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A P P L I E D  S C I E N C E S  A N D  E N G I N E E R I N G

Diagnosing Parkinson’s disease via behavioral 
biometrics of keystroke dynamics
Trinny Tat†, Guorui Chen†, Jing Xu, Xun Zhao, Yunsheng Fang, Jun Chen*

Parkinson’s disease (PD) is one of the rapidly growing neurodegenerative diseases, affecting more than 10 million 
people worldwide. Early and accurate diagnosis of PD is highly desirable for therapeutic interventions but remains 
a substantial challenge. We developed a soft, portable intelligent keyboard leveraging magnetoelasticity to detect 
subtle pressure variations in keystroke dynamics by converting continuous keystrokes into high-fidelity electrical 
signals, thus enabling the quantitative analysis of PD motor symptoms using machine learning. Relying on a 
fundamental working mechanism, the intelligent keyboard demonstrates highly sensitive, intrinsically water-
proof, and biocompatible properties, with the successful demonstration in a pilot study on patients with PD. To 
facilitate the potential continuous monitoring of PD, a customized cellphone application was developed to inte-
grate the intelligent keyboard into a wireless platform. Together, the intelligent keyboard system’s compelling 
properties position it as a promising tool for advancing early diagnosis and facilitating personalized, predictive, 
preventative, and participatory approaches to PD healthcare.

INTRODUCTION
Parkinson’s disease (PD) affects more than 10 million people globally, 
costing a total economic burden of $52 billion (1). This troubling 
statistic is exacerbated by the currently incurable nature of the dis-
ease, as there are no treatments that can halt or reverse its progres-
sion. This not only affects those diagnosed with PD but also places a 
substantial strain on caregivers. Correspondingly, on the one hand, 
the severity of PD can lead to faster clearance of medication, such as 
levodopa, from the bloodstream, reducing the duration of symptom 
stabilization (2). On the other hand, while currently on-the-market 
PD medications do provide some symptomatic relief, their efficacy 
diminishes as the disease advances, frequently accompanied by con-
siderable and occasionally intolerable side effects (3). Moreover, 
considering the prevalence of polypharmacy—the use of multiple 
medications—among the elderly and those with PD (4, 5), to prevent 
an even greater risk of adverse drug reactions, diagnosing and moni-
toring PD become crucial interventions to efficiently manage the dis-
ease and optimize personalized drug pharmacodynamic properties, 
which ultimately aim to minimize the side effects on patients and 
enhance clinical efficacy (6).

The current assessment of PD progression heavily relies upon 
expensive and cumbersome invasive scans, as well as subjective 
clinical evaluation. For example, the Movement Disorder Society–
Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) performed 
by physicians can be subjective, as patients provide their opinions 
on current symptoms and functional limitations (7). Moreover, 
the MDS-UPDRS is typically administered only during the initial 
assessment and does not conveniently reflect patients’ ongoing sta-
tus (8). On top of that, the assessment may lack objectivity, sensi-
tivity, and repeatability in scale to detect subtle changes (9, 10). 
Neuroimaging and sonography are alternative and additional ap-
proaches that provide high degrees of sensitivity and specificity 
for early PD confirmation (11, 12). Unfortunately, these nonmotor 

diagnostic tests require a third-level medical referral, starting from 
a family practitioner to more specialized physicians such as a neu-
rologist and a neuroimaging specialist (13), and, in general, are ex-
pensive and intermittent, and unsuitable for frequent and continuous 
tracking of PD progression. In addition, relying solely on scans can-
not effectively confirm PD but rather requires a combination of con-
sultations and examinations (14). Worse, there exist some possible 
adverse reactions such as headache, nausea, vertigo, dry mouth, diz-
ziness, hypersensitivity reaction, and pain (15). Consequently, the 
absence of efficient, quantitative, continuous, and easily accessible 
biomarkers to track PD progression remains a notable challenge, in 
both drug development and therapeutic interventions.

In general, patients with PD can exhibit symptoms that visibly 
affect movements of the hands and fingers (16, 17), such as bradyki-
nesia, tremor (4 to 6 Hz) (18, 19), and rigidity (20, 21), which could 
alter an individual’s keystroke dynamics—the typing patterns on a 
keyboard (22). The reasons for using a keyboard for PD diagnosis 
are, first, they are widely adopted for human-computer interfacing 
(23), including those with mild to moderate motor impairments, 
thus making the analysis of keystroke dynamics easily accessible 
for monitoring typing behavior among patients with PD (24, 25). 
Second, typing is a common activity that requires fine motor skills 
and coordination and its quantitative data can be provided via key-
stroke dynamics. Last, the keyboard can also capture biomarkers, 
such as flight time (FT), hold time (HT), and force, that reflect mo-
tor changes associated with PD (26, 27). Consequently, this device, 
when designed with such parameters in mind, holds promise in 
diagnosing PD and, in the future, determining the effectiveness of 
therapies in slowing disease progression.

Until now, diagnosing PD symptoms using keystroke dynamics 
has been explored in previous studies (25, 26, 28–33). However, 
these efforts often rely on conventional wired keyboards that lack 
integrated sensors and do not capture critical data, such as typing 
pressure. Henceforward, we present an innovative platform, a soft 
and pressure-sensitive intelligent keyboard system (IKS) for diag-
nosing PD symptoms. The IKS leverages the giant magnetoelastic 
effect, enabling the tracing and recording of the behavioral biomet-
rics of keystroke dynamics by converting typing movements into 
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high-fidelity electrical signals. This innovation endows the IKS with 
self-powered, waterproof, biocompatible, and portable sensing capa-
bilities, allowing for wireless and continuous monitoring of both 
keystroke pressure and timing data. Unlike traditional keyboards, 
the IKS enables continuous measurement of both the dynamic time 
intervals between keystrokes and the force applied to each keystroke. 
These individualized typing and timing signals serve as personal-
ized and easily accessible biomarkers for continuously monitoring 
person-specific changes over time in PD. The intelligent keyboard 
holds a strain of up to 140%, Young’s modulus of 563 kPa, a frequency 
range of 0.5 to 10 Hz that is suitable for capturing human motions 
and PD tremors during typing, a limit of detection as low as 0.25 kPa, 
a short response time of 4 ms, and a signal-to-noise ratio (SNR) of 
34.5 dB. To enhance its capabilities, we developed a mobile applica-
tion (APP) that integrates with the intelligent keyboard, forming an 
IKS. During the successful demonstration of the pilot human study, 
using deep-learning algorithms, the IKS provided a robust analysis 
of typing patterns from both participants in laboratory settings and 
patients with PD, which was harnessed for early diagnosis of PD 
disease symptoms with an average prediction accuracy of 96.97%. 
Overall, the soft and pressure-sensitive IKS offers an innovative 
approach for continuous and personalized monitoring of PD symp-
toms. Its advanced characteristics and analytical capabilities provide 
valuable insights for clinical assessment, facilitating early interven-
tion and more effective management of PD disease.

RESULTS
Working mechanism
The intelligent keyboard comprises an array of magnetoelastic keys 
as sensor units connected in parallel to form the completed modern 
English alphabet, the space bar, and several punctuation marks such 
as the comma and period. Consisting of a liquid metal fiber fused 
with a soft magnetoelastic thin film, each key unit of the intelligent 
keyboard is pressure sensitive and can convert typing motions on 
the keyboard into local and high-fidelity electrical signals without 
the need for an external power source, containing both timing and 
force information for signal-to-function execution. On the basis of 
the coupling of magnetoelastic effect and magnetic induction (MI), 
the intelligent keyboard was developed for analyzing signals pro-
duced from subtle variations in typing biometrics to reveal impor-
tant timing and pressure information regarding the patient’s disease 
status (Fig. 1, A and B, and fig. S1). These keystroke-generated elec-
trical signals can be wirelessly shared with physicians remotely, ana-
lyzed to extract clinical information, and diagnose PD, enabling 
real-time monitoring and assessment from anywhere at any time. 
Because the electrical signals for diagnosis are generated by finger 
typing, the intelligent keyboard is working in a self-powered man-
ner. In detail, we focused on developing a typing-driven diagnosis 
mechanism for the fabrication of a flexible, stretchable, and deform-
able keyboard (Fig. 1C and fig. S2).

Structurally, each key unit holds two components as two func-
tional layers to complete the typing–to–electrical signal conversion. 
The first component is a soft magnetoelastic composite, also known 
as the magnetomechanical coupling (MC) layer, which facilitates 
the typing-to-magnetic conversion process. Figure S3 depicts the 
formation process of the MC layer. The other component is the con-
ductive liquid metal fiber that embodies the thin film, acting as the 
MI layer, enabling the magnetic-to-electrical conversion. Last, the 

elastomer serves as structural support. Micro–computed tomography 
(micro-CT; Fig. 1D and movie S1) and scanning electron micro-
scope (SEM) images illustrated in fig. S4 reveals the layer of liquid 
metal and the soft magnetoelastic thin film with a random distribu-
tion of micromagnets in the porous and elastic cellular polymer ma-
trix. Figures S5 and S6 present the injected eutectic gallium-indium 
(EGaIn) liquid metal alloy within an elastic silicon hollow microfi-
ber with a diameter of approximately 0.5 mm. The liquid fiber metal 
is flexible and stretchable as demonstrated in fig. S7 and movie S2, 
which endeavors the keyboard with flexibility, stretchability, and de-
formability. When putting all the components together, Fig. 1E 
demonstrates the schematic of how they are positioned. Due to the 
consistent intensity of the magnetic fields when penetrating through 
water, the keyboard is completely waterproof, ensuring stable output 
signals even during extreme water interactions, such as when in 
contact with perspiring human hands (fig. S8) (34).

To optimize the typing–to–electrical energy conversion of the 
intelligent keyboard, we systematically examined the assembly and 
properties of the two major components that contribute to the self-
powered diagnosis working principle. To begin with, we verified the 
soft magnetoelastic composite. To optimize the mechanical, magnetic, 
and magnetoelastic properties of each key sensor unit, we investi-
gated the different weight concentrations of the MC layer. Under con-
tinuously applied pressure, 83 wt % was deemed to be the most 
optimal concentration due to the highest value of magnetic field 
variation of 10.1 mT compared to those with 50 wt % (6.7 mT) and 
33 wt % (0.9 mT) of micromagnets, as seen in Fig. 1F. The 83 wt % of 
the MC layer provided a strain up to 140% (Fig. 1G) and Young’s 
modulus of 563 kPa. Further increase in concentration would hin-
der the proper mixing of magnetic nanoparticles and the polymer, 
resulting in a more rigid and less flexible product than desired. With 
a scalable and easy fabrication method, the intelligent keyboard offers 
excellent advantages in cost-effectiveness and versatile adaptability 
toward practical applications, working in a self-powered and self-
driven manner for continuous and timely PD diagnosis.

Sensing performance characterization
The intelligent keyboard works on the basis of a coupling effect of 
the magnetoelastic effect in the MC layer and the MI in the MI layer. 
To optimize its typing sensing performance, we investigated the per-
formance of the MC and the MI components as a single sensor unit. 
Each sensor has a dimension of 16 mm by 16 mm by 1 mm. To begin 
with, taking into consideration a user’s keystroke dynamics and the 
mechanism of the device, when a finger presses a sensory key during 
the compressed state, two-level interactions occur. First, at the mi-
croscale level, the deformed shape during the compressed state causes 
magnetic particle–particle interaction, leading to changes in distance 
and variations of the particles. At the atomic scale level, magnetic 
dipole–dipole interactions occur, causing the rotation and move-
ment of the magnetic dipole within the particle. Hence, the surface 
magnetic flux density would decrease, as seen in Fig. 2A. In addi-
tion, Fig. 2B shows that the demagnetizing fields are proportional to 
the decrease in the surface magnetic flux density at 3-N uniaxial 
pressure. Once the finger was released, the key sensor unit no longer 
experienced uniaxial stress. Consequently, the micromagnet wavy 
chain recovered to its original condition, allowing the magnetic flux 
density to reverse back to the initial intensity. After being com-
pressed, the magnetic hysteresis loop of the system exhibited a 
decrease in both the remnant magnetization and coercive field due 
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to the rearrangement of the micromagnets (fig. S9). As illustrated in 
fig. S10, b and h represent the horizontal and vertical distances, re-
spectively, between the adjacent magnetic dipoles in a wavy chain.

Both the voltage and current outputs of the key sensor unit were 
verified with different numbers of turns. Figure 2C displays a posi-
tive relationship that agrees with Faraday’s law of induction, stating 
that the electrical outputs are directly proportional to the number of 
conductive fiber turns and the magnetic field variation of the MC 
layer. Similarly, Fig. 2D exhibits a predictable positive linear pro-
gression between the output performance and the thickness of the 
device. However, because the proposed keyboard cover must main-
tain a slim profile to fit onto a computer keyboard, one turn of liquid 
metal fiber and a thickness of 1.0 mm were used to provide adequate 
output performance without undermining the typing comfortability 
for the end users. According to the National Institute for Occupa-
tional Safety and Health (NIOSH), the configuration of keyboard 
surfaces, including thickness and materials, has a minimal impact 
on user comfort as long as ergonomic typing principles are followed. 
These principles include maintaining a neutral posture for hands and 
wrists to reduce musculoskeletal problems. NIOSH also emphasized 

that changing a single workplace element, such as the keyboard, is 
unlikely to cause discomfort when proper ergonomic setups are in 
place. As the keyboard cover adds only 1-mm thickness and assum-
ably no other workstation elements are altered, the impact on comfort 
is expected to be minimal. Instead, users should focus on several 
important factors such as the workstation and chair adjustability, 
equipment placement, and optimal lighting to ensure overall com-
fort and reduce strain (35).

In addition, to verify the response of the key sensor unit in different 
frequencies, we investigated the pulse waveforms subjected to 1 to 
10 Hz at a fixed pressure, as illustrated in fig. S11, and observed that 
increasing the applied frequencies yielded higher electrical outputs. 
With an increased frequency, the output signals from 0.5 to 10 Hz 
exhibited a higher SNR up to 34.5 dB (Fig. 2E) and a shorter response 
time as low as 4 ms (Fig. 2F), as the MC layer became more respon-
sive to deformation. Note S1 further clarifies the trends of the response 
time and SNR and the comparative data from other existing frequency-
based PD diagnosing technologies. In addition, to study the sensi-
tivity of the magnetoelastic key sensor unit, loading-unloading 
experiments were conducted at 1 Hz with varying applied pressure. 

Fig. 1. A self-powered magnetoelastic intelligent keyboard to diagnose PD. (A) Schematic of the proposed intelligent keyboard as a conceptual diagnostic tool for 
patients with PD. (B) Graphical illustration of neurogenerative changes with and without adaptive treatment response. A.U., arbitrary unit. (C) Photograph showing the 
flexibility of the intelligent keyboard. Scale bar, 3 cm. (D) 3D micro-CT of a single magnetoelastic key. Scale bar, 5 mm. (E) Schematic design of the intelligent keyboard 
showing the functional layers. (F) Magnetic flux variations under applied compressive stress of different micromagnetic concentrations. (G) Stress-strain curves of the soft 
magnetoelastic film under different micromagnetic concentrations.
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As shown in fig. S12, the key sensor unit could detect pressure as low 
as 0.25 kPa. Figure 2G substantiates the durability of the sensor. 
With 12,000 cycles of applied uniaxial compression, the device still 
exhibited constant current output, exclaiming its excellent durabili-
ty and repeatability. To demonstrate the robustness of the device, we 
conducted finger tapping on a single key and collected current and 
voltage signals, showing repeated data (Fig. 2H and fig. S13, respec-
tively). The stability of the device was further evaluated under vari-
ous conditions, including exposure to artificial sweat and different 
temperature and humidity levels. The device was submerged in 
laboratory-prepared artificial sweat for 24 and 72 hours. The results 
in Fig. 2I showed that its signals remained like the original condi-
tion even under the interference of the liquid environment. Simi-
larly, several tests conducted at different temperature and humidity 
environments (fig. S14) also displayed consistent output signals, sig-
nifying the stability of the device. Last but not least, ensuring unifor-
mity across the keyboard is critical to confirm that output signals are 
solely influenced by typing and not by internal variability among 
individual keys. To assess this, we conducted a uniformity test to 
measure the current signals across all 26 letters under constant force 
(fig. S15). Then, a one-way analysis of variance (ANOVA) revealed 
no significant differences between the keys, as the P value exceeded 

0.05. This result confirmed the uniformity across the keyboard, es-
tablishing its consistency before testing with human participants.

Intelligent keyboard for behavioral biometrics of 
keystroke dynamics
With the fundamental working principle, together with machine 
learning algorithms and a cellphone APP, the IKS is a promising 
technology, as an application for PD progression monitoring, due 
to its advantages in excellent material properties that supply the 
end product with flexibility, stretchability, deformability, water resis-
tance, and signal-to-function and biomechanical-to-electrical plat-
form (Fig. 3A).

In the realm of data science, machine learning has emerged as a 
powerful tool for extracting personalized healthcare information 
from imperceptibly abnormal signals. Building upon this founda-
tion, first, we established a laboratory-scale algorithm to differenti-
ate three healthy users’ keystroke dynamic signals. Laboratory-scale 
typing datasets were collected by our intelligent keyboard for the 
machine learning model training. Specifically, three healthy partici-
pants (a 21-year-old male, a 25-year-old female, and a 29-year-old 
female) were instructed to type a randomly generated English para-
graph for 1 min, repeated seven times. Figure 3B and fig. S16 show 

Fig. 2. Understanding the pressure sensing performance during typing. (A) Mechanism of the self-powered personalized keyboard. (B) Magnetic flux density map-
pings of the soft magnetoelastic film in the original state and under 3-N compression. (C) Dependence of current and voltage output of the magnetoelastic key on the 
number of turns of liquid metal fibers. (D) Dependence of the current and voltage output of the magnetoelastic key on the thickness of the magnetoelastic key. (E and 
F) Dependence of the SNR (E) and response time (F) of the magnetoelastic key, measured using current output, on a range of applied pressure frequencies. (G) Cyclic test 
of the magnetoelastic key for more than 12,000 cycles and an enlarged view of the marked region, showing excellent durability and repeatability. (H) Current output of 
finger tapping on a single key. (I) Stability of the keyboard after submerging in artificial sweat for 0, 24, and 72 hours.
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an excerpt of the signals generated by these three volunteers during 
typing. These generated signals containing useful information such 
as FT, HT, and applied pressure (Fig. 3C) were extracted and ana-
lyzed. FT is defined as the time between two peak voltages, which is 
the interval between releasing one key and pressing the next key. HT 
is the time measured within one peak, for which a key is pressed and 
held down before being released. Pressure is the amplitude of the 
current peak at which a force is applied to press the key.

In addition, these sensing signals were preprocessed by sampling 
a 1-s time series, generating the training records. Two sets of fea-
tures were extracted from these data. The minimal features describe 
the data with the minimum number of features, and efficient fea-
tures contain a larger number of features to describe the data. The 
feature type was divided into all and selected/filtered. In table S1, the 
number of features for each set is listed, and, meanwhile, using 
10-fold cross-validation for model training, the results are also sum-
marized. The next step after feature exaction was to keep only the 
relevant features. Filtering features to keep only the relevant features 
can reduce the computation time for both algorithms without com-
promising the accuracy of the model. Two classifiers—decision tree 

(DT) and random forest (RF)—were established to train the model. 
Several DTs make up an RF (Fig. 3D) (36). To test the capability of 
the model, we randomly divided the data into a test-to-training ra-
tio of 10 to 90%. The performance of the model on the test set was 
reported by standard metrics of precision, recall, and F score, and 
the results are summarized in table S2. According to the listed re-
sults, RF with efficient features gave the most accurate result of 
98.38%, as the cross-validation means accuracy. The confusion ma-
trices in Fig. 3E compare the performance of the classifiers on the 
test set. The AUC represents the average of the one-on-one area un-
der the curve values calculated for different pairs of classes. Ultimately, 
RF outperformed DT for all regimes of the test set.

Cellphone APP for the IKS
We also developed the intelligent keyboard into an IKS with a wire-
less, Bluetooth platform technology, including a keyboard cover, a 
microcontroller with machine learning algorithms, and a prototype 
of a customized cellphone APP for data display, storage, and sharing 
(Fig. 3F). The typing signals generated by the intelligent keyboard 
were first passed through a data acquisition–transmission system to 

Fig. 3. Machine learning–assisted intelligent keyboard for behavioral biometrics of keystroke dynamics. (A) Demonstration of the intelligent keyboard with sweat-
proof capability. Scale bar, 3.5 cm. (B) Current output of three different participants typing with the keyboard. (C) Features that can be detected from a waveform of typing. 
(D) Schematic RF algorithm made up of several DT algorithms. (E) Confusion matrices for DT and RF algorithms with efficient features to detect each healthy person typing 
random words. (F) Customized cellphone APP interface to display the typing results in the front end. (G) System process flow including the IKS with magnetoelastic key 
sensor array of the intelligent keyboard connected in parallel, an amplifying circuit, a low-pass filter circuit, a microcontroller with a machine learning algorithm, an on-
board Bluetooth module, and a laboratory-developed smartphone APP or computer interface that can display and send data to physicians in one touch.
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ensure high-quality signal conditioning. Specifically, these signals 
were processed through the signal preprocessing unit (fig. S17A), 
starting with a preamplifier (AD8429), which provides high-gain 
amplification of low-level signals while maintaining low noise per-
formance. The amplified signals were subsequently filtered using a 
band-pass filter (AD828) to remove unwanted frequency compo-
nents and isolate the relevant signal range, ensuring a clean and 
noise-free signal for further stages. Last, a post-amplifier (AD603) 
boosted the signal strength to a level suitable for accurate processing 
by downstream components. The processed signals were fed into a 
microcontroller (Arduino Nano RP2040 Connect) (fig. S17B), which 
digitizes the analog data using its integrated analog-to-digital con-
verter and processes them using machine learning algorithms. The 
algorithm distinguishes and expectedly provides an estimated assess-
ment of PD subtypes based on the calculated values of FT, latency, 
HT, current, and variance. The processed signals were then wirelessly 
transmitted to a Bluetooth low energy–enabled cellphone, which 
serves as the central interface for real-time display and sharing. The 
system process chart for the IKS is represented in Fig. 3G. Figure 
S18 and movie S3 demonstrate the real-time delivery of typing sig-
nals from a perspiring hand to the cellphone APP. Figure S19 show-
cases the screenshots of the APP’s interface, and movie S4 reflects its 
ability to wirelessly receive, store, and transmit data to third-party 
recipients via different types of sending APPs such as email and mes-
sage. All these patient-generated data can be one-click forwarded to 
physicians for PD diagnosis through email, cloud electronic health 
records, or messages for further feedback. Briefly, the machine 
learning–assisted IKS serves as a quantitative tool for monitoring 
the progression of PD and provides physicians with numerical data 
for standard notifications and warnings of the patient’s health status.

Evaluation of the IKS for PD diagnosis in a clinical setting 
using deep learning
To further examine the system toward real-life applications, we con-
ducted a pilot human study with PD patients at the University of 
California, Los Angeles (UCLA) Neurology Clinic (approved institu-
tional review board no. 21-000974). Three patients with PD were 
recruited and assigned a unique identification number. On the basis 
of visual observation, patient 3 appeared to have more severe symp-
toms due to their slow gait and sporadic movements. Figure S20 dis-
plays the experimental setup, while Fig. 4A and movie S5 showcase 
the hands of a patient with PD on the intelligent keyboard, typing 
random English words for 1 min, repeated three times, and performing 
a reaction time (RT) experiment, repeated five times. In an earlier 
approach to classifying between three different healthy participants, 
features from the time-series signals generated by the intelligent 
keyboard, such as statistical measures, frequency-domain characteris-
tics, and time-domain peaks, were manually extracted and selected. 
However, as the dataset size increased, the classification accuracy of 
these shallow models—DT and RF—markedly declined.

To address these limitations, we implemented a deep-learning 
framework based on a convolutional neural network (CNN). Rather 
than manually selecting features for the model, the entire time-series 
signals—encompassing all typing-relevant biomarkers such as inten-
tional keystroke events, tremor-induced noise, and FT—were fed 
directly into the CNN. This end-to-end strategy enables the network 
to automatically learn the most discriminative features for distin-
guishing PD typing signals from those of healthy participants. Con-
sequently, explicit feature engineering or filtering of tremor-induced 

noise is unnecessary, as the convolutional layers inherently act as 
automatic feature extractors, focusing on the most relevant patterns 
for classification. Unlike DT and RF, which rely on human-defined 
features, CNN operates on a more abstract representation derived 
from the entire signal.

The deep-learning pipeline includes (i) data collection and aug-
mentation, (ii) CNN model training, validation, and testing, and 
(iii) investigating how the CNN automatically extracted relevant 
features during the training process, highlighting its ability to serve as 
an automatic feature extractor that focuses on the most pertinent pat-
terns for PD classification. Figure 4B summarizes the deep-learning 
framework used in our data analysis method.

In data collection and augmentation, a total of 16 individuals par-
ticipated in the human study, including three patients diagnosed with 
PD. Each participant was instructed to perform similar typing tasks 
using the intelligent keyboard, which was used to collect time-series 
electrical signals. The collected time-series signals were segmented 
into fixed slices, with each slice containing 20,000 data points.

Given the smaller number of patients with PD (3 people) com-
pared to healthy participants (13 people), the CNN classifier risked 
learning to achieve high accuracy by predominantly classifying all 
signals as belonging to healthy participants. To mitigate this bias, we 
augmented the intelligent keyboard–generated time-series electrical 
signals from patients with PD using the following techniques to bal-
ance the sample sizes between the two categories. Temporal inver-
sion reversed the sequence of the intelligent keyboard–generated 
time-series electrical signals, simulating alternative dynamic responses 
by altering their temporal order. Amplitude inversion vertically 
inverted the intelligent keyboard–generated time-series electrical 
signal amplitude, introducing variability in the waveform’s represen-
tation and analysis. Temporal-spatial inversion combined temporal 
and amplitude inversions to create comprehensive alterations in 
intelligent keyboard–generated time-series electrical signal charac-
teristics, further diversifying the dataset. Permutation segmented 
the original intelligent keyboard–generated time-series electrical 
signals into smaller parts, which were then randomly rearranged, 
challenging the model to maintain accuracy despite disruptions in 
chronological sequence. Last but not least, time warping selectively 
elongated certain intelligent keyboard–generated time-series electrical 
signal segments, introducing variations in temporal dynamics to simu-
late different scenarios.

Following augmentation, we obtained 164 samples for the healthy 
subject category (HES) and 175 samples for the PD patient category 
(PDP). In addition to balancing the sample sizes between the two 
categories, these augmentation techniques enhanced the variety of 
the training data without requiring additional data collection. By 
introducing variability into the dataset, these data augmentation 
methods prevented the model from memorizing specific features, 
thereby reducing the risk of overfitting—an established practice in 
the computer science community (37–39).

The second step of the deep-learning pipeline is CNN model 
training, validation, and testing. Developing a deep-learning model 
entirely from the ground up is often challenging due to the consider-
able computational resources and extensive training data it demands. 
To address these challenges, we adopted transfer learning, a tech-
nique widely recognized to adapt pretrained neural networks to 
different tasks (40–42). For our study, we used a pretrained CNN 
initially developed to classify images across 1000 categories (43). 
This network, trained on a large and varied dataset, is known for its 
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strong performance in image recognition tasks. By leveraging this 
robust foundation, we tailored the network to analyze intelligent 
keyboard–generated time-series electrical signals. This approach ele-
gantly sidestepped the challenges posed by limited data, allowing us to 
achieve robust performance without needing to start from scratch.

To convert the intelligent keyboard–generated time-series elec-
trical signals into images suitable for classification by the pretrained 
CNN model (fig. S21A), we used the continuous wavelet transform 
(CWT) to generate time-frequency representations, known as sca-
lograms (fig. S21B), in the MATLAB Wavelet Toolbox. A scalogram 
captures the absolute value of the CWT coefficients of a signal, offer-
ing a detailed visualization of its frequency content over time. These 
time-frequency representations effectively preserved key typing-
related information, such as short, sharp signal changes from key-
stroke events and distinct frequency oscillations associated with 
tremors. This transformation not only retained the essential typing 
signal characteristics but also rendered them interpretable by CNN, 

enabling the model to autonomously determine which features are 
most indicative of PD versus healthy typing patterns.

After conversion, 10% of the samples were reserved as an un-
seen test set, while the remaining samples were split into 80% for 
training and 20% for validation. The labels (HES or PDP) of these 
samples served as the ground truth for supervised learning. Spe-
cific modifications were made to adapt the model to our task, such 
as replacing the fully connected layer with a configuration that 
outputs the number of classes (two: HES and PDP). The convolu-
tional layers extract time-frequency representation features, while 
the dropout layers help prevent overfitting by randomly deactivat-
ing a portion of neurons during training (44). The training process 
was carried out using the MATLAB Parallel Computing Toolbox 
and Deep Learning Toolbox. After approximately 800 iterations 
(Fig. 4C), the tuned CNN model achieved a classification accuracy 
of 93.55% on the validation set (fig. S22A) and 96.97% on the 
test set (fig. S22B). Detailed performance metrics, including the 

Fig. 4. The IKS for diagnosing PD using deep learning. (A) Photograph of patients with PD typing on IKS. Scale bar, 6 cm. (B) Presentation of the CNN framework. 
(C) Training process of the CNN, including the validation accuracy and the loss function evolved in relation to the number of iterations. (D) Time-frequency representation 
image generated from a slice of original signals from the PD patient typing. (E) Output activations of the first convolutional layer in an 8-by-8 grid, one for each channel 
in the layer. (F) Channel 55 exhibits the highest activation. (G) Predictive model from the generated data. This flowchart is for illustrative purposes only and does not 
represent actual clinical or machine learning correctness.
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confusion matrix, precision, recall, and F1 score, are provided to 
support the evaluation (Table 1).

The third step of the deep-learning pipeline is to investigate how 
CNN automatically extracted relevant features during training. The 
results confirmed that by leveraging a pre-trained CNN model and 
transfer learning techniques, the fine-tuned CNN could autonomously 
learn features from the time-frequency representations of the intel-
ligent keyboard–generated time-series electrical signals—thereby 
classifying them as HES or PDP.

Convolutional layers in the network act as filters that extract dis-
tinct image features. Early layers typically learn common features such 
as edges, blobs, and color variations on the time-frequency repre-
sentations. To demonstrate this process, we analyzed the network 
activations and compared regions of high activation with the original 
time-frequency representations. For instance, we displayed an original 
scalogram image (Fig. 4D), which is a time-frequency representation 
of the intelligent keyboard–generated time-series electrical signals, 
alongside the activations of the first convolutional layer (Fig. 4E).

A CNN layer contains multiple two-dimensional (2D) grids, known 
as channels. Each section of the activation map represents the response 
of a channel in the first convolutional layer. Bright areas indicate 
a strong positive response. Dark areas indicate a strong negative 
response. Gray areas show little to no reaction to the input. We 
found that channel 55 exhibited the highest activation (Fig. 4F). By 
comparing this channel with the original time-frequency represen-
tations, we saw that it activated on the bright color regions (indica-
tive of frequency differences), implying that the first convolutional 
layer primarily learns features related to the frequency variations in 
the signals.

While end-to-end deep learning may appear to function as a 
“black box,” understanding exactly how features are extracted could 
be an active area of research in the computer science community 
(45). This ongoing theoretical investigation lies beyond the scope of 
our current work, which focused on developing an intelligent key-
board and demonstrating a proof-of-concept approach for classify-
ing signals using deep learning.

To further examine PD motor symptoms, fig. S23A shows a 3-s 
data excerpt of each patient’s normalized typing pattern, and fig. S23 
(B to D) shows a 20-s excerpt. Movie S6 shows real-time generated 
data displayed on a computer. Besides the typing patterns, we also 
collected the participants’ characters per minute (CPM), words per 
minute (WPM) (fig. S24), FT, HT, and RT (fig. S25) data for additional 
comparison with healthy participants. Using the Mann-Whitney U test, 
statistical differences (P < 0.05) were noted between patients with PD 
and healthy participants in these metrics. The Mann-Whitney U test 

was chosen because of its nonparametric nature. Because typing 
performance often varies on the basis of motor skills and impair-
ments, the data distribution might not be normal. Movie S7 demon-
strates how the patients’ RT was examined. Upon observation, patients 
with slower and more rigid keystroke dynamics or higher severity 
would exhibit more minor peaks. In particular, patient 3, who dem-
onstrated more difficulties in their physical movements compared 
to others with more fluent typing movements, produced more minor 
peaks and data gaps. Observably, while pressing each key and moving 
to the next key, patient 3 produced many tremor noises. Conversely, 
the correlation occurred with patient 2, whose CPM and WPM data 
were highest, and who also expectedly displayed the highest fluency 
in the observed electrical signals.

In conclusion, the pilot study demonstrated the feasibility of the 
intelligent keyboard in converting keystroke dynamics to high-fidelity 
electrical signals even with subtle changes. Typical PD biomarkers 
such as slow movement, RT, and tremors could be quantitatively in-
dicated via the collected data, showing timing and pressure-related 
information. In addition, the patient’s severity, as measured by the 
MDS-UPDRS, was unknown, as it was only assessed at the initial 
examination by physicians. We also relied on visual observation 
to assess the relationship between PD patient severity and key-
stroke dynamics. Comparing the dataset with the gold standard 
MDS-UPDRS assessed at the time of the experiment would provide 
a more accurate evaluation of the intelligent keyboard’s perfor-
mance. Figure 4G illustrates a hypothetical flowchart that integrates 
various features to facilitate a comprehensive evaluation of PD progres-
sion. The IKS provides valuable insights and lays the foundation for 
further advancements in personalized medicine, particularly in the 
context of PD therapeutics and medication titration.

IKS’ technical advancements
In comparison to previously published research on keystroke dynamics 
for monitoring the progression of PD, our research has focused on 
designing a fundamentally innovative platform technology. While 
several previous works have targeted at-home tracking of PD pro-
gression through keystrokes, our work has introduced the following 
advancements that were not addressed before.

From a fundamental principle point of view, our IKS leverages 
the giant magnetoelastic effect. The magnetoelastic effect—the varia-
tion of a material’s magnetic field under mechanical stress—is usually 
observed in rigid metal alloys such as TbxDy1-xFe2 (Terfenol-D) and 
GaxFe1-x (Galfenol), under an externally applied magnetic field. This 
limitation in rigid metal alloys makes them limited to the use in build-
ing vibration control (46). In 2021, our research group discovered 

Table 1. Evaluation metrics. 

Precision Recall F1 score

Validation set

 HE S  0.9333  0.9333  0.9333

  PDP  0.9375  0.9375  0.9375

 Testing set

 HE S  0.9412  1  0.9697

  PDP  1  0.9412  0.9697
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the giant magnetoelastic effect in soft material systems, paving the 
way for the development of soft bioelectronics (34). This work marks 
the first instance of leveraging the giant magnetoelastic effect in soft 
systems for keystroke dynamics analysis, promoting a cutting-edge 
paradigm to the PD research community. This innovation endows 
our keyboard with several advantages including self-powered sens-
ing, waterproofness, biocompatibility, scalable fabrication, portabil-
ity, and durability. The self-powered nature of the keyboard enables 
wireless and continuous monitoring of typing motions, converting 
both the keystroke pressure and timing data into high-fidelity elec-
trical signals.

From a technological advancement point of view, the IKS emerg-
es as a transformative breakthrough in personalized keystroke anal-
ysis for PD progression. Its ability to quantitatively capture intricate 
biometric signals surpasses conventional keyboard tools used for PD 
assessment. The electrical signals generated by the IKS are directly 
correlated with key presses, providing comprehensive information 
on the typing pressure, RT, FT, and HT during keyboard usage. The 
results display timestamps for the press and release events of every 
keystroke. While recent works have analyzed keystroke dynamics, these 
efforts are often constrained by the limitations of traditional store-
bought hardware, which generally lacks integrated sensor systems. 
For example, research works that focus on a keyboard for PD progres-
sion have used standard, wired commercial keyboards (26, 29–32), 
which fall short in terms of innovative hardware design. The omis-
sion of pressure data when using a conventional keyboard substan-
tially limits the depth of analysis. Our work, in contrast, addresses 
this gap by introducing an innovative keyboard technology that fun-
damentally enhances real-time data capture at the hardware level.

Another point relevant to the technological advancements of the 
IKS is its ability to capture not only temporal data but also pressure 
metrics during typing. This feature distinguishes it from traditional 
keyboards, allowing for a more detailed analysis of motor symptoms 
exhibited during typing, which is relevant to PD (9). By integrating 
both pressure and temporal information, our technology mitigates 
the potential biases of merely time-domain analysis alone, offering a 
more symptom-oriented evaluation. This approach not only enhances 
diagnostic specificity but also sheds light on the detailed motor symp-
tomatology associated with PD, surpassing the capabilities of con-
ventional typing assessments.

From a translation point of view, the IKS has demonstrated con-
siderable potential in a clinical setting. The system provides real-time 
data on keystroke dynamics, which allows us to assess motor func-
tion in a noninvasive manner. Our design seamlessly integrates into 
the daily lives of patients with minimal burden. Furthermore, the 
design is centered on scalability, cost-effectiveness (table S3), and user-
friendliness, enabling mass production and widespread deployment 
across various healthcare settings and at home. The self-powered 
nature reduces reliance on external power sources, and its wireless 
capability facilitates its integration into telemedicine and at-home 
testing frameworks. In addition, the biocompatible materials and 
durable construction ensure that the IKS can be used consistently 
and continuously over extended periods without causing discomfort 
or requiring frequent maintenance. This study provides preliminary 
evidence that our IKS can serve as a complementary method for 
personalized monitoring of PD progression. Our IKS captures richer 
PD-relevant data, encompassing patients’ typing pressure, RT, FT, 
and HT, than commercial keyboards, achieving high accuracy.

From a practical impact point of view, the IKS offers a tangible 
solution to the quality of life for patients with PD. It provides continu-
ous, real-time monitoring of motor symptoms to facilitate patients and 
clinicians with actionable data that can influence treatment decisions. 
The practicality of the IKS extends beyond its diagnostic capabilities, 
supporting everyday communication and improving portability and 
ease of transport for use in various environments. By combining these 
features, the IKS addresses medical needs and enhances user experi-
ence. In contrast, other works have not emphasized the advancement 
of keyboard technology, often relying on traditional, wired, and stan-
dard keyboards. For instance, the Quantitative DigitoGraphy (25, 28), 
one of the few custom-built devices, requires a bulky, wired setup 
and external power supply, complicating its practical use in everyday 
life. Our keyboard, however, is designed to be waterproof, portable, 
wireless, and flexible. Thus, the IKS not only redefines the techno-
logical landscape of personalized PD monitoring but also enhances 
the daily usability and overall patient experience. Here, we present 
table S4, which compares existing studies where a physical keyboard 
was provided to patients for monitoring PD progression. We exclud-
ed papers that focus solely on predictive algorithms or smartphone 
software, as they would be less relevant compared to our primary 
physical platform technology.

In conclusion, the IKS is a specialized, self-powered keyboard 
designed from the ground up to offer a comprehensive solution. It 
integrates advanced sensing hardware and leverages the giant mag-
netoelastic effect, enabling real-time data capture, scalability, and 
patient-centered features. The IKS empowers patients and health-
care professionals with actionable insights into PD progression.

DISCUSSION
In this work, we explored the use of the quantitative measures ob-
tained from the intelligent keyboard to assess PD symptoms. The 
intelligent keyboard is capable of converting keystroke dynamics into 
electrical outputs, implementing the signal-to-function principle in 
monitoring the symptoms of PD. This, in turn, enables personalized 
drug titration and helps prevent underdoing and overdosing. Hence, 
the intelligent keyboard can detect signals in different frequencies 
relating to PD tremors (4 to 6 Hz) and within human motions (0.5 
to 10 Hz), maintain a stable electrical output with perspiring hands, 
and exhibit an appropriate limit of detection as low as 0.25 kPa, a 
short response time of 4 ms, an SNR of 34.5 dB, and durability after 
12,000 testing cycles. In addition, it exhibits flexibility, stretchability, 
and waterproofness. Assisted with machine learning algorithms, the 
intelligent keyboard could distinguish different user’s keystroke 
dynamics with an average prediction accuracy of 96.67%. As proof 
of concept, the intelligent keyboard was combined with the cellphone 
APP to become an IKS, which could deliver typing data wirelessly 
and, through machine learning algorithms, characterize the gener-
ated data into PD-related parameters.

Furthermore, we conducted a pilot human study using the IKS to 
analyze keystroke patterns of patients diagnosed with PD. The IKS 
successfully converted their typing movements into readable electri-
cal signals with distinct alterations in keystroke dynamics such as 
prolonged typing time, extended pauses, and diminishing hand mo-
tor skills. These alterations were quantitatively captured in the gen-
erated waveforms. Typing style also varied across participants such 
as text typed and the speed of the typist. The problem of typing 
heterogeneity was addressed by three approaches, including the 
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measurement of HT, local typing windows, and automatic data 
learning patterns. Key presses and releases were largely unaffected 
by the text being typed, typing speed, or individual typing habits. In 
the first approach, we looked at HT, which is not under one’s con-
scious control. Hence, previous studies concluded that HT provides 
information on bradykinesia effects that prevent patients with PD 
from lifting their fingers from keys in a consistent pattern (22, 26). 
Second, we focused on the characteristics of typing in a short period 
between each key to help capture subtle variations in motor perfor-
mance. Last, machine learning algorithms also compared typing 
patterns between the patients with PD and a control group. The infor-
mation from the three approaches allows us to establish a personal-
ized baseline, where individuals with variations in typing skills can 
be monitored for motor function changes over time, aligning with 
PD’s progressive nature.

While this study provides promising results, it is important to 
acknowledge its limitations as a preliminary investigation. First, the 
validation of the system was performed with a small sample size of 
the patient cohort in a controlled setting. A larger and more diverse 
patient cohort would offer a more comprehensive and robust assess-
ment of the device’s reliability and applicability. Second, the current 
study focused on short-term typing tasks. Thus, it lays the ground-
work for future longitudinal studies aimed at monitoring PD over 
a long-term, continuous manner, to evaluate the device’s utility in 
capturing the disease’s inherently slow progression over months and 
years. This would provide clinicians with more comprehensive data-
sets to monitor PD’s progression. Last, while the initial system success-
fully captured specific quantitative data, translating these findings 
into functional clinical outcomes, such as predicting optimal medica-
tion regimes, requires further validation through longitudinal studies 
and clinical trials.

In the future, the IKS could also be integrated into therapeutic 
interventions, enhancing its utility in clinical settings. Because typ-
ing on a keyboard requires complex coordination among visual and 
procedural memory, language, and motor function, the IKS could 
serve as a real-time evaluation for typing metrics during ON and 
OFF states. By correlating with changes in keystroke parameters, cli-
nicians could tailor the timing and dosage of dopaminergic medica-
tions. In the context of deep brain stimulation (DBS), by monitoring 
typing behaviors before, during, and after DBS interventions, the 
IKS could provide valuable insights into the effects or potential side 
effects of DBS therapy on a patient’s motor performance or dystypia. 
These data could assist in fine-tuning DBS parameters to achieve 
optimal therapeutic outcomes for individual patients. The integra-
tion of IKS into therapeutic interventions offers a promising avenue 
for expanding its clinical application, enabling continuous and per-
sonalized assessments in both at-home and clinical settings. Future 
studies could benefit from exploring these individual use cases to 
broaden their clinical impact.

In summary, this initial study proves that the overall IKS could 
serve as a complementary tool, assisting clinicians with quantitative 
examination in an easy, at-home manner, for diagnosing PD. The 
combination of quantitative measures of keystroke pressure, FT, RT, 
and HT obtained through the intelligent keyboard, along with ma-
chine learning algorithms and a cellphone APP to create an inclu-
sive IKS, offers a promising approach for assessing PD progression, 
optimizing medication regimens, and personalizing treatments. One 
of the noteworthy advantages of the IKS is its ubiquity as a household 
keyboard, coupled with its straightforward examination procedures. 

It can serve as an objective, quantitative, and at-home personalized 
biomarker for disease progression and medication response in pa-
tients with high-risk PD. The convenience of performing the test at 
anytime and anywhere, with results instantly one-click delivered to 
the desired recipient, further enhances its usability and practicality. 
Further research and development in this area, focusing on tracking 
and quantifying variations in typing features over time, allow for a 
more comprehensive understanding of disease progression and hold 
great promise for improving personalized medicine and enhancing 
patient care in the context of PD.

MATERIALS AND METHODS
Fabrication of the MC layer
First, the MC layer was prepared by thoroughly mixing the uncured 
silicone rubber matrix Ecoflex 00-30 part A and B and 65-μm non-
magnetized neodymium-iron-boron micromagnets [MQP-AA4-B+ 
(-150m)-10215-090] with a stirring rod. The mixture was then 
poured into a rectangular mold for curing in a 60°C oven for 4 hours 
or overnight. The curing also introduced air bubbles on a microm-
eter scale. The weight concentrations of the micromagnets were 33, 
50, and 83 wt %. The cured magnetoelastic film was magnetized by an 
impulse field (~2.6 T) using an impulse magnetizer (ASC Scientific, 
IM-10-30).

Fabrication of the MI layer
To make a liquid metal alloy, Ga (99.99%) and In (99.99%) ingots from 
RotoMetals were mixed to get EGaIn (74.5% Ga and 25.5 wt % In) by 
heating in a muffle furnace (Thermo Fisher Scientific) at 200°C for 
2 hours. To increase the processibility of liquid metal and the viscosity 
without sacrificing its conductivity, 10 wt % Ni particles (99.5%, 5 μm; 
US Research Nanomaterials) were added and mixed thoroughly using a 
VWR Mini Vortexer. To make the liquid metal fiber, first, an elastic sili-
cone microfiber was fabricated by thermal drawing via industrial scale 
level. After cutting the silicone hollow microfiber to a desired length, the 
liquid metal alloy was vacuumed into the elastic hollow channel. A 
metal conductive wire was inserted into the opening ends, fully con-
tacted with the inner EGaIn liquid for electrical tests. Last, the open-
ing ends were sealed by light-cured glue to avoid leakage of the 
inner EGaIn liquid. The liquid metal fibers were embedded into the 
elastomer keyboard cover using a thin-coated polymer.

Standard characterization of the MC layer
The micromagnet size distribution was imaged by SEM (ZEISS 
Supra 40VP). Magnetic flux density measurement was succeeded 
using a digital Gauss meter (TUNKIA, TD8620). The magnetic field 
variation was calculated by applying a linear best-fit line and taking 
the difference between the initial and final values. The stress-strain 
curves were tested at a stretching rate of 5.0 mm/s using a dynamic 
mechanical analyzer (Instron, 5564). Young’s modulus was calcu-
lated by applying a neo-Hookean model to fit the curve.

Artificial perspiration preparation
Artificial perspiration was used to test waterproof capability. A 
mixture of 4.65 g of NaCl (Sigma-Aldrich), 3.87 g of 1 M lactic acid 
solution (Alfa Aesar), 1.80 g of urea (Alfa Aesar), 1.37 g of KCl 
(Sigma-Aldrich), 0.0276 g of uric acid (Alfa Aesar), 0.756 g of NaHCO3 
(Sigma-Aldrich), 0.546 g of 1 M NH3·H2O (Sigma-Aldrich), 0.175 g 
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of Na2SO4 (Sigma-Aldrich), and 1 liter of deionized water was mixed 
for 30 min.

Performance measurement
The voltage and current signals of the IKS were measured using a 
system electrometer (SR560 and SR570, respectively). A flat plate was 
connected to an electrodynamic shaker system, consisting of a func-
tion generator (Newark, AFG1062), a linear power amplifier (Labworks 
Inc., PA-151), and an electrodynamic transducer (Labworks Inc., 
ET-126HF) to mimic human finger tapping at a consistent voltage 
and frequency. The durability of the device was characterized using 
the electrodynamic transducer (Labworks Inc., ET-126HF).

Commercial software
CPM and WPM were collected using a commercially available software 
called “Typing Speed Test” developed by J. Waalboer. RT was collected 
using a software called “RED LIGHT - GREEN LIGHT Reaction Time 
Test” developed by J. Allen from the University of Washington.

Statistical analysis
Comparisons between healthy participants and patients with PD were 
performed using the Mann-Whitney U test. Comparisons between 
current signals from each key press were performed using the one-way 
ANOVA test. Python software was used for all statistical evaluations.

Data collection
For the laboratory-scale typing data collection, three healthy volun-
teers typed randomly generated words for 1 min and repeated the 
task seven times using a commercially available software called Typ-
ing Speed Test developed by J. Waalboer. Three patients with PD and 
other healthy volunteers each use the same software but perform 1-min 
typing and repeat three times.

Mobile APP design
A customized Android cellphone APP for data display, storage, and 
sharing was designed using MIT AI2 Companion. The typing pat-
terns were acquired and processed with the assistance of machine 
learning algorithms. Then, these data were transmitted to the cell-
phone APP and displayed in the front end.

Human participant study
The IKS was tested using human participants in compliance with all 
the ethical regulations under the protocol (ID no. 21-000974) approved 
by the Institutional Review Board at UCLA. All participating indi-
viduals, who belong to UCLA and its Neurology clinic, were provided 
informed consent before participating in the study. The deep learn-
ing analysis of human participant data was conducted on an NVIDIA 
GTX 4070 GPU, adopting and modifying the Classify Time Series 
Using Wavelet Analysis and Deep Learning and Visualize Activations 
of a CNN function in MATLAB R2024. 
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