functions in a NMR spin pattern will only mix in any
symmetry-#dapted NMR spin function used to factor the NMR spin Hamiltonian.
Thus obtaining the NMR spin patterns is crucial in the actual construction of
symmetry-adapted functions. The meaﬁing and use of GCCIX for any x (other
than_the'character 027:1 representation) will be seen in subsequent sectionms.
3. Imminangs, S-functioné and NMR Gel'fand States

Let A be a matrix of order nxn. Let s be a éermutation in Sn (the sym-

metric group of n objects containing n! permutations) of the type €1 Bgsreene

e, (i.e., 1 goes to ei) of the numbers 1,2,... ..n. Define Ps as the product



- an irreducible repreéentation of Sn'can be denoted as [A]. Let ¥

Any irreducible representation of Sn can be characterized by a partition of

the integer n demoted as (A, Ap»....r) = (1), with A, > 1 and Ay < ii‘ (§>1). Thus

M) be its"

character. Then we can define the imminant of the matrix A as

AP = 1Mo e,
. s

- where S runs over all the elements of Sn' In particular if X =

(1,1,1,...1) note that lAI(X) is simply the antisymmetriser used in quantum
mechanics of fermions. Define a symmetric function s, of quantities @ aé,

'..a as
n

‘z‘ r
S = A, .
o =1 i
Let Zn be the matrix shown below.
Psl 1 00 . 0
s, 81 2 0 . . 0
sS4 S, 5 3 0 .
z =
n L]
Sn—l n-z . . . Sl n—l
*n 5p-1 S2 %1
e S—

The Schur function also known as S-function corresponding to the irreducible

brepreséntation [A] of the symmetric group Sn’ denoted by {1} is defined below.



1 )
{A} = ar lan

where IZnI(A) is the immingnt of the matrix zd associated with (1). The above.
expression can be reduced to a more convenient form. There is a one-to-one

the and the corresponding
correspondence between /conjugacy classes / cycle typegin the symmetric group Sn'
Suppose a representative in a conjugacy class C has b, cycles of length'l, 2

elements in the »
cycles of length 2 etc. and |[C| is the number of /conjugacy class C then

01 =51 lef % s
C
where

: b, b, b
S, = slls 2s 3.... .

‘by Cayley's counting principle |C| can be seen to be

n!

5 b
1 lbl! 2 2b2!.....

le| =

To illustrate consider the S-functions of the symmetric group SA' The

‘character table is shown in Table I. One can immediately write

1 4 2 _ 2

{4} A ('31+6$132+85133+654_+_382)
1. 4 2 2
{3,1} = % (3sl+651s2—6s4-352)

1 4 v : 2
{2,2} - (2s1 - 83133 + 652)

’
[~

4 2. 2

"
|~

{1,1,1,1} - 6s2s +8s s, - 6s +3s2

4
35 (516815, 37 6s,+3s))

Generating functions for S functions can also be obtained very easily using

the GCCI's which correspond to A, representations of the smaller groups as

1

.15
outlined in an earlier paper.of the author. Using this we have the result

{pysPnse--p.} = det /P
bR (S<p1-i+j))‘

where



is the cycle index of the group S

PS(pi-i+j). (pi-i+j) correspnndingvto A1
- representation. To illustrate, consider {4,2} in the group 86.
PS4 PS5
{4,2} = =P P, -P_ P
S,”S S-S
4 "2 571
.PS Ps
1 2
P, = -+ (s + lOSBS + 20523 + 15s 32 + 305 s, + 20 s,s, + 24s.)
S5 120 ‘1 172 173 172 4 273 5
1 4 2 2
P34 % (s1 + 6sls2 + 83153 + 352 + 654)
1,2
PS -Z-(Sl+sz)
2 .
P. =s8,.
S1 1
expressions
Substituting the above / for PS s PS etc. in the expression for {4,2}
' ' 1 2
we get .
(4,2} = 555 [9s5 + 45s7s, - 90sls, + 4552 22 _ l4hs o, + 90s,s, + 4583
? 720 1 172 1% 172 155 274 2

Thus S-functions can be generated without knowing the character tables of the

symmetric group S - and thus they are generators of the character table of S
: the cycle type which COTEESPOHdS to C
since the coefficient of /  gives |C| ¥

S-functions with s_ = z at » Where
v r i i
spin states have special significance in NMR spectroscopy. They generate the

ai's are the weights of the nuclear

number of times an irreducible representation occurs in the set of NMR spin .

functions of a chosen weight if the NMR group of the molecule is isomorphlc

b, b,
to-Sn. Equivalently the coefficient of a typical term all 22.;. in {1}

generates?number of times the irreducible representation [A] occurs in the’
set Of'NMR-spin functions containing bl-spin states with the weight @y b2
spin states with the weight az;-etc. Let us now illustrate this with an

‘example. The NMR group of CHa'is S, Let us associate a weight a to the g
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spin state of the proton and a weight 8 to-the B spin of the proton. Then with
Sr =af + Br, S=functions of S4 generate the frequency of occurrence of the
corresponding irreducible representation in the set of NMR spin functions of

methane. To illustrate, consider the S-function {3,1} of S, for CH&’ with

4

r r
S =a + .
r B8

{3’1;(1’8}

o [3(@+8)* + 6(e+8) 2 (a®+8D)-6(a"+8") - 3%+ 7]

a3B + aZBZ + a83.

Thus there is one [3,1] or F, representation in the set of spin functions which

1

have 3a spin states and 18 spin state, one F, in spin functions that have 2q

1

spin states and 28 spin states and one F, representation in the set of spin

1

_functions that have lg and 3§'s. Note that we obtained this information without
having to explicitly obtain the character of the representation spanned by all
the NMR spin functions. This is quite advantageous for polyatomics in that

the number of spin functions for a molecule containing bl nuclei with a; spin

states, b, nuclei with a, spin states etc. the number of NMR spin functions is

b, b

2 2
allazz,... . ‘Conséquently to find the character of the representation spanned

by these spin functions is, in general, quite difficult. Further, the same

S—function generates the frequency of occurrence of NMR spin functions for
spin
nuclei with/more than spin 1/2. To illustrate, consider the CD4
the :
Let us denote the 3 spin states of/D nuclei by A, W and v and let the cor-

molecule.

- responding weights be A, u and v, respectively. Then, for example, the
S-function {3,1} with s = zF o+ ur +oF generates the frequenecy of occurrence

of F1 in D spin functions. To illustrate,

{3,1;Auv} = % [3(>‘+u-w)4 + 6(>\+u+\))2(12+u2+\)2) - 6()\4+u4+\)4) - 3(A2+u2+v2)2]
= A3u + Azuz + Au3‘+ X3v + leuv + 2Au2v + u3v + kzvz + 2Auv2

+ uzvz + kv3.+ uv3.
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.Thus, for example there are 2F. representations in the set of functions which

1
have 21's, 1 y and 1 v, since the coefficient of Azuv in {3,1;Auv} is 2. The

complete set of generating functions for CD, molecule 1s_.shown-in-Table-2-

4
When the NMR group of a molecule is isomorphic to a symmetric group Sn >

the NMR states can be characterized by'the associated Gel'fand spin states

which we will now define. As we pointed out earlier every irreducible reﬁref;
sentation of Sn-can be chargcterized by a partition of the integer n. Con;ider
the weights of the spin states of the nuclei in a lexical order (for example,
we can assume for the spin 1/2 problem the lexical order B>a and for spin 1
problem the lexical order v>u>1). Then a NMR Gel'fand state can be defined
as a géneralized Young tableau that can be obtained by filling the weigh;s of
_spin states in the squares of the Young diagram associated with the partition
of n such that in any row weights are in non-decreasing order and in any

column the weights are in strictly increasing order. All deuterium NMR
Gel'fand states of CD4 are shéWn in Figﬁre 1. The S-functions of the NMR

group of CD4 (SA) with s_ replaced by A"+ ur + v’ are indeed the'geﬁerators
.of the D NMR Gel'fand states enumerated in Figure 1. -Gél'fand states are
precisely the bases for the unitary group U(n). fhus we have established

the correspondence betweei?iermutational'symmetry and the unitary group
treatment of Flurry and Siddall.6 The basis vectors for these Gel'fand states

can be uniquely labeled by a triangular pattern known as Gel'fand-Tsetlin

tableau. A typical Gel'fand-Tsetlin tableau is of the form

mn m1n m2n » m'n-l,n mnn‘
Ph-1 m1,n—1 ceee  ees 'mn-l,n-l
[m] = : =
™ | ™2 Y
) o oy
L | - : _

Paldus16 developed thisunitary group treatment for electron correlation and the
corresponding electronic ABC tableaus are now known as Paldus tableaus.
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The integers in the above array satisfy the following conditions:

Byg 2 By,5-1 2 By41,4

for all 1 = 3j, ...n-1, j = 2,3,....n. From a Gel'fand-Tsetlin tableau one
can immediately obtain a NMR Gel'fand state. The first row of a Gel'fand-
Tsetlin tableau determines the Young diagram. Then one fills integers from
the.set {1,2,...m} such that in the ith row of the diagram the integer i is
filled in the first m

boxes, i + 1 in the next m boxes etc.

ii 1,1+ P44
Then one can identify the integers 1,2,...m by the various weights of the
spin states of the nuclei. For example, the integers {1,2,3} can be
identified as A, u and v state fér D nuclei. |

Before concluding this section we consider NMR groups which are diréct
'products of symmetriq groups and the corrgqunding generating functions.
Such NMR symmetries are quite common especially within the spirit of effec-
tive NMR spin Hamiltonian approximation which sets coupling constants among
a set of completely magnetically equivalent nuclei to zero. The effective
NMR group of butane within equal coupling interaction approximation is the
direcﬁ'product S

x S Thus this is an example of the above case. When the

6 4°
NMR group 1is a direct product of two symmetric groups viz,, Sn X Sm ;hen the .
generators of spin species are the products of the corresponding Schur
functions. For examp1e,va generator of the NMR species for S6 X S4 will be
of the formi{é,Z}{j,l}. The product of two S-functions can be obtained with
the recipe given in Littlewood12 which we will briefly consider to complete

this discussion. The S-functions appearing in the product {Al,AZ...Ap}

1’A2"'
My identical symbols ars U, identical symbols e, etc. such that the resulting

{ul,uz;...uq} can be obtained by adding to the Young tableau (X .Ap)

tableau will also be a Young tableau. Further, when the symbols D) etc.

By H
are read from right to left we should obtain a lattice permutation of allazz... .
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H, U
A lattice permutation of al Gy e is a permutation of the factors in the
product such that in any permutation among the first r terms (for any r)
the_number—oﬁ—times~ai~bccurs¥3—the—number‘of’times”ai_é““ﬁrs etc. To il-

: 2.2
lustrate ay0;0,0,0, is a lattice permutation of @ 0,0q but @ 050,00, is not
a lattice permutation of aia§a3. Using this recipe one can easily construct

the product of the Schur functions {4,3}{3,1}. As per Littlewood's Convention

we will simply replace the symbols in the Young tableau corresponding to (4,2)

by 0's to which we will add 3 a's and 1 B. The resulting such tableaux which

satisfy the stipulated conditions are shown in Figure 2.

4. Generalized NMR Plethysms‘and Induced Spin Species Generators

As shown in an earlier paper of the present author9 the NMR groups of

'many non~-rigid molecules can be expressed as generalized wreath product groups.

In fact, even the pther NMR groups, such as Sn’ direct product§ of symmetric
groups are indeed special cases of generalized wreath product:7that a treatment
of generalized wreath products would specialize to these cases. Even in the
composite particle representation (which we will discuss in a later section), the
composite particle NMR groups are generalized wreath products or special cases
of generalized wreath products. 1In this section we will‘therefore consider

powerful projection operator methods which generate NMR spin speéies of both

rigid and non-rigid nuclear structures.

A. Definitions and Preliminaries
Any NMR spin Hamiltonian can be represented by an interaction diagram
representing . )
known as NMR graph with vertices / nuclei and edges representing nuclear-nuclear
. . .
spin coupling constants. To illustrate let us consider the non-rigid Boron
trimethyl. The NMR graph of this non-rigid molecule is shown in Figure 3.

(@ is the Boron nucleus). We have assumed the catrbon nuclei to be 120 and thus

they do not appear in ;he NMR graph. Let the methyl protons of_the first methyl
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group be labelled 1, 2 and 3, and the second group 4, 5, and 6 etc. Thenvthe.
proton nuclei can be partitioned into a completely magnetically equivélent
sets ti = {1,2,3}, t, = {4,5,6} ‘and ty = {7,8,9}.' Two nuclei are said to be
completely magnetically equivalent if they are magnetic&lly equivalent and
havé identical éoupling constants with the rest of the system. The NMR graph
in Figure 3 can be expressed as a generalized composition of a quotient gfaph
which is obtained by condensing th:7§o;§1ete magnetically equivalent nuclei
into a single vertex and creating 6types" which give interaqtidns among the
nuclei in the sets tl’ t2 etc. .The original NMR graph is obtained by replacing
a vertex of Q (the quotient graph) by a copy of the corresponding type Ti‘
TQ illustrate, the NMR graph in Figure 3 is a composition of Q and the type T
in Figufe 4. Each vertex (except B nucleus) in Q is replaced by a'copy of T
to obtain thé NMR graph in Figure 3. The quotient graph in Figure 4 is indeed
the diagramatic representation of the interaction of composite particles as
shown in an earlier paper of the author9 where one can find several illus-
'trativg examples of NMR graphs also. Let Yi be the set of vertices in Q that

are replaced by the same copy T, to obtain the original NMR graph. Let H

the i
such that/coupling

i

be the group acting on T, which permutes the nuclei in T

i i
constants in Ti are preserved. Since the nuclei in Ti are completely equi-
valent if Ti contains ¢ vertices, Hi‘= Sl where Sz_is the symmetric group

contaiﬁing 2! elements. 1In this set up the present author showed that the NMR

group of any NMR graph is the generalized wreath product G[HI’H2’°"’Ht]

where G is the NMR group. of the quotient graph Q. To illustrate, thus the

NMR group of the non-rigid B(CH3)3 molecule is simply the wreath product
| | ROV b &Y Y, |
l 1 IH t

| 2
L 5

The character tables of generalized wreath products and their representation

|H

s3[s$]. The order of G[Hl,st..f,Ht] is |G| | |

matrices can be constructed using the methods described eléewhere.lo In this

paper we will consider , operator methods which generate NMR spin
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species and spin functionsboth in total and composite particle representationms.
In this paper we will briefly review the important concepté in the fepresenta—
" tion theory of generated wreath products since this is needed in constructing

their projectors and generators of spin species.

i i
G[HI,HZ,...,Ht] can be defined in formal terms as the set

Let 7, be a map from Y, to Hi' Then the generalized wreath product
{(g;nl,nz,...,ﬁt)/gec, wi:Yi-+Hi}
with
.' U | [ y - . ' )
(g,wl,nz,...ﬂt)(g ,ﬁl,ﬂz,.f.ﬂt) = (gg'; "l"lg’"Z“Zg"""ﬂt"ég)
where
' RS | -1,
wig(j) m(g "1 d.8 je¥,.

-fold direct product of m, copies of the same

m
Let m, = IYil and Hii denote m

1 i _ i
group.Hi.' Then G[HI’HZ""’Ht] is isomorphic¢ to (Hl be sz x...tht)'G'
where

G = {(g;elez,....,et)/gsG, ei(j)-= lHi} .

1 : m, m
where Hi -is the identity of the group Hi' Since Hl X H2 X.ooX Ht is a
direct product, the irreducible representations of this group are given by

* * * * .
F*= le # sz fooooft th where Fmi is the outer product F, . # F,, #
: 1 "2 ' t ° : i il i2 e
# Fim with Fij being an irreducible representation of the group Hi' The symbol
1 .

# is used for outer products. The definition of outer tensor products can be
found in several books like Messiah.17 The representation matrices of outer
tensor products are simply the Kronecker products of the matrices of the

constituting representations.. For every representation I shown above an

important key group known ag?¥%ertia
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group which corresponds to F*¥can be defined as the set of elements in the

generalized wreath product_G[Hl,Hz,.

the inertia group of F* is defined as

..,Ht] that leave F* invariant. In symbols

G . ’ (g;ﬂlsﬂ'z’f-fﬂ't) -
F*[HI’HZ""’Ht] = {(g;wl,wz,....nt)/F* ~F*}

with

(&) L aint oty
FTr(e: =F*(g: - . .
F (e,'rr1 LERETRL )=F (g,wl,wz,...nt) (e,nl,wz,...nt)(g,nl,nz,...wt).

The group GF*[HI’HZ""’Ht] has the permutation representation

m, m '
(H:l X HZZ X.e..X Htt)'Gé*(by definition). Gé*is known as the inertia factor

. m* mp % the | |
corresponding to F. Let {F #F #...4F % } be / set of inequivalent
From 1 2 t * * *
™ ) Pt

1 # F,

(e;wl,ﬂz,...ﬂt)(which can be trivially found by obtaining the Kronecker pro-

representations. / the representation matrices of F

#eoo ot F

ducts of the matrices of the constituting representations),the representation
% m.%* m * . : )

2 t
matrices of F1 # F2 #°f°#,Ft (g,wl,nz,..,.,nt) can be obtained easily

by a suitable permutation of the columms of the former»determined\by g by
v underline

the recipe given in an earlier paper of the present author. The / symbol

is used to denote a suitable pirmuta:ion of the columns of the Kronecker

product of the matrices of F?l R FZZ etc. If F is an irre@ucible represen-
tation of G£ th:n the irreducible representations of G(H
given by (ﬁ'F:i

induced representation. The concept of induced representation has been

1’H2""’Ht] are

[] .
®F ) 4 G[Hl’HZ""’Ht]’ where the arrow stands for an

reviewed by Coleman.

B. NMR Plethysms

* m * m,* m _*
Recall that F denaﬁsFll # Fzz #...#Ftt and the
inertia group corresponding to the representation F* is G *[Hl’HZ"'°’Ht]'
' F

The corresponding inertia factor is-G'*. Note that G'* is isomorphic to a
F F



&

symmetric group if G is a symmetric group. G'* is, of course, a subgroup of

G. G'* is isomorphic to G when the inertia group for F* is G[H, ,HZ,....,H 1.

_ F - the
The . GCCI of G' * correspondlng to/character X can be cast into the form
F
C.:(8)
i
GCCIX' = {x}- Z 11 x(g) X1 . (4.1)
G, [G *l geG * 1 h|
F F

where Cij(g) is the number of j cycles of g in the set Yi'

the set of vertices in Q that are replaced by the same copy ‘1‘i to obtain the

(Note that Yi is

NMR graph). It is possible to express a GCCI of G' in the above form since the

F
elements of G (and therefore those of G') permute/her%ices in Q such that.
the F*
they  are permuted only within/Y-sets. Equivalently, G is intransitlve

i.e., a vertex in Yi ‘does not get permuted to a vertex in Y by any geG (J # 1).

b, b b
Consequently, xllx2 e xnn can be recast in a convenient form viz. g g
(8)
ijj . Let Ak be the character of the representation Fi whlch constitutes
m *
~ the mi-fold outer product Fii « Since Fi'iS“a representation of the group
Hi which is a symmetric group,the GCCI's of'ﬁi's are S~functions. In particu-
lar, the S-function corresponding to Ak is shown below.
A . by b
k 1 '2 .
z ={A} I A (h) x (4.2)
o | lheH 1 %2 |
. Ak
Define Z,, or {A, } as shown below.
ij - k
R & |
A T A ' '
k k :
i {Ak} = Zi (xz > xlj) ‘ (4.3)
ij
the ( :
where/ 2] subscriptspn the x variables are products If we denote an irreducible
m*

representation # F ® F' 4 G[H 2""’Ht] by T then the GCCI of G[Hl’HZ""
Ht] corresponding to I can be obtained by the following substitution which we

call generalized plethysm.

17



GCCIP(G[HI,HZ,...,,Ht]) = {x} (xij > {Ak}' ) ‘ (4.4)
_ - ij

It is obtained by replacingva xij in {x} defined in (4.1) by {Ak} if this j
. i3

cycle in Y, is constituted by j copies of the representation whose character is

i

A A special case of this substitution for wreath product group Sk[SR] when

k"

the inertia factor is isomorphic to S, itself is the well-known plethysms of

k

S—functions found in Read's paper.l3 A further specialization to identify
representation was used and illustrated by the author in isomer enumeration:
and enumeration of NMR signals.14

Let us now illustrate generalized NMR plethyéms with an example and
demonstrate their significance in NMR spectroscopy. We consider here the NMR
group df the non-rigid butane molecule. The NMR group of this molecule is :
the generalized wreath producf SZ[S3,SZ] and its order is 288. As far as the
author is aware the charactervtable or»th:7fr:§ducible'representations of this
group was not obtained in the literature. Even Littlewood's book does not

have its character table. The two Y-sets are Y, = {1,4} and Y, = {2,3} where

1 2
we can take 1 and 4 as methyl éarbon and 2 and 3 as methylgne)carbon. The
irreducible representations of the NMR group of non-rigid butane are shown in
Table 3. In that table one can also find the dimension of each representation
and a»designationrAl, A2’ E1 eﬁc. We denote all one dimensional represen-
tations as A's, all 2 dimensional representations as-E's, three as F's etc.
The representations of §

partitions 3
priate / of integers. Let us now illustrate plethysms by two examples.

and 82 in that table are designated by the appro-~

1
24 = Ag which 1s [1%1 # [1°] # (2] # (2] ® 1171 in Table 3. The

inertia factor corresponding to [13] # [13] # [2] # [2] is S

Consider T

|

2 and ;he S-function

of Sé corresponding to [12]' cast in the form of (4.1) is shown below.

[12]' =1 (x2 xz - X, X
s’ 2 11 t21 12 722
2

Geer ) - (4.5)

18



The various {Ak}ifs and {Ak} 's are shown below

1]

%V(x; + 2x - 3x.x

{[13]}1” 1%2

{[2]}2

1l 2
-E' (xl _+ xz)

w’ng =ty -

(271, = (01 G xp) = § G + 2x - 3xyx))

{121}, = {121},

1,2, .
2 (xp %)

{[211,,

in (4.5) bj the appropriate-{kk} we get (4.6)
. 13

‘Replacing every xij

A
6
GCCI =

N

[(%(xi + 2%, - 3xlx2))2’- (%(xl + x,))

.3 v 1,2
(xz +,2x6 - 3x2x4)4'-§ (x2 + XA)]

=

10 B a8
288 ‘¥1 12 7 N

-5 32 2
- 4xlx2x3 - 20x1x2x + 9xlx

+ 12x5 - 24x3x

4
+ 4xl 2%,

NN
wN

xg + 8x

2 2 ' : .
+ 24x2x6 - 36x2x4 + 24x4x6 v . | (4-6?

‘Let us give another example of an induced representation namely the representa-

tion I, = G, = [3] # 12,11 # [2] # [2] t 5,[5,,8,] in Table 3. The inertia

19

~ factor for [3] # [2,1] # [2] # [2] is just Si, the group coﬁtaining the identity

and thus it is an induced representation. (This is because inertia factor is

not isomorphic to G). The various S-functions are shown below.
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2 2
ccchl' 1 *12
1
{[3]} -1 (x3 + 3x.x, + 2x.)
11 6 1 172 3
1 3
{[2,1]}11 r3 (2x1 - 2x3)
1 2
Thus the GCCI of G, using the plethysm substitution is
1 1.3 1,3 1,2 2
GCCI =% (x1 + 3x1x2 + 2x3) . Z_(le - 2x3) . [E-(x1 + xz)]
10 8 . 6 2 4 3
= 288 [4 + 20x1x2 + 28x1 2 + 12x1 2
7 5 3.2 .3 4 2
o+ 4% Xq - 4x1x2x3 - 20xl 9%X3 ~ 12x1x2x3 - 8x1 3
2 .2 |
- 16x1 2%y = 8x X ] | : .7

Note that the resulring GCCI's thet we obtain for the various irreducible
representations of the NMR group of butane can be directly obtained if one had -
the character table of this.group. Then all that one needs to do is to obtain
the cycle representation of each conjugacy classvand the corresponding
character and summing over all the conJugacy classes. Nevertheless, the above
techniques of generalized plethysms did- not require the character table of the
NMR group of butane of order. 288, We generated the GCCI's of this group

| as either pleythysm or product of S-functions of muchvsmaller groups
(namely? groups S3 and’Sz). It is this aepeet of this“technique that makes it
very useful for generating NMR spin species of non-rigid molecules. For non-
rigid molecules the NMR groups increase in an exponential order that it is not

feasible to obtain their character tables even in the composite

particle treatment. The NMR group of butane is also the NMR group of the:



molecule 2,2,3,3,4,4,5.5 octamethyl hexane in the composite particle

-representétion.

21

In—Table—4-we -give—all—the-GCCI's—ofthe butane molecule obtained with

this technique. Note that GCCI's of the represeﬁtation pairs (E3,E4),
(G2,G3), (GIO’Gll) are the same. Consequently, Table 4 lists only the unique
GCCI's. When one replaces the appropriate nuclear spin weights in the NMR
plethysms one obtains the generators of nuclear spin specieé. To illustrate,

" if one needs to obtain the proton NMR species of the non-rigid butane molecule
then one replace; every x, in the GCCI's by aki-Bk. Let us further exemplify
this point with?GSCI of Gl' To obtain the proton spin multiplets of non-rigid
butane corresponding to G1 we replace every X by uk-+8k in (4.7).

Expression (4.8) is the result of such a replacement.

G .
G b= ol 14@8) !0 + 20(048) % (a%48%) + 28(at)°

4,2 .23

+8°)” + 4(a+8)7(a3+83)

(248H2% + 12(a+8) " (a

4(o8)> (@%48%) (a¥+8%) - 20(a+8)(aP+8H) 2 (a%+8%)

2,.2.3, 3,3, 4, 3,.3.2

- 12(a+B) (a“+8) " (a”+87) - 8(a+B) (a"+87)
- 16(a+8) 2(a2482) (034832 - 8(a2+8%)%(a>+8DH?] (4.8)
" Expression (4.8) up on simplification yields (4.9)
, ‘.
G.F. =a’8 + 40582 + 90’83 + 140%8% + 16a”8°
+ 14a*8% + 90> 8 4 as’

87 + 40288 + a8 _. (4.9)

1 representation in the set of spin functions that have 9 a's
the set of _
and 18, 4Gl's in/spin functions containing 8a's and 28's, 9G1's in 70's and
n, n
38's etc. The coefficient of a "B “ generates number of times G, occurs in

Thus there is 1G



the set of spin functions containing n
n, n

a's and n,B's. Note that the term

1 2
a 18 corresponds to the total 2 component spin quantum number MF = (nl-nz)/z

so that when the coefficients in G.F.'s are sorted in accordance to their MF

values one immediately infers that the proton NMR G, species are

1
1 3 5 7 9
6,(2), “6,(5), 6, (5), ‘6,3, "6 ).

The numbers in parenthesis give the number of G, multiplets. of the appropriate

1

multiplicity. This can be briefly summarized in Table 6 where we give all the

profon NMR multiplets of non-rigid butane obtained using the NMR plethysm
generators described in this section. Note that one needs to construct the
spin species and spin functions in this repéeéentation for butane if one is
interested in a dynamic high resﬁlution NMR spectrum as a functioﬁ of tempera-
ture. This is beéause the composite particle representation breaks down at
lower temperatures since methyl protons become inequivalent, and thus appro-
priate correlation of spin species is not possible. Such-a correlation can be
easily obtained in the total representation as shown by the author in an
earlier paper9 where we called the resulting diagram a coalescence diagram.

If one needs to obtain the Deuterium NMR spin species of butane all that
one needs ﬁo do is to replace every Xk in the NMR plethysms in Table 4 byv
Ak + uk + vk, where A, u.and v-are the weights corresponding to m, = -1, 0, 1,
respectively of D nucleus. One can then easily sort the coefficients .in the
generating function in accordance to their total MF values and the spin

multiplets can be generated. The deuterium NMR spin multiplets thus obtained

for butane (D) are shown in Table 7.

22
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‘Table 1. The Character Table of 84, the NMR Groﬁp of Methane

(1) (2) (34)

T (1_)(2) (3)(4)“ (1) (234) (1234) (12) (34)
Orders 1 6 8 6 3
A, = [4] 1 1 1 1 1
T o= (3,1] 3 1 0 -1 -1
, | | .
F, = (212 3 -1 0o 1 -1
A =114 1 -1 1 -1 1
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Table 2. Generators of the NMR D Species of CD4

22 .3 &4 3 2. .2 3 22 . 2 22 .3

k3u ATu Al u ATV ATV AuTV  uTv ATy AUV BV AvT uv3



Table 3. Irreducible Representations of the NMR Group of Non-rigid
Butane. This Group is also Isomorphic to the NMR Group
of 2,2,3,3,4,4,5,5 Octamethyl Hexane in the Composite
Particle Representation. Note that there are 8 A repre-

- - ‘sentations, 6 E representations, 12 G re resentations and

1K representatlon satisfying 8-1246-22+41241.82 = 288.

r ' Dimension

rp=ap = (3] # 03] # (2] # (2] @ (2] 1
r,=a, = (31 # (3] # (2] # (21 @ (17] 1

ry=E = [3] # 3] # (2] # [1%] + 5,(54,5,] 2

r, = Ay = 031 # 031 # 07 # 0H) @21 1

ro =4, = (31 #03 ¢ 0% ¢ 1Y) @0 1

g = G = [3]1 # [2,1] # [2] # [2] 4 5,085:8,] 4

r, =G, = (3] # [2,1] # [2] # [1%] 4 5,[5,,5,] 4

Tg = G5 = [3] # [2,1] # [1%] # [2] 4 5,[5,,5,] 4

Ty =G, = 131 # (2,11 # 1171 # 11%) + s,05,.8,] 4

Tio = Ep = [31 # [1°] # (21 # [2] + §,05,.5,] 2

ry, = By = (31 #0714 (21 # [17] + 5,(5,,5,] 2

T, =E, = (31 # (%] # (1% # (2] + 5,[5,.8,] | 2

Pyy = Eg = (3] 4 [1%1 # 121 # [2%) + s,05,,8,] 2

r, =Cg = (2,11 #[2,1] # (2] # (21 & (2] 4

Tg =G =211 # (2,11 # 21 # 2] @ 1%y’ 4

Tig = Ky = (2,11 # [2,1] # [2] # [1%] 4 s 2[83:5,] | 8

] My, =6 = 12,10 # 12,11 # 171 # nh el s
Mg =G = (2,11 # 12,1 # 1% # DA @) _—

T = Cg = [2,1] # (171 # [2] # [2] * §,(55.5,] 4
T,y = Gy = [2,1] # [2%] # (2] # [1%] 4 5,(5,.5,] 4

T, = Gpq = (2,11 # (271 # 1121 # (2] + 5,[5,.8,] 4



Table 3 (continued)

T Dimension
T,y = Gy, = (2,11 # [1°] # (1% # 2%) 4 5,[5555,] 4
Ty =Ag = (171 # 2% # (2] # [2] ® (2] 1
Ty, = g = (121 # 12%1 # (21 # [21 © (1% 1
Ts = Eg = [1°] # 10°1 # (2] # (2%] 4 5,5,,5,] 2
T =4, =112 021 1021 ¢ nY @121 1
r,, =ag =111 # 1% ¢ 02 ¢ nH e nn?y 1

27

28



Table 4. GCCI's of 32[83,82], NMR Group of Butane

x2x

24,
-24)|
-24

36
-36
-36

24
~24

48
48

12
-12

12

28
28
-20
-20
-20
-20

24 20
2 20

22 .
.22

Al

4

12
12
12
-12
-12

A2

24
-24

24
T =24
-24

12.
-12

A3

24,
24
=24

36
-36
36

4
4

-8

A4

24
~-24

12
-12

12
12
-24
=24
-12
-36

A5

24
=48

A6

12 24 36 =24
-12 =24 -36

4

-12
-12
-24

28
28

=20
-20

22

A7

24

48

22

A8

-18 .
-18

24
16

16
-16

12

El

16

E2

18
-18
-18

-20
-16

E3

-16

-16
=24

36
12
12
-12

ES5

24
-12

16

-12

E6

-20

28

20
12

Gl

12
~-12

-12 -
- =20

G2 -

28

12

-20

G4

-24

2% =24

-24

24
-24

G5

24
~24

4

G6
G7

24

24
-24

2% =24

-24

4

16

24,

24

16
20
12

G8

12
-12

28

-12

-20

G9

12
-12

-12
-20

G10
G12

K1

16

12

-20

28

16

-16
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Table 5. Generating Functions for the Proton NMR Spin Species Butane.
GF's for E, and El,’ G, and G,,and G,. and G,., are tiie same

3 2 3 10 11
r 10 a98 0'.882 a783 a684 aSBS a486 0367 a288 a89 810
Ay 1 2 6 9 14 14 14 9 6 2 1
A2 0 2 4 9 11 14 11 9 4 2 0
A3 0 0 1 1 2 2. 2 1 1 0 0
A4 0 0 0 1 1 2 1 1 0 0 0
A5 _ 0 0 0 0 0 0 0 0 0 0 0
A6 0 0 0 0 0 0 0 0 0 0 0
A7 0 0 0 0 0 0 0 0 0 0 0
A8 0 0 0 0 0 0 0 0 0 0 0
El 0 1 3 6 9 10 9 6 3 1 0
E2 0 0 0 0 0 0 0 0 0 0 0
E, 0 0 0 0 0 0 0 0 0 0 0
E5 0 0 0 0 0 0 0 0 0 0 0
E6 0 0 0 0 0 0, 0 0 0 0 0
G1 0 1 4 9 14 16 14 9 4 1 0
G2 0 0 1 3 5 6 5 3 1 0 0
G4 0 0 0 1 2 2 2 1 0 0 0
G5 0 0 1 2 5 5 5 2 1 0 0
G6 0 0 0 2 3 5 3 2 0 0 0
G7 0 0 0 0 1 1 1 0 0 0 0
G8 0 0 0 0 0 1 0 0 0 0 0
G9 0 0 0 0 0 0 0 0 0 0 0
GlO 0 0 0 0 0 0 0 0 0 0 0
GlZ 0 0 0 0 0 0 0 0 0 0 0
K 0 0 0 1 3 4 3 1 0 0 0
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Proton NMR Species of Butane.

Numbers are the Fre

Table 6.

uencies of

q

Occurrence of that Spin Species

11

0
12345678123456123456789

1

2
AAAAAAAAEEEEEEGGGGGGGGGGGGK
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Numbers under each Symmetry

Table 7.

Deuterium NMR Spin Species of Butane.

Species and Multiplicity give the Frequency of Occurrence of that

Spin Multiplet

15 17 19 21

13

11

%'
T

22
17
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- Figure Captions

_ Figﬁré 4.

Figure 1.

Figure 2.

Figure 3.

NMR Gel'fand states of CD4.A, M, and v ére_the weights

corresponding to the 3 spin states of D nuclei with o, = -1,

0 and 1. The lexical ordering of the weight is v > u > A.

Possible tableaus that can be obtained by adding 3 a's
and' 1 B to the YOuﬁg graph of (4,2). When the éymbols a's
and B's are read from right to left one obtains évlattice ,
permutation of a38. These tableaus-de;ermine the
s-functions coﬁtained‘in‘the product {4,2}{3,1}.

NMR graph of B(CH The center ¢ircle is the boron

3)3’

nucleus.

'The”NMR:graph in Figure‘3vasna compbsition of the graphs

Q and T.
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