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In temperate countries, influenza outbreaks are well correlated to
seasonal changes in temperature and absolute humidity. However,
tropical countries have much weaker annual climate cycles, and
outbreaks show less seasonality and are more difficult to explain
with environmental correlations. Here, we use convergent cross
mapping, a robust test for causality that does not require correla-
tion, to test alternative hypotheses about the global environmental
drivers of influenza outbreaks from country-level epidemic time
series. By moving beyond correlation, we show that despite the
apparent differences in outbreak patterns between temperate
and tropical countries, absolute humidity and, to a lesser extent,
temperature drive influenza outbreaks globally. We also find a
hypothesized U-shaped relationship between absolute humidity and
influenza that is predicted by theory and experiment, but hitherto has
not been documented at the population level. The balance between
positive and negative effects of absolute humidity appears to be
mediated by temperature, and the analysis reveals a key threshold
around 75 °F. The results indicate a unified explanation for environ-
mental drivers of influenza that applies globally.

epidemiology | empirical dynamic modeling | nonlinear dynamics |
state-dependence | physical–biological coupling

Adiverse group of drivers and mechanisms has been put for-
ward to explain the wintertime occurrence of seasonal in-

fluenza outbreaks. Laboratory experiments show that relative
humidity controls droplet size and aerosol transmission rates (1).
Experiments with mammalian models showed that viral shedding
by hosts increases at low temperature (2). Strong laboratory
evidence has emerged that absolute humidity has a controlling
effect on airborne influenza transmission (3).
Nevertheless, questions remain as to how these potential

causal agents are expressed at the population level as epidemic
control variables. At the population level, environmental factors
covary, multiple mechanisms can coact, and infection dynamics
are influenced by many other important processes (4), such as
human crowding, rapid viral evolution, and international travel
patterns. Perhaps not surprisingly, statistical analyses of pop-
ulation level data have produced contradictory results. Although
correlations between influenza incidence and both temperature
and absolute humidity are easy to find in temperate countries (5)
and individual US states (6), such associations are weak or al-
together absent in data from tropical countries (5).
Here we use new methods appropriate for disease dynamics to

identify the causal drivers of influenza acting at the population
level. Using time series data across countries and latitudes, we
find that absolute humidity drives influenza across latitudes, and
that this effect is modulated by temperature. At low tempera-
tures, absolute humidity negatively affects influenza incidence
(drier conditions improve survival of the influenza virus when it
is cold), but at high temperatures, absolute humidity positively
affects influenza (wetter conditions improve survival of the in-
fluenza virus when it is warm). This population-level finding
supports the conclusions of theoretical work on viral envelope
stability (7) and sorts out disagreements in laboratory studies (8).
Our analysis is divided into three parts. First, we show how

dynamic resonance can explain the success of linear statistical
methods in detecting causal effects in temperate latitudes and how

mirage correlations are symptoms of their failure in the tropics.
This motivates taking an empirical dynamic modeling (EDM)
approach (9). Second, we use the EDM method of detecting cau-
sality, convergent cross-mapping (CCM), to show how absolute
humidity and temperature combine to produce a unified expla-
nation for influenza outbreaks that applies across latitudes. Fi-
nally, we probe the mechanistic effects of each variable, showing
that absolute humidity has the most direct effect on influenza,
and that this effect is modulated nonlinearly by temperature.

Results
Correlation and Seasonality. It is well known that correlative ap-
proaches can fail to provide an accurate picture of cause and
effect in a dynamic system, and this is especially true in nonlinear
systems where interdependence between variables is complex.
Such systems are known to produce mirage correlations that
appear, disappear, and even reverse sign over time (9). Persistent
correlations tend to only occur in specific circumstances; most
notably, when there is synchrony between driver and response
variables (the effect of the driving variable is strong enough that
the response becomes enslaved to the driver). This is key, be-
cause basic host–pathogen dynamics are known to exhibit dy-
namical resonance when strongly forced by periodic drivers (10).
Dynamical resonance causes the intrinsic nonlinear epidemio-
logical dynamics to become synchronized (phase-locked) to the
simple cyclic motion of the environmental driver. However,
when drivers do not induce synchrony, the underlying nonlinear
dynamics can cause the statistical relationship between driver
and response to become very complex.
Indeed, the same simple epidemiological SIRS model of ref.

10 (a basic epidemiological model consisting of “susceptible-
infected-recovered-susceptible”) illustrates how the identical
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mechanistic effect of a driver can produce very different behavior
when only the periodicity is changed (Fig. 1). Simulating the model
with a strongly seasonal environmental driver produces consistent
seasonal outbreaks that correlate very strongly to the driver (Fig. 1A,
where seasonality is quantified by the Pearson’s correlation
between the raw values and day of year mean). However, this
changes when the driver is replaced with another signal that has
the same magnitude, but with much weaker seasonality (low
correlation between raw values and day of year mean). The
weakened seasonality results not only in much less seasonality
in influenza but also much lower correlation between influenza
infections and climate (Fig. 1B). The mechanisms have not
changed, only the spectrum (periodicity) of the driver.
Moreover, not all regions of the world have strong climate

seasonality. Although the seasonal cycle in a temperate country
such as Germany can explain more than 90% of the variance in
absolute humidity across multiple decades, in tropical countries
such as Singapore, it explains less than 30%. Indeed, there is a
strong correspondence between seasonality of climate and sea-
sonality of influenza. Fig. 2 shows the seasonality in absolute
humidity (Fig. 2A) and influenza (Fig. 2B) across countries. The
countries with the least seasonality in environment (yellow
shades) also have the least seasonal influenza (Spearman’s ρ =
0.73). This is most pronounced in the tropics, where it is im-
portant to note that correlations between influenza and envi-
ronment are also most elusive.

These results illustrate a crucial point: lack of seasonality in
influenza and lack of correlation between influenza and climate
do not indicate a lack of environmental forcing. Indeed, a poor
correlation between climate and influenza is to be expected
with a nonlinear relationship where seasonality is weak; how-
ever, where seasonality is strong, dynamical resonance can
emerge to produce the appearance of a linear relationship
(correlation). To examine these ideas critically and to develop a
more unified understanding of how climate affects influenza
globally requires an approach that can cope with the nonlinear
interactions inherent in the system.

Cross-mapping. Convergent cross-mapping is a method for detecting
causality in nonlinear dynamic systems (see the following play-
list of three brief animations (adapted from the supplement of
ref. 12): https://www.youtube.com/watch?v=fevurdpiRYg&list=PL-
SSmlAMhY3bnogGTe2tf7hpWpl508pZZ).It looks for signatures of
the cause in the time series of the affected variable. The idea is
that if a variable, X, can predict the current or previous state of
another variable, Y, then Y causally influenced X. For example, if
sardine abundance can be used to recover sea surface tempera-
ture, then temperature had a causal effect on sardines. We ex-
amine cross-map prediction between influenza and the purported
environmental drivers: absolute humidity, temperature, relative
humidity, and precipitation. The mutual seasonality of influenza
and these environmental variables makes it especially important
to distinguish causal interactions from spurious correlation.
Thus, we compare the cross-map prediction measured for the
observational environmental time series with the null expectation
obtained from cross-mapping with surrogate time series having
the same seasonal cycle as the actual driver, but with randomized
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Fig. 1. Stochastic SIRS model with strongly and weakly seasonal drivers.
(A) A strongly periodic environment induces synchrony through dynamical
resonance, causing peaks in infection to correlate with seasonal lows in the
seasonal environment. (B) If the same SIRS model is driven by a seasonal
signal with the same variance, but much weaker seasonality, there is no
dynamic resonance, infection peaks show much weaker seasonality, and
correlation between infection and environment is much lower.

Fig. 2. Correspondence between seasonality of environment and season-
ality of influenza infection. Countries are colored from the least seasonal to
most seasonal for absolute humidity (A) and influenza infection (B). The
Spearman correlation between the two is high: ρ = 0.73.
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anomalies. Causal forcing is established when cross-map predic-
tion is significantly better for the real environmental driver than it
is for the null surrogates (11).
Fig. 3 shows box-and-whisker plots of the null distributions for

cross-map skill (ρCCM) ordered according to distance from the
equator (absolute latitude). The measured CCM skill values are
plotted on top as red circles that are filled if the value is signifi-
cantly different from the null distribution (P ≤ 0.05), and open
otherwise. Absolute humidity (AH) and temperature (T) both
show significant forcing in countries across latitude. The results
have very high metasignificance (Fisher’s method): P < 1.6 × 10−6

for AH and P < 2.9 × 10−3 for T. There is even higher meta-
significant evidence for forcing across latitudes by relative
humidity: P < 1.8 × 10−14. However, paired Wilcox tests (non-
parametric generalization of Student’s t test) in the prediction
skill confirm that the cross-map effect with respect to RH is
weaker on average than with either AH or T (P < 0.02), but that
the strength of effects of AH and T are not significantly different
from one another. Finally, there is some evidence that pre-
cipitation may be a causal variable in a few countries (global
metasignificance, P < 7.3 × 10−3; tropics only, P < 0.023).
If all other things are equal, the magnitude of cross-map skill

(ρCCM) can indicate the strength of causal effect. On this basis,
one might conclude that because the absolute level of cross-map
skill is lower in the tropics, the causal effect of climate (absolute
humidity or temperature) is weaker. However, this would be
incorrect, as “all things equal” does not apply across latitudes
because of the differences in seasonality, and hence differences
in the baseline predictability in these systems. This dichotomy
is illustrated with the model shown in Fig. 1. Both model realiza-
tions have the same ultimate magnitude of the effect of AH on flu.

In Fig. 1A, however, the driver has much stronger seasonality, and
is therefore more predictable. The seasonal cycle, being identical
from year to year, is trivial to predict; meaning the stronger the
effect of the seasonal cycle, the easier the driver is to predict. Thus,
the absolute level of ρCCM is substantially higher in Fig. 1A than
Fig. 1B, even though the strength of causal effect is likely un-
changed. Therefore, in this case, the skill of CCM (ρCCM) should
not be used as a relative measure of causal strength when com-
paring CCM across latitudes, as the climate time series in tropical
and temperate countries do not have the same basic levels of
predictability.

Multivariate EDM. To examine whether AH or T has a stronger
causal effect on influenza according to previous work (12), we
use a multivariate EDM approach that looks for improvement in
forecasting when a suspected causal variable is included. In brief,
if a multivariate empirical dynamic model containing a potential
driving variable Y produces better forecasts of X than without,
then Y causally influenced X. The results are summarized in Fig.
4. The results show strong evidence that AH and T are drivers of
influenza, as including either variable leads to improved forecast
skill (P < 0.001 globally). However, in the tropics (where AH and
T generally have weaker correlation), we find that including AH
and T together as embedding coordinates leads to slightly more
improvement over either one alone. In temperate countries, where
correlations between AH and T are extremely high (generally >
0.9), these variables contain almost identical information, and
hence there is less difference in forecast skill on average between
embeddings with AH, T, or both. Overall, multivariate forecast
improvement suggests the possibility that AH and T taken to-
gether have a nonlinear effect on influenza that is global, but that
this effect is concealed in the temperate region by their strong
correlation to each other.
To explore the mechanism for this interaction further, we

predict the hypothetical change in influenza incidence, denoted
Δflu, at historical points that would occur from small increases
and decreases in the environmental driver [EDM scenario ex-
ploration (13)]. This simple device allows us not only to directly
quantify the magnitude and direction of effect but also to keep
track of how the effect changes through time and with varying
environmental conditions. Fig. 5A shows country by country the
magnitude of the effect of absolute humidity on influenza, Δflu/
ΔAH. Countries at high latitudes generally show a negative effect
of absolute humidity on influenza, whereas low-latitude coun-
tries generally show a positive effect. This is consistent with the
hypothesized U-shaped response of influenza to AH suggested
by certain experiments (8).
We can examine this effect further by plotting the scenario

exploration results for all the countries together. Fig. 5B shows
that the effect of AH on influenza is negative at low AH (Δflu/
ΔAH < 0), but positive at high AH (Δflu/ΔAH > 0), consistent
with a U-shaped response of influenza survival to absolute hu-
midity. The negative effect on incidence at low AH and positive
effect at high AH appear roughly equivalent when the data are
normalized to average total reported cases in a year in that
country.
The same analysis for temperature (Fig. 5C) does not exhibit

such a clear state-dependent (nonlinear) effect. Temperature
changes can have a positive (Δflu/ΔT > 0) or negative (Δflu/ΔT <
0) effect on influenza at the same temperature. Indeed, the mo-
lecular arguments for a U-shaped effect of absolute humidity on
influenza also predict that temperature should be a control on
the balance between the positive and negative effects of absolute
humidity (7).
With this in mind, we look at the effect of absolute humidity

on influenza (Δflu/ΔAH) as a function of temperature (Fig. 5D).
This is perhaps the most interesting picture to emerge, as there
are a number of features that corroborate and elaborate existing
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Fig. 3. Detecting cross-map causality beyond shared seasonality of envi-
ronmental drivers on influenza. Red circles show the unlagged cross-map
skill (ρCCM) for observed influenza predicting purported seasonal drivers:
absolute humidity, temperature, relative humidity, and precipitation. To-
gether with this, box-and-whisker plots show the null distributions for ρCCM
expected from random surrogate time series that shares the same season-
ality as the true environmental driver. Countries are ordered according to
distance from the equator (absolute latitude). Filled circles indicate that the
measured ρCCM is significantly better than the null expectation (P ≤ 0.05).
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ideas. We observe the following: temperature has a relatively
loose control on (Δflu/ΔAH) when it is below ∼70 °F, but the
effect on (Δflu/ΔAH) is consistently negative; the positive effect
of absolute humidity appears more strongly controlled by tem-
perature and appears to be restricted to a narrow band of tem-
perature between 75 °F and 85 °F; at the highest temperatures,
the effect of absolute humidity goes to zero in exact concordance
with the laboratory finding that aerosol transmission of influenza
is blocked at 30 °C (86 °F) (14).
These results suggest that the balance between positive and

negative effects of absolute humidity appears to shift somewhere
between 70 °F and 75 °F. This is especially clear if we look back
at the plot in Fig. 5B that shows the effect of absolute humidity
on influenza across the global range of absolute humidity. Fig. 6
shows the same data, but now the points are split between two
panels, based on temperature. On the left are observations
where temperature was below 75 °F; on the right are observa-
tions where the temperature was between 75 °F and 85 °F. The
red lines represent the 0.1 and 0.9 quantile regressions. The

quantile regressions show that the measured effect of AH on
influenza is almost always negative when T < 75 °F, and almost
always positive when 75 °F ≤ T ≤ 85 °F.

Discussion
Prior population-level analyses have focused on explanations for
influenza seasonality, using correlations. However, correlation is
a limited tool for understanding causality in nonlinear systems
such as those exhibiting complex host–pathogen dynamics. Building
on previous work on dynamic resonance (10), we show that per-
sistent correlations between influenza and environment should
only be expected where seasonality is strongest; that is, in tem-
perate countries (as is clear from Fig. 2).
This motivates adopting an EDM framework to address the

general problem of identifying external drivers of nonlinear dy-
namics. We are able to provide clear tests at the population level
of alternative hypotheses about global climatic drivers of influenza
and show that there are general rules that span temperate and
tropical latitudes. We find clear evidence that temperature and
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Fig. 4. Forecast improvement with multivariate EDM. Causal effect is demonstrated if EDM forecast skill (ρ) improves when a driver variable is included in the
EDM model. This is quantified by Δρ = ρ(with driver) − ρ(without driver), where ρ is the Pearson’s correlation between observations and EDM predictions.
Including either absolute humidity (AH) or temperature (T) leads to significant (P < 0.001) improvement in forecast skill both globally (A) and the tropics
specifically (B). The significance is more marginal when looking solely at temperate countries (C) (P < 0.07 for AH; P < 0.03 for T). In the tropics, including both
(AH +T) is marginally better than either AH or T alone, suggesting possible compound effects of temperature and humidity.
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gives a measure of the effect of environment on in-
fluenza infection by predicting the change in influenza
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humidity (ΔAH) or temperature (ΔT). Analysis covers
countries with at least 208 observations (4 y) and area
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equator (SI Appendix, Table S1). Countries closest to the
equator tend to show a positive effect of AH on in-
fluenza infection, whereas countries furthest from the
equator show a negative effect (red line indicates the
tropical boundary). (B) Effect of absolute humidity on
influenza (Δflu/ΔAH) as a function of AH grouped over
all countries. Each point represents the estimated effect
from scenario exploration for one historical point in one
of the study countries. At low AH (typical of high-lati-
tude countries), AH has a negative effect on influ-
enza infection, whereas at high AH (typical of low-
latitude countries), AH has a positive effect on influenza.
(C) Effect of temperature on influenza (Δflu/ΔT) as a
function of T. Evidence of a single global effect is much
weaker, but it suggests there might be important tem-
perature thresholds. (D) How the effect of absolute hu-
midity on influenza (Δflu/ΔAH) changes as a function of
T. Additional details given in SI Appendix, Section 5.
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absolute humidity have more direct effects on global influenza
than precipitation and relative humidity (Figs. 3 and 4), and that
these environmental drivers are important at all latitudes, re-
gardless of the degree of seasonality in the environment and
influenza.
Critically, we find that AH and T interact nonlinearly (Fig. 4).

That is, the relationships among temperature, humidity, and
influenza are not understood by trying to study the influence of
the different variables separately (e.g., by linear correlation) but,
rather, by studying their mutually interdependent effects. In-
deed, not only does nonlinear analysis show a U-shaped effect of
absolute humidity on influenza, but also that temperature me-
diates this relationship (Figs. 5 and 6). This closely corroborates
the theoretical molecular basis for temperature and absolute
humidity effects on influenza (7). In cold environments, the viral
envelope is prone to disruption; hence, drier air (low AH) pro-
motes the spread of influenza when temperature is low. In warm
environments, the viral envelope is prone to desiccation; hence,
wetter air (high AH) promotes the spread of influenza when tem-
perature is high. The EDM analysis suggests that this tradeoff be-
tween positive and negative effects happens in the neighborhood of
24 °C (75 °F).
At present, there are no modeling or laboratory results against

which to compare these threshold results. Critically, the recent
laboratory experiments that demonstrated a negative monotonic
effect of AH on influenza (2, 3) only varied temperatures as high
as 20 °C (68 °F), and thus could only produce the negative effect
of AH that we found at lower temperatures. Our results set the
stage for laboratory studies that experimentally test this thresh-
old by varying temperature and humidity over the full range of
conditions experienced globally. Augmented with further labo-
ratory testing, these population-level results could help set
the stage for public health initiatives such as placing humidifiers
in schools and hospitals during cold, dry, temperate winters
(as suggested by ref. 3), and in the tropics, perhaps using dehu-
midifiers or air conditioners set above 75 °F to dry air in public
buildings.
For influenza, the interaction between transmission and envi-

ronment is understood to be one of many important epidemio-
logical processes, including strain-dependent effects, spatial
dynamics within countries (15), spatial dynamics between coun-
tries (16), and antigenic drift (17). One of the advantages of EDM
is that these other factors, insofar as they interrelate with the
deterministic dynamics in countrywide infection, are indirectly
accounted for, albeit phenomenologically, in the reconstructed
attractors (18, 19). Nevertheless, the most complete understanding
of influenza will come from treating all these factors integratively

(4). This sets the stage for future studies that will specifically in-
corporate these other processes in a broader multivariate setting.

Methods
Data. Total laboratory confirmed influenza A and B cases per week were
retrieved on April 2, 2014, from the World Health Organization via FluNet by
country (apps.who.int/globalatlas/dataQuery/) for January 1, 1996–March 26,
2014 (Dataset S1). Ideally, we would like to analyze an index of incidence
density (per capita), and thus need to account for population size and
reporting rates. To account for changes in population size, we divide by
linearly interpolated annual population data taken from ref. 20.

Accounting for changes in reporting rate over time is a more difficult issue
to address. A typical approach is to divide weekly incidence by the total
reported incidence for that country, that year. However, this masks all year-
to-year differences in influenza infections, including those that arise naturally
from the nonlinear intrinsic dynamics of host–pathogen dynamics and from
the state-dependent effect of climate variability. Such standardization
would artificially inflate the seasonal signature in influenza incidence, and
hence would make the task of disentangling causality from shared season-
ality harder, not easier.

However, accounting for the substantial differences in reporting rates
between countries can be addressed to first order by dividing weekly in-
cidence by the total reports per year in that country averaged over all years
reported. Note that CCM is unaffected by arbitrary scaling, so this normal-
ization only affects the comparisons between countries (Figs. 4–6).

Weekly temperature and absolute humidity data were calculated from
National Oceanic and Atmospheric Administration Global Surface Summary of
the Day (ftp://ftp.ncdc.noaa.gov/pub/data/gsod). A single value was calculated
for each country by taking a simple average over all available stations.

Relative humidity was approximated from temperature and absolute
humidity by assuming standard atmospheric pressure. Precipitation data
were taken from the combined National Centers for Environmental Pre-
diction Climate Climate Forecast System (CFSR and CFSv2) for the 2° × 2° grid
square corresponding to the largest urban area (Dataset S1).

In both cases, there are potential issues with spatial aggregation. Spatial
aggregation has a tendency to mask nonlinear dynamics (21), yielding time
series that are dominated by linear dynamics such as seasonality. For the
influenza data, the only real option for a global analysis is to look at
country-wide data. However, there are other reasonable options for the
physical data. In some countries such as Thailand, where population is very
localized (relative to the size of the country), it is entirely likely that taking a
single weather station closest to the largest city will be representative of the
country as a whole. However, this approach is much harder to justify for a
country such as Germany, where there are multiple large urban areas dis-
tributed over the area of the country. Ultimately, taking the approach of
simple averages across all of the available monitoring sites is a simple ap-
proach that does not require country-by-country expert knowledge of cli-
mate and geography. Because spatial averaging tends to enhance seasonality,
this potentially makes it hard to establish significance, but (given the surro-
gate methods we use) is not expected to produce spurious relationships and
will tend to produce conservative results.

Seasonality. The seasonal cycle is determined using a smoothing spline
(smoothing parameter = 0.8) to the target variable as a function of day of
year, where the spline is wrapped December 31–January 1. Unlike other
methods for extracting seasonal cycles based on Fourier decomposition, this
method works for both time series variables that have a mostly sinusoidal
waveform (e.g., temperature) and time series variables that have very
nonsinusoidal waveforms (e.g., precipitation or influenza incidence that has
a hard boundary at 0). This gives the environmental variable as a function of
the day of year. The Pearson’s correlation between the observed value and
the day of year average (i.e., the seasonal cycle) is used as a quantitative
measure for “seasonality.”

EDM. EDM is a quantitative framework that uses time series data to reconstruct
and study the underlying attractor (9, 11–13, 19, 21–26). Dynamical systems are
typically studied in terms of parametric equations; for example, a SIR model of
disease outbreak. These equations can then be solved to generate the changes
of the system variables through time. When viewed in state space (multivariate
space in which each axis corresponds to a system variable), this becomes a tra-
jectory that traces out the underlying attractor of the system. The attractor for
an unknown system from nature can be reconstructed directly from a complete
set of observational time series (illustrated in the brief animation here: https://
www.youtube.com/watch?v=fevurdpiRYg), but it can also be reconstructed
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Fig. 6. Temperature thresholds in the effect of absolute humidity (ΔAH) on
influenza (Δflu). The results of scenario exploration in Fig. 4B are replotted
according to temperature. (Left) Values correspond to observations when T
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between 75 °F and 85 °F. The red dashed lines indicate the 0.1 and 0.9
quantile regressions.
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from a single time series by using time-lagged coordinates (https://www.
youtube.com/watch?v=QQwtrWBwxQg). The dynamic attractor is a complete
representation of the system, and thus can be studied in place of parametric
equations to predict and understand systems such as host–pathogen dynamics.

This general framework can be applied in a number of ways—to detect
causation (9), forecast future states (22, 23), track interactions (24), and so on—
using the R package “rEDM” (https://cran.r-project.org/web/packages/rEDM/
index.html), which includes a technical description of the methods in a vignette
(https://cran.r-project.org/web/packages/rEDM/vignettes/rEDM_tutorial.html
documentation). Additional details on the exact calculations are given here.
Note that EDM prediction skill in this article is always measured with Pearson’s
correlation (ρ) between observed and predicted values.

CCM Analysis and Seasonal Surrogates. The basic idea of convergent cross-
mapping is to use prediction between variables as a test for causality. If
variable Y had a causal effect on variable X, then causal information of
variable Y should be present in X, and so the attractor recovered for variable
X should be able to predict the states of variable Y (https://www.youtube.
com/watch?v=iSttQwb-_5Y).

For basic CCM analysis, we use simplex projection, which has a single pa-
rameter to select: the embedding dimension E. As in ref. 24, we select E on the
basis of the optimal prediction of cross-mapping lagged 1 wk, then measure
the unlagged cross-map skill with this value of E. Some of the influenza time
series have long stretches of zero-values, which will contain little or no in-
formation about the climate. As a consequence, we exclude from the pre-
diction set all stretches of zeros at least 8 time points long (the maximum
embedding dimension tested) to improve the sensitivity of the analysis.

Checking for convergence in cross-map skill (i.e., that cross-map skill im-
proves with the amount of data used) is a general way to distinguish cross-
mapping from spurious correlation (9). However, we are concerned here
with a more specific problem of distinguishing driving effects from mutual
seasonality. This is more directly addressed by developing a null test with
surrogate time series, in the vein of ref. 11.

For a forcing variable Z(t) (e.g., absolute humidity or temperature), we
calculate the day of year average Z (i.e., the seasonal cycle) as earlier, and the
seasonal anomaly as the difference between the observed value Z(t) and the
day of year average for that day, ~ZðtÞ= ZðtÞ-ZðtÞ. We then randomly shuffle
(permute) the time indices of the seasonal anomalies. Adding the shuffled
anomalies back to the season average gives a surrogate time series Z* that has
the same seasonal average as Z, but with random anomalies. If Z is in fact a
driver of influenza, then influenza will be sensitive not only to the seasonal
component of Z but also to the anomalies. Thus, influenza should better
predict the real time series Z than the surrogate Z*. In practice, we repeat the
shuffling procedure 500 times to produce an ensemble of surrogates.

Note that in determining the metasignificance of the CCM tests, we apply
Fisher’s method, which relies on the assumption that the different P values
are independent. However, both influenza epidemics and climate have
spatial dependencies between countries. Because there is no practical way to
determine the covariance between P values in this experiment, Fisher’s
method is the best guide, but it is important to note that the meta-
significance may be somewhat anticonservative.

Multivariate EDM: Forecast Improvement.When driver variables are stochastic
(e.g., seasonal anomalies of climactic variables), multivariate forecast im-
provement can be used as a test for causality (12). A stochastic variable is
considered causal if explicitly including it as a coordinate in the state space
leads to improved nearest-neighbor forecasts. In the case of seasonal in-
fluenza, however, we cannot necessarily treat the environmental time series
as stochastic variables. This means that information about the drivers is al-
ready contained in the univariate embedding (9, 25). Thus, we modify the
method of ref. 12 as follows.

We determine the optimal univariate embedding dimension, E*, for each
influenza time series, following ref. 26. A univariate embedding with di-
mension E < E* will be “under embedded”; that is, it will not contain full
information about the system state and dynamics. In this case, incorporating
information about a driver in a multivariate embedding will generally lead
to an increase in forecast skill. Thus, we calculate the improvement in
forecast skill, using simplex projection of the univariate embedding with E =
E*−1 and the same embedding, but with the candidate environmental
variable(s) included as a coordinate. As with CCM, we exclude all stretches of
zeros at least eight time points long (maximum tested E) from the prediction
set to improve the sensitivity of the analysis. Significant improvement is
calculated using a one-sample Wilcox test (nonparametric Student’s t test),
and significant differences in the improvement between variables is calcu-
lated using a paired two-sample Wilcox test.

Multivariate EDM: Scenario Exploration. Multivariate scenario exploration is a
way to empirically assess the effect of a small change in a physical driver (e.g.,
absolutehumidity) on influenza incidence.Wepredict theeffect of a small increase
in absolute humidity or temperature on influenza 2 wk later to understand the
sensitivity of influenza outbreaks to the environment. For each historical time
point, t, we predict influenza with a small increase (+ΔZ/2) and a small decrease
(−ΔZ/2) in historically measured driver Z(t). The difference in predicted influenza is
Δflu = flut+1[Z = Z(t)+ΔZ/2] – flut+2[Z = Z(t) – ΔZ/2], and the ratio of Δflu/ΔZ
quantifies the sensitivity of influenza infection to the driver Z at time t. We use
ΔZ = 0.2 g/m3 and 0.5 °F for absolute humidity and temperature, respectively.
These values correspond to∼5%of the SD of these variables across all of the countries
analyzed. Forecasts were performed using S-maps (22), with E = 7 and θ = 0.9.
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