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Aim: We examined whether variation in blood-based epigenome-wide association 
studies could be more completely explained by augmenting existing reference DNA 
methylation libraries. Materials & methods: We compared existing and enhanced 
libraries in predicting variability in three publicly available 450K methylation datasets 
that collected whole-blood samples. Models were fit separately to each CpG site and 
used to estimate the additional variability when adjustments for cell composition were 
made with each library. Results: Calculation of the mean difference in the CpG-specific 
residual sums of squares error between models for an arthritis, aging and metabolic 
syndrome dataset, indicated that an enhanced library explained significantly more 
variation across all three datasets (p < 10-3). Conclusion: Pathologically important 
immune cell subtypes can explain important variability in epigenome-wide association 
studies done in blood.

First draft submitted: 6 April 2016; Accepted for publication: 21 June 2016; Published 
online: 16 August 2016
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Since 2010, there has been a rapidly increas-
ing number of epigenome-wide association 
studies (EWAS), and many of these studies 
use various microarray methods including 
the evolving Illumina platforms [1]. With the 
recent release of a new generation of the Illu-
minaBeadchip platform for assessing DNA 
methylation, it is likely that these studies 
will continue to increase in number. Various 
health conditions and environmental expo-
sures have been investigated using the array 
platforms, including aging, obesity, can-
cer and inflammatory-related diseases  [1–6]. 
These studies also commonly use peripheral 
blood as a source of DNA to investigate asso-
ciations between an exposure of interest and 
disease [1–6].

Cellular lineage and somatic differentia-
tion are regulated by epigenetic mechanisms, 
including DNA methylation; thus, the pattern 

of methylation at phenotypically important 
CpG regions varies substantially across indi-
vidual tissues and cell-types and specifically 
across the distinct leukocyte subtypes  [7–12]. 
Moreover, since there are differentially meth-
ylated regions (DMRs) that demarcate the 
different types of leukocyte lineages and 
activation states, EWAS that used blood as 
a biospecimen for methylation profiling are 
likely to result in CpGs that merely reflect the 
differences in the cell composition and/or cell 
states, altered by the presence of disease or by 
immunomodulating exposures  [1,4,8,10]. Spe-
cifically, any interpretation of differences in 
DNA methylation at CpG sites resulting from 
whole blood comparisons of DNA methyla-
tion between two or more disease states must 
include the possibility that such changes arise 
from variation in the leukocyte composition 
between study samples (occurring, e.g.,  as a 
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result of inflammatory or other biologically related pro-
cesses) [4,10]. Thus, methylation patterns associated with 
varying cell proportions or by the state of activation of 
any type of leukocyte in the blood can potentially be a 
confounder in the outcome of an EWAS [1,4,10,11].

We previously established a unique reference library 
of the DNA methylation profile for different leukocytes 
in peripheral blood and demonstrated that this library 
can inform a novel algorithm to estimate the relative 
abundance of the distinct leukocyte cell-types  [7,11]. 
In addition, this approach has been widely adopted to 
adjust EWAS data, allowing one to discriminate DNA 
methylation differences reflecting changes in cell sub-
population from other possibly environmentally induced 
or disease-associated methylation events [7,11]. The opera-
tional approach to deconvoluting the cellular composi-
tion of whole relies upon a DNA methylation profile 
library of the individual cell-types comprising whole 
blood. Interestingly, a recent study has examined sub-
types of B and T cells, specifically identifying methyla-
tion markers of naive and memory B cells; naive, mem-
ory and regulatory CD4+ T cells; and naive and memory 
CD8+ T cells [13]. This study has shown to estimate the 
proportions of these B- and T-cell subtypes using the 
methylation signatures and thus implicated that these 
signatures can be used for specific cell-type proportion 
estimates and adjustment for potential confounding in 
whole blood derived methylation studies [13].

Here, we hypothesized that there may be significant 
contributions made by normally, but pathologically 
important leukocyte subtypes in whole-blood DNA 
methylation signatures. Thus, in an effort to strictly 
determine if enlarging the size and scope of the input 
methylation library will explain additional variability 
in a discovery-driven EWAS analysis, we combined the 
library of Reinius et al. with additional novel input cell-
type DNA methylation profiles that can supply pre-
liminary (unvalidated) DMRs for additional specific 
immune cell subtypes  [8,14–16]. This combined library 
included activated natural killer (NK) cells, dendritic 
cells, immature B cells, memory B cells, naive B cells, 
plasma B cells and naive Tregs (in addition to the cells 
profiled by Reinius et al.) [8,14–16]. Using novel statisti-
cal methods with this combined library, we explored 
whether these additional DMRs explained additional 
variability in the DNA methylation-disease associa-
tions from three selected studies: blood methylation 
profile in rheumatoid arthritis, normally aging indi-
viduals and in a family study of people at risk for 
metabolic syndrome [2,3,6].

Materials & methods
All of the following statistical analyses were performed 
in R software (R version 3.2.3).

Establishing an expanded 450K reference 
library & study selection
The following 450K methylation datasets were used 
to create a novel reference library of methylation 
markers for different white blood cell-types: two 
publicly available datasets from the Gene Expres-
sion Omnibus – GSE35069 and GSE45461, a set of 
analyzed 450K methylation from our prior and cur-
rent research studies and a requested Blueprint meth-
ylation dataset from the European Genome-phenome 
Archive – EGAD00010000716 [8,14–16]. An established 
450K reference library by Reinius et al. was used as the 
starting framework to create the new, updated library 
with more immune cell-types [8]. The DMRs of B cells 
from the Reinius et al. 450K library were removed and 
replaced with specific immature B-cell DMRs from 
the Lee et al. library and DMRs of memory, naive and 
plasma B cells from the EGA dataset [14,15]. DMRs of 
activated NK cells, dendritic cells and naive Tregs were 
added from our previous and ongoing studies. Thus, 
the final composition of immune cell-types in the new, 
updated 450K reference library included the following: 
T cells, immature B cells, memory B cells, naive B cells, 
plasma B cells, NK cells, monocytes, granulocytes, 
activated NK cells, dendritic cells and naive Treg cells. 
Three epigenetic datasets (GSE42861, GSE60132 and 
GSE40279) that used whole blood for methylation-
disease association analyses were selected to apply 
the new 450K library and determine if potential cel-
lular heterogeneity was better explained  [2,3,6]. Stud-
ies used included Liu et al. (investigating methylation 
association with rheumatoid arthritis), Hannum et al. 
(normal aging) and Ali  et  al. (metabolic syndrome), 
respectively  [2,3,6]. Sex chromosomes, sites with SNPs 
in probes, cross-reactive probes, polymorphic CpGs 
and CpGs with detection of p-values greater than 0.05 
were excluded from the analysis [17].

Detecting specific DMRs for each immune 
cell-type in the library using dispersion 
separability criterion statistical approach
In order to create an optimal library with specific 
subsets of DMRs for each immune cell-type in the 
combined 450K reference library, the top CpGs that 
uniquely discriminated each cell-type from all other 
cell-types were selected. Specifically, for each cell-type 
the top 50 CpGs with largest absolute t-statistics were 
selected, which represented the top hypo- and hyper-
methylated loci between that cell-type and the remain-
ing cell-types. The top CpGs of each cell-type were 
then pooled into a single list of N unique loci, which 
was established as the candidate DMR search space. 
Using the candidate DMR search space, an algorithm 
that has been developed by our research group called 
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DMRSubsetFinder, was applied to randomly select 
subsets of varying sizes of DMRs from the candidate 
space  [11]. For each of 1000 iterations, K < N CpGs 
were selected at random from the candidate DMR 
space, where K ranged from 50 to N – 50. For a given 
randomly selected DMR subset, the dispersion separa-
bility criterion (DSC) score was computed to assess the 
subset’s power for discriminating the leukocyte sub-
types. The DSC is a metric that was initially designed 
to quantify the amount of batch effects in microarray 
datasets, however, here we substitute ‘batch’ with the 
identity of a given cell-type. Specifically, the DSC is 
defined as Db/Dw, where Db is a measure of disper-
sion between cell-types, and Dw is a measure of disper-
sion within cell-types. Thus, the DSC was used here to 
quantify the dispersion ‘between’ and ‘within’ specific 
leukocyte subtypes for a given randomly selected DMR 
subset. Across the 1000 iterations of the DMRSubset-
Finder algorithm, the DMR subset with the largest 
DSC score was selected so that the selected loci exhib-
ited maximal heterogeneity between cell subtypes and 
homogeneity within cell subtypes with regard to their 
methylomic profile.

Deriving sum of squared errors to explain 
additional variability in the selected studies
Using the optimal DMR library selected via 
DMRSubsetFinder, the relative fraction of each cell-
type was estimated for each sample in the arthritis, 
aging and metabolic syndrome datasets. The algo-
rithm used to predict cell proportions has been previ-
ously determined by Houseman  et  al.  [11]. Generally, 
this methodology identifies the CpGs that distinguish 
the leukocyte subtypes based on rank ordering CpGs 
from ANOVA models fit to a reference leukocyte DNA 
methylation dataset. The selected discriminative CpGs 
are then used as the basis for estimating cell-type dis-
tributions of samples comprising whole-blood derived 
DNA methylation data  [11]. Using our optimal DMR 
library, the projected proportions were then used 
to adjust for cell-type composition in CpG-specific 
regression models fit to the arthritis, normal aging and 
metabolic syndrome datasets. A ‘null’ model adjusted 
only for the cell-types in the 450K reference library 
established by Reinius et al., and a ‘full’ model adjusted 
for the Reinius library and the additional leukocyte 
subtypes: immature B cells, memory B cells, naive B 
cells, plasma B cells, NK cells, activated NK cells, den-
dritic cells and naive Treg cells were considered in our 
analyses [8,14–16].

The null and full models were fitted for each CpG 
locus in the arthritis, normal aging and metabolic syn-
drome datasets and the residual sum of squared error 
(SSE) was computed for each locus. Specifically;

‘Null’ model: 

Y B X e , i 1,2, ..., &j 1,2..., JR R ijij M= + = =

SSE Y(j,Null) ij R Ri 1

2-= M

=
/ ^B X( )

‘Full’ model: 

Y B X e , i 1,2...,N&j 1,2, ..., Jij R R ij= + = =+ +

SSE Y B Xj,Full ij R Ri 1

N 2= - + += ^^ hh / ^

X
R
: Vector containing the cell-type estimates using 

the Reinius only reference library
X

R+
: Vector containing the cell-type estimates using 

the Reinius plus (+) new cell-types expanded library
where Y

ij
 represents the methylation beta-value for 

loci j in subject i. The sum of the SSEs over all loci 
for each model were calculated, and the sum of the 
SSEs for the null model was compared with that for 
the adjusted model; a smaller sum of SSE indicated 
a better fit, in other words, more variation in DNA 
methylation explained. As such, the difference in SSEs 
(defined as SSE_null – SSE_full) was calculated, and 
the significance of this difference was determined by 
performing a permutation test to determine the sam-
pling distribution under the null hypothesis. For 1000 
iterations, the methylation values from the arthritis, 
normal aging and metabolic syndrome datasets were 
permuted, and null and full models were fitted to the 
permuted data. The difference in the sum of the SSEs 
under the null and under the full model was calculated 
and the significance of the test statistic was determined 
based on this distribution. The application of this sta-
tistical derivation is based on previously optimized 
method to identify specific methylation libraries for 
cell mixture deconvolution [12].

Classification of rheumatoid arthritis cases 
& controls using expanded library
The null and full models were also used to predict and 
compare the classification of controls and cases in the 
arthritis dataset  [3]. With the predicted probabilities 
obtained for the two models, receiver operating char-
acteristic curves were constructed and the correspond-
ing areas under the curve (AUC) were computed using 
the function colAUC in the R package caTools. The 
following notations depict the statistical computations 
for the AUC comparisons:

Y 0,
1,

Control
Case (rheumatoid arthritis)= "

X
R
: Vector containing the cell-type estimates using 

the Reinius only reference library
X

R+
: Vector containing the cell-type estimates using 

the Reinius plus (+) new cell-types expanded library
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Figure 1. Heatmap of the top 74 loci in the optimal subset for each leukocyte subtype.
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‘Null’ model: 

log Pr Y 1 X B Xit R R R;= =^^ hh

‘Full’ model: 

log Pr Y 1 X B Xit R R R;= =+ + +^^ hh

with X
R
 and X

R+
 as previously defined.

Results
Using the DSC scores, the top loci for each specific cell-
type were determined in order to create optimal sub-
sets of the cell-types for the final 450K reference library 
(Figure 1). Overall, 74 loci were selected as an optimal set 
of DMRs (Supplementary Table 1). Three publicly avail-
able datasets (arthritis, normal aging and metabolic syn-
drome studies) were then interrogated to assess cell-type 
projections and variability (Table 1) [2,3,6]. After removing 
probes with missing values and probes with high detec-

tion p-values, the arthritis dataset contained 689 subjects 
and 390, 324 loci; the aging dataset contained 656 sub-
jects and 413, 994 loci; and the metabolic syndrome 
dataset contained 192 subjects and 389, 426 loci.

In order to determine whether the inclusion of addi-
tional immune cell-types improved the explanation of 
DNA methylation variability to the arthritis and aging 
datasets, the difference in sum of SSE between the null 
and full models and the null distribution of this statis-
tic was computed over 1000 iterations. For the arthritis 
study, the difference in sum of SSE between the null 
models and adjusted models was 13.18, (95% value: 
1.37 and 99% value: 2.10) (Table 2). In the aging 
study, the difference was 7.13, (95% value: 1.31 and 
99% value: 2.13) (Table 2). Last in the metabolic syn-
drome study the difference was 8.40, (95% value: 2.97 
and 99% value: 4.62) (Table 2). Based on the null sam-
pling distribution, the sum of SSE from the full model 
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was determined to be significantly lower than the sum 
of SSE from the null value for each dataset (p < 10-3).

We also determined if the fully adjusted model 
based on the Reinius library plus the additional cell-
types would better classify cases and controls than the 
null model in the arthritis dataset  [3]. Logistic regres-
sion models were fit to the arthritis dataset, in which 
one model controlled for the cell-type predictions gen-
erated from just the Reinius library and another model 
controlled for cell-type predictions generated from the 
Reinius plus additional cell-types library [8,14–16]. The 
constructed receiver operating characteristic curves and 
the corresponding AUC determined from each model 
(Figure 2) showed that the expanded library performed 
slightly better (AUC = 0.84) than the Reinius library 
alone (AUC = 0.82). Thus, this analysis shows that the 
expanded library slightly improved the prediction of 
cases and controls in the arthritis dataset [3].

Discussion
Differences in DNA methylation seen when compar-
ing cases versus controls in large association studies that 

apply platforms for gathering relatively large amounts 
of methylation data (such as the Illumina 450K plat-
form) may reflect pathological changes in immune cell 
number, but it is important to note that these may also 
reflect immune cell activation. Statistical deconvolu-
tion methods have helped to interpret DNA methyla-
tion associated changes in datasets that have collected 
whole blood samples with mixed normal immune cell-
types  [1,7,8,11,12]. Hence, variations in DNA methyla-
tion changes detected in blood can potentially reflect 
variations in proportions of leukocytes [4,10]. However, 
little work has been done to discover if some of the addi-
tional remaining differences in the DNA methylation 
profile reflect disease associated changes in the immune 
system, such as activation of some specific cell-types.

From the SSE analyses, the differences between the 
null and adjusted models in both datasets were posi-
tive if the null model SSE values were greater than 
the adjusted model SSE values. The model with the 
smaller sum values of SSE indicated the better model, 
and a larger SSE sum value indicated more error. Thus, 
from our analyses, the adjusted model proved to be 

Table 1. Whole blood 450K methylation datasets that were used to create the reference library and 
analyzed for variations.

Study (year) Title Sample size Study accession ID Ref.

Kulis et al. (2015) Human B-cell differentiation methylation 35 EGAD00010000716 [14]

Lee et al. (2013) A global DNA methylation and gene 
expression analysis of early human B-cell 
development

22 GSE45461 [15]

Reinius et al. (2012) Differential DNA methylation in purified 
human blood cells

60 GSE35069 [8]

Wiencke et al. (2015) Activated NKs, dendritics, Tregs     [16]

Whole blood methylation

Ali et al. (2015) An epigenetic map of age-associated 
autosomal loci in northern European 
families at high risk for the metabolic 
syndrome

192 GSE40279 [6]

Liu et al. (2013) Differential DNA methylation in 
rheumatoid arthritis

689 GSE42861 [3]

Hannum et al. (2012) Genome-wide methylation profiles reveal 
quantitative views of human aging rates

656 GSE40279 [2]

NK: Natural killer cell. 

Table 2. Variation (sum of squared error) analyses on the arthritis, aging and metabolic syndrome 
datasets using the null and adjusted models.

Study Diff.SSE† 95% distribution 99% distribution p-value

Arthritis 13.18 1.37 2.1 <10-3

Normal aging 7.13 1.31 2.13 <10-3

Metabolic syndrome 8.4 2.97 4.62 <10-3

†Diff.SSE: Difference in residual sum of squared errors.
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Figure 2.  Area under the curve comparisons of classification sensitivity using expanding library and Reinius 
library alone. 
AUC: Area under the curve; ROC: Receiver operating characteristic.
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a significantly better fit when applied in the arthri-
tis, normal aging and metabolic syndrome datasets 
(p < 10-3) [2,3,6]. Additional classification comparisons 
using AUC plots also indicated that the expanded 
library led to an improved ability to discriminate rheu-
matoid arthritis cases from controls compared with the 
existing Reinius library.

There were important limitations that must be kept 
in mind in creating and applying the combined, opti-
mal 450Kmethylation library. The addition of more 
immune cell-types could result in an overfitting of 
the model and lead to more overlapping, nonspecific 
DMRs for all the immune cell-types in the model. 
Thus, the DSC approach was applied to extract effi-
ciently the specific markers for each leukocyte sub-
type, even if it resulted in a lesser number of top loci 
for each cell. Whenever more specific leukocyte sub-
types are added, one needs to account for potential 
overlap and nonspecificity and consequently compute 
the DSC scores to determine specific DMRs. Another 
limitation on the application of this library is that it 
can be used to explain significant variability in only 
studies with large sample size. Epigenetic studies with 
sample size (n) greater than 200 resulted in significant 
variability; while, studies with sample size of 100 or 
less did not show significant additional variability 
(Supplementary Table 2).

Separating cell populations from whole blood prior 
to epigenomic analyses may certainly validate or sup-
port results when accounting for different cell subtypes 
by quantitative methylation analyses. Usually, separat-
ing cell populations from whole blood involves purifi-
cation of cells with antibody markers for each cell-type 
and analyses with flow cytometry; however, there are 
overlapping cell markers and often unspecific antibody 
markers for cell subtypes that may not result in ‘pure’ 
isolation of individual cell subtypes. Thus, there is an 
advantage in using quantitative methylation analyses 
since they are less dependent on getting efficient puri-
fication of cell subtypes but instead rely on specific cell 
lineage methylation signatures for each cell subtype 
to account for cell composition effects in whole blood 
methylation analyses.

Finally, we believe that it is crucially important 
to stress that the expanded library that we employed 
in this analysis has not been shown to predict, with 
accuracy, the cell-type proportions in whole blood 
methylation studies. That is, the library we have con-
structed, while able to explain additional variation in 
the context of an EWAS, has not been externally vali-
dated and thus, it should not be employed to directly 
assess immune cell-types in any epidemiologic con-
text. While it is clearly conceivable that this could be 
done, it will require further validation, experimentally 
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testing the accuracy and power of the expanded library 
to predict leukocyte subtype proportions, as has been 
previously done for prior libraries [7,8,11].

Conclusion
Thus, the more adjusted or ‘complete’ 450K library cre-
ated with specific methylation markers for the additional 
immune cell-types explained, with robust statistical sig-
nificance, additional variability in the arthritis, normal 
aging and metabolic syndrome epigenetic studies. Add-
ing more cell-types to the library to account for cellular 
heterogeneity in these studies helped improve detection 
of specific methylation markers. Specifically, inclusion of 
markers for additional cell-types facilitated observation 
of the driving immune cell-types in these studies. Our 
findings are consistent with what has been previously 
reported, strongly arguing for the development, valida-
tion and use of enhanced libraries when investigating 
inflammatory diseases using blood-derived DNA. Future 
work should be focused on finding and adding unique 
DMRs for newly discovered immune cell subtypes to cre-
ate an optimal DNA methylation library in order to facil-
itate applying it to epigenetic studies of environmental or 
otherwise acquired immune-related diseases.

Future perspective
The updated 450K reference library includes patho-
logically important leukocyte subtypes (such as den-
dritic cells, activated NK cells and Tregs, among oth-

ers) that are known to have important implications in 
inflammatory-related diseases. In this study, the addi-
tion of the leukocyte subtypes explained significant 
additional variability in whole-blood DNA methyla-
tion signatures of inflammatory related diseases such as 
rheumatoid arthritis and metabolic syndrome. The next 
phase would be the validation of the expanded 450K 
library with prediction of different leukocyte subtype 
proportions, which would enhance the impact of this 
current study. We would need to validate the expanded 
library by extracting certain leukocyte subtypes and 
confirming methylation signatures. We did not aim for 
the expanded library to be used by others for predic-
tion of cell subtype proportions but rather to show that 
an expanded library can explain additional significant 
variability when accounting for cell subtypes in whole 
blood methylation analyses. In the future, we aim for a 
validated, expanded 450K library that can be used to 
predict these additional leukocyte subtypes in whole-
blood derived epigenetic studies. Studies that investi-
gate specific pathological diseases can use the expanded 
450K library that incorporates pathologically important 
leukocyte subtypes in order to account for adjustments 
for these cell composition effects in their studies.

Supplementary data
To view the supplementary data that accompany this paper 

please visit the journal website at: www.futuremedicine.com/

doi/full/10.2217/epi-2016-0037

Executive summary

•	 Epigenome-wide association studies (EWAS) frequently involve DNA methylation profiling of 
leukocyte-derived DNA (extracted from human peripheral blood) as a means of understanding the 
relationship between DNA methylation and human diseases and exposures.

•	 Such investigations are highly susceptible to confounding by cell-type composition, both because of the 
cell-specificity of DNA methylation and since many conditions and exposures elicit an immune response, 
altering the immune landscape.

•	 We hypothesized that usually uncommon, but pathologically important immune cell subtypes could account 
for non-negligible variation in the whole-blood DNA methylation profile of immune-associated conditions.

•	 To test this hypothesis, we examined the extent to which variation in whole-blood-derived DNA methylation 
could be more completely explained by augmenting existing reference DNA methylation libraries comprised of 
normal leukocyte subtypes with the reference methylomes of immature B cells, memory B cells, plasma B cells, 
activated natural killer cells, dendritic cells and naive Treg cells.

•	 Using our expanded reference DNA methylation library, we compared existing and our enhanced libraries in 
predicting additional epigenetic variability in whole-blood samples collected as part of three large, publicly 
available DNA methylation datasets: a study of DNA methylation in blood from rheumatoid arthritis patients; 
a study of normal individuals of varying age; and a study of metabolic syndrome.

•	 Within each dataset, models were fitted separately to each CpG site and were used to estimate the additional 
variability in whole-blood DNA methylation signatures explained when adjustments for cell composition were 
carried out using our expanded library compared with an existing library. The within-dataset mean difference 
in the CpG-specific residual sums of squares error between the two models was computed.

•	 In addition, the expanded library demonstrated better performance in terms of correctly classifying 
rheumatoid arthritis cases from disease-free controls compared with the existing normal library.

•	 We conclude that uncommon, but pathologically important immune cell subtypes can explain important 
variability in EWAS done in blood and suggest that there is a need to define and validate methylation markers 
of specific immune cell methylomes in order to properly adjust for cell composition effects in EWAS.
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