
UC Berkeley
UC Berkeley Previously Published Works

Title
Pushing People Around

Permalink
https://escholarship.org/uc/item/0257c41s

Authors
Arikan, Okan
Forsyth, David A
O’Brien, James F

Publication Date
2005-07-01

Supplemental Material
https://escholarship.org/uc/item/0257c41s#supplemental

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/0257c41s
https://escholarship.org/uc/item/0257c41s#supplemental
https://escholarship.org
http://www.cdlib.org/

Eurographics/ACM SIGGRAPH Symposium on Computer Animation (2005)
K. Anjyo, P. Faloutsos (Editors)

Pushing People Around

Okan Arikan† David A. Forsyth‡ James F. O’Brien†

†University of California, Berkeley ‡University of Illinois, Urbana-Champaign

Abstract
We present an algorithm for animating characters being pushed by an external source such as a user or a game
environment. We start with a collection of motions of a real person responding to being pushed. When a character
is pushed, we synthesize new motions by picking a motion from the recorded collection and modifying it so that the
character responds to the push from the desired direction and location on its body. Determining the deformation
parameters that realistically modify a recorded response motion is difficult. Choosing the response motion that
will look best when modified is also non-trivial, especially in real-time. To estimate the envelope of deformation
parameters that yield visually plausible modifications of a given motion, and to find the best motion to modify,
we introduce an oracle. The oracle is trained using a set of synthesized response motions that are identified by a
user as good and bad. Once trained, the oracle can, in real-time, estimate the visual quality of all motions in the
collection and required deformation parameters to serve a desired push.
Our method performs better than a baseline algorithm of picking the closest response motion in configuration
space, because our method can find visually plausible transitions that do not necessarily correspond to similar
motions in terms of configuration. Our method can also start with a limited set of recorded motions and modify
them so that they can be used to serve different pushes on the upper body.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and RealismAnimation;

1. Introduction

Interactive environments such as training simulations and
computer games require interactive characters that react to
their environments in a visually plausible way. A direct
way of interacting with a character is by applying forces
to him/her. In this paper, we introduce a method for syn-
thesizing motions for a character receiving forces from its
environment due to collisions or other physical actions. Our
method focuses on brief impulses (pushes), rather than sus-
tained forces. We will synthesize motions that react to such
pushes and restore balance without falling down (figure 1).

Generating these motions is a difficult problem because
the dynamics of recovering from a push are complicated. A
forceful push leaves a person in an unbalanced state and may
require taking multiple guard steps to recover. Since balance
is restored after a series of maneuvers that are off balance,
purely physically based methods may have difficulty synthe-
sizing a recovery motion. Due to this complexity many com-
puter games switch to a rag doll simulation when a character
is shot or pushed, and simply let the character fall down.

We will start with a set of motions that were recorded
from a real actor using motion capture. Some of these mo-

Figure 1: This figure is a time lapsed shot of a motion syn-
thesized using our method. Character receives a push on the
chest from left (indicated as the red arrow) and takes protec-
tive steps backwards to restore balance.

tions are everyday motions such as standing, walking and
running, and some of them are motions of the actor being
pushed by someone else while performing these everyday
motions. We will call the example motions that react to a
push, response motions. We specifically focus on responses
that restore balance without falling down. When the char-
acter receives a push, we will serve it by transitioning from

c© The Eurographics Association 2005.

60 O. Arikan and D. A. Forsyth and J. F. O’Brien / Pushing People Around

the current configuration of the character to some available
response motion, just before the actor was pushed. Realis-
tically, it is not plausible to capture enough motions so that
this algorithm would work for a character being pushed any
time, at any location on the body, from any direction.

Another problem for this baseline algorithm is deciding
whether the character can transition from the current body
configuration to the body configuration in the recorded re-
sponse motion. Traditionally, to compute whether we can
switch from one motion to another, the motions (joint posi-
tions / angles) are compared numerically to see if they are
similar to within a user specified threshold. This method
is not ideal, because the similarity threshold for transitions
must be set very conservatively to guarantee good look-
ing transitions. However, sometimes transitioning between
numerically dissimilar motions can be visually plausible
whereas sometimes transitioning between numerically simi-
lar motions can be detrimental to visual quality.

We introduce a parametric deformation model (Section
3.2) that takes a recorded response to a push, and modifies
it so that the motion can be used for being pushed from a
similar but different direction. Our deformation model is not
perfect: some parameters can lead to implausible motions
such as bad kinematic configurations or bad body dynamics.

When a push arrives, we need to find which response mo-
tion should serve the push and which deformation parame-
ters must be used on the response motion. To answer these
queries, we introduce an oracle (Section 5) that estimates the
transitions and deformations that produce realistic motions.
This oracle is trained interactively, using machine learning
algorithms on a set of user identified realistic and unrealistic
motions (off balance motion, impossible human configura-
tions, bad dynamics etc.). After the training, our synthesis
algorithm uses the oracle, in real-time, to generate natural
looking motions that respond the pushes. We validate our
synthesis algorithm by performing user studies (Section 6).

Our animated character can be pushed anywhere on the
upper body, from any direction. Our method generates good
looking response motions that maintain balance and respond
to most pushes, but the method can fail if the user applies
pushes for which no plausible response can be synthesized.
Our quality oracle allows the algorithm to quickly find good
response motions (with corresponding deformation parame-
ters), or to detect that no response generates a good motion.
Since we can detect when our method fails, we can use an-
other way of handling an external force, such as switching
to a physically based simulator and letting the character fall
over.
2. Related Work

A simple way of generating motion is rearranging pieces
from previously created motions. An important prob-
lem is finding a re-arrangement such that the synthe-
sized motion meets certain objectives. Different algorithms
[MTH00, KGP02, AF02, LCR∗02] solve this problem by

performing a combinatorial search. However, methods that
build on rearrangement of motion pieces cannot synthesize
truly novel body configurations, because every frame they
synthesize is a frame in the original collection of motions
they start with.

Physically based methods generate truly novel body
configurations using equations of motion. Such meth-
ods typically formulate the synthesis as an optimization
[WK88, FP03]. Controller based approaches, such as
[BMH98, HWBO95, HP97] formulate the optimization as a
parameter search for force/torque generators (controllers).
Although impressive results have been obtained for sys-
tems such as bird flight [WP03], realistic full body hu-
man motion is still too complex (due to complex human
anatomical structure as well as stylistic variations) for purely
physics driven synthesis. Hybrid methods that start from hu-
man motion or biomechanics data have also been explored.
[PW99, LP02, ALP04] provide different ways of modifying
input motion data to obtain novel motions that attain differ-
ent objectives.

[ZH99, ZH02] present a method utilizing a physically
based simulator to track a previously recorded motion. The
character they simulate can respond to external pushes; how-
ever, this method cannot generate protective steps to re-
cover balance after a forceful hit. [FvdPT01a, FvdPT01b]
presents a controller based approach for recovering bal-
ance (or falling down if not possible) after a push. Their
work uses physically based models whereas we take a more
data driven approach to preserve style and interactivity.
[ZMCF05] introduces a physically based model where the
character is ballistically simulated to joint to another motion
in the database of motions. Their method is well suited to-
wards handling motions that fall down and our method is
geared towards recovery motions that maintain balance. It
would be very interesting to combine two approaches as they
naturally complement each other.

[GMHP04] uses machine learning for developing a gen-
erative model of human poses, and [GT95] used a learned
model to approximate the physics of an animated character.
[AFO03] also uses machine learning techniques to identify
actions from motion sequences. Our oracle uses a similar
idea in the broader context of recognizing visually realistic
motions.

The details of human movement are produced by ex-
tremely complex interactions between the central nervous
system, the spinal cord, various motor neurons and the
musculo-skeletal system. Human observers appear to be
exquisitely sensitive to some of these details, such as vari-
ations due to both anatomical structure and individual style.
For identifying types of motion from light-dot displays,
see [Joh73]; for identifying friends from light-dot displays,
see [CK77]; for gender recognition from light-dot displays,
see [BCK78, CPK78]; for the effect of rendering algorithms
on the perceived reality of a motion, see [HOT98].

c© The Eurographics Association 2005.

O. Arikan and D. A. Forsyth and J. F. O’Brien / Pushing People Around 61

Figure 2: Our synthesis pipeline is organized as above. A
motion source generates joint positions and velocities for ev-
ery frame. An offset vector to joint positions and their veloc-
ities is maintained and integrated to die off to zero. A user
push introduces additional joint velocities which are incor-
porated into the derivative of the offset vector. Any discon-
tinuities due to transitions are computed and incorporated
into the offset vector to create smooth motion. After the off-
set vector is added to the original joint positions, we display
the character.

Some large changes to a motion are innocuous while
other, slight disturbances can produce a significant degra-
dation in perceived quality. It remains mysterious how one
might predict what kinds of change will prove acceptable in
general, but there is good reason to believe that reactions to
pushes are particularly easy to modify effectively. This is
because, for somewhere between 100-250ms after the push
has arrived, the central nervous system can play no part in
the quality of the reaction (total proprioceptive feedback de-
lays are of the order of 100-150ms [FC89]; total visuomotor
feedback delays are of the order 200-250ms [GKM81]; a
general discussion of delays appears in [MWWS93]). Fur-
thermore, it is now well-established that feedback loops
within muscles and through the spinal arc are an important
part of motor control (e.g. [Mia95]). This previous work
suggests that it is reasonable to model muscles as springs for
a short period of time after a push.

3. Push Response

We represent body configurations with joint positions and
velocities in a global coordinate frame. In order to display
a body configuration, we need to convert this representation
to root position and joint angles. We do this by formulating
inverse kinematics as a minimization that tries to find the
joint angles that produce joint positions closest to the given
configuration. We also use the joint angles in the previous
frame as the starting point for this numerical optimization.
A motion consists of body configurations sampled at a fixed
frequency (60 frames per second in our case). Let Pt denote
the vector of all joint positions (if the character has 30 joints,

Pt is 90 dimensional). We then define Ct = [Pt Ṗt] as the
body configuration at time t.

3.1. Motion Transition

To handle a push, the character will transition from the body
configuration at the time of the push to the beginning of a
previously recorded response motion (just before the actor
was pushed). At this transition point, the character starts
playing frames from the response motion (we rotate and
translate the response motion so that it starts from the po-
sition and orientation of the character when he was pushed).
This naïve way of transitioning creates an unavoidable dis-
continuity in the motion (in joint angles or joint positions) at
the transition point. Offline synthesis algorithms deal with
this discontinuity by modifying the motion before and after
the transition, so that joint positions (or angles) are continu-
ous. A real-time algorithm cannot use this strategy, because
the portion of the motion before the transition point has al-
ready been displayed to the user and hence cannot be modi-
fied.

To avoid discontinuity, we maintain an offset vector, Ot
(see Figure 2). At every frame, this offset vector and its
time derivative are added to the joint positions and velocities
before the character is displayed: Ct = [Pt + Ot Ṗt + Ȯt].
After the offset is added, it is integrated according to the
following second order ODE:

Öt = KsOt +KdȮt (1)

In this equation, Ks and Kd are stiffness and damping
terms that pull Ot to zero. In our implementation we used
Ks = −50 and Kd = −10. Prior to any transitions, the offset
vector (and its time derivative) are initialized to zero. Intu-
itively, the offset vector is tied to the origin with a damped
zero-length spring. When Ot = Ȯt = 0, joint positions and
velocities remain unchanged.

When we reach a transition point, we compute the discon-
tinuity in joint positions (∆Pt) and joint velocities (˙∆Pt) and
add the discontinuity to the offset vector: Ot = Ot + ∆Pt ,
Ȯt = Ȯt + ˙∆Pt . Even though the joint positions before adding
the offset signal contain a discontinuity, the displayed char-
acter does not. The discontinuity is absorbed by the offset
vector (Ot) and decays smoothly to zero as the character fol-
lows the response motion.

3.2. Motion Deformation

A given recorded response motion corresponds to the partic-
ular push that produced it. We can make a motion look like
it is responding to a push from a different direction by mod-
ifying joint positions of the original response motion. We do
this by manipulating the offset vector (Ot).

When the character is pushed, we add an impulse vector
to the derivative of the offset vector: Ȯt = Ȯt + M, that po-
tentially modifies joint velocities. However, to generate vi-
sually plausible motions, M cannot be a random set of num-
bers. For example, if the entries in M corresponding to the

c© The Eurographics Association 2005.

62 O. Arikan and D. A. Forsyth and J. F. O’Brien / Pushing People Around

Figure 3: Our deformation model modifies a recorded mo-
tion as a function of parameters (θ). Some of these parame-
ters may result in good motions and some may produce bad
motions. The character on the left is a frame from an orig-
inal response motion where the actor was pushed from be-
hind. The middle figure is the corresponding frame from a
modified version of the same motion. The deformation pa-
rameters for the middle character produce a plausible mo-
tion, because the configuration of the character is reason-
able. The character on the right is the corresponding frame
that is modified with a different set of parameters. The con-
figuration of the character is implausible, and hence the cor-
responding deformation parameters should be avoided.

left shoulder and left elbow have drastically different values,
these joints would move away from each other and the re-
sulting inverse kinematics solution would exhibit unpleasant
artifacts.

In practice, we only generate one impulse vector for one
joint: the joint that is being pushed in the original response
motion (the joint that was pushed in each recorded response
was hand labelled). The components of M corresponding
to other joints are then set to a fraction of this vector, de-
pending on their distances to the joint being pushed. Nearby
joints are given a larger fraction and distant joints are given
a smaller fraction. For example, if the response motion was
the actor being pushed on the left shoulder, we will intro-
duce an additional velocity to the left shoulder. A smaller
fraction of this velocity is added to neck and left elbow and
an even smaller fraction is added to left hand. Formally, we
write M = [m1 m2 · · ·mk], where mi is the component of M

corresponding to ith joint, which is given as: mi = me−ωd2
i .

In this equation di is the distance between the ith joint and
the position on the character being pushed, m is the impulse
amount (situated at the joint being pushed) and ω is a pa-
rameter that governs how fast (as a function of distance) the
impulse declines.

Once a motion is deformed using this procedure, we com-
pute the velocity of the joint that was pushed. We collect
the location being pushed and its velocity into a 6 dimen-
sional impulse vector (3 dimensions for the location on the
body being pushed and 3 for the velocity of this location).

This vector is the handle that the user controls to deliver a
push; the user indicates the position he/she wants to push
and the desired velocity of this position. The synthesis algo-
rithm should then find the response motion and deformation
parameters that will make the joint being pushed move with
this velocity (Section 4).

The deformation applied is governed by m (the change in
the velocities at the joint that is pushed) and ω (how quickly
we taper this extra velocity across the body). Let us call
these parameters θ = [ω m]. This deformation procedure is
not meant to be physically based, or to produce physically
accurate results. We simply use this method to take an in-
put response motion and modify it so that it can be used to
serve a push from a direction. Not all choices of parameters
produce a natural looking motion (see figure 3).

In practice, there is an envelope of non-zero parameter
values θ, that yield realistic deformations and generate re-
sponse motions that recover pushes from slightly different
directions with different magnitudes. Section 5 will explain
how we find such good parameter values.

4. Synthesis Algorithm

We create a motion graph that captures the possible transi-
tions in the database of motions (including responses). We
use an algorithm similar to [KGP02, AF02] to produce mo-
tion when the character is not being pushed. Care needs to
be paid not to follow any edges that lead to a response mo-
tion during this traversal, because it would yield a motion of
the character responding to a push without any user input.
The method for traversing the motion graph is application
dependent; we can make the character go to a particular spot
or follow a path. In our implementation, we simply perform
a random walk, so that the character idly moves about wait-
ing for someone to push him.

When the character receives a push, we only have the cur-
rent configuration of the body (Ct) and the impulse vector
that is received from the user. We need to find a previously
recorded recovery motion and the deformation parameters,
such that when we synthesize a transition using the algo-
rithm presented in Section 3, the resulting motion is visually
plausible and responds to the user’s push. We will denote
the body configuration in the ith recorded response motion
just before the actor was pushed with Ci.

Let us assume that we have the following two functions:

θ = F(Ci, impulse) (2)

Q = G(Ct ,Ci,θ) (3)

F takes a response motion (Ci) and an impulse, and esti-
mates the deformation parameters (θ) that would be required
to deform the response motion to meet the requested push.
G takes the current configuration (Ct), response motion (Ci),
deformation parameters (θ), and estimates the visual quality
(Q) of the motion synthesized if we were to transition into
the given response motion with the given deformation pa-

c© The Eurographics Association 2005.

O. Arikan and D. A. Forsyth and J. F. O’Brien / Pushing People Around 63

Baseline Our method (no deformations) Our method

Figure 4: The left figure is the motion synthesized using a baseline algorithm where we simply transition to the closest (in terms
of configuration) recorded motion. The push direction and location is indicated with the red arrow. The closest push that the
baseline algorithm can transition, is not pushed from the right direction, because the the character is pushed on the shoulder
laterally. The middle figure shows the motion synthesized using our algorithm without any deformation applied. Since our
oracle is not limited by numerical similarity between the configurations that we transition between, we can synthesize a recovery
motion that is pushed from the correct direction. The motion on the right is synthesized using our algorithm with deformations.
The oracle presented in Section 5 prevents deformations that create visual artifacts. The motion with deformations responds to
the direction of the push better.

rameters. We measure visual quality as a real valued number
between 0 and 1, where Q = 1 means the motion is visually
good and Q = 0 means a visually bad motion we would like
to avoid. F and G together, form our oracle that estimates
the visual quality of the motion before it is synthesized. We
will explain how we create these functions in Section 5.

When a push arrives, we iterate over all response motions
and evaluate F with the desired push to find the deformation
parameters that would be required. We then evaluate the vi-
sual quality (using G) of the motion that would result if we
were to transition to the response motion with the estimated
deformation parameters. We find the response and deforma-
tion parameters that yield the best quality score (Q) and then
generate a transition into that response (see figure 4).

Creating a transition into a response motion is equivalent
to jumping from one location to another in the motion graph.
After the transition, we return to synthesizing normal mo-
tions for the character (not being pushed), because the re-
sponse motions join other motions in the motion graph.

An important advantage of having an oracle that estimates
the quality of a motion before it is synthesized is that we can
query it on any motion. For example, right after the char-
acter receives a push and transitions into a response motion,
another push may arrive. We can handle such a repeated
push the same way, by finding a response motion we can
transition into. Notice that in the case of a repeated push,
the current body configuration itself (Ct) may be a part of a
previous response motion.
5. The Oracle

As described previously, to respond to an external push, we
transition into a deformed version of a previously recorded
response motion. This deformation is governed by the pa-
rameters θ, some settings of which may result in unrealistic
motions. Moreover, we cannot expect to have a natural look-
ing motion while transitioning from any body configuration

to any recorded response motion. For example, our method
would generate dynamically implausible motions if we were
to transition from running to a motion of a standing person
being pushed.

When a push arrives, we have two crucial questions to
answer: First, which previously recorded response motions
should we transition to, and second, what deformation pa-
rameters should we apply so that the resulting motion looks
natural and responds to the push that the user applied.

We could try every recorded response motion and a large
set of deformation parameters to see which pair generates
the most visually plausible result. However, this is not fea-
sible for a real-time system. Instead, we develop an oracle
that decides which response motion and which deformation
parameters we should use. We create this oracle by fitting a
function to examples of good and bad motions synthesized
using random transitions and random deformation parame-
ters.

5.1. Training

The objective of the oracle is to differentiate between good
and bad combinations of transition and deformation param-
eters. We create this oracle from an example set of already
labelled good and bad transitions with deformation parame-
ters. We approximate F and G by scattered data interpola-
tion using a set of <Ct ,Ci,θ,Q, impulse > examples. In par-
ticular, we used a nearest 10 neighbor interpolator. To gen-
erate these examples, we sample a random configuration in
our set of motions (Ct), a random response motion (Ci) and
random deformation parameters (θ). We then ask the user to
evaluate the quality of the motion synthesized by transition-
ing to the selected response motion with selected deforma-
tion parameters. The user can attach any quality value be-
tween 0 and 1. This is not a binary value: the user can attach
continuous values to indicate some synthesized motions are
better than others. After synthesizing the motion, we com-

c© The Eurographics Association 2005.

64 O. Arikan and D. A. Forsyth and J. F. O’Brien / Pushing People Around

pute the impulse automatically by looking at the velocity of
the joint being pushed in the response motion.

Rather than generating many motions using these random
transitions/parameters and asking user to attach a quality
score, we train our oracle interactively. Before we synthe-
size a response motion, we first estimate its score using the
already labelled examples. To do this, we first compute G
by scattered data interpolation on the examples that have al-
ready been labelled. We then sample a random transition
with random parameters and estimate its quality score using
G. We display the synthesized motion and its estimated qual-
ity score to the user. This way, the user can see how good
the oracle thinks the motion is and correct it if necessary. G
is re-fitted every time the user provides a new example. We
can also stop the training when the oracle has been trained
on enough data so that the user mostly agrees on what the
quality of the synthesized motion is. Intuitively, this oracle
can be thought of as a user trained numerical similarity mea-
sure as given two motions, it estimates their visual similarity
for transitioning between them.

Realistically, the dimensionality of configuration (Ct and
Ci) can be high: if there are 30 joints in the body, (x,y,z)
coordinates of the joint positions and their velocities would
take 180 numbers. In practice, we reduce this dimension-
ality of the configurations to 5 using linear dimensionality
reduction techniques (PCA). The dimensionality of θ is 4 (1
for ω and 3 for m). In our implementation, we trained this
oracle for 3 hours of the user time with 1500 examples of
good and bad push responses.

6. User Studies

Our synthesis algorithm creates motions that maximize the
quality estimated by our oracle. Our algorithm, therefore,
generates visually plausible motions only if the motions that
our oracle thinks are visually plausible are actually visually
plausible when judged by real people.

To verify that our oracle agrees with real people and that
our synthesizer generates visually good motions, we per-
formed a comparative study. Our study group consisted
of 35 computer science undergraduate students (group 1),
without any background on our research or motion synthe-
sis technology. We also performed the same user study on 4
computer science graduate students (group 2) that are famil-
iar with motion synthesis techniques, but are not involved in
this research.

We first created a corpus of motions synthesized using our
algorithm by using different random transitions and different
random deformation parameters. For each motion, we esti-
mated its quality using the oracle discussed in Section 5. We
also included unmodified original response motions.

For 15 minutes, the subjects were displayed a random sub-
set of these motions (rendered realistically with the same
character skin as in the attached video) and were asked
whether the motion looked like an actual recording of a hu-

Group1

Oracle Good Oracle Bad Mocap

Human Good 807 227 240

Human Unsure 65 47 29

Human Bad 511 507 126

Group2

Oracle Good Oracle Bad Mocap

Human Good 39 2 12

Human Unsure 0 0 0

Human Bad 39 38 11

Figure 5: We performed user studies on 35 computer sci-
ence undergraduate students (Group 1) and 4 graduate stu-
dents (Group 2) with exposure to motion synthesis algo-
rithms. The subjects were asked to identify if a displayed
motion was an actual recording from a real person (Hu-
man Good) or not. We also queried our oracle and es-
timated the visual quality of the same motions. We la-
belled those motions that have an estimated quality greater
than 0.5 as Oracle Good and the rest as Oracle Bad. We
also displayed unmodified motion capture sequences (Mo-
tion Capture). The figure above contains some conditional
probabilities that we computed from our studies. For ex-
ample, the probability that a user would accept an actual
motion capture sequence as an actual recording of a hu-
man (P(Human Good|Motion Capture)) is 0.52 for under-
graduate students and 0.61 for graduate students. The table
shows the number of motion sequences that users observed.
For example, there are 807 sequences that were classified
as realistic by our oracle and were also deemed realistic by
users. Our user study indicates that the rate at which a hu-
man would accept a sequence that is evaluated by the oracle
as good, is about the the rate at which a human would accept
an original motion capture sequence as good.

c© The Eurographics Association 2005.

O. Arikan and D. A. Forsyth and J. F. O’Brien / Pushing People Around 65

Figure 6: This figure shows an illustration of our real-time
interface. The user can push the character anytime from any
direction (indicated as red arrows on the ground). See the
attached video for a real-time demonstration of this inter-
face.

man motion (Q > 0.5), or an artificially synthesized motion
(Q ≤ 0.5). The users were also allowed (but discouraged)
to say “unsure” if they could not make an assessment of the
displayed motion.

Our findings indicate that our oracle mostly agrees with
the user on good motions (both the oracle and users think
the motion is good looking). However if the user believes
the motion is non-human looking, our oracle disagrees al-
most half of the time (see figure 5). Our user study indicates
that the rate at which a human would accept a sequence that
is evaluated by the oracle as good, is about the the rate at
which a human would accept an original motion capture se-
quence as good. Notice that people are not very good at
recognizing captured motions (Mocap). Some of this is due
to the artifacts in character modeling/skinning/lighting and
some of it is due to inaccuracies in marker trajectories be-
cause of the forceful push that the actor experiences. We
believe there are many factors that influence the perception
of motion and understanding these factors is an important
research area.
7. Results

Using our method, we can synthesize real-time motion of
a synthetic character responding to pushes that may come at
any time and from any direction. The attached video demon-
strates our results using real-time screen capture where the
user interacts with the character. The character is very re-
active; the user can push the character from any direction.
Our method generally generates good looking motions that
do not suffer from visually disturbing kinematical and dy-
namical artifacts.

We have demonstrated our method on motions such as
standing, walking and running. However, we think the
method is applicable to other basic motions if there are ex-

Figure 7: Our method can be used to handle interactions
in a virtual environment. This figure demonstrates 20 char-
acters populating a space. Whenever characters bump into
each other or hit the boundary of the space (indicated as the
red square), they are pushed away. See the attached video
for the animation.

amples of such motions and possible responses to external
pushes while performing these motions in the database.

Our results demonstrate that our deformation model is
able to enrich the input set of motions, so that a limited
set of recorded response motions can be modified to serve
pushes from different directions with different magnitudes.
Our oracle can identify the envelope of parameters that yield
visually plausible deformations as well as transitions.

The real-time screen capture in the attached video was
recorded on a dual processor Athlon 2.2+GHz desktop com-
puter. For this project, we captured 40 minutes of motion
capture data. Within this data, we had the actor being pushed
200 times on various positions in the upper body, from var-
ious directions with various magnitudes. We also doubled
the size of our dataset by mirroring these sequences.

An important component of the success of this method
is the observation that when a real person gets pushed, he
behaves passively for a very brief amount of time after the
push. During this period, muscles do not yet take action for
recovery and act similarly to springs. The central nervous
control system then takes over and establishes balance. It
is during the passive motion that we change the original re-
sponse motions the most. Because the displacements to the
joint positions that we introduce also behave like springs, the
transition and deformation effects are not visually discern-
able, unless excessively large displacements are introduced
(due to bad θ parameters or bad transitions).

Whenever the character receives a push, we estimate the
quality of the best possible transition we can synthesize. If
there are not enough response motions, the best quality that
we estimate (using equation 3) may be bad. This means
our algorithm can detect when it is performing poorly (i.e.,
synthesizing a bad looking human motion). If the estimated

c© The Eurographics Association 2005.

66 O. Arikan and D. A. Forsyth and J. F. O’Brien / Pushing People Around

quality of the motion is poor, we can switch to another way
of handling pushes such as switching to a ragdoll simulation
or using the technique presented by [ZMCF05], however we
have not yet investigated this alternative.

8. Acknowledgements

We thank the other members of the Berkeley Graphics Group
and our reviewers for their helpful criticism and comments.
This work was supported in part by ONR N00014-01-1-
0890, California MICRO 03-067 and 04-066 and by gen-
erous support from Apple Computer, Sony Computer Enter-
tainment America, Alias, the Hellman Family Fund, and the
Alfred P. Sloan Foundation.

References
[AF02] ARIKAN O., FORSYTH D. A.: Interactive motion gen-

eration from examples. In Proceedings of the 29th annual con-
ference on Computer graphics and interactive techniques (2002),
ACM Press, pp. 483–490.

[AFO03] ARIKAN O., FORSYTH D., O’BRIEN J.: Motion syn-
thesis from annotations. SIGGRAPH (2003).

[ALP04] ABE Y., LIU C. K., POPOVIĆ Z.: Momentum-based
parameterization of dynamic character motion. In Proceedings
of the 2004 ACM SIGGRAPH/Eurographics symposium on Com-
puter animation (2004), pp. 173–182.

[BCK78] BARCLAY C. D., CUTTING J. E., KOZLOWSKI L. T.:
Temporal and spatial factors in gait perception that influence gen-
der recognition. Perception & Psychophysics 23, 2 (1978), 145–
152.

[BMH98] BROGAN D. C., METOYER R. A., HODGINS J. K.:
Dynamically simulated characters in virtual environments. IEEE
Computer Graphics & Applications (1998).

[CK77] CUTTING J. E., KOZLOWSKI L. T.: Recognizing friends
by their walk: Gait perception without familiarity cues. Bulletin
of the Psychonomic Society 9, 5 (1977), 353–356.

[CPK78] CUTTING J. E., PROFFITT D. R., KOZLOWSKI L. T.:
A biomechanical invariant for gait perception. Journal of Exper-
imental Psychology: Human Perception and Performance 4, 3
(1978), 357–372.

[FC89] FLANDERS M., CORDO P.: Kinesthetic and visual con-
trol of a bimanual task: specification of direction and amplitude.
J Neurosci 9 (1989), 447–453.

[FP03] FANG A. C., POLLARD N. S.: Efficient synthesis of
physically valid human motion. ACM Transactions on Graph-
ics 22, 3 (July 2003), 417–426.

[FvdPT01a] FALOUTSOS P., VAN DE PANNE M., TERZOPOU-
LOS D.: Composable controllers for physics-based character an-
imation. In Proceedings of SIGGRAPH 2001 (2001), pp. 251–
260.

[FvdPT01b] FALOUTSOS P., VAN DE PANNE M., TERZOPOU-
LOS D.: The virtual stuntman: dynamic characters with a reper-
toire of autonomous motor skills. Computers & Graphics 25, 6
(Dec. 2001), 933–953.

[GKM81] GEORGOPOULOS A., KALASKA J., MASSEY J.: Spa-
tial trajectories and reaction times of aimed movements: Effects
of practice, uncertainty and change in target location. J. Neuro-
physiol. 46 (1981), 725–743.

[GMHP04] GROCHOW K., MARTIN S. L., HERTZMANN A.,
POPOVIĆ Z.: Style-based inverse kinematics. In Proceedings

of 2004 ACM Symposium on Interactive 3D Graphics (2004),
pp. 522–531.

[GT95] GRZESZCZUK R., TERZOPOULOS D.: Automated learn-
ing of muscle-actuated locomotion through control abstraction.
In Proceedings of SIGGRAPH 95 (Aug. 1995), pp. 63–70.

[HOT98] HODGINS J. K., O’BRIEN J. F., TUMBLIN J.: Per-
ception of human motion with different geometric models. IEEE
Transactions on Visualization and Computer Graphics 4, 4 (Oct.
1998), 307–316.

[HP97] HODGINS J. K., POLLARD N. S.: Adapting simulated
behaviors for new characters. In Proceedings of SIGGRAPH
1997 (1997), vol. 31, pp. 153–162.

[HWBO95] HODGINS J., WOOTEN W., BROGAN D., O’BRIEN

J.: Animating human athletics. In Proceedings of SIGGRAPH
1995 (1995), pp. 71–78.

[Joh73] JOHANSSON G.: Visual perception of biological motion
and a model for its analysis. Perception & Psychophysics 14, 2
(1973), 201–211.

[KGP02] KOVAR L., GLEICHER M., PIGHIN F.: Motion graphs.
In Proceedings of the 29th annual conference on Computer
graphics and interactive techniques (2002), ACM Press, pp. 473–
482.

[LCR∗02] LEE J., CHAI J., REITSMA P. S. A., HODGINS J. K.,
POLLARD N. S.: Interactive control of avatars animated with hu-
man motion data. In Proceedings of the 29th annual conference
on Computer graphics and interactive techniques (2002), ACM
Press, pp. 491–500.

[LP02] LIU C. K., POPOVIĆ Z.: Synthesis of complex dynamic
character motion from simple animations. ACM Transactions on
Graphics 21, 3 (July 2002), 408–416.

[Mia95] MIALL R. C.: Motor control, biological, and theoreti-
cal. MIT Press, 1995, pp. 597–600.

[MTH00] MOLINA-TANCO L., HILTON A.: Realistic synthesis
of novel human movements from a database of motion capture
examples. In Workshop on Human Motion (HUMO’00) (2000),
pp. 137–142.

[MWWS93] MIALL R., WEIR D., WOLPERT D., STEIN J.: Is
the cerebellum a smith predictor? J Mot Behav 25 (1993), 203–
216.

[PW99] POPOVIĆ Z., WITKIN A. P.: Physically based mo-
tion transformation. In Proceedings of SIGGRAPH 99 (Aug.
1999), Computer Graphics Proceedings, Annual Conference Se-
ries, pp. 11–20.

[WK88] WITKIN A., KASS M.: Spacetime constraints. In Pro-
ceedings of SIGGRAPH 1988 (1988), pp. 159–168.

[WP03] WU J.-C., POPOVIĆ Z.: Realistic modeling of bird flight
animations. In Proceedings of SIGGRAPH 2003 (2003), pp. 888–
895.

[ZH99] ZORDAN V. B., HODGINS J. K.: Tracking and modify-
ing upper-body human motion data with dynamic simulation. In
Computer Animation and Simulation ’99 (Sept. 1999).

[ZH02] ZORDAN V. B., HODGINS J. K.: Motion capture-driven
simulations that hit and react. In ACM SIGGRAPH Symposium
on Computer Animation (July 2002), pp. 89–96.

[ZMCF05] ZORDAN V. B., MAJKOSKA A., CHIU B., FAST M.:
Dynamic response for motion capture animation. In To appear in
SIGGRAPH 2005 (2005).

c© The Eurographics Association 2005.

